Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 19 maja 2025 07:49
  • Data zakończenia: 19 maja 2025 08:21

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Odważka analityczna przygotowana w fabryce zawiera 0,1 mola EDTA. Posiadając taką jedną odważkę analityczną, jakie roztwory można przygotować?

A. 500 cm3 roztworu o stężeniu 0,2000 mol/dm3
B. 1000 cm3 roztworu o stężeniu 0,0100 mol/dm3
C. 100 cm3 roztworu o stężeniu 0,0100 mol/dm3
D. 2000 cm3 roztworu o stężeniu 0,2000 mol/dm3
Przygotowanie roztworu o stężeniu 0,0100 mol/dm3 w objętości 100 cm3 lub 1000 cm3 na podstawie danych z pytania jest niepoprawne z perspektywy obliczeń stężenia molowego. W przypadku pierwszej z tych odpowiedzi, gdy planujemy uzyskać stężenie 0,0100 mol/dm3, obliczamy: n = C * V, czyli n = 0,0100 mol/dm3 * 0,1 dm3 = 0,001 mol. Aby uzyskać 0,1 mola EDTA z odważki, potrzebowalibyśmy znacznie większej objętości roztworu, co przekracza dostępne możliwości. Podobnie w przypadku 1000 cm3 roztworu o stężeniu 0,0100 mol/dm3, obliczenia prowadzą do jeszcze większych niezgodności, ponieważ wymagałyby one 0,0100 mola * 1 dm3 = 0,01 mol, co także nie jest możliwe przy dostępnym 0,1 molu. W przypadku stężenia 0,2000 mol/dm3 w objętości 2000 cm3 sytuacja jest analogiczna, ponieważ znowu obliczenia pokazują, że potrzebna byłaby większa ilość moli niż posiadamy. Te błędy wynikają z nieprawidłowego zrozumienia relacji między stężeniem, ilością substancji a objętością roztworu. W praktyce, kluczowe jest umiejętne posługiwanie się równaniami dotyczącymi stężenia molowego, aby uniknąć takich fałszywych wniosków i zapewnić prawidłowe przygotowanie roztworów. Odpowiednia znajomość tych zasad jest istotna w każdym laboratorium chemicznym i w zastosowaniach analitycznych.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

W celu usunięcia drobnych zawiesin z roztworu przed analizą spektrofotometryczną stosuje się:

A. dekantację bez sączenia
B. suszenie roztworu w suszarce laboratoryjnej
C. podgrzewanie roztworu do wrzenia
D. sączenie przez sączek o drobnych porach lub filtr membranowy
Sączenie przez sączek o drobnych porach lub filtr membranowy to standardowa metoda przygotowania próbek do analiz spektrofotometrycznych, szczególnie gdy zależy nam na usunięciu nawet najmniejszych cząstek zawieszonych. W branży laboratoryjnej takie podejście uchodzi za dobrą praktykę, bo pozwala skutecznie oddzielić fazę ciekłą od niepożądanych drobin, które mogłyby rozpraszać światło i zakłócać pomiar. Filtry membranowe wyróżniają się bardzo drobną porowatością (np. 0,22–0,45 µm), przez co nawet mikroskopijne cząstki nie przechodzą dalej. Użycie sączka o drobnych porach jest też bezpieczne dla składu chemicznego roztworu, nie powoduje dodatkowych reakcji i nie wpływa na wyniki analizy. Moim zdaniem, to wręcz obowiązkowa czynność przed większością analiz spektrofotometrycznych, szczególnie gdy pracujemy z próbkami środowiskowymi, farmaceutycznymi czy biologicznymi. Warto wspomnieć, że profesjonalne laboratoria stosują filtry strzykawkowe lub sączki z tworzyw sztucznych, bo są wygodne i minimalizują ryzyko zanieczyszczeń. Odpowiednia filtracja gwarantuje, że absorbancja mierzona spektrofotometrycznie odzwierciedla wyłącznie skład roztworu, a nie „szum” od cząstek zawieszonych. Takie przygotowanie próbek to po prostu podstawa rzetelnych wyników.

Pytanie 5

Proces mineralizacji próbki, który polega na jej spopieleniu w piecu muflowym w temperaturze 300-500°C i rozpuszczeniu pozostałych resztek w kwasach w celu oznaczenia zawartości metali ciężkich, to mineralizacja

A. mikrofalowe.
B. suche.
C. ciśnieniowe.
D. mokre.
Mineralizacja sucha to proces, który polega na spalaniu próbki w piecu muflowym w temperaturze 300-500°C. Taki sposób mineralizacji jest szeroko stosowany w analizach środowiskowych i chemicznych w celu oznaczania zawartości metali ciężkich. Po spaleniu próbki, pozostałości popiołu są rozpuszczane w odpowiednich kwasach, co umożliwia ich dalszą analizę, na przykład przez spektroskopię absorpcyjną czy atomową. Zastosowanie mineralizacji suchej jest zgodne z normami ISO dla analizy metali ciężkich, co zapewnia wysoką jakość i powtarzalność wyników. Dzięki tej metodzie można efektywnie eliminować materię organiczną, co zapewnia dokładniejsze pomiary stężenia metali. Praktyczne zastosowania obejmują badania gleby, osadów dennych oraz próbek biochemicznych, co czyni tę metodę kluczową w monitorowaniu zanieczyszczenia środowiska.

Pytanie 6

Jakie narzędzie w laboratorium jest wykorzystywane do rozdrabniania małych ilości substancji stałych?

A. moździerz z tłuczkiem
B. parownica z łyżeczką porcelanową
C. krystalizator ze szpatułką metalową
D. zlewka z bagietką
Moździerz z tłuczkiem jest podstawowym narzędziem wykorzystywanym w laboratoriach do rozdrabniania substancji stałych, zwłaszcza tych, które są w postaci proszku lub granulek. Umożliwia on precyzyjne mielenie materiałów, co jest kluczowe w wielu procesach chemicznych. Dzięki swojej budowie, moździerz zapewnia stabilność oraz kontrolę nad stopniem rozdrobnienia. Przykładem zastosowania moździerza z tłuczkiem może być przygotowanie prób do analizy chemicznej, gdzie konieczne jest uzyskanie jednolitej konsystencji substancji. Ponadto, standardy laboratoryjne, takie jak ISO 9001, podkreślają znaczenie wysokiej jakości przygotowania próbek, co czyni moździerz z tłuczkiem narzędziem niezbędnym dla zachowania spójności i dokładności w badaniach. W praktyce, moździerze mogą być wykonane z różnych materiałów, takich jak porcelana, granit czy stal nierdzewna, co pozwala na dostosowanie ich do specyficznych wymagań chemicznych i fizycznych substancji, z którymi pracujemy. Odpowiedni dobór narzędzi do rozdrabniania substancji stałych jest kluczowy, aby uniknąć kontaminacji i zachować integralność chemiczną przygotowywanych prób.

Pytanie 7

Aby oddzielić połączenia szlifów, należy w miejscu ich styku wprowadzić

A. wodorotlenek sodu
B. glicerynę
C. wodorotlenek potasu
D. kwas fluorowodorowy
Gliceryna jest substancją, która doskonale sprawdza się w procesie rozdzielania zapieczonych połączeń szlifów. Jej zastosowanie wynika z właściwości chemicznych, które pozwalają na skuteczne działanie w trudnych warunkach. Gliceryna jest środkiem niejonowym, co oznacza, że nie wywołuje reakcji z materiałami, z którymi współdziała. W praktyce, podczas zastosowania gliceryny na strefie połączenia szlifów, zwiększa się elastyczność otaczających materiałów, co ułatwia ich oddzielenie bez ryzyka uszkodzenia. Gliceryna ma również właściwości nawilżające, co dodatkowo sprzyja procesowi rozdzielania, zapewniając lepszą penetrację w obszary o dużym skurczeniu. W branżach zajmujących się szlifowaniem i obróbką materiałów, takich jak przemysł motoryzacyjny czy lotniczy, stosowanie gliceryny jako środka pomocniczego w rozdzielaniu połączeń jest zgodne z najlepszymi praktykami, co potwierdzają liczne standardy jakości. Dodatkowo, gliceryna jest substancją nietoksyczną, co czyni ją bezpiecznym wyborem w porównaniu do innych chemikaliów.

Pytanie 8

Aby przygotować 250 cm3 0,2-molowego roztworu wodorotlenku sodu, należy odważyć

MNaOH = 40g / mol

A. 0,05 g stałego NaOH.
B. 2,50 g stałego NaOH.
C. 25,0 g stałego NaOH.
D. 2,00 g stałego NaOH.
Aby przygotować 250 cm3 0,2-molowego roztworu wodorotlenku sodu (NaOH), konieczne jest zrozumienie podstawowych zasad obliczania masy substancji chemicznych. W przypadku NaOH, jego masa molowa wynosi 40 g/mol. Przygotowując roztwór o stężeniu 0,2 mola w 250 cm3, obliczamy ilość moli, co daje nam 0,05 mola NaOH (0,2 mol/l * 0,25 l). Następnie, aby obliczyć potrzebną masę, stosujemy wzór: masa = liczba moli * masa molowa. Czyli, 0,05 mola * 40 g/mol = 2 g NaOH. W praktyce, takie obliczenia są kluczowe w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów ma dużą wagę. Używając tej wiedzy, można z sukcesem przygotowywać różnorodne roztwory, co jest istotne w wielu dziedzinach nauki i przemysłu, takich jak chemia analityczna, synergia materiałów czy wytwarzanie farmaceutyków. Zrozumienie tych podstawowych zasad pozwoli na bardziej efektywne i bezpieczne przeprowadzanie eksperymentów chemicznych.

Pytanie 9

W przypadku odczynnika, w którym nawet najczulsze techniki analizy chemicznej nie są w stanie wykryć zanieczyszczeń, a jego badanie wymaga zastosowania metod opartych na zjawiskach fizycznych, zalicza się on do kategorii czystości

A. czysty do analizy
B. techniczny
C. chemicznie czysty
D. czysty
Odpowiedzi "czysty do analizy", "techniczny" oraz "czysty" nie są właściwe w kontekście omawianego pytania, ponieważ nie oddają one precyzyjnie specyfiki czystości chemicznej. "Czysty do analizy" może sugerować, że substancja jest wystarczająco czysta do przeprowadzenia analizy, ale nie gwarantuje, że zanieczyszczenia są na poziomie, który pozwala na stosowanie metod analitycznych wymagających wysokiej klasy czystości. Termin "techniczny" odnosi się zazwyczaj do substancji, które są odpowiednie do zastosowań przemysłowych, ale mogą zawierać zanieczyszczenia, które są akceptowalne w kontekście procesów technologicznych, jednak nie nadają się do zastosowań wymagających wysokiej czystości. Z kolei "czysty" jest terminem ogólnym, który nie precyzuje klasy czystości substancji, co sprawia, że nie jest zastosowaniem właściwe w kontekście szczególnych wymagań analitycznych. Użytkownicy mogą popełnić błąd, myśląc, że wszystkie te terminy są równoważne, podczas gdy w rzeczywistości różnią się one znacząco. Kluczowe jest zrozumienie różnic w wymaganiach dotyczących czystości, aby móc właściwie dobierać substancje do konkretnego zastosowania w laboratoriach chemicznych i przemysłowych.

Pytanie 10

Na ilustracji oznaczono numery 1 i 4:

A. 1 - kolbę destylacyjną, 4 - chłodnicę zwrotną
B. 1 - ekstraktor, 4 - chłodnicę zwrotną
C. 1 - kolbę destylacyjną, 4 - ekstraktor
D. 1 - chłodnicę zwrotną, 4 - kolbę destylacyjną
Wskazane odpowiedzi zawierają wiele nieporozumień dotyczących funkcji poszczególnych elementów aparatury chemicznej. Ekstraktor, który został wymieniony w niektórych z odpowiedzi, jest urządzeniem służącym do wydobywania substancji czynnych z materiału stałego lub cieczy, ale nie jest używany w kontekście destylacji. W praktyce, pomylenie ekstraktora z kolbą destylacyjną prowadzi do błędnych wniosków na temat procesu separacji, gdyż każdy z tych sprzętów ma odmienny cel i zastosowanie. Ekstrakcja polega na fizycznym wydobywaniu substancji, podczas gdy destylacja opiera się na różnicy temperatur wrzenia. Kolejnym błędem jest mylenie chłodnicy zwrotnej z kolbą destylacyjną. Chłodnica zwrotna jest elementem, który pełni rolę kondensatora, a nie zbiornika reakcji. Jej funkcją jest schładzanie par, co pozwala na ich skroplenie. Zrozumienie właściwych ról tych urządzeń jest kluczowe dla poprawnego przeprowadzenia procesów chemicznych. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków mogą wynikać z braku znajomości podstawowych zasad chemii oraz ze słabego zrozumienia, jak różne urządzenia funkcjonują w układach laboratoryjnych i przemysłowych. Przykłady zastosowania tych technik mogą obejmować przemysł farmaceutyczny, gdzie precyzyjna separacja drogich substancji czynnych jest kluczowa dla sukcesu produkcji, co potwierdza znaczenie znajomości tych narzędzi w zawodach związanych z chemią.

Pytanie 11

Podczas pobierania próby wody do oznaczania metali ciężkich zaleca się stosowanie butelek wykonanych z:

A. szkła sodowego
B. aluminium
C. ceramiki
D. polietylenu wysokiej gęstości (HDPE)
Polietylen wysokiej gęstości (HDPE) to materiał, który najczęściej wykorzystuje się do pobierania i przechowywania próbek wody przeznaczonych do analizy zawartości metali ciężkich. Przede wszystkim HDPE jest tworzywem chemicznie obojętnym wobec większości metali. To ogromna zaleta, bo nie wchodzi w reakcje z badanymi jonami, nie adsorbuje ich na swojej powierzchni i nie emituje zanieczyszczeń, które mogłyby zaburzyć wyniki. W praktyce laboratoria stosują butelki HDPE zarówno w analizach środowiskowych, jak i przemysłowych. Bardzo ważne jest też to, że HDPE jest wytrzymały mechanicznie, odporny na pęknięcia i łatwy do mycia oraz dekontaminacji przed kolejnym użyciem. Takie pojemniki są rekomendowane przez międzynarodowe normy, np. ISO 5667 dotyczące pobierania próbek wody. Z mojego doświadczenia wynika, że HDPE to pewność, że próbka nie zostanie zanieczyszczona metalami z materiału opakowania ani nie dojdzie do strat analitu przez związanie z powierzchnią. To naprawdę kluczowe, żeby nie zafałszować wyników, szczególnie przy bardzo niskich stężeniach metali ciężkich.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Jakie jest stężenie molowe roztworu, jeśli w 100 cm3 roztworu znajduje się 5,6 g KOH?
MK = 39 g/mol, MO = 16 g/mol, MH = 1 g/mol

A. 0,1 mol/dm3
B. 100 mol/dm3
C. 10 mol/dm3
D. 1 mol/dm3
Aby obliczyć stężenie molowe roztworu, należy najpierw obliczyć liczbę moli KOH zawartych w 5,6 g. Masa molowa KOH wynosi 56 g/mol (39 g/mol dla K + 16 g/mol dla O + 1 g/mol dla H). Możemy więc obliczyć liczbę moli jako: n = m / M = 5,6 g / 56 g/mol = 0,1 mol. Następnie przekształcamy objętość roztworu z centymetrów sześciennych na decymetry sześcienne: 100 cm³ = 0,1 dm³. Stężenie molowe (C) obliczamy korzystając ze wzoru C = n / V, co daje C = 0,1 mol / 0,1 dm³ = 1 mol/dm³. Tego typu obliczenia są niezwykle istotne w chemii analitycznej, gdzie precyzyjne stężenia roztworów są kluczowe dla uzyskania poprawnych wyników eksperymentalnych oraz w syntezie substancji chemicznych. Zrozumienie tych obliczeń pomaga w zachowaniu właściwych proporcji w reakcjach chemicznych, co jest podstawą wielu procesów przemysłowych oraz laboratoriów badawczych.

Pytanie 15

Jakie oznaczenie znajduje się na naczyniach szklanych kalibrowanych do wlewu?

A. Ex
B. W
C. In
D. R
Oznaczenie In na naczyniach szklanych kalibrowanych na wlew wskazuje, że naczynie to jest zaprojektowane do precyzyjnego pomiaru objętości cieczy, która ma zostać wlane w jego wnętrze. W praktyce oznaczenie to oznacza, że objętość wskazana na naczyniu jest równa objętości cieczy, gdy jej poziom osiąga oznaczenie kalibracyjne. Naczynia te są szeroko stosowane w laboratoriach chemicznych, biologicznych oraz w przemyśle farmaceutycznym, gdzie dokładność pomiarów jest kluczowa. Przykładem zastosowania może być przygotowywanie roztworów o określonej stężeniu, gdzie precyzyjna objętość reagentów jest niezbędna do uzyskania powtarzalnych wyników analiz. Warto również zwrócić uwagę na standardy ISO oraz normy ASTM, które regulują wymagania dotyczące kalibracji naczyń, co zapewnia wysoką jakość i rzetelność wyników eksperymentalnych.

Pytanie 16

Aby przygotować 200 g roztworu chlorku potasu o stężeniu 5% (m/m), ile substancji należy zastosować?

A. 20 g KCl i 180 g wody
B. 10 g KCl i 200 g wody
C. 10 g KCl i 190 g wody
D. 5 g KCl i 200 g wody
Aby przygotować 200 g roztworu chlorku potasu (KCl) o stężeniu 5% (m/m), należy obliczyć masę substancji rozpuszczonej w odniesieniu do całkowitej masy roztworu. W przypadku stężenia 5% oznacza to, że 5% masy całkowitej roztworu stanowi KCl. Zatem, masa KCl w 200 g roztworu wynosi: 200 g * 0,05 = 10 g. Pozostała masa roztworu to masa wody, którą można obliczyć odejmując masę KCl od masy całkowitej roztworu: 200 g - 10 g = 190 g. Dlatego prawidłowym składnikiem do sporządzenia tego roztworu jest 10 g KCl i 190 g wody. Tego rodzaju obliczenia są niezwykle istotne w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskiwania powtarzalnych i wiarygodnych wyników eksperymentów. Stosowanie się do zasad i standardów, takich jak Good Laboratory Practice (GLP), zapewnia wysoką jakość wyników badań. Dodatkowo, umiejętność obliczania stężenia roztworów jest podstawą w pracach laboratoryjnych, biochemicznych oraz w wielu zastosowaniach przemysłowych.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Nie należy podgrzewać cieczy w szczelnie zamkniętych pojemnikach, ponieważ

A. może wystąpić niebezpieczeństwo zgaszenia płomienia
B. może to zwiększyć jej toksyczność
C. wzrost ciśnienia może spowodować wybuch
D. istnieje ryzyko zalania palnika
Ogrzewanie cieczy w szczelnie zamkniętych naczyniach stwarza ryzyko wzrostu ciśnienia wewnątrz naczynia, co może prowadzić do niebezpiecznych sytuacji, w tym wybuchu. W momencie, gdy ciecz jest podgrzewana, jej temperatura wzrasta, co powoduje zwiększenie energii kinetycznej cząsteczek. W zamkniętym naczyniu, które nie ma możliwości swobodnego wydostania się pary, ciśnienie będzie rosło. Przykładem z życia codziennego mogą być sytuacje, gdy gotujemy wodę w zamkniętej butelce lub słoiku. W takich przypadkach para wodna nie ma drogi ujścia, a przy osiągnięciu krytycznego poziomu ciśnienia, naczynie może pęknąć lub eksplodować, co stanowi poważne zagrożenie dla bezpieczeństwa. Zgodnie z normami BHP oraz zaleceniami producentów sprzętu laboratoryjnego i przemysłowego, zawsze należy stosować naczynia przystosowane do ogrzewania cieczy oraz zapewniać odpowiedni nadmiar ciśnienia, aby zminimalizować ryzyko takich incydentów, na przykład poprzez użycie zaworów bezpieczeństwa.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Sód metaliczny powinien być przechowywany w laboratorium

A. w szklanych naczyniach
B. w szklanych pojemnikach wypełnionych naftą
C. w butelkach plastikowych
D. w butlach metalowych z wodą destylowaną
Sód metaliczny należy przechowywać w szklanych butlach wypełnionych naftą, ponieważ ma on silne właściwości reaktywne, szczególnie w kontakcie z wodą i powietrzem. Sód reaguje z wodą, wytwarzając wodór i ciepło, co może prowadzić do niebezpiecznych eksplozji. Nafta, jako substancja organiczna, skutecznie izoluje sód od kontaktu z wodą i wilgocią, co zapobiega jego utlenianiu oraz niebezpiecznym reakcjom chemicznym. Ponadto, szklane pojemniki są neutralne chemicznie i nie wchodzą w reakcje z sodem, co czyni je odpowiednim materiałem do przechowywania. Tego rodzaju praktyki są zgodne z normami bezpieczeństwa w laboratoriach chemicznych, gdzie szczególną uwagę zwraca się na odpowiednie metody przechowywania substancji niebezpiecznych. Warto również zauważyć, że w wielu laboratoriach stosuje się podobne metody przechowywania innych reaktywnych metali, aby zminimalizować ryzyko ich reakcji z substancjami zewnętrznymi.

Pytanie 22

Z 250 g benzenu (M = 78 g/mol) uzyskano 350 g nitrobenzenu (M = 123 g/mol). Jaka jest wydajność reakcji nitrowania?

A. 88,8%
B. 77,7%
C. 83,5%
D. 93,4%
Wydajność reakcji nitrowania obliczamy, porównując masę uzyskanego produktu z maksymalną masą, którą moglibyśmy otrzymać, bazując na ilości reagenta. W przypadku benzenu, z jego masy molowej (M = 78 g/mol) możemy obliczyć, ile moli benzenu mamy w 250 g: 250 g / 78 g/mol = 3,21 mol. Reakcja nitrowania benzenu do nitrobenzenu produkuje jeden mol nitrobenzenu na każdy mol benzenu. Dlatego teoretycznie moglibyśmy otrzymać 3,21 mol nitrobenzenu, co przekłada się na masę: 3,21 mol * 123 g/mol = 394,83 g nitrobenzenu. Jednak w praktyce uzyskaliśmy tylko 350 g. Aby obliczyć wydajność, stosujemy wzór: (masa uzyskana / masa teoretyczna) * 100%. W naszym przypadku wydajność wynosi (350 g / 394,83 g) * 100% = 88,8%. Taka analiza i obliczenia są kluczowe w przemyśle chemicznym, ponieważ pozwalają na ocenę skuteczności procesów oraz optymalizację wykorzystania surowców, co jest zgodne z najlepszymi praktykami w zakresie zarządzania produkcją chemiczną.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Na etykiecie próbki środowiskowej należy umieścić datę jej pobrania, lokalizację poboru oraz

A. liczbę osób pobierających próbkę
B. typ środka transportowego
C. czas transportu próbki
D. nazwisko osoby, która pobrała próbkę
Podczas pobierania próbek środowiskowych ważne jest, aby odpowiednio je dokumentować, co pozwala na zachowanie wysokich standardów jakości oraz zgodności z regulacjami. Wskazanie rodzaju środka transportu, czasu trwania transportu czy ilości osób pobierających próbkę nie jest kluczowe dla samego procesu pobierania próbek. Rodzaj środka transportu i czas trwania transportu mogą wpływać na jakość próbki, ale ich dokumentacja nie jest wymagana na etapie oznaczania próbki. W praktyce, kluczowe informacje to te dotyczące samego poboru i osoby, która tę próbkę pobrała. Zapisanie tych danych jest szczególnie ważne w kontekście badania i analizy wyników, szczególnie w sytuacjach, gdy próbki mogą być poddawane dalszym badaniom lub audytom. Co więcej, skupienie się na ilości osób pobierających próbkę również nie jest istotne, ponieważ standardowe procedury dotyczące pobierania próbek często zakładają, że jedna osoba jest odpowiedzialna za ten proces, co zapewnia jednoznaczność i odpowiedzialność. Tego rodzaju nieporozumienia dotyczące dokumentacji próbek mogą prowadzić do utraty ważnych informacji, co w konsekwencji może wpłynąć na jakość badań i wiarygodność uzyskanych wyników.

Pytanie 26

Jakie jest stężenie molowe kwasu siarkowego(VI) o zawartości 96% i gęstości 1,84 g/cm3?

A. 18,02 mol/dm3
B. 0,18 mol/dm3
C. 1,80 mol/dm3 (H — 1 g/mol, S — 32 g/mol, O — 16 g/mol)
D. 18,02 mol/cm3
Niepoprawne odpowiedzi wynikają z błędów w obliczeniach oraz niepoprawnych założeń dotyczących stężenia molowego. Odpowiedzi 0,18 mol/dm3 i 1,80 mol/dm3 mogą sugerować, że obliczenia nie uwzględniają odpowiednio masy molowej kwasu siarkowego lub gęstości roztworu. W przypadku 0,18 mol/dm3 można zauważyć, że odpowiada ona zbyt niskiej wartości, co może sugerować, że założono zbyt małą masę kwasu w roztworze. Z kolei 1,80 mol/dm3 może być wynikiem nieprawidłowych obliczeń, w których pominięto dokładne określenie objętości roztworu. Odpowiedź 18,02 mol/dm3 jest znacznie wyższa, co wskazuje na to, że w obliczeniach użyto właściwych wartości masy molowej i stężenia. Typowym błędem myślowym jest mylenie jednostek objętości i masy oraz pomijanie gęstości roztworu, co prowadzi do niepoprawnych wyników. W kontekście chemii, niezwykle ważne jest zrozumienie, że stężenie molowe to stosunek moli substancji do objętości roztworu, a nie tylko masa kwasu w danym roztworze. Dlatego kluczowe jest stosowanie właściwych jednostek oraz umiejętność ich konwersji, co jest podstawą w obliczeniach chemicznych.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Aby pobrać dokładnie 20 cm3 próbkę wody do przeprowadzenia analiz, należy zastosować

A. pipetę wielomiarową o pojemności 25 cm3
B. pipetę jednomiarową o pojemności 10 cm3
C. pipetę jednomiarową o pojemności 20 cm3
D. cylinder miarowy o pojemności 25 cm3
Pipeta jednomiarowa o pojemności 20 cm3 jest najodpowiedniejszym narzędziem do precyzyjnego pobierania próbki wody o objętości 20 cm3. W praktyce laboratoryjnej, pipety jednomiarowe są projektowane tak, aby umożliwić dokładne i powtarzalne pomiary, co jest kluczowe w analizach chemicznych. Wybierając pipetę o pojemności dokładnie odpowiadającej potrzebnej objętości, minimalizujemy ryzyko błędów pomiarowych i podnosimy jakość uzyskiwanych wyników. W kontekście standardów laboratoryjnych, zgodnie z normą ISO 8655, pipety powinny być kalibrowane i okresowo weryfikowane, aby zapewnić ich dokładność. Użycie pipety o odpowiedniej pojemności, jak w tym przypadku, nie tylko zwiększa precyzję, ale także efektywność pracy w laboratorium, co jest istotne w przypadku wielu analiz wymagających rozcieńczeń lub dokładnych pomiarów składników chemicznych.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Przedstawiono wyciąg z karty charakterystyki substancji chemicznej. Na podstawie informacji zawartej w zamieszczonym fragmencie karty wskaż wzór chemiczny substancji, której można użyć jako materiału neutralizującego lodowaty kwas octowy.

Kwas octowy lodowaty 99,5%

Materiały zapobiegające rozprzestrzenianiu się skażenia i służące do usuwania skażenia

Jeżeli to możliwe i bezpieczne, zlikwidować lub ograniczyć wyciek (uszczelnić, zamknąć dopływ cieczy, uszkodzone opakowanie umieścić w opakowaniu awaryjnym). Ograniczyć rozprzestrzenianie się rozlewiska przez obwałowanie terenu; zebrane duże ilości cieczy odpompować. Małe ilości rozlanej cieczy przysypać niepalnym materiałem chłonnym (ziemia, piasek oraz materiałami neutralizującymi kwasy, np. węglanem wapnia lub sodu, zmielonym wapieniem, dolomitem), zebrać do zamykanego pojemnika i przekazać do zniszczenia.

Zanieczyszczoną powierzchnię spłukać wodą. Popłuczyny zebrać i usunąć jako odpad niebezpieczny.

A. NaCl
B. CaCO3 • MgCO3
C. CaSO4
D. (NH4)2SO>sub>4
Odpowiedź "CaCO3 • MgCO3" jest poprawna, ponieważ wskazuje na zastosowanie dolomitu, który zawiera zarówno węglan wapnia (CaCO3), jak i węglan magnezu (MgCO3). Te substancje są znane z właściwości alkalicznych, co sprawia, że są skutecznymi materiałami neutralizującymi kwasy, takie jak lodowaty kwas octowy. W praktyce, węglan wapnia jest często wykorzystywany w przemysłach chemicznych i budowlanych jako środek neutralizujący, a dolomit znajduje zastosowanie w rolnictwie jako poprawiacz gleby. Neutralizacja kwasów jest kluczowa w procesach przemysłowych, aby zminimalizować ryzyko korozji i uszkodzeń instalacji. Standardy dotyczące stosowania materiałów neutralizujących opierają się na zasadach bezpieczeństwa chemicznego, które wymagają stosowania odpowiednich substancji w celu ochrony zdrowia i środowiska. Zdecydowanie zaleca się korzystanie z tego typu włączy w laboratoriach oraz podczas procesów produkcyjnych, aby zapewnić zgodność z normami ochrony środowiska.

Pytanie 32

Jakie czynniki wpływają na zmiany jakościowe w składzie próbki?

A. przeprowadzonych analiz.
B. lokalizacji pobrania.
C. wiedzy i umiejętności próbobiorcy.
D. składu biologicznego próbki.
Wybór zleconych badań jako czynnika determinującego zmiany jakościowe w składzie próbki jest mylący, ponieważ zlecenia odnoszą się do procedur badawczych, a nie do samej próbki. Zlecenia definiują cele badań i metodykę, ale nie wpływają bezpośrednio na jakość czy skład próbki. Podobnie, miejsce poboru próbki może mieć znaczenie w kontekście kontaminacji lub zmienności środowiskowej, jednak nie jest kluczowym czynnikiem wpływającym na zmiany jakościowe w składzie próbki, które są przede wszystkim rezultatem procesów zachodzących wewnątrz próbki. Z kolei wiedza i umiejętności próbobiorcy są istotne dla zapewnienia rzetelności i powtarzalności wyników badań, ale same w sobie nie determinują zmian jakościowych. Kluczowe jest zrozumienie, że zmiany jakościowe wynikają z interakcji składników biologicznych, które są podstawą składu próbki. Takie myślenie pozwala uniknąć typowych błędów, takich jak skupienie się na aspektach proceduralnych zamiast na naturze samej próbki. Zrozumienie biologicznych i chemicznych właściwości składników próbek jest niezbędne do prawidłowej analizy i interpretacji wyników, dlatego należy kierować się w badaniach głębszymi podstawami naukowymi, a nie jedynie wytycznymi czy formalnymi zleceniami.

Pytanie 33

Temperatura wrzenia aniliny przy normalnym ciśnieniu wynosi 457,13 K. W trakcie jej oczyszczania metodą destylacji prostej pod ciśnieniem atmosferycznym należy zebrać frakcję wrzącą w przedziale temperatur

A. 185 °C - 190 °C
B. 181 °C - 185 °C
C. 175 °C - 179 °C
D. 178 °C - 182 °C
Odpowiedź 181 °C - 185 °C jest poprawna, ponieważ temperatura wrzenia aniliny wynosząca 457,13 K odpowiada 184 °C. W procesie destylacji prostej, aby skutecznie oddzielić substancję, należy zbierać frakcję wrzącą wokół tej wartości, co oznacza, że optymalny zakres do zbierania frakcji to 181 °C - 185 °C. W praktyce, aby zapewnić wysoką czystość destylatu, zwykle ustawia się zakres tak, aby obejmował temperatury bliskie wartości wrzenia, z uwzględnieniem ewentualnych wahań związanych z ciśnieniem atmosferycznym i zanieczyszczeniami. Przykładem zastosowania tej wiedzy jest przemysł chemiczny, gdzie oczyszczanie substancji chemicznych, takich jak anilina, jest kluczowe dla uzyskania wysokiej jakości produktów. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie dokładności pomiarów temperatury i stosowania odpowiednich metod oczyszczania, co jest niezbędne dla zapewnienia jakości i bezpieczeństwa procesów chemicznych.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Metoda oczyszczania substancji, która opiera się na różnicy w rozpuszczalności substancji docelowej oraz zanieczyszczeń w zastosowanym rozpuszczalniku, nosi nazwę

A. krystalizacją
B. ekstrakcją
C. dekantacją
D. sublimacją
W przypadku sublimacji, proces ten polega na przejściu substancji ze stanu stałego bezpośrednio w stan gazowy. Ta metoda oczyszczania nie bazuje na różnicy rozpuszczalności, lecz na różnicach ciśnienia i temperatury, co sprawia, że nie jest odpowiednia w kontekście podanego pytania. Ekstrakcja z kolei to proces, w którym jedna substancja jest wydobywana z roztworu do innego medium, najczęściej przy użyciu rozpuszczalnika, który selektywnie rozpuszcza jedne składniki, ale nie inne. Chociaż ekstrakcja może być stosowana do oczyszczania, nie opiera się bezpośrednio na różnicy rozpuszczalności, co czyni ją mniej odpowiednią odpowiedzią w tym kontekście. Dekantacja natomiast to technika oddzielania cieczy od osadu poprzez powolne wlewanie cieczy do innego naczynia, co również nie wykorzystuje różnicy rozpuszczalności, a raczej różnice gęstości. Zrozumienie tych procesów jest kluczowe dla analizy chemicznej oraz praktyk laboratoryjnych, a błędne przypisanie metodologii do opisanych zjawisk może prowadzić do nieprawidłowych wyników i ocen w laboratoriach badawczych.

Pytanie 36

Zawarty fragment instrukcji odnosi się do

Po dodaniu do kolby Kjeldahla próbki analizowanego materiału, kwasu siarkowego(VI) oraz katalizatora, należy delikatnie ogrzewać zawartość kolby za pomocą palnika gazowego. W początkowym etapie ogrzewania zawartość kolby wykazuje pienienie i zmienia kolor na ciemniejszy. W tym czasie należy przeprowadzać ogrzewanie bardzo ostrożnie, a nawet z przerwami, aby uniknąć "wydostania się" czarnobrunatnej masy do szyjki kolby.

A. mineralizacji próbki na mokro
B. mineralizacji próbki na sucho
C. topnienia próbki
D. wyprażenia próbki do stałej masy
Odpowiedź 'mineralizacji próbki na mokro' jest poprawna, ponieważ opisany proces odnosi się do analizy chemicznej, w której próbka poddawana jest mineralizacji przy użyciu kwasu siarkowego(VI) oraz katalizatora. Mineralizacja na mokro to technika, która polega na rozkładaniu substancji organicznych w cieczy, co umożliwia uzyskanie ich składników chemicznych w formie rozpuszczalnej. W procesie tym, ogrzewanie jest kluczowe, aby zapewnić efektywne działanie kwasu oraz katalizatora, co skutkuje pełnym utlenieniem organicznych składników próbki. Przykładem praktycznego zastosowania tej metody jest analiza zawartości azotu w próbkach żywności, gdzie proces ten pozwala na uzyskanie wyników w zgodzie z normami laboratoryjnymi, takimi jak ISO 16634. Dobrze przeprowadzona mineralizacja na mokro jest istotnym krokiem w wielu analizach chemicznych, umożliwiającym dalsze badania i uzyskiwanie precyzyjnych wyników.

Pytanie 37

Co oznacza zapis cz.d.a. na etykiecie opakowania odczynnika chemicznego?

A. zawiera maksymalnie 0,1% zanieczyszczeń
B. zawiera co najmniej 0,1% zanieczyszczeń
C. zawiera co najmniej 0,05% zanieczyszczeń
D. zawiera maksymalnie 0,05% zanieczyszczeń
Wybór odpowiedzi, że odczynnik zawiera maksymalnie 0,1% zanieczyszczeń jest poprawny, ponieważ termin "cz.d.a." oznacza "czystość do analizy". Standardy analityczne, takie jak te określone przez European Pharmacopoeia oraz American Chemical Society, wskazują, że substancje oznaczone jako cz.d.a. spełniają wymogi czystości, które ograniczają zawartość zanieczyszczeń. W praktyce oznacza to, że odczynniki te mogą być wykorzystywane w analizach laboratoryjnych, gdzie niska zawartość zanieczyszczeń jest kluczowa dla uzyskania dokładnych wyników. Na przykład, w chemii analitycznej, zanieczyszczenia mogą wpływać na wyniki pomiarów spektroskopowych, dlatego istotne jest, aby stosowane odczynniki były wysokiej czystości. Właściwe zrozumienie oznaczeń na etykietach odczynników chemicznych jest zatem niezbędne dla każdego, kto pracuje w laboratoriach, aby zapewnić wiarygodność wyników badań.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Zabieg, który wykonuje się podczas pobierania próbki wody do analizy, mający na celu zachowanie jej składu chemicznego w trakcie transportu, określa się mianem

A. rozcieńczania
B. oczyszczania
C. zagęszczania
D. utrwalania
Odpowiedź 'utrwalania' jest prawidłowa, ponieważ proces ten ma kluczowe znaczenie w zachowaniu integralności chemicznej próbki wody podczas transportu do laboratorium. Utrwalanie polega na stosowaniu odpowiednich metod, takich jak dodanie substancji chemicznych, które stabilizują skład chemiczny próbki, zapobiegając rozkładowi lub zmianom w jej składzie. Przykładem może być dodanie kwasu solnego do próbki wody morskiej w celu zachowania stężenia metali ciężkich. Ważne jest także, aby wybrać odpowiednie pojemniki do transportu, które nie reagują z próbą, co jest zgodne z normami ISO 5667. W praktyce, przestrzeganie procedur pobierania i transportu próbek zgodnie z wytycznymi pozwala na uzyskanie wiarygodnych wyników analitycznych oraz minimalizację ryzyka zanieczyszczenia próbki. Właściwe utrwalanie próbek jest nie tylko istotne dla dokładności badań, ale także dla zapewnienia bezpieczeństwa przy dalszym ich przetwarzaniu.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.