Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 28 maja 2025 22:15
  • Data zakończenia: 28 maja 2025 22:22

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Tachometryczna prądnica działa z prędkością obrotową wynoszącą 1000 obr/min. Jaką prędkość obrotową należy osiągnąć, aby napięcie na wyjściu prądnicy wyniosło 7,3 V?

A. 73 obr/min
B. 730 obr/min
C. 7,3 obr/min
D. 7 300 obr/min
Wybór 7,3 obr/min, 730 obr/min oraz 73 obr/min jako odpowiedzi na pytanie o prędkość obrotową prądnicy tachometrycznej prowadzi do kilku błędnych wniosków, które są wynikiem nieprawidłowego zrozumienia zasad działania prądnic. Przede wszystkim, prądnica tachometryczna wytwarza napięcie, które jest proporcjonalne do prędkości obrotowej wału. Oznacza to, że im wyższa prędkość obrotowa, tym wyższe napięcie. Odpowiedzi 7,3 obr/min i 73 obr/min sugerują ekstremalnie niskie prędkości, które są nieadekwatne do standardowego działania prądnicy. Dla prędkości 1000 obr/min napięcie wynosi 7,3 V; zatem prędkości obrotowe niższe od 1000 obr/min nie mogą generować napięcia wyjściowego wyższego niż 7,3 V. Z kolei odpowiedź 730 obr/min również jest błędna, ponieważ przy tej prędkości napięcie wyniesie mniej niż 7,3 V. Typowym błędem myślowym jest przyjęcie, że mniejsze prędkości mogą wytwarzać wyższe napięcia, co jest sprzeczne z zasadami fizyki. Kluczowe jest zrozumienie, że prądnice tachometryczne są wykorzystywane w systemach, gdzie precyzyjne mierzenie prędkości obrotowej jest kluczowe, na przykład w systemach regulacji i kontroli procesów przemysłowych, a ich działanie opiera się na proporcjonalności między prędkością a napięciem.

Pytanie 2

Jakie metody wykorzystuje się do produkcji prętów?

A. odlewanie
B. walcowanie
C. tłoczenie
D. wytłaczanie
Walcowanie jest procesem obróbki plastycznej, który polega na redukcji grubości materiału przez jego przetaczanie pomiędzy dwoma walcami. Technika ta jest szeroko stosowana w produkcji prętów, ponieważ pozwala na uzyskanie odpowiednich właściwości mechanicznych oraz wymiarowych. Walcowanie może być przeprowadzane na gorąco lub na zimno, co wpływa na strukturę mikro oraz mechaniczne właściwości końcowego produktu. Dzięki walcowaniu, pręty charakteryzują się jednorodnością materiałową oraz lepszą jakością powierzchni, co jest niezbędne w wielu zastosowaniach inżynieryjnych, takich jak budownictwo czy przemysł motoryzacyjny. W branży istnieją także normy, takie jak EN 10025, które określają wymagania dotyczące stali walcowanej, co dodatkowo podkreśla znaczenie tej metody w produkcji. Walcowanie jest procesem efektywnym, który przyczynia się do obniżenia kosztów produkcji oraz zwiększenia wydajności, co czyni tę metodę jedną z najpopularniejszych w obróbce metali.

Pytanie 3

W pomiarze deformacji konstrukcji nośnych najczęściej wykorzystuje się czujniki, które działają na zasadzie

A. efektu piezoelektrycznego
B. zmiany indukcyjności własnej
C. zmiany rezystancji
D. zmiany pojemności elektrycznej
W przypadku pomiarów odkształceń, metody oparte na zmianie indukcyjności własnej, pojemności elektrycznej oraz efekcie piezoelektrycznym nie są tak powszechnie stosowane jak tensometry. Zmiana indukcyjności własnej może być wykorzystywana w niektórych aplikacjach, jednak nie jest ona standardowym rozwiązaniem w kontekście monitorowania odkształceń konstrukcji nośnych. Wzory analityczne związane z tą metodą często wymagają skomplikowanych obliczeń oraz precyzyjnego dostrojenia, co czyni je mniej praktycznymi w realnych zastosowaniach budowlanych. Zmiana pojemności elektrycznej może być używana w czujnikach pojemnościowych, jednak ich zastosowanie w kontekście monitorowania odkształceń wymaganych w inżynierii budowlanej nie jest tak efektywne. Efekt piezoelektryczny, zaś, mimo że ma swoje miejsce w technologii czujników, głównie w aplikacjach takich jak detekcja drgań, nie jest typowym sposobem na pomiar odkształceń konstrukcyjnych. Te metody mogą prowadzić do błędów pomiarowych, zwłaszcza w dynamicznych warunkach pracy konstrukcji, gdzie tensometry zapewniają znacznie większą dokładność i niezawodność. Zastosowanie bardziej skomplikowanych technologii powinno być zarezerwowane dla specyficznych przypadków, gdzie prostsze metody, takie jak zmiana rezystancji, nie mogą być zastosowane.

Pytanie 4

Jaką funkcję pełnią diody Zenera w elektronice?

A. Modulują częstotliwość
B. Prostują napięcie
C. Ograniczają prąd
D. Stabilizują napięcie
Odpowiedzi dotyczące ograniczania prądu, modulacji częstotliwości i prostowania napięcia są nieprawidłowe w kontekście roli, jaką pełnią diody Zenera w układach elektronicznych. Ograniczanie prądu to funkcja diod szeregowych lub oporników, które są wykorzystywane do kontrolowania przepływu prądu w obwodzie. Diody Zenera, w przeciwieństwie do tych elementów, nie są zaprojektowane do ograniczania prądu, lecz do stabilizacji napięcia. Niepoprawne jest również twierdzenie, że diody Zenera modulują częstotliwość. Modulacja częstotliwości to proces zmieniający częstotliwość sygnału, co jest domeną specjalistycznych układów, takich jak modulatory, a nie diod Zenera. Ostatnim błędnym stwierdzeniem jest prostowanie napięcia. Prostowanie, które polega na przekształceniu prądu zmiennego na stały, realizowane jest zazwyczaj za pomocą prostowników, a nie diod Zenera. Typowe błędy myślowe, które prowadzą do tych nieprawidłowych wniosków, wynikają często z niepełnego zrozumienia podstawowych funkcji różnych typów diod. Wiedza na temat zastosowań diod jest kluczowa w projektowaniu układów elektronicznych, a ich niewłaściwe użycie może prowadzić do nieefektywnych i awaryjnych konstrukcji. Dlatego ważne jest, aby odpowiednio dobierać elementy elektroniczne zgodnie z ich funkcjami oraz charakterystyką, co jest fundamentem dobrych praktyk inżynieryjnych.

Pytanie 5

Aby zmierzyć naprężenia normalne (ściśnięcia, rozciągnięcia), należy użyć

A. tachometru
B. pirometru
C. tensometru
D. termometru
Tensometr jest urządzeniem służącym do pomiaru naprężeń normalnych, takich jak ściskanie i rozciąganie. Działa na zasadzie pomiaru odkształceń, które następnie przelicza na wartości naprężeń zgodnie z zasadą Hooke'a. Dzięki temu, tensometry są niezwykle ważne w inżynierii mechanicznej i materiałowej, gdzie precyzyjne pomiary naprężeń są kluczowe dla oceny wytrzymałości materiałów oraz konstrukcji. Przykłady zastosowania tensometrów obejmują badania wytrzymałościowe elementów konstrukcyjnych, takich jak belki, stropy czy mosty. W standardach takich jak ISO 9513 określono metody kalibracji tensometrów, co pozwala na uzyskanie wiarygodnych wyników. Dobre praktyki w stosowaniu tensometrów obejmują również ich odpowiedni dobór do rodzaju materiału oraz warunków pomiarowych, co zapewnia rzetelność i dokładność uzyskanych wyników. Dodatkowo, stosowane są różne typy tensometrów, w tym tensometry foliowe, które umożliwiają pomiary na różnorodnych powierzchniach, co zwiększa ich wszechstronność w zastosowaniach inżynieryjnych.

Pytanie 6

W trakcie montażu systemu elektronicznego chłodzonego radiatorem, należy zapewnić odpowiednią powierzchnię styku pomiędzy układem a radiatorem poprzez

A. pokrycie pastą termoprzewodzącą
B. rozdzielenie folią aluminiową
C. pokrycie klejem
D. rozdzielenie papierem
Pokrycie powierzchni styku układu elektronicznego i radiatora pastą termoprzewodzącą jest kluczowym krokiem w zapewnieniu efektywnego odprowadzania ciepła. Pasta ta, dzięki swojej strukturze, wypełnia mikroskopijne nierówności na powierzchniach stykających się, co zwiększa powierzchnię kontaktu i poprawia przewodnictwo cieplne. W praktyce, stosowanie past termoprzewodzących jest standardem w przemyśle elektronicznym i komputerowym, gdzie minimalizacja temperatury pracy elementów jest kluczowa dla ich wydajności i żywotności. Na przykład, w procesorach komputerowych, zastosowanie pasty termoprzewodzącej pozwala na osiągnięcie niższych temperatur, co przekłada się na stabilność działania i zwiększa wydajność systemu. Ponadto, wybierając odpowiednią pastę, należy zwrócić uwagę na jej przewodnictwo cieplne, co jest zazwyczaj określane w jednostkach W/mK. Użycie pasty zgodnej z normami branżowymi gwarantuje długoterminową niezawodność układów elektronicznych.

Pytanie 7

Osoba, która doświadczyła porażenia prądem elektrycznym, nie oddycha, natomiast krążenie krwi jest prawidłowe. Jakie czynności należy wykonać w odpowiedniej kolejności podczas udzielania pierwszej pomocy?

A. udrożnienie dróg oddechowych, wykonanie sztucznego oddychania i masaż serca
B. ustawienie na boku, sztuczne oddychanie
C. sztuczne oddychanie oraz masaż serca
D. udrożnienie dróg oddechowych, wykonanie sztucznego oddychania
Odpowiedź "udrożnienie dróg oddechowych, sztuczne oddychanie" jest prawidłowa, ponieważ w sytuacji, gdy osoba porażona prądem elektrycznym nie oddycha, ale krążenie jest zachowane, priorytetem jest zapewnienie prawidłowego przepływu powietrza do płuc. Procedura ta jest zgodna z wytycznymi Europejskiej Rady Resuscytacji, które podkreślają znaczenie udrożnienia dróg oddechowych jako pierwszego kroku w każdym przypadku zatrzymania oddechu. Udrożnienie dróg oddechowych można osiągnąć poprzez odpowiednią pozycję ciała poszkodowanego (np. metoda odchylenia głowy do tyłu, unieś podbródek) oraz usunięcie ewentualnych przeszkód, takich jak ciała obce. Następnie, sztuczne oddychanie powinno być przeprowadzane w celu dostarczenia tlenu do płuc poszkodowanego, co jest kluczowe dla uniknięcia niedotlenienia mózgu. Wsparcie w tej sytuacji może być realizowane poprzez metody takie jak wentylacja ustami ust lub przy użyciu urządzeń wentylacyjnych, jeśli są dostępne. W przypadku dalszego braku samodzielnego oddechu, konieczne może być wprowadzenie resuscytacji krążeniowo-oddechowej, jednak najpierw trzeba zająć się zapewnieniem drożności dróg oddechowych i wentylacji, co zgodne jest z zasadami w pierwszej pomocy.

Pytanie 8

Metoda osuszania sprężonego powietrza, w której w pierwszej fazie usuwana jest para wodna oraz olej za pomocą węgla aktywowanego, a w drugiej następuje odessanie pary wodnej w kapilarach żelu krzemionkowego, określana jest jako

A. desorpcją
B. absorpcją
C. adsorpcją
D. konwekcją
Proces osuszania sprężonego powietrza, określany jako adsorpcja, jest kluczowym elementem w wielu zastosowaniach przemysłowych. W pierwszym etapie, węgiel aktywowany działa jako filtr, eliminując parę wodną oraz olej, co jest istotne dla zachowania jakości sprężonego powietrza. Węgiel aktywowany ma dużą powierzchnię oraz porowatą strukturę, co umożliwia efektywne wchłanianie substancji lotnych, a zatem jest powszechnie stosowany w systemach klimatyzacyjnych i wentylacyjnych. Następnie w drugim etapie, żel krzemionkowy, który również charakteryzuje się dużą powierzchnią adsorpcyjną, skutecznie absorbuje pozostałą parę wodną, co pozwala na uzyskanie wysokiej jakości powietrza o niskiej wilgotności. Przykładem zastosowania adsorpcji w przemyśle może być produkcja elektroniki, gdzie sucha atmosfera jest kluczowa dla uniknięcia uszkodzeń komponentów. Stosowanie systemów opartych na adsorpcji jest zgodne z normami, takimi jak ISO 8573, które definiują wymagania dotyczące czystości sprężonego powietrza.

Pytanie 9

Elektrozawór typu normalnie zamknięty o parametrach 230V AC, 50Hz, DN 3/8" FAF 61 mm, nie aktywuje się po podaniu napięcia znamionowego. Przystępując do serwisu elektrozaworu, trzeba najpierw wyłączyć napięcie zasilające, a następnie, w pierwszej kolejności

A. zwiększyć napięcie zasilania i podać je na cewkę elektrozaworu
B. wymienić uszczelkę
C. zmierzyć rezystancję cewki
D. wymienić membranę
Mierzenie rezystancji cewki elektrozaworu jest kluczowym krokiem w diagnostyce problemów z jego działaniem. Cewka, będąca sercem elektrozaworu, generuje pole elektromagnetyczne, które otwiera lub zamyka zawór. Sprawdzenie rezystancji cewki pozwala określić, czy nie występuje uszkodzenie, takie jak przerwanie drutu lub zwarcie. Standardowe wartości rezystancji dla cewki elektrozaworu powinny odpowiadać temu, co podano w specyfikacji producenta. Jeśli wartość ta jest znacznie niższa lub nieodpowiednia, może to wskazywać na uszkodzenie cewki. W praktyce, aby przeprowadzić pomiar, należy użyć multimetru ustawionego na pomiar rezystancji, co jest standardową procedurą w branży. Po potwierdzeniu, że cewka jest sprawna, można kontynuować diagnostykę, sprawdzając inne elementy zaworu, jak membrana lub uszczelki. Właściwe podejście oparte na pomiarze rezystancji cewki jest nie tylko zgodne z najlepszymi praktykami, ale może znacznie przyspieszyć proces naprawy.

Pytanie 10

Elektryczne żelazko wyposażone w termoregulator bimetaliczny stanowi przykład

A. układu regulacji automatycznej
B. sterowania sekwencyjnego
C. układu sterowania programowalnego
D. sterowania w układzie otwartym
Układ sterowania programowalnego, sterowanie sekwencyjne oraz sterowanie w układzie otwartym to koncepcje, które różnią się zasadniczo od regulacji automatycznej. Układ sterowania programowalnego odnosi się do systemów, które działają na podstawie zaprogramowanych instrukcji, co oznacza, że ich działanie jest z góry ustalone i nie zmienia się w odpowiedzi na zmiany w otoczeniu. Przykłady obejmują roboty przemysłowe, które wykonują zaprogramowane zadania, ale nie dostosowują się do zmieniających się warunków. Kolejną błędną koncepcją jest sterowanie sekwencyjne, które polega na realizacji zadań w określonej kolejności, bez możliwości automatycznego dostosowywania parametrów w odpowiedzi na rzeczywiste potrzeby. W kontekście żelazka elektrycznego, takie podejście nie byłoby efektywne, ponieważ wymagałoby manualnej interwencji użytkownika przy każdej zmianie rodzaju tkaniny. Z kolei sterowanie w układzie otwartym nie ma mechanizmu sprzężenia zwrotnego; oznacza to, że urządzenie nie reaguje na rzeczywiste zmiany parametrów, co w przypadku żelazka mogłoby prowadzić do zbyt wysokiej lub zbyt niskiej temperatury, a tym samym do uszkodzenia tkanin. Wszystkie te podejścia są niewłaściwe w kontekście regulacji temperatury, gdzie wymagana jest automatyczna adaptacja do warunków pracy, co jest integralną częścią działania żelazka elektrycznego z termoregulatorem bimetalicznym.

Pytanie 11

Jakiego rodzaju cieczy hydraulicznej powinno się użyć w urządzeniu hydrauliczny, które może być narażone na kontakt z otwartym ogniem?

A. HTG - produkowana na bazie olejów roślinnych, rozpuszczalna w wodzie
B. HV - dla urządzeń funkcjonujących w zmiennych warunkach temperatury
C. HT - ester syntetyczny, najlepiej ulegający biodegradacji
D. HFA - emulsja olejowo-wodna, mająca w składzie ponad 80 % wody
Odpowiedź HFA, czyli emulsja olejowo-wodna, zawierająca ponad 80% wody, jest prawidłowa w kontekście pracy urządzeń hydraulicznych w warunkach zagrożenia pożarowego. Tego rodzaju ciecz hydrauliczna charakteryzuje się znacznie wyższą odpornością na wysokie temperatury i działanie ognia, co jest kluczowe w miejscach, gdzie istnieje ryzyko kontaktu z otwartym płomieniem. W przypadku wycieku emulsji olejowo-wodnej, woda działa jako czynnik chłodzący, minimalizując ryzyko pożaru. Tego rodzaju cieczy hydrauliczne są szeroko stosowane w przemyśle, gdzie praca z substancjami łatwopalnymi jest powszechna, jak na przykład w rafineriach, piecach przemysłowych czy zakładach chemicznych. Zgodnie z normami, takimi jak NFPA (National Fire Protection Association), stosowanie cieczy o obniżonej palności, takich jak HFA, jest zalecane w środowiskach o wysokim ryzyku pożaru. Dodatkowo, emulsje olejowo-wodne są często używane w zastosowaniach, gdzie wymagane jest smarowanie oraz chłodzenie, co czyni je wszechstronnym rozwiązaniem w hydraulice przemysłowej.

Pytanie 12

Maksymalne napięcie na analogowym wejściu kontrolera PLC wynosi 10 V DC, a rozdzielczość tego wejścia, wynosząca około 40 mV, zapewnia zastosowanie kontrolera PLC z przetwornikiem A/C.

A. 16-bitowym
B. 64-bitowym
C. 32-bitowym
D. 8-bitowym
Odpowiedź 8-bitowa jest właściwa, ponieważ przy maksymalnym napięciu wejściowym wynoszącym 10 V oraz rozdzielczości na poziomie 40 mV można obliczyć liczbę dostępnych poziomów pomiarowych dla wejścia analogowego. Wejście 8-bitowe może reprezentować 256 wartości (2^8), co pozwala na podział napięcia 10 V na 256 poziomów. Dlatego pojedynczy krok napięcia wynosi 10 V / 256 = około 39,06 mV. Taka wartość jest bardzo bliska podanej rozdzielczości 40 mV, co czyni tę odpowiedź poprawną. W praktycznych zastosowaniach systemów automatyki, 8-bitowe przetworniki A/C są często wystarczające do monitorowania podstawowych parametrów, takich jak temperatura czy ciśnienie. Pomimo postępu technologicznego, wiele starszych systemów nadal wykorzystuje przetworniki 8-bitowe, co czyni je ważnym elementem w analizie i modernizacji istniejących instalacji. Warto również zauważyć, że zgodnie z normami branżowymi, takich jak IEC 61131, stosowanie prostych rozwiązań w kontrolerach PLC jest często preferowane ze względu na ich niezawodność i łatwość w integracji.

Pytanie 13

Jaką rolę odgrywają cewki w systemach elektrycznych?

A. Zbierają energię w polu elektrycznym
B. Tworzą przeszkodę optyczną
C. Tworzą przeszkodę elektryczną
D. Zbierają energię w polu magnetycznym
Ok, więc pierwsza pomyłka to przekonanie, że cewki zbierają energię w polu elektrycznym. Ale to tak naprawdę kondensatory robią, bo magazynują ładunek elektryczny. Cewki działają głównie z prądem zmiennym i opierają się na indukcji elektromagnetycznej. Kolejna rzecz, to mylenie cewek z barierą elektryczną. Bariera elektryczna dotyczy izolacji, a cewki mają zupełnie inną funkcję, bardziej związaną z indukcją. A trzecia pomyłka to wspomnienie o barierze optycznej, co brzmi dziwnie, bo cewki nie mają nic wspólnego z optyką. Cewki są pasywnymi elementami, które wpływają na prąd i napięcie, ale nie zajmują się optyką czy barierami elektrycznymi. Te nieporozumienia biorą się często z braku zrozumienia indukcji elektromagnetycznej i różnic między elementami elektronicznymi, co prowadzi do błędnych wniosków.

Pytanie 14

Jakie elementy znajdują się w zespole przygotowania powietrza?

A. sprężarka, filtr, zawór redukcyjny, manometr
B. sprężarka, filtr, manometr, smarownica
C. filtr, zawór redukcyjny, manometr, smarownica
D. filtr, zawór dławiący, manometr, smarownica
Zespół przygotowania powietrza to kluczowy element systemów pneumatycznych, którego celem jest zapewnienie odpowiedniego stanu powietrza do dalszego wykorzystania. W skład tego zespołu wchodzi filtr, zawór redukcyjny, manometr i smarownica. Filtr odpowiada za oczyszczanie powietrza z zanieczyszczeń stałych i cieczy, co jest niezbędne do ochrony delikatnych komponentów systemów pneumatycznych. Zawór redukcyjny reguluje ciśnienie powietrza, co pozwala na dostosowanie go do wymagań poszczególnych urządzeń. Manometr umożliwia monitorowanie ciśnienia, co jest kluczowe dla bezpieczeństwa i efektywności pracy systemu. Smarownica natomiast dostarcza olej do elementów roboczych, co zmniejsza tarcie i zużycie, a także zapewnia długą żywotność urządzeń. Zgodnie z normami ISO 8573, odpowiednia jakość powietrza jest kluczowa w zastosowaniach przemysłowych, dlatego właściwa konfiguracja zespołu przygotowania powietrza jest niezbędna dla zapewnienia niezawodności oraz bezpieczeństwa operacji.

Pytanie 15

Za pomocą multimetru cyfrowego zmierzono spadek napięcia na podwójnym złączu półprzewodnikowym Si. Odczyt multimetru wynosi około

A. 1,4 V
B. 0 V
C. 0,6 V
D. 0,3 V
W przypadku pomiaru spadku napięcia na podwójnym złączu półprzewodnikowym wykonanym z krzemu, wartość około 1,4 V jest typowa dla złącza p-n w stanie przewodzenia. Złącze to zachowuje się jak dioda, która wymaga określonego spadku napięcia, aby rozpocząć przewodzenie prądu. Dla diod krzemowych, wartość ta jest zazwyczaj w przedziale od 0,6 V do 0,7 V dla pierwszego złącza, a dla drugiego złącza, zwłaszcza w przypadku podwójnego złącza, wartość ta podwaja się, co daje około 1,4 V. To zjawisko jest wykorzystywane w praktycznych zastosowaniach elektroniki, takich jak prostowniki i układy regulacji napięcia. Przy pomiarze multimetrem cyfrowym ważne jest, aby upewnić się, że miernik jest ustawiony na odpowiedni zakres pomiarowy, co pozwoli na dokładne odczyty. W przypadku pomiarów diodowych, zaleca się również zwrócenie uwagi na polaryzację diody, aby uniknąć błędnych wyników. Przykładowo, w zastosowaniach takich jak zasilacze impulsowe, umiejętność prawidłowego pomiaru spadku napięcia na połączeniach półprzewodnikowych jest kluczowym elementem diagnostyki i naprawy.

Pytanie 16

Jaką jednostką prędkości kątowej posługujemy się w układzie SI?

A. obr/min
B. rad/s
C. m/s
D. km/h
Jednostką prędkości kątowej w układzie SI jest radian na sekundę (rad/s). Prędkość kątowa definiuje, jak szybko obiekt porusza się wokół osi obrotu, co jest kluczowe w wielu dziedzinach, takich jak inżynieria mechaniczna czy fizyka. Przykładem może być ruch planet wokół Słońca, gdzie prędkość kątowa pozwala opisać, jak szybko planeta przebywa kąt w przestrzeni kosmicznej. W zastosowaniach praktycznych, jak w silnikach elektrycznych, monitorowanie prędkości kątowej jest niezbędne do optymalizacji wydajności i zapewnienia bezpieczeństwa. Zastosowanie jednostki rad/s w obliczeniach jest zgodne z normami międzynarodowymi, co ułatwia porównywanie wyników oraz standaryzację procesów inżynieryjnych. Ponadto, prędkość kątowa jest często używana w analizie drgań, gdzie precyzyjne określenie prędkości obrotowej jest kluczowe dla poprawnego funkcjonowania struktur mechanicznych.

Pytanie 17

Jaką wartość można zarejestrować korzystając z enkodera absolutnego jednoobrotowego?

A. Przesunięcie kątowe
B. Przyspieszenie
C. Moment obrotowy
D. Ciśnienie
Przyspieszenie, moment obrotowy oraz ciśnienie to wielkości, które nie są bezpośrednio mierzone przez enkodery absolutne jednoobrotowe, co może prowadzić do nieporozumień w kontekście ich zastosowań. Przyspieszenie odnosi się do zmiany prędkości obiektu w czasie i jest mierzonym parametrem, który można określić przy użyciu akcelerometrów, a nie enkoderów. Chociaż enkodery mogą być używane w systemach, które również mierzą przyspieszenie, same w sobie nie są w stanie tego dokonać. Moment obrotowy jest wielkością, która opisuje siłę działającą na obiekt w celu jego obrotu. Enkodery mogą dostarczać informacji o położeniu, ale ich funkcja nie obejmuje bezpośredniego pomiaru momentu obrotowego, który wymaga pomiaru siły oraz promienia działania. Z kolei ciśnienie jest parametrem fizycznym, mierzonym za pomocą czujników ciśnienia, a nie enkoderów. Typowe błędy myślowe w tym kontekście obejmują mylenie funkcji pomiarowych różnych urządzeń oraz niewłaściwe przypisanie ich do różnych zastosowań w automatyce. Kluczowym zrozumieniem jest to, że enkodery absolutne jednoobrotowe są projektowane z myślą o pomiarze kąta, a nie innych wielkości fizycznych, co jest fundamentalnym aspektem ich technologii i zastosowania.

Pytanie 18

Izolacja w kolorze niebieskim jest używana dla kabli

A. fazowych
B. ochronnych
C. neutralnych
D. sygnałowych
Izolacja niebieska w instalacjach elektrycznych jest standardowo stosowana dla przewodów neutralnych. W praktyce oznaczenie kolorystyczne przewodów ma na celu zabezpieczenie przed błędami w podłączeniach i zwiększenie bezpieczeństwa użytkowników. Przewód neutralny, zazwyczaj oznaczony kolorem niebieskim, pełni kluczową rolę w obwodach elektrycznych, umożliwiając powrót prądu do źródła zasilania. Zgodnie z normami międzynarodowymi, takimi jak IEC 60446, stosowanie jednolitych kolorów dla przewodów ma na celu ułatwienie identyfikacji ich funkcji oraz minimalizację ryzyka nieprawidłowego podłączenia. W praktyce, w przypadku domowych instalacji elektrycznych, przewody neutralne są często wykorzystywane w obwodach oświetleniowych i gniazdkowych, co sprawia, że ich prawidłowe oznaczenie jest kluczowe dla bezpieczeństwa oraz zgodności z przepisami budowlanymi. Właściwe stosowanie kolorów w identyfikacji przewodów jest istotnym elementem w pracy elektryków i instalatorów, co podkreśla znaczenie standardów w tej dziedzinie.

Pytanie 19

Aby zmierzyć nierówności osiowe (bicie) obracającej się tarczy, należy użyć

A. mikrometru
B. czujnika zegarowego
C. suwmiarki
D. średnicówki mikrometrycznej
Czujnik zegarowy jest narzędziem pomiarowym, które umożliwia precyzyjne określenie nierówności osiowej (bicia) wirujących tarcz. Działa na zasadzie pomiaru odległości, przy czym jego igła stykowa przesuwa się wzdłuż powierzchni obrabianego elementu, rejestrując wszelkie wahania. Dzięki wysokiej dokładności, czujniki zegarowe są standardowo stosowane w inżynierii mechanicznej do oceny i kontrolowania jakości elementów rotacyjnych. W praktyce, czujnik zegarowy jest niezbędny do ustawienia tarczy w maszynach takich jak tokarki czy frezarki. Użytkownik umieszcza czujnik w odpowiedniej pozycji, a następnie obraca tarczę, co pozwala na odczyt bicia. Każde odchylenie od idealnej osi wskazuje na konieczność korekcji ustawienia, co jest kluczowe dla zapewnienia nie tylko precyzyjnego działania maszyny, ale także wydłużenia jej żywotności oraz zapewnienia bezpieczeństwa pracy. Wysoka jakość czujników zegarowych oraz ich precyzyjne kalibracje są zgodne z najlepszymi praktykami w branży mechanicznej.

Pytanie 20

Jakie parametry mierzy prądnica tachometryczna?

A. prędkość obrotową
B. napięcie elektryczne
C. prędkość liniową
D. naprężenia mechaniczne
Prądnica tachometryczna jest urządzeniem służącym do pomiaru prędkości obrotowej. Działa na zasadzie generowania napięcia elektrycznego proporcjonalnego do prędkości obrotowej wału lub innego elementu mechanicznego. W praktyce, prądnicę tachometryczną wykorzystuje się w wielu zastosowaniach, takich jak systemy sterowania silnikami, automatyka przemysłowa czy w urządzeniach pomiarowych. Dzięki swojej precyzji, prądnice tachometryczne są standardem w pomiarach prędkości obrotowej, a ich stosowanie jest zgodne z najlepszymi praktykami inżynieryjnymi. W kontekście automatyzacji, umożliwiają one monitorowanie i regulację procesów, co przekłada się na zwiększenie efektywności i bezpieczeństwa pracy maszyn. Przykładem mogą być systemy, w których prędkość obrotowa silnika musi być precyzyjnie kontrolowana, aby zapewnić optymalne warunki pracy.

Pytanie 21

W skład systemu do przygotowania sprężonego powietrza nie wchodzi

A. sprężarka
B. reduktor ciśnienia
C. smarownica
D. filtr powietrza
Sprężarka jest kluczowym elementem systemu sprężonego powietrza, odpowiedzialnym za podnoszenie ciśnienia powietrza poprzez kompresję. Jej głównym zadaniem jest wytwarzanie sprężonego powietrza, które jest następnie wykorzystywane w różnych procesach przemysłowych, takich jak zasilanie narzędzi pneumatycznych, transport materiałów czy systemy chłodzenia. W praktyce, sprężarki mogą mieć różne typy, w tym sprężarki tłokowe, śrubowe i membranowe, każdy z nich dostosowany do specyficznych zastosowań. Standardy branżowe, takie jak ISO 8573, definiują wymagania dotyczące jakości sprężonego powietrza, co podkreśla znaczenie sprężarki w zapewnieniu czystości i efektywności systemu. W odpowiedzi na potrzeby przemysłowe, sprężarki są często integrowane z dodatkowymi komponentami, takimi jak filtry, reduktory ciśnienia i smarownice, które wspomagają utrzymanie odpowiednich parametrów pracy systemu, jednak same w sobie nie należą do zespołu przygotowania sprężonego powietrza.

Pytanie 22

Jakie urządzenie powinno być zastosowane do zasilania silnika indukcyjnego klatkowego w układzie trójfazowym, aby umożliwić ustawienie maksymalnych wartości prądu rozruchowego oraz płynne dostosowanie prędkości obrotowej silnika?

A. Softstartu
B. Prostownika sterowanego trójpulsowego
C. Przemiennika częstotliwości
D. Przełącznika gwiazda-trójkąt
Wykorzystanie przełącznika gwiazda-trójkąt jest podejściem stosowanym głównie w przypadku silników o dużej mocy przy uruchamianiu. Jego celem jest zmniejszenie prądu rozruchowego poprzez przejście z połączenia w gwiazdę (gdzie silnik przy uruchamianiu pracuje z obniżoną mocą) do połączenia w trójkąt, co umożliwia pełne obciążenie. Jednakże, ta metoda nie pozwala na regulację prędkości obrotowej silnika, co czyni ją nieodpowiednią w kontekście wymagań przedstawionego pytania. Z kolei softstart to urządzenie, które także reguluje prąd rozruchowy, ale jego funkcjonalność kończy się po uruchomieniu silnika, co oznacza, że nie zapewnia on dalszej regulacji prędkości obrotowej. Dodatkowo, prostownik sterowany trójpulsowy jest komponentem używanym do prostowania prądu przemiennego, ale nie dostarcza funkcji regulacji prędkości obrotowej ani nie pozwala na kontrolowanie prądu rozruchowego w sposób wymagany do optymalizacji pracy silnika. Wybór nieodpowiednich urządzeń do zasilania silników może prowadzić do niewłaściwego ich działania, a także do zwiększenia zużycia energii, co jest niezgodne z nowoczesnymi standardami efektywności energetycznej, takimi jak ISO 50001. Dlatego znajomość i umiejętność prawidłowego doboru urządzeń jest kluczowa w inżynierii elektrycznej.

Pytanie 23

Jaki rodzaj oprogramowania trzeba zainstalować na komputerze, aby mieć możliwość wspierania procesów produkcyjnych związanych z kontrolą maszyn CNC?

A. SCADA
B. CAM
C. CAP
D. CAD
Odpowiedź "CAM" (Computer-Aided Manufacturing) jest prawidłowa, ponieważ oprogramowanie CAM jest kluczowym narzędziem w procesach wytwarzania, szczególnie w kontekście sterowania maszynami CNC (Computer Numerical Control). Oprogramowanie CAM pozwala na generowanie kodów G, które są niezbędne do precyzyjnego sterowania maszynami, takimi jak frezarki, tokarki czy wtryskarki. Dzięki zastosowaniu CAM, inżynierowie i technicy mogą projektować złożone geometrie części, które następnie są bezpośrednio przekładane na ruchy maszyn, co znacząco zwiększa wydajność produkcji i redukuje ryzyko błędów. W praktyce, systemy CAM są zintegrowane z systemami CAD (Computer-Aided Design), co umożliwia płynne przejście od etapu projektowania do produkcji. Branża wytwórcza korzysta z oprogramowania CAM zgodnie z najlepszymi praktykami, takimi jak standardy ISO, co zapewnia wysoką jakość i powtarzalność procesów wytwarzania. Dodatkowo, korzystanie z CAM może przyspieszyć czasy realizacji projektów oraz umożliwić produkcję złożonych części, które byłyby trudne do wykonania tradycyjnymi metodami.

Pytanie 24

Aby poprawić efektywność montażu połączeń gwintowych, wykorzystuje się klucze

A. zapadkowe
B. oczko
C. uniwersalne
D. płaskie
Stosowanie kluczy uniwersalnych, oczkowych czy płaskich w kontekście zwiększenia wydajności montażu połączeń gwintowych może być mylące, gdyż każdy z tych typów narzędzi ma swoje ograniczenia, które wpływają na efektywność pracy. Klucze uniwersalne, choć oferują wszechstronność, mogą nie zapewniać odpowiedniego momentu obrotowego i precyzji potrzebnej w aplikacjach wymagających dużej siły. Ich konstrukcja nie zawsze pozwala na łatwe dopasowanie do różnych głowic śrubowych, co może prowadzić do uszkodzenia elementów. Klucze oczkowe natomiast są przeznaczone do dokręcania śrub z główkami sześciokątnymi, ale ich użycie może wymagać częstego przestawiania narzędzia do kolejnych ruchów, co znacząco spowalnia proces. Klucze płaskie, choć również powszechnie stosowane, mają ograniczoną możliwość działania w ciasnych przestrzeniach, co może prowadzić do trudności w pracy w niektórych aplikacjach. Warto zauważyć, że błędne przekonania o uniwersalności tych narzędzi mogą prowadzić do nieefektywności i frustracji w pracy, co może z kolei negatywnie wpływać na czas realizacji projektów oraz jakość montażu. Świadomość tych ograniczeń oraz dobór narzędzi zgodnie z zasadami ergonomii i specyfiki zadania są kluczowe w celu optymalizacji procesów montażowych.

Pytanie 25

Jaką metodę należy wykorzystać do połączenia szkła z metalem?

A. Spawanie
B. Zgrzewanie
C. Klejenie
D. Nitowanie
Klejenie to najskuteczniejsza metoda łączenia szkła z metalem ze względu na różnice w ich właściwościach fizycznych i chemicznych. Szkło jest materiałem kruchym, a metal - plastycznym, co sprawia, że tradycyjne metody, takie jak zgrzewanie czy spawanie, mogą prowadzić do uszkodzenia szkła. Klejenie wykorzystuje specjalistyczne kleje, które tworzą mocne, elastyczne połączenie, a także mogą dostosować się do różnic w rozszerzalności cieplnej obu materiałów. W praktyce, odpowiednie kleje epoksydowe lub akrylowe są często stosowane do takich aplikacji, umożliwiając trwałe i estetyczne łączenie. W branży budowlanej i w przemyśle, klejenie szkła do metalowych elementów jest powszechnie stosowane w oknach strukturalnych, elewacjach oraz w produkcji mebli. Dobrą praktyką jest również stosowanie gruntów, które poprawiają adhezję kleju do powierzchni, co zwiększa trwałość i odporność połączenia na różne czynniki zewnętrzne. Takie podejście jest zgodne z normami ISO dotyczących klejenia i pozwala na uzyskanie wysokiej jakości połączeń.

Pytanie 26

W siłowniku działającym w obie strony o średnicy tłoka D = 20 mm oraz efektywności 0,8, zasilanym ciśnieniem p = 0,6 MPa, teoretyczna siła przy wysunięciu siłownika wynosi około

A. 150 N
B. 140 N
C. 130 N
D. 160 N
Aby obliczyć teoretyczną siłę wysunięcia siłownika dwustronnego działania, możemy skorzystać z następującego wzoru: F = p * A, gdzie F to siła, p to ciśnienie, a A to pole powierzchni tłoka. Pole powierzchni tłoka można obliczyć ze wzoru A = π * (D/2)², gdzie D to średnica tłoka. Dla D = 20 mm, A wynosi około 3,14 * (0,02/2)² = 3,14 * 0,01 = 0,0314 m². Przy ciśnieniu p = 0,6 MPa (czyli 600 kPa), obliczamy siłę: F = 600 kPa * 0,0314 m² = 18,84 kN. Jednakże ze względu na sprawność siłownika, musimy pomnożyć tę wartość przez 0,8. Ostatecznie otrzymujemy F = 18,84 kN * 0,8 = 15,07 kN, co w przeliczeniu na jednostki N daje 150 N. Tego rodzaju obliczenia są niezbędne w projektowaniu i analizie systemów pneumatycznych i hydraulicznych, a znajomość wzorów i jednostek jest kluczowa w praktyce inżynieryjnej.

Pytanie 27

Jeśli w trakcie standardowych warunków eksploatacji pneumatyczne urządzenie mechatroniczne generuje duże drgania, to osoba obsługująca powinna być wyposażona w

A. obuwie ochronne.
B. kask zabezpieczający.
C. rękawice antywibracyjne.
D. okulary ochronne.
Rękawice antywibracyjne są kluczowym elementem ochrony osobistej, gdy pracownik obsługuje pneumatyczne urządzenia mechatroniczne, które generują znaczne drgania. Te drgania mogą prowadzić do poważnych urazów, takich jak zespół wibracyjny, który objawia się bólem, mrowieniem i osłabieniem kończyn. Rękawice antywibracyjne są zaprojektowane w taki sposób, aby minimalizować przenoszenie drgań na ręce operatora, co znacząco zmniejsza ryzyko kontuzji. W praktyce, standardy takie jak ISO 10819 dotyczące pomiarów drgań w rękach użytkowników podkreślają znaczenie stosowania odpowiednich środków ochronnych. W przypadku pracy z maszynami, które wytwarzają drgania, inwestycja w wysokiej jakości rękawice antywibracyjne jest nie tylko zgodna z dobrymi praktykami, ale również zapewnia komfort i bezpieczeństwo operatora. Przykładem zastosowania takich rękawic jest praca w branży budowlanej, gdzie narzędzia pneumatyczne, takie jak młoty udarowe, są powszechnie używane. Używanie rękawic antywibracyjnych pozwala pracownikom na dłuższą i bardziej wydajną pracę bez ryzyka zdrowotnego związane z drganiami.

Pytanie 28

Ile oleju, zgodnie z przedstawionymi w tabeli wskazaniami producenta, należy przygotować do całkowitej wymiany zużytego oleju w pompie IF1 400?

Typ pompyIlość oleju w silniku
l
Ilość oleju w komorze olejowej
l
Całkowita ilość
oleju w pompie
l
IF1 100; 150; 2000,40-0,40
IF1 50; 75; 100; 150; 2000,40-0,40
IF2 3000,900,121,02
IF1 300; 4001,700,121,82
IF2 4001,700,121,82
IF1 5501,700,121,82
IF2 5501,700,121,82
IF1 7502,000,122,12
IF1 10002,000,122,12
IF1 1500; 20005,000,185,18

A. 1,82 l
B. 0,90 l
C. 0,40 l
D. 1,70 l
Odpowiedź 1,82 l jest prawidłowa, ponieważ dokładnie odpowiada całkowitej ilości oleju potrzebnej do wymiany w pompie IF1 400. Aby obliczyć tę wartość, należy zsumować ilości oleju wymagane w silniku oraz w komorze olejowej, które są przedstawione w tabeli producenta. W praktyce, zapewnienie odpowiedniej ilości oleju jest kluczowe dla prawidłowego funkcjonowania urządzenia, gdyż niedobór oleju może prowadzić do przegrzewania się pompy i jej szybszego zużycia. W branży inżynieryjnej i mechanicznej, przestrzeganie zaleceń producentów dotyczących wymiany oleju i jego ilości jest uznawane za standardową praktykę, która wpływa na niezawodność oraz efektywność działania maszyn. Dobór właściwego oleju i jego ilości ma również znaczenie dla utrzymania optymalnych parametrów pracy, co w efekcie przekłada się na dłuższą żywotność urządzenia oraz oszczędności w kosztach eksploatacji.

Pytanie 29

Jakim rodzajem pracy charakteryzuje się silnik oznaczony symbolem S3?

A. Praca przerywana
B. Praca długotrwała
C. Praca dorywcza
D. Praca ciągła
Wybór innych typów pracy silnika, takich jak praca dorywcza, długotrwała czy ciągła, nie odzwierciedla specyfiki działania silników, co prowadzi do nieprawidłowego rozumienia ich zastosowania. Praca dorywcza zakłada sporadyczne użycie silnika, co nie odpowiada jego funkcjonalności w kontekście pracy przerywanej. W rzeczywistości, praca dorywcza jest bardziej związana z zastosowaniami, gdzie silnik jest uruchamiany rzadko, co nie jest typowe dla większości zastosowań przemysłowych. W przypadku pracy długotrwałej, mowa o ciągłym działaniu bez przerw, co może prowadzić do przegrzania silnika, jeśli nie jest on odpowiednio chłodzony, a to jest przeciwieństwem pracy przerywanej. Praca ciągła, z kolei, odnosi się do trybu pracy, w którym silnik funkcjonuje w pełnym obciążeniu przez dłuższy czas, co również jest nieadekwatne w odniesieniu do symbolu S3, który wymaga przerw w eksploatacji. Często w branży można spotkać mylne interpretacje związane z długotrwałym eksploatowaniem silników, co prowadzi do niewłaściwego doboru urządzeń do aplikacji. Poznanie specyfiki klasyfikacji pracy silników jest kluczowe, aby uniknąć uszkodzeń i zwiększyć efektywność energetyczną urządzeń.

Pytanie 30

Napięcie składa się z dwóch elementów: zmiennej sinusoidalnej oraz stałej. Aby zmierzyć stałą część tego napięcia, można użyć oscyloskopu w trybie

A. AC
B. ADD
C. GND
D. DC
Odpowiedź DC jest poprawna, ponieważ oscyloskop w trybie DC umożliwia pomiar i obserwację składowej stałej napięcia oraz sygnałów zmiennych. W przypadku napięcia, które składa się ze składowej stałej i składowej zmiennej, tryb DC pozwala na "zdjęcie" wartości średniej napięcia, która reprezentuje składową stałą. W praktyce, gdy analizujemy układy elektroniczne, często spotykamy się z takimi napięciami, gdzie napięcie stałe jest nałożone na sygnał zmienny, co jest typowe w zasilaczach czy układach analogowych. W zastosowaniach przemysłowych, taka analiza jest istotna, by ocenić poprawność działania systemów, na przykład w monitorowaniu zasilania silników elektrycznych, gdzie składowa stała może odpowiadać za poziom napięcia zasilającego. Ponadto, w kontekście pomiarów i przetwarzania sygnałów, standardy takie jak IEC 61000 wymagają odpowiednich metodologii pomiarowych, w tym umiejętności rozdzielania składowych sygnałów. Zrozumienie, jak działa tryb DC na oscyloskopie, jest kluczowe dla analizy i diagnostyki systemów elektronicznych oraz zapewnienia ich niezawodności.

Pytanie 31

Jaką powierzchnię czynną ma tłok siłownika generującego siłę 1 600 N przy ciśnieniu 1 MPa oraz sprawności wynoszącej 0,8?

A. 1 000 mm2
B. 1 500 mm2
C. 3 000 mm2
D. 2 000 mm2
Aby obliczyć powierzchnię czynną tłoka siłownika, należy skorzystać z równania związku między siłą, ciśnieniem i powierzchnią: F = P × A, gdzie F to siła, P to ciśnienie, a A to powierzchnia. W tym przypadku mamy siłę czynną równą 1600 N oraz ciśnienie wynoszące 1 MPa, co odpowiada 1 000 000 Pa. Przekształcamy równanie, aby znaleźć powierzchnię: A = F / P. Po podstawieniu wartości: A = 1600 N / 1 000 000 Pa = 0,0016 m², co po przeliczeniu na milimetry kwadratowe (1 m² = 1 000 000 mm²) daje 1600 mm². Jednak uwzględniając współczynnik sprawności równy 0,8, końcowy wynik wynosi: A = 1600 mm² / 0,8 = 2000 mm². Taka wiedza jest niezbędna w kontekście projektowania i analizy układów hydraulicznych, gdzie dokładność obliczeń ma kluczowe znaczenie dla bezpieczeństwa i efektywności działania systemów. W praktyce, dobrą praktyką jest również przeprowadzenie walidacji wyników przez pomiar rzeczywistych wartości w aplikacjach inżynieryjnych, co pomaga w optymalizacji projektów.

Pytanie 32

Pamięć EPROM (ang. Erasable Programmable Read-Only Memory) to typ pamięci cyfrowej realizowanej w formie układu scalonego, którą można

A. programować i usuwać elektrycznie
B. kasować za pomocą promieniowania ultrafioletowego
C. bezpowrotnie stracić po odłączeniu zasilania
D. tylko odczytywać
Pamięć EPROM, czyli Erasable Programmable Read-Only Memory, to dosyć ciekawy typ pamięci. Charakteryzuje się tym, że można w niej skasować dane przy użyciu promieniowania ultrafioletowego. To znaczy, że jak chcemy pozbyć się zapisanych informacji, to wystawiamy chip EPROM na odpowiednie źródło UV i tak to działa. Takie pamięci są bardzo przydatne w sytuacjach, gdzie trzeba często programować i kasować, na przykład w prototypach układów elektronicznych oraz podczas testowania. Osobiście uważam, że EPROM to dobry wybór w elektronice użytkowej i w systemach wbudowanych, bo rzeczywiście lubimy mieć elastyczność w programowaniu. Ważne jest też to, że po zakończonym programowaniu i kasowaniu, dane zostają w pamięci, aż do momentu, kiedy ponownie je skasujemy. To sprawia, że EPROM jest świetnym rozwiązaniem dla systemów, które muszą mieć stabilne dane.

Pytanie 33

Jakie urządzenie pomiarowe wykorzystuje się do określania podciśnienia?

A. Wariometr
B. Wakuometr
C. Pirometr
D. Dynamometr
Wariometr to przyrząd, który służy do pomiaru zmian ciśnienia atmosferycznego, a jego zastosowanie jest szczególnie widoczne w aeronautyce oraz meteorologii. Używany jest często w samolotach do określenia wysokości lotu i jest niezbędnym narzędziem dla pilotów, jednak nie ma zastosowania w pomiarze podciśnienia. Pirometr to urządzenie do pomiaru temperatury na podstawie promieniowania cieplnego, co czyni go całkowicie nieodpowiednim do miary ciśnienia jakiegokolwiek rodzaju. Z kolei dynamometr służy do pomiaru siły lub momentu obrotowego, co również nie ma związku z pomiarem podciśnienia. Te błędne odpowiedzi mogą wynikać z nieprecyzyjnego rozumienia funkcji i zastosowania różnych przyrządów pomiarowych. Kluczowe jest zrozumienie, że każdy przyrząd ma swoje specyficzne zastosowanie i pomylenie ich może prowadzić do nieprawidłowych wyników pomiarów oraz konsekwencji w praktyce inżynieryjnej. W kontekście branżowym, umiejętność rozróżniania pomiędzy różnymi typami przyrządów pomiarowych jest fundamentem dla każdej osoby zajmującej się inżynierią lub zarządzaniem procesami technologicznymi. Właściwe dobieranie narzędzi pomiarowych do specyficznych zadań jest kluczowe dla uzyskania wiarygodnych i dokładnych wyników.

Pytanie 34

Poniższy zapis w metodzie Grafcet oznacza otwarcie zaworu 1V1

DOtworzyć zawór 1V1
t = 2s

A. impulsowo.
B. z ograniczeniem czasowym.
C. warunkowo.
D. z opóźnieniem czasowym.
Odpowiedź "z opóźnieniem czasowym" jest poprawna, ponieważ zapis w metodzie Grafcet zawiera informację o opóźnieniu, które jest kluczowym elementem w automatyzacji procesów. Opóźnienia czasowe w systemach automatyki są często stosowane do synchronizacji działań, co zapewnia płynne działanie całego systemu. W tym przypadku, akcja otwarcia zaworu 1V1 następuje po upływie 2 sekund od momentu aktywacji danego kroku. Przykładem zastosowania takiego opóźnienia może być scenariusz, w którym otwarcie zaworu musi być zsynchronizowane z innymi procesami, na przykład uruchomieniem pompy, która dostarcza ciecz do zaworu. W takich sytuacjach, stosowanie opóźnień jest zgodne z najlepszymi praktykami w projektowaniu systemów automatyki, co zwiększa niezawodność i bezpieczeństwo operacji. Ponadto, standardy branżowe, takie jak IEC 61131-3, podkreślają znaczenie precyzyjnego definiowania czasów reakcji w systemach sterowania, co także odnosi się do omawianego przypadku.

Pytanie 35

Sprężarka typu śrubowego jest sprężarką

A. rotacyjną
B. przepływową
C. turbinową
D. wyporową
Sprężarka śrubowa jest typem sprężarki rotacyjnej, w której proces sprężania gazu odbywa się za pomocą dwóch śrub, które obracają się w przeciwnych kierunkach. Ta konstrukcja pozwala na ciągłe, płynne sprężanie powietrza, co przekłada się na wysoką wydajność oraz niskie straty energii. W zastosowaniach przemysłowych, sprężarki śrubowe są powszechnie wykorzystywane w systemach pneumatycznych, gdzie wymagane jest dostarczenie dużych ilości sprężonego powietrza w stabilny sposób. Przykładowo, w branży motoryzacyjnej, sprężarki te dostarczają powietrze do narzędzi pneumatycznych, a w przemyśle spożywczym często wykorzystuje się je do pakowania produktów. Standardy ISO dotyczące efektywności energetycznej sprężarek wskazują na korzyści związane z zastosowaniem sprężarek rotacyjnych, takich jak obniżenie kosztów eksploatacji przez zmniejszenie zużycia energii. Dzięki ich niezawodności i efektywności, sprężarki śrubowe stały się standardem w wielu zakładach przemysłowych.

Pytanie 36

Przyczyną uszkodzenia regulatora jest błąd w obwodzie czujnika temperatury odniesienia. Kod błędu to

Nr błęduPrzyczynaŚrodek zaradczy
ErANiespełnione warunki samonastrajaniaNaciśnij dowolny przycisk. Sprawdź czy wartość mierzona jest mniejsza o 20% od wartości zadanej i czy nie zmienia się więcej niż 1% na minutę.
Er1Zwarcie czujnikaSprawdź i popraw podłączenie czujnika.
Er2Rozwarcie czujnikaSprawdź i popraw podłączenie czujnika.
Er3Błąd w obwodzie termoelementu - czujnika temperatury odniesieniaSprawdź i ewentualnie wymień czujnik.

A. Er3
B. Er1
C. ErA
D. Er2
Odpowiedź 'Er3' jest poprawna, gdyż zgodnie z dokumentacją techniczno-ruchową regulatora, kod 'Er3' wskazuje na błąd w obwodzie termoelementu, który jest odpowiedzialny za pomiar temperatury odniesienia. W praktyce, błędy w obwodzie czujnika temperatury mogą prowadzić do nieprawidłowych pomiarów, co z kolei może skutkować niewłaściwym funkcjonowaniem całego systemu automatyki. Zarówno w przemyśle, jak i w aplikacjach domowych, prawidłowy pomiar temperatury jest kluczowy dla zapewnienia efektywności energetycznej i bezpieczeństwa. Należy regularnie sprawdzać stan czujników oraz dokonywać ich kalibracji, aby unikać sytuacji, w których błędne odczyty mogą prowadzić do awarii sprzętu lub zagrożeń dla użytkowników. Zgodnie z dobrą praktyką, warto również wdrożyć procedury monitorowania i diagnostyki systemów, co pozwala na wczesne wykrycie potencjalnych usterek.

Pytanie 37

Wzmacniacz charakteryzuje się pasmem przepustowym wynoszącym w = 12 750 Hz oraz częstotliwością górną fg= 13 500 Hz. Jaką minimalną wartość częstotliwości fd w zakresie przenoszenia sygnałów należy osiągnąć, aby były one wzmacniane?

A. Od 350 Hz
B. Od 6 750 Hz
C. Od 6 375 Hz
D. Od 750 Hz
Odpowiedź "Od 750 Hz" jest prawidłowa, ponieważ szerokość pasma przepustowego wzmacniacza jest określona jako różnica między częstotliwością górną fg a częstotliwością dolną fd. W tym przypadku szerokość pasma wynosi 12 750 Hz, a częstotliwość górna wynosi 13 500 Hz. Aby znaleźć częstotliwość dolną, możemy skorzystać z równania: fg - fd = w. Przekształcając to równanie, uzyskujemy fd = fg - w, co daje fd = 13 500 Hz - 12 750 Hz = 750 Hz. Oznacza to, że sygnały o częstotliwości 750 Hz i wyższej będą wzmacniane przez wzmacniacz. Praktyczne zastosowanie tej wiedzy jest kluczowe w wielu dziedzinach elektronicznych, takich jak audio, telekomunikacja czy systemy przetwarzania sygnałów, gdzie zrozumienie pasma przenoszenia urządzenia pozwala na optymalne dobieranie sygnałów. Właściwe zrozumienie parametrów wzmacniaczy umożliwia również projektowanie bardziej efektywnych układów elektronicznych, spełniających określone wymagania jakościowe i techniczne.

Pytanie 38

Przedstawiony na rysunku element pneumatyczny to

Ilustracja do pytania
A. przełącznik obiegu.
B. zawór z popychaczem.
C. zawór zwrotno-dławiący.
D. rozdzielacz czterodrogowy.
Zawór z popychaczem to kluczowy element w systemach pneumatycznych, który pozwala na manualne sterowanie przepływem powietrza. Posiada charakterystyczny popychacz znajdujący się na górze, który umożliwia włączenie lub wyłączenie przepływu powietrza poprzez nacisk. Tego rodzaju zawory są często używane w aplikacjach, gdzie wymagana jest szybka i intuicyjna kontrola, na przykład w automatyzacji procesów przemysłowych. Standardy dotyczące elementów pneumatycznych, takie jak ISO 1219, określają zasady projektowania i klasyfikacji tych urządzeń, co zapewnia ich niezawodność i bezpieczeństwo. W praktyce zawory z popychaczem są wykorzystywane w systemach napędowych, w maszynach pakujących, a także w urządzeniach stosowanych w przemyśle motoryzacyjnym. Zrozumienie funkcji i zastosowania tego typu zaworów jest niezbędne dla prawidłowego projektowania i eksploatacji systemów pneumatycznych.

Pytanie 39

Siłownik, zasilany sprężonym powietrzem o ciśnieniu roboczym 8 barów, działa z prędkością 50 cykli na minutę i zużywa 1,4 litra powietrza w trakcie jednego cyklu. Jakie parametry powinna mieć sprężarka tłokowa do zasilania siłownika?

A. wydajność 3,6 m3/h, ciśnienie maksymalne 1,0 MPa
B. wydajność 3,6 m3/h, ciśnienie maksymalne 0,7 MPa
C. wydajność 5,3 m3/h, ciśnienie maksymalne 0,7 MPa
D. wydajność 5,3 m3/h, ciśnienie maksymalne 1,0 MPa
Odpowiedź, która podaje wydajność 5,3 m3/h i maksymalne ciśnienie 1,0 MPa, jest jak najbardziej trafna. To spełnia wymagania dla siłownika, który działa na sprężone powietrze. Siłownik zasuwa 50 cykli na minutę, a każdy cykl to 1,4 litra powietrza. Jak to policzymy, to wychodzi, że potrzebuje 70 litrów powietrza na minutę (czyli 50 cykli na minutę razy 1,4 l na cykl). Jak to przerobimy na metry sześcienne, to mamy 0,07 m3 na minutę, co po przeliczeniu na godzinę daje 4,2 m3/h. Żeby zniwelować straty związane z kompresją, sprężarka musi mieć wyższą wydajność. I właśnie ta 5,3 m3/h nie tylko pokrywa zapotrzebowanie siłownika, ale daje też pewien zapas. Co do maksymalnego ciśnienia sprężarki 1,0 MPa (czyli 10 bar), to też jest okej, bo obsługuje siłownik, który działa przy ciśnieniu 8 barów. Użycie sprężarki o tych parametrach to nie tylko kwestia wydajności, ale też pewności działania całego systemu pneumatycznego, co jest zgodne z normami branżowymi.

Pytanie 40

W siłowniku o jednostronnym działaniu, w trakcie realizacji ruchu roboczego tłoka, doszło do nagłego wstrzymania ruchu tłoczyska. Ruch ten odbywał się bez obciążenia i nie zaobserwowano nieszczelności w układzie pneumatycznym. Jakie mogą być przyczyny zatrzymania tłoczyska?

A. wyboczenie tłoczyska
B. niespodziewany spadek ciśnienia roboczego
C. zakleszczenie tłoka
D. blokada odpowietrzania
Zakleszczenie tłoka w siłowniku jednostronnego działania może być przyczyną nagłego zatrzymania ruchu tłoczyska, co jest szczególnie istotne w kontekście działania urządzeń pneumatycznych. W przypadku braku obciążenia, jak w opisanym scenariuszu, wszelkie nieprawidłowości w ruchu tłoka mogą prowadzić do zacięcia, co skutkuje zatrzymaniem wyjścia roboczego. Zakleszczenie może być spowodowane różnymi czynnikami, takimi jak zanieczyszczenia wewnętrzne, niewłaściwe smarowanie, czy też uszkodzenia mechaniczne. Praktycznie, w systemach, w których stosuje się siłowniki, regularna konserwacja i czyszczenie układów pneumatycznych są kluczowe dla zapewnienia ich niezawodności. Standardy branżowe, jak ISO 5598, podkreślają znaczenie odpowiedniego projektowania oraz użytkowania komponentów pneumatycznych, aby minimalizować ryzyko zakleszczeń. W związku z tym, monitorowanie stanu technicznego siłowników oraz wdrażanie odpowiednich procedur serwisowych są kluczowe w praktyce inżynieryjnej.