Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 25 maja 2025 01:03
  • Data zakończenia: 25 maja 2025 01:25

Egzamin zdany!

Wynik: 33/40 punktów (82,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Materiały wykorzystywane w laboratoriach, mogące prowadzić do powstawania mieszanin wybuchowych, powinny być przechowywane

A. w izolowanych pomieszczeniach magazynów ogólnych
B. w różnych punktach laboratorium
C. w specjalnie wydzielonych piwnicach murowanych
D. na otwartym powietrzu pod dachem
Materiały stosowane w laboratoriach, które mogą tworzyć mieszaniny wybuchowe, należy przechowywać w izolowanych pomieszczeniach magazynów ogólnych ze względu na ryzyko ich niekontrolowanej reakcji, co może prowadzić do poważnych zagrożeń dla zdrowia i bezpieczeństwa. Izolacja pomieszczeń magazynowych pozwala na ograniczenie rozprzestrzeniania się ewentualnych wybuchów oraz na skuteczne zarządzanie wentylacją i monitoringiem. Przykładem mogą być laboratoria chemiczne, gdzie substancje takie jak rozpuszczalniki organiczne, materiały łatwopalne czy reagenty chemiczne muszą być przechowywane w wyspecjalizowanych pomieszczeniach, które są zgodne z przepisami BHP oraz normami takimi jak NFPA (National Fire Protection Association) czy OSHA (Occupational Safety and Health Administration). Dobre praktyki obejmują również regularne kontrole i audyty stanu magazynów, co pozwala na wczesne wykrywanie potencjalnych zagrożeń oraz zapewnienie odpowiednich środków ochrony, takich jak gaśnice i systemy alarmowe.

Pytanie 2

Która z metod pozwala na oddzielanie składników mieszaniny na podstawie różnic w ich zachowaniu w układzie składającym się z dwóch faz, z których jedna jest fazą stacjonarną, a druga porusza się w określonym kierunku względem niej?

A. Chromatografia
B. Krystalizacja
C. Destylacja
D. Sublimacja
Chromatografia to technika analityczna, która wykorzystuje różnice w zachowaniu się poszczególnych związków chemicznych w układzie dwufazowym. W tym procesie jedna z faz, nazywana fazą stacjonarną, jest nieruchoma, podczas gdy druga faza, faza ruchoma, przemieszcza się w określonym kierunku. Działa to na zasadzie interakcji między składnikami mieszaniny a tymi fazami. Różne substancje w mieszaninie mają różne affinności do fazy stacjonarnej, co prowadzi do ich rozdzielenia. Przykładem zastosowania chromatografii jest analiza składników chemicznych w próbkach wody, gdzie różne zanieczyszczenia mogą być oddzielane i identyfikowane. Chromatografia jest szeroko stosowana w przemyśle farmaceutycznym, biotechnologii oraz w laboratoriach analitycznych do oceny czystości substancji chemicznych. Technika ta jest zgodna z międzynarodowymi standardami jakości, co czyni ją kluczowym narzędziem w badaniach i kontrolach jakości.

Pytanie 3

Ropa naftowa stanowi mieszankę węglowodorów. Jaką metodę wykorzystuje się do jej rozdzielania na składniki?

A. destylację frakcyjną
B. krystalizację
C. destylację prostą
D. sedymentację
Krystalizacja jako metoda separacji opiera się na różnicach w tym, jak dobrze składniki się rozpuszczają w danym rozpuszczalniku. To działa najlepiej dla substancji stałych, a nie dla cieczy, jak ropa naftowa. W przypadku ropy różnice w temperaturach wrzenia są znacznie ważniejsze niż różnice w rozpuszczalności, przez co krystalizacja to nie najlepszy wybór. Sedymentacja to już inna sprawa, bo polega na oddzielaniu stałych cząstek od cieczy przez grawitację. To jest efektywna metoda dla zawiesin, ale nie nadaje się do oddzielania cieczy na podstawie punktów wrzenia. Użycie sedymentacji w przemyśle naftowym byłoby po prostu błędne, bo ropa to jednorodny płyn, a nie zawiesina. Destylacja prosta może działać, ale w przypadku ropy to za mało, bo ma ona tak skomplikowany skład i wiele frakcji. Destylacja prosta pozwala na separację tylko jednego składnika na raz, co jest mało efektywne, gdy mamy tyle różnych i cennych produktów z ropy. Błędny wybór metody może prowadzić do kiepskiej efektywności produkcji i marnowania surowców.

Pytanie 4

Zjawisko fizyczne, które polega na rozkładaniu struktury krystalicznej substancji stałej oraz przenikaniu jej cząsteczek lub jonów do cieczy, nosi nazwę

A. stapianiem
B. rozpuszczaniem
C. roztwarzaniem
D. sublimacją
Rozpuszczanie to proces, w którym substancja stała, zwana solutem, ulega rozkładowi w rozpuszczalniku, tworząc jednorodną mieszaninę, znaną jako roztwór. W czasie tego procesu, cząsteczki lub jony solutu odrywają się od sieci krystalicznej i są otaczane przez cząsteczki rozpuszczalnika. Przykładem może być rozpuszczanie soli kuchennej (NaCl) w wodzie, gdzie jony sodu i chlorkowe oddzielają się i są stabilizowane przez cząsteczki wody. Zjawisko to jest kluczowe w wielu dziedzinach, takich jak chemia analityczna, gdzie przygotowanie roztworów o określonym stężeniu jest niezbędne do przeprowadzania reakcji chemicznych i analiz. Ponadto, zrozumienie rozpuszczania ma zastosowanie w technologii, farmacji, a także biotechnologii, gdzie przygotowanie odpowiednich roztworów jest niezbędne do badań i produkcji. Znajomość procesów rozpuszczania oraz czynników wpływających na ten proces, takich jak temperatura, pH czy obecność innych substancji, jest fundamentalna dla wielu praktycznych zastosowań oraz badań naukowych.

Pytanie 5

Jakim rozpuszczalnikiem o niskiej temperaturze wrzenia wykorzystuje się do suszenia szkła laboratoryjnego?

A. alkohol etylowy
B. roztwór węglanu wapnia
C. woda amoniakalna
D. kwas siarkowy(VI)
Alkohol etylowy, znany również jako etanol, jest powszechnie stosowanym rozpuszczalnikiem w laboratoriach chemicznych ze względu na swoje właściwości lotne oraz zdolność do efektywnego rozpuszczania różnych substancji. W procesie suszenia szkła laboratoryjnego, alkohol etylowy jest wykorzystywany do usuwania wody oraz innych zanieczyszczeń, co jest kluczowe dla uzyskania wysokiej czystości sprzętu. Alkohol etylowy odparowuje w stosunkowo niskich temperaturach, co umożliwia szybkie i skuteczne suszenie bez ryzyka uszkodzenia szkła. Ponadto, etanol jest zgodny z zasadami dobrych praktyk laboratoryjnych, które podkreślają znaczenie stosowania substancji nie tylko skutecznych, ale także bezpiecznych dla użytkowników oraz środowiska. Warto również zwrócić uwagę, że alkohol etylowy jest substancją łatwopalną, dlatego podczas jego stosowania należy przestrzegać odpowiednich procedur bezpieczeństwa, takich jak praca w dobrze wentylowanych pomieszczeniach oraz unikanie otwartego ognia. Zastosowanie alkoholu etylowego w laboratoriach chemicznych jest również zgodne z normami EPA, które regulują użycie rozpuszczalników w kontekście ochrony środowiska.

Pytanie 6

Zgodnie z instrukcją dotyczącą pobierania próbek nawozów (na podstawie normy PN-EN 12579:2001), liczbę punktów pobierania próbek pierwotnych ustala się według wzoru nsp = 0,5·√V, gdzie V oznacza objętość jednostki badanej w m3. Wartość nsp zaokrągla się do liczby całkowitej, a dodatkowo nie może być mniejsza niż 12 ani większa niż 30.
Dlatego dla objętości V = 4900 m3, nsp wynosi

A. 70
B. 35
C. 30
D. 12
Odpowiedź 30 jest poprawna, ponieważ zgodnie z normą PN-EN 12579:2001, liczba miejsc pobierania próbek pierwotnych oblicza się według wzoru nsp = 0,5·√V, gdzie V to objętość jednostki badanej wyrażona w m3. Dla objętości V = 4900 m3, obliczamy: nsp = 0,5·√4900 = 0,5·70 = 35. Jednakże wartość nsp musi być zaokrąglona do liczby całkowitej oraz mieścić się w granicach 12 i 30. W związku z tym, mimo że obliczona wartość to 35, ze względu na górny limit, ostateczna wartość nsp wynosi 30. Takie podejście zapewnia odpowiednią reprezentatywność próbek, co jest kluczowe w analizach laboratoryjnych. W praktyce, stosowanie właściwej liczby próbek pozwala na dokładniejszą ocenę jakości nawozów oraz ich wpływu na glebę. Utrzymanie standardów w procesie pobierania próbek jest niezbędne do uzyskania wiarygodnych wyników, co jest szczególnie istotne w kontekście zrównoważonego rolnictwa i ochrony środowiska.

Pytanie 7

Na podstawie danych w tabeli wskaż, którego środka suszącego można użyć do osuszenia związku o wzorze (CH3)2CO

Środek suszącyStosowany do suszeniaNie nadaje się do suszenia
NaEter, węglowodory, aminy trzeciorzędoweChlorowcopochodne węglowodorów
CaCl₂Węglowodory, aceton, eter, gazy obojętneAlkohole, amoniak, aminy
Żel krzemionkowyW eksykatorzeHF
H₂SO₄Gazy obojętne i kwasoweZwiązki nienasycone, alkohole, substancje zasadowe

A. żel krzemionkowy
B. CaCl2
C. Na
D. H2SO4
Wybór CaCl2 jako środka suszącego do osuszenia acetonu (CH3)2CO jest poprawny, ponieważ jest to substancja, która skutecznie wiąże wodę dzięki swojej higroskopijności. Chlorek wapnia jest powszechnie stosowany do osuszania rozpuszczalników organicznych, w tym ketonów, co czyni go idealnym rozwiązaniem w przypadku acetonu. W praktyce, stosując CaCl2, można uzyskać wysoce czysty aceton, co jest istotne w wielu aplikacjach laboratoryjnych i przemysłowych, takich jak syntezy chemiczne czy preparatyka próbek. Dodatkowo, w kontekście dobrych praktyk laboratoryjnych, ważne jest, aby zawsze stosować odpowiednie metody osuszania, aby uniknąć zanieczyszczeń i uzyskać wiarygodne wyniki. Zgodnie ze standardami branżowymi, takie jak ISO 9001, dbanie o jakość materiałów i ich obróbkę jest kluczowe dla zapewnienia wysokiego poziomu produktów końcowych.

Pytanie 8

Aby przygotować 250 cm3 0,2-molowego roztworu wodorotlenku sodu, należy odważyć

MNaOH = 40g / mol

A. 0,05 g stałego NaOH.
B. 2,50 g stałego NaOH.
C. 2,00 g stałego NaOH.
D. 25,0 g stałego NaOH.
Aby przygotować 250 cm3 0,2-molowego roztworu wodorotlenku sodu (NaOH), konieczne jest zrozumienie podstawowych zasad obliczania masy substancji chemicznych. W przypadku NaOH, jego masa molowa wynosi 40 g/mol. Przygotowując roztwór o stężeniu 0,2 mola w 250 cm3, obliczamy ilość moli, co daje nam 0,05 mola NaOH (0,2 mol/l * 0,25 l). Następnie, aby obliczyć potrzebną masę, stosujemy wzór: masa = liczba moli * masa molowa. Czyli, 0,05 mola * 40 g/mol = 2 g NaOH. W praktyce, takie obliczenia są kluczowe w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów ma dużą wagę. Używając tej wiedzy, można z sukcesem przygotowywać różnorodne roztwory, co jest istotne w wielu dziedzinach nauki i przemysłu, takich jak chemia analityczna, synergia materiałów czy wytwarzanie farmaceutyków. Zrozumienie tych podstawowych zasad pozwoli na bardziej efektywne i bezpieczne przeprowadzanie eksperymentów chemicznych.

Pytanie 9

Którą substancję można bezpośrednio wyrzucić do odpadów komunalnych?

A. Azbest
B. Glukozę
C. Tlenek rtęci(II)
D. Azotan(V) srebra
Glukoza to taki prosty cukier, który znajdziesz w wielu jedzeniu. Jest zupełnie naturalna i nasze ciała potrafią ją rozłożyć. Dlatego można ją bez obaw wrzucać do odpadów komunalnych, co oznacza, że trafia do oczyszczalni i tam można ją przerobić. Z tego, co wiem, glukoza nie szkodzi ani naturze, ani zdrowiu ludzi. Jeśli chodzi o odpady, to takie organiczne rzeczy jak glukoza są ok i można je spokojnie kompostować. W przemyśle używa się jej do produkcji żywności i jako źródło energii w fermentacji, co pokazuje, że można ją bezpiecznie utylizować. W dodatku normy takie jak ISO 14001 pomagają zarządzać środowiskiem, więc glukoza jest w tym kontekście super bezpieczna.

Pytanie 10

Przykładem piany stałej jest

faza rozproszonafaza rozpraszająca
gazcieczciało stałe
gaz-pianapiana stała
cieczaerozol ciekłyemulsjaemulsja stała
ciało stałeaerozol stałyzolzol stały

A. mgła.
B. bite białko.
C. pumeks.
D. masło.
Pumeks jest doskonałym przykładem piany stałej, co wynika z jego unikalnej struktury porowatej. W tej strukturze pęcherze gazu są uwięzione w ciele stałym, co tworzy materiał o niskiej gęstości i wysokiej wytrzymałości. Pumeks, jako skała wulkaniczna, powstaje w wyniku szybkiego schłodzenia lawy, co prowadzi do powstawania licznych pęcherzyków gazu. Zastosowanie pumeksu jest szerokie. W budownictwie wykorzystuje się go jako materiał izolacyjny oraz lekki agregat do betonu. Dodatkowo, pumeks jest stosowany w kosmetykach jako naturalny środek peelingujący oraz w przemyśle rekreacyjnym, w produkcji akcesoriów do pielęgnacji stóp. Zrozumienie właściwości pumeksu jako piany stałej pozwala na lepsze dobieranie materiałów do odpowiednich zastosowań, co jest zgodne z najlepszymi praktykami inżynieryjnymi. W kontekście naukowym, klasyfikacja materiałów na podstawie ich struktury i właściwości jest kluczowa, co potwierdzają standardy dotyczące materiałoznawstwa.

Pytanie 11

Z przedstawionego opisu wynika, że kluczową właściwością próbki analitycznej jest jej

Próbka analityczna to fragment materiału stworzony z myślą o przeprowadzeniu badania lub obserwacji. Powinna odzwierciedlać przeciętny skład i cechy materiału, który jest badany.

A. jednorodność
B. roztwarzalność
C. reprezentatywność
D. rozpuszczalność
Odpowiedź "reprezentatywność" jest kluczowa w kontekście próbki analitycznej, gdyż oznacza, że próbka powinna odzwierciedlać charakterystyki całego materiału badanego. W praktyce oznacza to, że próbka musi być pobrana w sposób, który gwarantuje, że jej skład i właściwości są zgodne z właściwościami całej partii materiału. Przykładem zastosowania reprezentatywności może być proces pobierania próbek w analizie jakościowej gleby, gdzie ważne jest, aby próbki były pobierane z różnych miejsc w polu, aby uzyskać dokładny obraz stanu całej gleby. Standardy takie jak ISO 5667 dostarczają wytycznych na temat pobierania próbek w różnych środowiskach, co podkreśla znaczenie reprezentatywności. Bez zapewnienia, że próbka jest reprezentatywna, wyniki badania mogą być mylące, co może prowadzić do błędnych decyzji w procesach przemysłowych czy badaniach naukowych.

Pytanie 12

Błąd związany z odczytem poziomu cieczy w kolbie miarowej, spowodowany niewłaściwą pozycją oka w stosunku do skali, nazywany jest błędem

A. paralaksy
B. dokładności
C. instrumentalnym
D. losowym
Wybór 'paralaksy' to strzał w dziesiątkę! To dotyczy błędu w odczycie, który ma związek z tym, jak nasze oczy widzą coś z określonego kąta. Tak naprawdę paralaksa to ciekawe zjawisko optyczne – jakby obiekt wydaje się zmieniać, kiedy patrzymy na niego z różnych miejsc. W laboratorium, przy pomiarach cieczy w kolbie miarowej, bardzo ważne jest, żeby dobrze ustawić wzrok na menisku. Jak nie patrzymy z odpowiedniego poziomu, to możemy źle odczytać, ile płynu mamy. To jest kluczowe, zwłaszcza w chemii, gdzie dokładność to podstawa. No i jest kilka standardów, jak ISO 8655, które mówią, jak powinno się to robić, żeby wyniki były wiarygodne. Także pamiętaj, patrząc na menisk, rób to na wysokości oczu, żeby uniknąć błędów – to naprawdę robi różnicę.

Pytanie 13

Metoda oczyszczania substancji oparta na różnicach w rozpuszczalności poszczególnych składników w określonym rozpuszczalniku to

A. chromatografia
B. krystalizacja
C. adsorpcja
D. destylacja
Wybór innych metod oczyszczania substancji, takich jak chromatografia, destylacja czy adsorpcja, wskazuje na niewłaściwe zrozumienie różnic między tymi technikami a krystalizacją. Chromatografia polega na separacji składników mieszaniny w oparciu o różne stopnie ich adsorpcji na materiale stacjonarnym, a nie na różnicach w rozpuszczalności. Jest to technika szeroko stosowana w analityce chemicznej, jednak nie jest dedykowana do oddzielania substancji na podstawie ich rozpuszczalności. Destylacja, z kolei, opiera się na różnicach w temperaturach wrzenia składników, co czyni ją odpowiednią do separacji cieczy, a nie stałych substancji. W procesie destylacji, ciecz o niższej temperaturze wrzenia odparowuje jako pierwsza, a następnie kondensuje, co nie jest związane z rozpuszczalnością substancji. Adsorpcja odnosi się do przyciągania cząsteczek na powierzchnię ciała stałego lub cieczy i również nie dotyczy rozpuszczalności. Wybierając te metody, można popełnić błąd polegający na myleniu podstawowych zasad chemii, co prowadzi do nieefektywnego oczyszczania substancji. Aby skutecznie oczyszczać substancje, kluczowe jest zrozumienie właściwości fizykochemicznych substancji oraz dopasowanie procesu oczyszczania do ich specyfiki.

Pytanie 14

Technika kwartowania (ćwiartkowania) pozwala na redukcję masy próbki ogólnej

A. gazowej
B. półciekłej
C. stałej
D. ciekłej
Metoda kwartowania, czyli ćwiartkowanie, to sposób, który wykorzystuje się w laboratoriach, żeby zmniejszyć masę próbki stałej. Dzięki temu można ją analizować, nie tracąc przy tym jej reprezentatywności. Po prostu dzielimy próbkę na cztery równe części i wybieramy dwie przeciwległe, co daje nam mniejszą próbkę do pracy. To jest ważne zwłaszcza w chemii, gdzie zachowanie proporcji składników ma duże znaczenie. Na przykład, jeśli mamy dużą próbkę gleby i chcemy ją przeanalizować, kwartowanie pozwala nam na zmniejszenie jej do rozmiaru, który jest bardziej odpowiedni do badań, np. mikrobiologicznych czy chemicznych. Dla próbek stałych, takich jak minerały czy różne odpady, kwartowanie jest standardem, bo pozwala nam na uzyskanie reprezentatywnej próbki, a jednocześnie ogranicza straty materiału. Warto też pamiętać, że normy ISO w analizie próbek podkreślają znaczenie uzyskiwania prób reprezentatywnych, co jest kluczowe w wielu badaniach w laboratoriach i przemyśle.

Pytanie 15

W trakcie destylacji cieczy wykorzystuje się tzw. kamienie wrzenne, ponieważ

A. przyspieszają przebieg destylacji
B. obniżają temperaturę wrzenia cieczy
C. przyspieszają proces wrzenia cieczy
D. umożliwiają równomierne wrzenie cieczy
Kamyczki wrzenne odgrywają kluczową rolę w procesie destylacji, ponieważ umożliwiają równomierne wrzenie cieczy. Dzięki nim powstaje wiele małych bąbelków pary, co prowadzi do wzrostu powierzchni wymiany między cieczą a parą. W rezultacie ciecz wrze w sposób bardziej kontrolowany, co jest istotne w kontekście uzyskiwania czystych frakcji destylacyjnych. W praktyce, stosowanie kamyczków wrzennych pozwala unikać zjawiska tzw. „bumu wrzenia”, które może prowadzić do gwałtownego wrzenia i nieefektywności procesu. Dobre praktyki w chemii analitycznej zalecają stosowanie kamyczków w celu zapewnienia stabilności procesu, co jest szczególnie ważne w przemyśle chemicznym i farmaceutycznym, gdzie precyzyjne oddzielanie składników jest kluczowe dla uzyskania wysokiej jakości produktów. W związku z tym, kamyczki wrzenne przyczyniają się nie tylko do poprawy efektywności destylacji, ale także do bezpieczeństwa całego procesu, co jest zgodne z międzynarodowymi standardami bezpieczeństwa chemicznego.

Pytanie 16

Jakim kolorem oznacza się instalację gazową w laboratorium analitycznym?

A. czerwonym
B. żółtym
C. niebieskim
D. zielonym
Znakowanie instalacji gazowych w laboratoriach analitycznych jest kluczowe dla zapewnienia bezpieczeństwa i efektywności pracy. Kolor żółty, który stosuje się do oznaczania instalacji gazowych, jest zgodny z międzynarodowymi standardami, w tym z normami ISO oraz przepisami BHP. Oznaczenia te mają na celu szybkie i jednoznaczne wskazanie, że dana instalacja transportuje gazy, co zwiększa świadomość zagrożeń w miejscu pracy. Przykładowo, w laboratoriach chemicznych, gdzie zachodzi możliwość pracy z substancjami łatwopalnymi, oznaczenie gazu za pomocą koloru żółtego umożliwia pracownikom szybkie zidentyfikowanie instalacji, które mogą stanowić zagrożenie. Ponadto, stosowanie jednolitych oznaczeń pomaga w szkoleniu nowego personelu oraz w przestrzeganiu regulacji prawnych dotyczących bezpieczeństwa pracy. Znajomość i stosowanie tych standardów jest fundamentalne dla minimalizacji ryzyka wypadków oraz zapewnienia efektywności procesów analitycznych.

Pytanie 17

Masa molowa kwasu azotowego(V) wynosi 63,0 g/mol. Jakie jest stężenie molowe 20% roztworu tego kwasu o gęstości 1,1 g/cm3?

A. 3,60 mol/dm3
B. 5,30 mol/dm3
C. 3,49 mol/dm3
D. 6,30 mol/dm3
Aby obliczyć stężenie molowe kwasu azotowego(V) w 20% roztworze, należy zastosować wzór na stężenie molowe, który określa ilość moli substancji chemicznej w jednostce objętości roztworu. W pierwszej kolejności obliczamy masę kwasu azotowego w 100 g roztworu: 20% oznacza, że w 100 g roztworu znajduje się 20 g kwasu azotowego. Następnie przeliczymy tę masę na mole, korzystając z masy molowej kwasu azotowego(V), która wynosi 63,0 g/mol. Dzieląc masę kwasu przez jego masę molową, uzyskujemy liczbę moli: 20 g / 63,0 g/mol = 0,317 mol. Teraz musimy obliczyć objętość roztworu. Gęstość roztworu wynosi 1,1 g/cm³, co oznacza, że 100 g roztworu ma objętość 100 g / 1,1 g/cm³ = 90,91 cm³, czyli 0,09091 dm³. Wreszcie, stężenie molowe obliczamy dzieląc liczbę moli przez objętość roztworu: 0,317 mol / 0,09091 dm³ ≈ 3,49 mol/dm³. Takie obliczenia są istotne w chemii analitycznej i laboratoryjnej, gdzie precyzyjne przygotowanie roztworów ma kluczowe znaczenie dla uzyskania wiarygodnych wyników analiz chemicznych.

Pytanie 18

Działanie podejmowane po pobraniu próbki wody, mające na celu zachowanie jej składu chemicznego podczas transportu, określa się mianem

A. mianowania
B. utrwalania
C. rozcieńczania
D. oczyszczania
Utrwalanie próbki wody po jej pobraniu jest kluczowym etapem, który ma na celu zachowanie jej oryginalnego składu chemicznego w trakcie transportu i analizy. Proces ten polega na dodaniu odpowiednich substancji chemicznych lub zastosowaniu metod fizycznych, które zapobiegają zmianom w składzie wody, takim jak rozkład mikroorganizmów czy reakcje chemiczne, które mogą zachodzić w czasie transportu. Przykładem może być dodanie kwasu solnego do próbek wody morskiej w celu zatrzymania wzrostu bakterii. W kontekście standardów, wiele organizacji, w tym EPA i ISO, podkreśla znaczenie tego etapu w procedurach pobierania i analizy próbek wody. Utrwalanie jest istotne nie tylko dla uzyskania dokładnych wyników analitycznych, ale również dla zapewnienia bezpieczeństwa zdrowotnego, ponieważ niektóre zanieczyszczenia mogą mieć poważne konsekwencje dla zdrowia publicznego. Zrozumienie tego procesu pozwala na lepsze planowanie badań i optymalizację metod analitycznych, co jest niezbędne w pracy laboratoriach środowiskowych.

Pytanie 19

Zgodnie z zasadami BHP w laboratorium, po zakończeniu pracy z odczynnikami chemicznymi należy:

A. Zostawić otwarte pojemniki i natychmiast opuścić laboratorium.
B. Wylać pozostałości odczynników do zlewu niezależnie od ich rodzaju.
C. Wszystkie nieużyte odczynniki pozostawić na stole roboczym.
D. Zamknąć szczelnie pojemniki z odczynnikami, posegregować odpady chemiczne zgodnie z instrukcjami i dokładnie umyć stanowisko pracy.
Prawidłowe postępowanie po zakończeniu pracy z odczynnikami chemicznymi w laboratorium opiera się na kilku kluczowych zasadach bezpieczeństwa i higieny pracy. Po pierwsze, zawsze należy szczelnie zamknąć pojemniki z używanymi chemikaliami, aby uniknąć parowania, przypadkowego kontaktu oraz zanieczyszczenia powietrza szkodliwymi substancjami. To ważne nie tylko dla zdrowia pracowników, ale też dla ochrony środowiska. Następnie wszelkie odpady chemiczne muszą być posegregowane i zutylizowane zgodnie z obowiązującymi przepisami – nie wolno ich wylewać do zlewu czy pozostawiać na stanowisku. Wreszcie, dokładne umycie stanowiska pracy to nie tylko kwestia estetyki, ale też bezpieczeństwa: resztki substancji mogą powodować nieprzewidywalne reakcje lub narazić kolejne osoby korzystające z tego miejsca. Moim zdaniem, takie podejście minimalizuje ryzyko wypadków i sprawia, że praca w laboratorium jest bardziej przewidywalna. W praktyce, nawet jeśli jesteśmy zmęczeni po długim dniu eksperymentów, warto poświęcić te kilka minut na sprzątnięcie, bo to się po prostu opłaca – dla nas i dla innych. To standard nie tylko w szkołach i uczelniach, ale też w profesjonalnych laboratoriach chemicznych na całym świecie.

Pytanie 20

W tabeli przedstawiono wymiary, jakie powinny mieć oznaczenia opakowań substancji niebezpiecznych.
Korzystając z informacji w tabeli, określ minimalne wymiary, jakie powinno mieć oznaczenie dla cysterny o pojemności 32840 dm3.

Pojemność opakowaniaWymiary (w centymetrach)
Nieprzekraczająca 3 litrówco najmniej 5,2 x 7,4
Ponad 3 litry, ale nieprzekraczająca 50 litrówco najmniej 7,4 x 10,5
Ponad 50 litrów, ale nieprzekraczająca 500 litrówco najmniej 10,5 x 14,8
Ponad 500 litrówco najmniej 14,8 x 21,0

A. 7,4 x 10,5 cm
B. 5,2 x 7,4 cm
C. 10,5 x 14,8 cm
D. 14,8 x 21,0 cm
Odpowiedź "14,8 x 21,0 cm" jest prawidłowa, ponieważ zgodnie z obowiązującymi normami dotyczącymi oznaczeń opakowań substancji niebezpiecznych, wymiary te są wymagane dla cystern o pojemności powyżej 500 litrów. W przypadku cysterny o pojemności 32840 dm³, co odpowiada 32840 litrów, konieczne jest stosowanie wyraźnych i większych oznaczeń, aby zapewnić odpowiednią widoczność i zrozumienie dla osób, które mogą mieć kontakt z tymi substancjami. Przykładem zastosowania tej wiedzy jest transport chemikaliów, gdzie prawidłowe oznakowanie ma kluczowe znaczenie dla bezpieczeństwa pracowników oraz osób postronnych. Oznaczenia muszą spełniać określone standardy, takie jak te ustalone przez Międzynarodową Organizację Normalizacyjną (ISO) oraz przepisy krajowe, co gwarantuje, że są one odpowiednio przygotowane na wszelkie okoliczności, w tym na sytuacje awaryjne. Zastosowanie odpowiednich wymiarów oznaczeń nie tylko zwiększa bezpieczeństwo, ale również ułatwia identyfikację substancji niebezpiecznych w transporcie i przechowywaniu.

Pytanie 21

Wody pobrane ze studni powinny być przewożone w szczelnie zamkniętych butelkach z przezroczystego materiału

A. szklanych, w temperaturze około 20°C
B. z tworzywa sztucznego, w temperaturze około 4°C
C. z tworzywa sztucznego, w temperaturze około 20°C
D. szklanych, w temperaturze około 30°C
Odpowiedź dotycząca użycia butelek z tworzywa sztucznego, w temperaturze około 4°C, jest zgodna z zaleceniami dotyczącymi transportu próbek wody. Tworzywo sztuczne, takie jak polipropylen lub PET, jest preferowane, ponieważ jest lekkie, odporne na pęknięcia i dobrze zabezpiecza próbki przed zanieczyszczeniami. Przechowywanie próbek w niskiej temperaturze, około 4°C, minimalizuje rozwój mikroorganizmów i stabilizuje skład chemiczny wody, co jest kluczowe dla wiarygodności analizy. W praktyce zaleca się, aby próbki były transportowane w ciągu maksymalnie 24 godzin od pobrania, aby zminimalizować ryzyko zmiany parametrów analitycznych. Dobre praktyki laboratoria wodociągowego wskazują, że każda próbka powinna być odpowiednio oznakowana i zarejestrowana, co ułatwia późniejsze śledzenie wyników analizy. W takich sytuacjach warto korzystać z wytycznych takich jak Standard ISO 5667 dotyczący pobierania próbek wody, co zapewnia jakość i wiarygodność uzyskiwanych danych.

Pytanie 22

Naczynia miarowe kalibrowane "na wlew" mają oznaczenie w postaci symbolu

A. Ex
B. A
C. B
D. In
Naczynia miarowe kalibrowane "na wlew" oznaczone symbolem "In" są przeznaczone do pomiaru objętości cieczy, które pozostają w naczyniu po ich napełnieniu. Oznaczenie to wskazuje, że naczynie powinno być uzupełnione do wyznaczonego poziomu, a dokładność pomiaru zależy od właściwego zastosowania naczynia. W praktyce, naczynia te są używane w laboratoriach do precyzyjnego odmierzania reagentów, gdzie ważne jest, aby cała objętość została wykorzystana w procesie chemicznym. Warto zauważyć, że zgodnie z normami ISO oraz wymaganiami dotyczącymi jakości w laboratoriach, stosowanie naczyń miarowych kalibrowanych „na wlew” pozwala na uzyskanie wiarygodnych wyników pomiarów. Używając naczyń oznaczonych symbolem „In”, laboranci mogą zminimalizować błędy związane z pozostałością cieczy, co jest istotne w kontekście analizy danych i powtarzalności badań.

Pytanie 23

Proces przesiewania próbki prowadzi się za pomocą urządzenia przedstawionego na rysunku

Tabela. Sposoby utrwalania próbek wody i ścieków, miejsce analizy, dopuszczalny czas przechowywania próbek
Oznaczany parametrRodzaj naczynia do przechowywania próbkiSposób utrwalania próbkiMiejsce wykonania analizyDopuszczalny czas przechowywania próbki
Chlorkiszklane
lub polietylenowe
-laboratorium96 godzin
Chlor pozostałyszklane-w miejscu
pobrania próbki
-
ChZTszklanezakwaszenie do pH<2,
schłodzenie
do temperatury 2-5°C
laboratorium24 godziny
Kwasowośćszklane
lub polietylenowe
schłodzenie
do temperatury 2-5°C
laboratorium4 godziny
Manganszklane
lub polietylenowe
zakwaszenie do pH<2,
schłodzenie
do temperatury 2-5°C
laboratorium48 godzin

A. C.
B. B.
C. A.
D. D.
Wybór odpowiedzi A, B lub D wskazuje na pewne nieporozumienia dotyczące podstawowych zasad przesiewania próbki. Odpowiedzi te mogą sugerować, że użytkownik nie rozumie, że proces przesiewania wymaga zastosowania odpowiednich narzędzi, które są specjalnie zaprojektowane do tego celu. Na przykład, odpowiedzi A i B mogą być mylone z ideą użycia innych metod mechanicznych, takich jak mieszanie czy szarpanie, które nie są właściwe do oddzielania cząstek według ich rozmiaru. W rzeczywistości, metody te nie zapewniają wymaganej precyzji, ponieważ nie segregują one cząstek na podstawie ich właściwości fizycznych. Odpowiedź D sugeruje z kolei inne techniki separacji, takie jak filtracja, która jest stosowana do usuwania większych zanieczyszczeń z cieczy, a nie do przesiewania ciał stałych. Kluczowym błędem myślowym, który może prowadzić do takich odpowiedzi, jest nieporozumienie dotyczące zasad mechaniki ciał stałych i procesów separacji. Przesiewanie i filtracja to dwa różne procesy, które mają swoje specyficzne zastosowania. Zrozumienie tego rozróżnienia jest niezbędne dla prawidłowego podejścia do analizy materiałów sypkich oraz do stosowania norm branżowych, które gwarantują skuteczność i dokładność wyników.

Pytanie 24

Fragment procedury analitycznej
(...) Przenieś badany roztwór całkowicie do rozdzielacza gruszkowego o pojemności od 50 do 100 cm3, dodaj 5 cm3 roztworu tiocyjanianu potasu oraz 10 cm3 alkoholu izopentylowego, a następnie wstrząsaj zawartością przez 30 sekund.
Po rozdzieleniu faz przenieś roztwór wodny do drugiego rozdzielacza, natomiast fazę organiczną do suchej kolbki miarowej o pojemności 50 cm3(...) Który rodzaj ekstrakcji jest opisany w powyższym fragmencie?

A. Okresowej ciało stałe – ciecz
B. Okresowej ciecz – ciecz
C. Ciągłej ciało stałe – ciecz
D. Ciągłej ciecz – ciecz
Fragment procedury analitycznej opisuje proces ekstrakcji okresowej ciecz – ciecz, co oznacza, że rozdzielanie składników następuje w wyniku wielokrotnego kontaktu dwóch cieczy o różnej polarności. W przedstawionej procedurze, badany roztwór jest mieszany z roztworem tiocyjanianu potasu i alkoholem izopentylowym, co prowadzi do rozdzielenia faz. Ekstrakcja okresowa jest szczególnie efektywna w przypadku związków organicznych, które można oddzielić od roztworów wodnych. Praktyczne zastosowanie tego typu ekstrakcji występuje w analitycznej chemii, np. w izolowaniu związków organicznych z wodnych roztworów, co jest istotne w laboratoriach zajmujących się analizą chemiczną żywności, środowiska czy farmaceutyków. Dobrym przykładem może być ekstrakcja substancji czynnych z roztworów, co pozwala na ich dalszą analizę i identyfikację. Warto zwrócić uwagę, że stosowanie odpowiednich proporcji reagentów oraz optymalnych warunków mieszania jest kluczowe dla efektywności tego procesu.

Pytanie 25

Odczynnik, który w specyficznych warunkach reaguje wyłącznie z danym jonem, umożliwiając tym samym jego identyfikację w mieszance, to odczynnik

A. specyficzny
B. charakterystyczny
C. indywidualny
D. selektywny
Odczynnik specyficzny to taki, który reaguje z określonym jonem w danej mieszaninie, co pozwala na jego wykrycie i analizę. Oznacza to, że w warunkach laboratoryjnych, odczynnik ten jest w stanie wyizolować reakcję tylko dla jednego jonu, unikając interakcji z innymi składnikami. Przykładem może być zastosowanie odczynnika specyficznego do wykrywania jonów srebra w roztworach, gdzie używany jest tiocyjanian potasu, który reaguje z srebrem, tworząc charakterystyczny kompleks. Tego typu odczynniki są kluczowe w analizie chemicznej, gdyż umożliwiają precyzyjne pomiary i wykrywanie substancji w skomplikowanych mieszaninach. W laboratoriach często stosuje się różne metody analityczne, takie jak spektroskopia czy chromatografia, które wymagają użycia odczynników o wysokiej specyfice, aby wyniki były wiarygodne. Specyficzność odczynnika jest zgodna z dobrą praktyką laboratoryjną i standardami jakości, co jest istotne w kontekście zapewnienia dokładności wyników analizy.

Pytanie 26

Po rozpuszczeniu substancji w kolbie miarowej, należy odczekać przed dopełnieniem jej wodą "do kreski" miarowej. Taki sposób postępowania jest uzasadniony

A. opóźnieniem w osiągnięciu równowagi dysocjacji
B. potrzebą wyrównania temperatury roztworu z otoczeniem
C. koniecznością dokładnego wymieszania roztworu
D. opóźnieniem w ustaleniu się kontrakcji objętości
Odpowiedź dotycząca konieczności wyrównania temperatury roztworu i otoczenia jest prawidłowa, ponieważ temperatura ma kluczowe znaczenie dla dokładności pomiarów oraz właściwości fizykochemicznych roztworów. Po rozpuszczeniu substancji w kolbie miarowej, ważne jest, aby roztwór osiągnął równowagę temperaturową przed dopełnieniem do kreski. Różnice temperatur mogą prowadzić do błędów w objętości, ponieważ cieczy o wyższej temperaturze mają tendencję do rozszerzania się. W praktyce, standardy laboratoryjne, takie jak normy ISO dotyczące przygotowywania roztworów, zalecają odczekiwanie, aby uniknąć nieprecyzyjnych wyników analitycznych. Na przykład, w chemii analitycznej, nawet niewielkie różnice w objętości mogą wpłynąć na stężenie roztworu, co ma bezpośredni wpływ na wyniki pomiarów spektroskopowych czy titracji. Przygotowując roztwory, należy także brać pod uwagę efekty, takie jak rozpuszczalność substancji w różnych temperaturach, co może wpływać na ostateczny skład roztworu. Dlatego przestrzeganie protokołów dotyczących wyrównania temperatury jest kluczowe dla uzyskania wiarygodnych i powtarzalnych wyników w laboratoriach.

Pytanie 27

Próbkę uzyskaną z próbki ogólnej poprzez jej zmniejszenie nazywa się

A. średnią
B. śladową
C. pierwotną
D. ogólną
Wybór odpowiedzi 'pierwotna', 'ogólna' czy 'śladowa' opiera się na nieporozumieniach dotyczących podstawowych pojęć związanych z przygotowaniem próbek. Odpowiedź 'pierwotna' sugeruje, że próbka jest reprezentatywna dla całej populacji, co jednak nie jest prawdą. W rzeczywistości, pierwotna próbka to ta, która została zebrana bez jakiejkolwiek obróbki, co nie odzwierciedla rzeczywistych właściwości populacji. Odpowiedź 'ogólna' jest myląca, ponieważ termin ten w kontekście próbek mógłby oznaczać całą zbieraną populację, a nie jej analizowaną reprezentację. Z kolei odpowiedź 'śladowa' odnosi się do próbek, które są w tak małej ilości, że mogą nie być użyteczne do rzetelnej analizy statystycznej lub chemicznej. Przygotowanie śladowej próbki może prowadzić do błędnych wniosków, gdyż nie przedstawia ona wiarygodnego obrazu całości, co może być szczególnie niebezpieczne w zastosowaniach przemysłowych czy medycznych. W teorii próbkowania istotne jest zrozumienie, że każda z tych błędnych odpowiedzi nie uwzględnia faktu, iż średnia próbka jest niezbędna do zapewnienia reprezentatywności i dokładności w pomiarach, co jest kluczowe w kontekście analizy danych i podejmowania decyzji.

Pytanie 28

Którą z poniższych czynności należy wykonać, aby zapewnić wysoką dokładność pomiaru masy substancji podczas przygotowywania próbki do analizy chemicznej?

A. Zastosować wagę analityczną o dokładności do 0,1 mg.
B. Pominąć etap ważenia przy sporządzaniu roztworu.
C. Użyć linijki do określenia objętości substancji.
D. Wystarczy ważyć substancję na zwykłej wadze kuchennej.
Dokładność pomiaru masy substancji chemicznych ma kluczowe znaczenie w analizie laboratoryjnej. Użycie wagi analitycznej o dokładności do 0,1 mg jest standardem wszędzie tam, gdzie wymagane są precyzyjne oznaczenia ilościowe. Wagi analityczne mają specjalną konstrukcję – są zamknięte w osłonie przeciwwiatrowej, mają bardzo czułe mechanizmy i są regularnie kalibrowane, co minimalizuje wpływ czynników zewnętrznych takich jak drgania czy ruchy powietrza. Tak wysoka dokładność pozwala na ważenie nawet niewielkich ilości substancji, co jest często niezbędne przy pracy z odczynnikami o wysokiej aktywności lub kosztownych standardach. W praktyce zawodowej takie podejście pozwala uniknąć błędów systematycznych, które mogłyby zafałszować wyniki analizy i doprowadzić do nieprawidłowych wniosków. Stosowanie wag analitycznych jest opisane w normach branżowych i podręcznikach dla laborantów. Moim zdaniem, bez tej dokładności nie da się mówić o profesjonalnym przygotowaniu próbek. Warto też pamiętać, że nawet drobne różnice masy mogą mieć duże znaczenie przy przygotowywaniu roztworów wzorcowych czy analitycznych, dlatego nie ma tu miejsca na półśrodki.

Pytanie 29

Jakie oznaczenie znajduje się na naczyniach szklanych kalibrowanych do wlewu?

A. Ex
B. R
C. W
D. In
Oznaczenie In na naczyniach szklanych kalibrowanych na wlew wskazuje, że naczynie to jest zaprojektowane do precyzyjnego pomiaru objętości cieczy, która ma zostać wlane w jego wnętrze. W praktyce oznaczenie to oznacza, że objętość wskazana na naczyniu jest równa objętości cieczy, gdy jej poziom osiąga oznaczenie kalibracyjne. Naczynia te są szeroko stosowane w laboratoriach chemicznych, biologicznych oraz w przemyśle farmaceutycznym, gdzie dokładność pomiarów jest kluczowa. Przykładem zastosowania może być przygotowywanie roztworów o określonej stężeniu, gdzie precyzyjna objętość reagentów jest niezbędna do uzyskania powtarzalnych wyników analiz. Warto również zwrócić uwagę na standardy ISO oraz normy ASTM, które regulują wymagania dotyczące kalibracji naczyń, co zapewnia wysoką jakość i rzetelność wyników eksperymentalnych.

Pytanie 30

Preparaty zawierające KOH (tzw. żrący potaż), oznaczone są symbolem S 1/2. Na podstawie informacji zawartych w tabeli, określ zasady przechowywania tych preparatów.

Numer zwrotu SWarunki bezpiecznego stosowaniaNumer zwrotu SWarunki bezpiecznego stosowania
S1Przechowywać pod zamknięciemS12Nie przechowywać pojemnika szczelnie zamkniętego
S2Chronić przed dziećmiS13Nie przechowywać razem z żywnością, napojami i karmą dla zwierząt
S3Przechowywać w chłodnym miejscuS15Przechowywać z dala od źródeł ciepła
S4Nie przechowywać w pomieszczeniach mieszkalnychS16Nie przechowywać w pobliżu źródeł zapłonu – nie palić tytoniu

A. Przechowywać z dala od źródeł ciepła i ognia.
B. Przechowywać w zamknięciu, z daleka od dzieci.
C. Nie przechowywać w szczelnie zamkniętym pojemniku.
D. Przechowywać w zamkniętym, chłodnym miejscu.
Odpowiedź 'Przechowywać w zamknięciu, z daleka od dzieci.' jest zgodna z obowiązującymi normami bezpieczeństwa oraz zasadami przechowywania substancji chemicznych. Preparaty zawierające KOH, klasyfikowane jako substancje niebezpieczne, wymagają szczególnych środków ostrożności. Symbol S1 wskazuje, że powinny być one przechowywane w zamknięciu, co ma na celu minimalizację ryzyka przypadkowego dostępu do nich. Z kolei symbol S2 podkreśla konieczność ochrony przed dziećmi, co jest kluczowe, aby zapobiec nieszczęśliwym wypadkom. W praktyce oznacza to, że substancje te powinny być składowane w miejscach niedostępnych dla osób postronnych, zwłaszcza dzieci, oraz w odpowiednich pojemnikach, które zapobiegają ich przypadkowemu otwarciu. Dobre praktyki w laboratoriach i gospodarstwach domowych sugerują, aby takie preparaty były trzymane w zamkniętych szafkach z dodatkowymi zabezpieczeniami, co dodatkowo zwiększa bezpieczeństwo. Właściwe przechowywanie nie tylko chroni zdrowie, ale również minimalizuje ryzyko zanieczyszczenia środowiska.

Pytanie 31

Jakie jest stężenie procentowe roztworu HCl (M=36,46 g/mol) o gęstości 1,19 g/cm3 oraz stężeniu molowym 12 mol/dm3?

A. 36,8%
B. 19,6%
C. 78,3%
D. 39,2%
Obliczenie stężenia procentowego roztworu HCl zaczynamy od określenia masy substancji rozpuszczonej w danym objętości roztworu. Mając stężenie molowe wynoszące 12 mol/dm³, możemy obliczyć masę HCl w 1 dm³ roztworu, korzystając z masy molowej HCl (36,46 g/mol). Zatem masa HCl w 1 dm³ wynosi: 12 mol/dm³ * 36,46 g/mol = 437,52 g. Gęstość roztworu wynosi 1,19 g/cm³, co oznacza, że masa 1 dm³ roztworu wynosi 1190 g. Stężenie procentowe obliczamy według wzoru: (masa substancji rozpuszczonej / masa roztworu) * 100%. Podstawiając wartości: (437,52 g / 1190 g) * 100% = 36,77%, co zaokrąglamy do 36,8%. Takie obliczenia są istotne w praktyce chemicznej, na przykład w laboratoriach, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania wiarygodnych wyników doświadczeń. Zrozumienie stężenia procentowego i jego zastosowania jest istotne w kontekście przemysłu chemicznego oraz analizy jakościowej i ilościowej substancji chemicznych.

Pytanie 32

Oblicz masę wapienia, który został rozłożony, jeśli w trakcie reakcji uzyskano 44,8 dm3 CO2 (w warunkach standardowych).
MC = 12 g/mol, MCa = 40 g/mol, MO = 16 g/mol

A. 100g
B. 250g
C. 200g
D. 150g
Wapń w postaci węglanu wapnia (CaCO3) ulega rozkładowi termicznemu, w wyniku którego powstaje tlenek wapnia (CaO) oraz dwutlenek węgla (CO2). Reakcję można zapisać jako: CaCO3 → CaO + CO2. Zgodnie z prawem zachowania masy, ilość moli reagujących reagentów można wyznaczyć na podstawie objętości gazu wytworzonego w reakcjach chemicznych. W warunkach normalnych 1 mol gazu zajmuje 22,4 dm3. W tym przypadku mamy 44,8 dm3 CO2, co odpowiada 2 molom CO2 (44,8 dm3 / 22,4 dm3/mol = 2 mol). Z równania reakcji wnioskujemy, że 1 mol CaCO3 produkuje 1 mol CO2, więc do produkcji 2 moli CO2 potrzebujemy 2 moli CaCO3. Masa molowa CaCO3 wynosi: M = M_C + M_Ca + 3*M_O = 12 g/mol + 40 g/mol + 3*16 g/mol = 100 g/mol. Zatem 2 mole CaCO3 to 200 g. W praktyce znajomość tego procesu jest kluczowa w przemyśle chemicznym, gdzie węglan wapnia jest powszechnie stosowany, na przykład w produkcji cementu oraz jako surowiec w różnych reakcjach chemicznych. Takie obliczenia są niezwykle ważne w projektowaniu procesów przemysłowych oraz w laboratoriach chemicznych.

Pytanie 33

Jakie substancje wykorzystuje się do wykrywania obecności jonów chlorkowych w wodzie mineralnej?

A. roztwór chlorku baru
B. roztwór szczawianu potasu
C. uniwersalny papierek wskaźnikowy
D. roztwór azotanu srebra
Roztwór chlorku baru (BaCl2) jest używany głównie do wykrywania jonów siarczanowych i nie znajduje zastosowania w identyfikacji jonów chlorkowych. Kiedy BaCl2 jest dodawany do roztworu zawierającego jony siarczanowe, powstaje biały osad siarczanu baru (BaSO4). Użycie tego odczynnika do wykrywania chlorków jest mylące i nieefektywne, co może prowadzić do błędnych wniosków dotyczących zawartości anionów w wodzie. Roztwór szczawianu potasu (K2C2O4) jest również niewłaściwy, ponieważ jest stosowany do detekcji jonów wapnia (Ca2+) poprzez tworzenie osadu szczawianu wapnia (CaC2O4). Użycie tego odczynnika w kontekście chlorków może prowadzić do nieprawidłowych wyników, co jest wynikiem braku znajomości specyficznych reakcji chemicznych. Uniwersalny papierek wskaźnikowy służy do ogólnej oceny pH roztworu, ale nie jest zdolny do selektywnej detekcji jonów chlorkowych, co jest kluczowe w analizach jakości wody. Kluczowym błędem w myśleniu jest niezrozumienie, że każdy z tych odczynników ma swoje specyficzne zastosowania i nie można ich stosować zamiennie bez znajomości ich chemicznych właściwości oraz reakcji. Rzetelna analityka wymaga precyzyjnych narzędzi i zrozumienia ich funkcji w kontekście chemicznym.

Pytanie 34

Wskaź sprzęt laboratoryjny, który znajduje się w zestawie do filtracji pod obniżonym ciśnieniem?

A. Kolba stożkowa, lejek z sitkiem, bagietka
B. Kolba ssawkowa, lejek z sitkiem, urządzenie do pompowania wody
C. Kolba ssawkowa, lejek szklany, urządzenie do pompowania wody
D. Kolba miarowa, lejek szklany, bagietka
Odpowiedź wskazująca na kolbę ssawkową, lejek z sitowym dnem oraz pompkę wodną jako zestaw do sączenia pod zmniejszonym ciśnieniem jest prawidłowa. Kolba ssawkowa jest specjalnie zaprojektowana do przechwytywania i transportu cieczy, a jej konstrukcja umożliwia tworzenie podciśnienia wewnątrz kolby. Lejek z sitowym dnem odgrywa kluczową rolę w procesie filtracji, umożliwiając sączenie cieczy przez sitko, co pozwala na oddzielenie cząstek stałych od cieczy. Pompka wodna jest używana do redukcji ciśnienia, co jest istotne w procesach takich jak ekstrakcja czy destylacja, gdyż umożliwia efektywne usuwanie cieczy w niższych temperaturach, co z kolei zapobiega degradowaniu wrażliwych substancji chemicznych. Użycie tego sprzętu jest zgodne z najlepszymi praktykami laboratoryjnymi, gdzie ważne jest zachowanie integralności próbek oraz minimalizacja strat substancji lotnych.

Pytanie 35

Czułość bezwzględna wagi definiuje się jako

A. największą masę, która powoduje wyraźne wychylenie wskazówki
B. największe dozwolone obciążenie wagi
C. najmniejszą masę, która powoduje wyraźne wychylenie wskazówki
D. najmniejsze dozwolone obciążenie wagi
Zrozumienie czułości bezwzględnej wagi wymaga analizy kilku aspektów jej funkcjonowania. Największe dopuszczalne obciążenie wagi to maksymalna masa, jaką waga może zmierzyć bez ryzyka uszkodzenia, co różni się całkowicie od pojęcia czułości. Ustalanie tego parametru opiera się na wytrzymałości mechanicznej urządzenia, a nie na jego zdolności do wykrywania małych zmian. Z kolei najmniejsze dopuszczalne obciążenie wagi odnosi się do najniższej masy, jaką waga może zmierzyć, zanim pomiar stanie się nieprecyzyjny. To również jest inny aspekt, który nie dotyczy bezpośrednio czułości, lecz granic operacyjnych wagi. W kontekście największej masy, która powoduje zauważalne wychylenie wskazówki, pojawia się mylne przekonanie, że czułość odnosi się do maksymalnych wartości, co jest błędnym założeniem. Czułość bezwzględna jest definiowana przez najniższą masę, która wywołuje reaktywne zachowanie wagi. Pojmowanie czułości poprzez pryzmat maksymalnych wartości prowadzi do nieporozumień i może skutkować błędnymi wynikami w laboratoriach czy procesach przemysłowych, gdzie precyzyjne pomiary mają kluczowe znaczenie dla jakości produktów i badań. Kluczowym błędem jest także mylenie parametru czułości z innymi aspektami funkcjonowania urządzeń pomiarowych, co może prowadzić do niewłaściwego doboru wag do konkretnych zadań pomiarowych.

Pytanie 36

W jakim stosunku objętościowym należy połączyć roztwór o stężeniu 5 mol/dm3 z wodą destylowaną, aby uzyskać roztwór o stężeniu 3 mol/dm3?

A. 3:2
B. 2:3
C. 3:5
D. 5:3
Aby obliczyć stosunek objętościowy roztworu o stężeniu 5 mol/dm³ do wody destylowanej, który pozwoli uzyskać roztwór o stężeniu 3 mol/dm³, możemy zastosować zasadę rozcieńczania. Z definicji stężenia molowego wynika, że ilość moli substancji rozpuszczonej w danej objętości roztworu jest kluczowa. Z równania: C1V1 = C2V2, gdzie C1 to stężenie początkowe (5 mol/dm³), C2 to stężenie końcowe (3 mol/dm³), a V1 i V2 to odpowiednie objętości roztworów, możemy przekształcić wzór, aby znaleźć stosunek objętości V1 (roztwór 5 mol/dm³) do V2 (woda destylowana). Przekształcając wzory, otrzymujemy stosunek V1:V2 równy 3:2. Taki sposób przygotowania roztworu jest standardowo stosowany w laboratoriach chemicznych oraz w przemyśle, gdzie precyzyjne stężenia roztworów mają kluczowe znaczenie w procesach chemicznych i biologicznych. Przykładem może być przygotowanie buforów czy roztworów do analiz spektroskopowych.

Pytanie 37

Zgodnie z danymi zawartymi w tabeli wskaźników roztwór obojętny będzie miał barwę

WskaźnikZakres zmiany barwy
(w jednostkach pH)
Barwa w środowisku
kwaśnymzasadowym
błękit tymolowy1,2 – 2,8czerwonażółta
oranż metylowy3,1 – 4,4czerwonażółta
czerwień metylowa4,8 – 6,0czerwonażółta
czerwień chlorofenolowa5,2 – 6,8żółtaczerwona
błękit bromotymolowy6,0 – 7,6żółtaniebieska
czerwień fenolowa6,6 – 8,0żółtaczerwona
błękit tymolowy8,0 – 9,6żółtaniebieska
fenoloftaleina8,2 – 10,0bezbarwnaczerwona
żółcień alizarynowa10,1 – 12,0żółtazielona

A. żółtą wobec błękitu tymolowego i żółcieni alizarynowej.
B. czerwoną wobec czerwieni metylowej i czerwieni chlorofenolowej.
C. żółtą wobec oranżu metylowego i czerwieni chlorofenolowej.
D. niebieską wobec błękitu bromotymolowego i błękitu tymolowego.
W przypadku analizy odpowiedzi na zadane pytanie, wiele osób może mieć trudności w zrozumieniu, dlaczego roztwór obojętny nie wykazuje barwy związanej z błękitem bromotymolowym ani z oranżem metylowym. Błękit bromotymolowy zmienia barwę z żółtej na niebieską w zakresie pH 6,0 – 7,6, co oznacza, że w pH obojętnym (około 7) nie osiągnie on żółtej barwy. Z kolei oranż metylowy, który zmienia kolor z czerwonego na żółty w zakresie pH 3,1 – 4,4, nie ma zastosowania w reakcjach związanych z pH obojętnym. Typowe błędy myślowe, które mogą prowadzić do takich wniosków, dotyczą nieprawidłowego zrozumienia zakresów pH, w których dany wskaźnik działa. Należy również pamiętać, że niektóre wskaźniki mają swoje specyficzne zakresy, w których zmieniają barwę, a ich zastosowanie powinno być ściśle związane z wymaganym pH. Dlatego kluczowym jest, aby osoby zajmujące się chemią zrozumiały, jak różne wskaźniki reagują w różnych warunkach, co ma znaczenie nie tylko w teorii, ale także w praktyce, zwłaszcza w kontekście analiz laboratoryjnych i jakości wody.

Pytanie 38

Intensywna reakcja z FeCl3 jest wykorzystywana do identyfikacji

A. amin
B. alkenów
C. fenoli
D. aldehydów
Barwna reakcja z chlorkiem żelaza(III) jest dobrze znanym testem stosowanym do wykrywania fenoli, które wykazują zdolność do tworzenia kompleksów z tym związkiem. Fenole posiadają grupę hydroksylową (-OH) połączoną z pierścieniem aromatycznym, co umożliwia im reagowanie z chlorkiem żelaza(III), prowadząc do powstania charakterystycznego zabarwienia, zazwyczaj fioletowego lub purpurowego. Przykładem zastosowania tej reakcji w laboratoriach chemicznych jest analiza składu substancji organicznych, gdzie obecność fenoli może wskazywać na zanieczyszczenia lub naturalne składniki aktywne. Test ten jest często wykorzystywany w przemyśle kosmetycznym oraz farmaceutycznym, gdzie fenole mogą pełnić rolę konserwantów lub substancji czynnych. Zastosowanie tej metody jest zgodne z normami laboratoryjnymi, które zalecają stosowanie reakcji z chlorkiem żelaza(III) jako jednego z podstawowych sposobów na identyfikację związków fenolowych, co jest uznawane za dobrą praktykę w chemii analitycznej.

Pytanie 39

Na etykiecie odważki analitycznej znajduje się napis: Z odważki tej można przygotować

Odważka analityczna

azotan(V) srebra(I)

AgNO3

0,1 mol/dm3

A. cztery kolby miarowe o pojemności 250 cm3 mianowanego roztworu AgNO3 o stężeniu 0,025 mol/dm3.
B. jedną kolbę miarową o pojemności 1000 cm3 mianowanego roztworu AgNO3 o stężeniu 0,1 mol/dm3.
C. jedną kolbę miarową o pojemności 500 cm3 mianowanego roztworu AgNO3 o stężeniu 0,05 mol/dm3.
D. dwie kolby miarowe o pojemności 500 cm3 mianowanego roztworu AgNO3 o stężeniu 0,1 mol/dm3.
Odpowiedź jest poprawna, ponieważ na etykiecie odważki analitycznej znajduje się informacja o stężeniu 0,1 mol/dm³. Aby przygotować 1000 cm³ (1 dm³) roztworu AgNO₃ o takim stężeniu, potrzebujemy 0,1 mola tego związku. Mnożąc liczbę moli przez masę molową AgNO₃ (169,87 g/mol), otrzymujemy masę potrzebną do przygotowania roztworu, która wynosi 16,987 g. W praktyce, przygotowując roztwór o konkretnym stężeniu, kluczowe jest precyzyjne odmierzenie masy substancji oraz odpowiednie rozcieńczenie. Taka umiejętność jest niezbędna w laboratoriach chemicznych, gdzie dokładność odgrywa podstawową rolę w eksperymentach i analizach. Przygotowanie roztworu o właściwym stężeniu jest zgodne z zasadami dobrej praktyki laboratoryjnej (GLP), które zapewniają wiarygodność wyników badań. Dodatkowo, umiejętność przygotowywania roztworów o określonych stężeniach jest fundamentalna w chemii analitycznej, chemii organicznej oraz wielu zastosowaniach przemysłowych, w tym w farmaceutyce.

Pytanie 40

Zgłębniki o konstrukcji przypominającej świder są wykorzystywane do pobierania próbek różnych materiałów

A. płynnych
B. ciastowatych
C. sypkich
D. półpłynnych
Zgłębniki w kształcie świdra, także znane jako świdry próbne, są specjalistycznymi narzędziami przeznaczonymi do pobierania próbek materiałów o konsystencji ciastowatej. Ich konstrukcja, przypominająca świdry, pozwala na efektywne wwiercanie się w bardziej gęste i lepkie substancje, co jest kluczowe w wielu dziedzinach, takich jak geologia, inżynieria materiałowa oraz nauki przyrodnicze. Przykładem zastosowania zgłębnika świdrowego jest badanie gruntów w celu określenia ich nośności lub składu, co jest istotne podczas projektowania fundamentów budynków. W praktyce, pobieranie próbek ciastowatych materiałów, jak np. gliny czy osady, jest trudne, dlatego użycie zgłębnika w kształcie świdra znacząco zwiększa precyzję i efektywność tego procesu. W standardach branżowych, takich jak ASTM D1586, opisane są metody pobierania próbek gruntów, które uwzględniają użycie takich narzędzi, co podkreśla ich fundamentalne znaczenie dla rzetelności badań geotechnicznych.