Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 24 maja 2025 00:18
  • Data zakończenia: 24 maja 2025 00:30

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Aby chronić urządzenia w sieci LAN przed przepięciami oraz różnicami potencjałów, które mogą się pojawić w trakcie burzy lub innych wyładowań atmosferycznych, należy zastosować

A. przełącznik
B. ruter
C. sprzętową zaporę sieciową
D. urządzenie typu NetProtector
Ruter, przełącznik oraz sprzętowa zapora sieciowa pełnią różne funkcje w infrastrukturze sieciowej, ale żaden z tych elementów nie jest przeznaczony do ochrony przed przepięciami czy różnicami potencjałów. Ruter to urządzenie, które kieruje ruch sieciowy między różnymi sieciami, zapewniając połączenie z Internetem. Jego zadaniem jest zarządzanie danymi przesyłanymi pomiędzy lokalnymi urządzeniami a siecią zewnętrzną. Przełącznik, z drugiej strony, odpowiada za łączenie różnych urządzeń w ramach tej samej sieci lokalnej, umożliwiając im komunikację. Jego funkcja nie obejmuje jednak ochrony przed skokami napięcia, co czyni go niewłaściwym rozwiązaniem w kontekście zabezpieczeń przed wyładowaniami atmosferycznymi. Sprzętowa zapora sieciowa, chociaż istotna w kontekście bezpieczeństwa danych i ochrony przed nieautoryzowanym dostępem, również nie jest przystosowana do radzenia sobie z problemami związanymi z przepięciami. Jest to typowy błąd myślowy, który polega na myleniu różnych funkcji urządzeń sieciowych. W praktyce, aby skutecznie zabezpieczyć sieć przed skutkami burz i wyładowań, należy inwestować w dedykowane urządzenia ochronne, takie jak NetProtector, które są zaprojektowane z myślą o zabezpieczeniu sprzętu przed uszkodzeniami spowodowanymi nadmiernym napięciem. Ignorowanie tej zasady może prowadzić do poważnych strat finansowych związanych z uszkodzeniem kluczowych komponentów infrastruktury IT.

Pytanie 2

Na ilustracji zaprezentowano

Ilustracja do pytania
A. impulsator
B. czujnik temperatury
C. tester płyt głównych
D. sondę logiczną
Impulsator, znany również jako enkoder, jest urządzeniem służącym do konwersji ruchu mechanicznego na sygnały elektryczne, zazwyczaj wykorzystywanym w automatyce przemysłowej do monitorowania i kontroli pozycji oraz prędkości obrotowej maszyn. Sonda logiczna to narzędzie używane do testowania i diagnozowania obwodów cyfrowych poprzez wskazywanie stanów logicznych (wysoki, niski lub przejście) na wyjściach układów logicznych. Jest nieodzowna w procesie analizowania sekwencji logicznych oraz weryfikacji poprawności działania układów cyfrowych. Czujnik temperatury to urządzenie służące do pomiaru temperatury, szeroko stosowane w różnych aplikacjach od przemysłowych po domowe. Może korzystać z różnych technologii pomiarowych, takich jak termopary, termistory czy czujniki półprzewodnikowe, aby dostarczać precyzyjnych odczytów temperatury. Podczas gdy każdy z tych komponentów odgrywa istotną rolę w swoich odpowiednich dziedzinach, żaden z nich nie jest związany z diagnozowaniem problemów na poziomie płyty głównej komputera, co jest zadaniem testera płyt głównych. Błędnym podejściem jest zakładanie, że powyższe urządzenia mogą pełnić funkcję testera płyt głównych, ponieważ każda z tych technologii służy zupełnie innym celom i wymaga innego zakresu wiedzy do ich efektywnego zastosowania. Kluczowe jest rozróżnienie między narzędziami diagnostycznymi a innymi urządzeniami pomiarowymi czy kontrolnymi oraz zrozumienie, że testery płyt głównych są specjalistycznym rozwiązaniem dedykowanym wyłącznie do analizy problemów sprzętowych na poziomie BIOS i POST w komputerach PC.

Pytanie 3

Aby uzyskać wyświetlenie podanych informacji o systemie Linux w terminalu, należy skorzystać z komendy

Linux atom 3.16.0-5-amd64 #1 SMP Debian 3.16.51-3+deb8u1 (2018-01-08) x86_64 GNU/Linux

A. uptime
B. hostname
C. uname -a
D. factor 22
Polecenie uname -a jest używane w systemach Linux i Unix do wyświetlania szczegółowych informacji o systemie operacyjnym. Parametr -a powoduje, że polecenie zwraca kompletny zestaw danych dotyczących systemu, w tym nazwę kernela, nazwę hosta, wersję kernela, datę kompilacji oraz architekturę sprzętową. Takie informacje są kluczowe dla administratorów systemowych i programistów, którzy potrzebują pełnego obrazu środowiska, w którym pracują. Wiedza o wersji kernela czy architekturze sprzętowej może determinować wybór oprogramowania, które będzie działać optymalnie na danym systemie. Ponadto uname -a jest standardowym narzędziem dostępnym w większości dystrybucji Linuxa, co czyni je uniwersalnym rozwiązaniem w diagnostyce systemu. Przykładowo, przy rozwiązywaniu problemów z kompatybilnością oprogramowania, te informacje mogą pomóc w identyfikacji, czy dany problem jest specyficzny dla konkretnej wersji kernela lub architektury. Zrozumienie wyniku tego polecenia jest zatem istotną umiejętnością w kontekście zarządzania i utrzymania systemów Linuxowych.

Pytanie 4

Elementem eksploatacyjnym drukarki laserowej jest wszystko oprócz

A. bębna
B. wałka grzewczego
C. głowicy
D. lampy czyszczącej
Poprawne zrozumienie struktury i funkcji drukarki laserowej jest kluczowe dla efektywnego jej użytkowania. Bęben, lampa czyszcząca i wałek grzewczy to fundamentalne elementy eksploatacyjne, które odpowiadają za prawidłowy proces drukowania. Bęben, zazwyczaj pokryty warstwą fotoczułą, naświetla obraz przy użyciu lasera, a następnie przenosi na papier toner, który jest utrwalany przez wałek grzewczy. Lampa czyszcząca usuwająca resztki tonera z bębna, zapewnia czystość i poprawność działania, co jest istotne dla jakości wydruku. Dla wielu użytkowników istnieje powszechne przekonanie, że wszystkie elementy w drukarce muszą być traktowane jako eksploatacyjne, co prowadzi do mylenia głowicy drukującej w drukarkach atramentowych z bębnem w laserowych. Głowica w technologii atramentowej to urządzenie, które aplikacyjnie nanosi atrament na papier, co jest całkowicie inną metodą, niż w przypadku drukowania laserowego. Dlatego ważne jest, by dostrzegać te różnice i unikać uogólnień, które mogą prowadzić do niewłaściwego użytkowania sprzętu lub niepotrzebnych wydatków na wymiany komponentów, które nie są konieczne w technologii laserowej. Znajomość właściwych terminów i komponentów pomoże lepiej zarządzać eksploatacją urządzenia oraz zrozumieć jego zasady działania.

Pytanie 5

Jakiego typu dane są przesyłane przez interfejs komputera osobistego, jak pokazano na ilustracji?

Bit
startu
Bit
danych
Bit
danych
Bit
stopu
Bit
startu
Bit
danych
Bit
startu
Bit
danych
Bit
danych
Bit
stopu
Bit
startu
Bit
danych
Bit
stopu

A. Szeregowy asynchroniczny
B. Równoległy asynchroniczny
C. Szeregowy synchroniczny
D. Równoległy synchroniczny
Transmisja danych przez interfejs równoległy asynchroniczny wymaga przesyłania kilku bitów jednocześnie co jest realizowane za pomocą wielu linii sygnałowych W ten sposób dane są przesyłane szybciej niż w przypadku interfejsów szeregowych jednak wymaga to synchronizacji wszystkich linii co jest bardziej skomplikowane i kosztowne Podczas gdy ten typ transmisji był popularny w starszych drukarkach i innych urządzeniach peryferyjnych dzisiaj jest rzadziej stosowany ze względu na wysoki koszt opracowania i utrzymania Transmisja szeregowa synchroniczna różni się od asynchronicznej tym że wymaga synchronizacji zegara pomiędzy nadajnikiem a odbiornikiem Oznacza to że zarówno urządzenie przesyłające jak i odbierające muszą dokładnie zsynchronizować swoje zegary aby zagwarantować poprawność danych Choć zwiększa to skuteczność i szybkość transmisji wymaga to dodatkowych linii do przesyłania sygnału zegara co powoduje większe komplikacje w budowie urządzeń Przykładem może być SPI lub I2C które choć efektywne są bardziej skomplikowane niż transmisja szeregowa asynchroniczna Równoległa transmisja synchroniczna to najbardziej zaawansowany typ transmisji jednocześnie przesyłający wiele bitów z pełną synchronizacją zegara Umożliwia to błyskawiczne przesyłanie dużych ilości danych na krótkich dystansach jednak jej koszt zarówno w projektowaniu jak i produkcji jest znaczny co powoduje że jest rzadko stosowana w standardowych interfejsach komputerowych Te różne podejścia choć mają swoje zalety są często trudniejsze do implementacji i mniej praktyczne niż proste i szeroko stosowane interfejsy szeregowe asynchroniczne które oferują wystarczającą szybkość i niezawodność dla większości zastosowań

Pytanie 6

Która z anten charakteryzuje się najwyższym zyskiem energetycznym oraz pozwala na nawiązywanie połączeń na dużą odległość?

A. Paraboliczna
B. Mikropaskowa
C. Izotropowa
D. Dipolowa
Mikropaskowe, izotropowe i dipolowe anteny różnią się znacznie od anten parabolicznych pod względem konstrukcji oraz zastosowania. Anteny mikropaskowe, choć wszechstronne i szeroko stosowane w systemach komunikacji bezprzewodowej, mają ograniczoną charakterystykę zysku. Ich zysk energetyczny jest zazwyczaj niewielki, co czyni je mniej efektywnymi w kontekście połączeń na dużych odległościach. Izotropowe anteny są teoretycznymi modelami, które nie istnieją w rzeczywistości; są używane jedynie do celów porównawczych w telekomunikacji. W praktyce, żaden system komunikacyjny nie może wykorzystać anteny izotropowej, ponieważ nie są one w stanie skoncentrować energii w konkretnym kierunku. Dipolowe anteny, chociaż oferują lepszy zysk niż mikropaskowe, również nie dorównują efektywności anten parabolicznych w zakresie długozasięgowych połączeń. Typowym błędem myślowym jest założenie, że każda antena o prostszej konstrukcji zapewni wystarczający zysk energetyczny. W kontekście wymagań telekomunikacyjnych, właściwe dobranie typu anteny jest kluczowe dla zapewnienia jakości połączeń, a ignorowanie specyfiki i zastosowania anten parabolicznych może prowadzić do poważnych problemów w projektowaniu sieci, takich jak utrata sygnału czy niska prędkość transmisji danych.

Pytanie 7

Czym jest MFT w systemie plików NTFS?

A. plik zawierający dane o poszczególnych plikach i folderach na danym woluminie
B. główny plik indeksowy partycji
C. tablica partycji dysku twardego
D. główny rekord bootowania dysku
MFT, czyli Master File Table, jest kluczowym elementem systemu plików NTFS (New Technology File System). Pełni rolę centralnego pliku, który przechowuje wszystkie informacje dotyczące plików i folderów na danym woluminie, w tym ich atrybuty, lokalizację na dysku oraz inne istotne metadane. Dzięki MFT system operacyjny może szybko uzyskać dostęp do informacji o plikach, co znacząco poprawia wydajność operacji na plikach. Przykładem zastosowania MFT jest szybkie wyszukiwanie plików, co jest niezwykle istotne w środowiskach, gdzie użytkownicy często przeszukują duże ilości danych. W praktyce dobre zrozumienie działania MFT jest kluczowe dla administratorów systemów, którzy muszą zarządzać pamięcią masową oraz optymalizować wydajność systemu. Warto również zauważyć, że MFT jest częścią standardu NTFS, który zapewnia większą niezawodność i funkcjonalność w porównaniu do starszych systemów plików, takich jak FAT32.

Pytanie 8

Liczba 129 w systemie dziesiętnym będzie przedstawiona w formacie binarnym na

A. 8 bitach
B. 5 bitach
C. 6 bitach
D. 7 bitach
Liczba dziesiętna 129 w systemie binarnym jest reprezentowana jako 10000001. Aby przeliczyć liczbę dziesiętną na system binarny, należy podzielić ją przez 2, zapisując reszty z każdego dzielenia, co w praktyce tworzy ciąg bitów. W przypadku 129 podzielimy ją przez 2, uzyskując 64 (reszta 1), następnie 64 przez 2 daje 32 (reszta 0), 32 przez 2 daje 16 (reszta 0), 16 przez 2 daje 8 (reszta 0), 8 przez 2 daje 4 (reszta 0), 4 przez 2 daje 2 (reszta 0), a 2 przez 2 daje 1 (reszta 0). Ostateczne dzielenie 1 przez 2 daje 0 (reszta 1). Zbierając wszystkie reszty od końca otrzymujemy 10000001, co wymaga 8 bitów. W praktyce, w inżynierii oprogramowania i systemów komputerowych, znajomość konwersji między systemami liczbowymi jest kluczowa, zwłaszcza przy programowaniu, gdzie operacje bitowe są powszechnie stosowane w optymalizacji kodu oraz w reprezentacji danych. Ponadto, 8 bitów odpowiada maksymalnie wartości 255 w systemie dziesiętnym, co jest zgodne z konwencjami kodowania, takie jak ASCII, gdzie każdy znak jest reprezentowany przez 8-bitowy kod.

Pytanie 9

Główną czynnością serwisową w drukarce igłowej jest zmiana pojemnika

A. z fluidem
B. z taśmą
C. z atramentem
D. z tonerem
Wybór odpowiedzi związanych z atramentem, tonerem czy fluidem jest błędny, ponieważ nie odpowiadają one podstawowemu mechanizmowi pracy drukarek igłowych. Drukarki atramentowe używają wkładów z atramentem, które nanoszą kolor za pomocą mikroskopijnych dysz. W przypadku tonerów, są one stosowane w drukarkach laserowych, gdzie obraz jest tworzony na zasadzie elektrostatycznej. Wykorzystywanie fluidów jest bardziej typowe w kontekście niektórych urządzeń do druku sublimacyjnego czy specjalistycznych procesów druku, które są całkowicie różne od technologii igłowej. Typowym błędem myślowym jest mylenie technologii drukowania z różnymi rodzajami drukarek. Każda technologia ma swoje charakterystyczne cechy i zastosowania, a zrozumienie ich różnic jest kluczowe dla prawidłowego doboru sprzętu do zadania. W praktyce, dla osób pracujących z drukarkami, ważne jest, aby znały one rodzaj posiadanego sprzętu i odpowiednie materiały eksploatacyjne, co pozwala uniknąć nieporozumień i zapewnić efektywność pracy. Dlatego fundamentalne jest prawidłowe rozumienie, że igły w drukarkach igłowych nie współpracują z atramentem ani tonerami, lecz z taśmami barwiącymi.

Pytanie 10

Ile symboli switchy i routerów znajduje się na schemacie?

Ilustracja do pytania
A. 3 switche i 4 routery
B. 4 switche i 8 routerów
C. 4 switche i 3 routery
D. 8 switchy i 3 routery
Odpowiedź zawierająca 4 przełączniki i 3 rutery jest poprawna ze względu na sposób, w jaki te urządzenia są reprezentowane na schematach sieciowych. Przełączniki często są przedstawiane jako prostokąty lub sześciany z symbolami przypominającymi przekrzyżowane ścieżki, podczas gdy rutery mają bardziej cylindryczny kształt z ikonami przypominającymi rotacje. Identyfikacja tych symboli jest kluczowa w projektowaniu i analizowaniu infrastruktury sieciowej. Przełączniki działają na poziomie drugiej warstwy modelu OSI i służą do przesyłania danych między urządzeniami w tej samej sieci lokalnej LAN zarządzając tablicą adresów MAC. Rutery natomiast operują na warstwie trzeciej, umożliwiając komunikację między różnymi sieciami IP poprzez trasowanie pakietów do ich docelowych adresów. W praktyce, prawidłowe rozumienie i identyfikacja tych elementów jest nieodzowne przy konfigurowaniu sieci korporacyjnych, gdzie często wymagane jest łączenie wielu różnych segmentów sieciowych. Optymalizacja użycia przełączników i ruterów zgodnie z najlepszymi praktykami sieciowymi (np. stosowanie VLAN, routingu dynamicznego i redundancji) jest elementem kluczowym w tworzeniu stabilnych i wydajnych rozwiązań IT.

Pytanie 11

Podaj właściwe przyporządkowanie usługi z warstwy aplikacji oraz standardowego numeru portu, na którym ta usługa działa?

A. DHCP - 161
B. SMTP - 80
C. DNS - 53
D. IMAP - 8080
Odpowiedzi wskazujące na inne usługi są nieprawidłowe z kilku powodów. Przykładowo, SMTP, czyli Simple Mail Transfer Protocol, służy do przesyłania wiadomości e-mail i standardowo działa na porcie 25, a nie 80. Port 80 jest zarezerwowany dla HTTP, co oznacza, że jest używany do przesyłania danych stron internetowych. W przypadku DHCP, to Dynamic Host Configuration Protocol, jego standardowy port to 67 dla serwera i 68 dla klienta, a nie 161, który jest zarezerwowany dla SNMP (Simple Network Management Protocol). IMAP, czyli Internet Message Access Protocol, używa portu 143 lub 993 w przypadku zabezpieczonej komunikacji SSL/TLS. Wybierając błędne odpowiedzi, można doświadczyć typowych pułapek myślowych, takich jak mylenie portów przypisanych do różnych protokołów lub nieznajomość standardów RFC, które dokładnie definiują te ustawienia. Zrozumienie, które porty są przypisane do konkretnych protokołów, jest kluczowe dla prawidłowej konfiguracji sieci oraz bezpieczeństwa, a mylenie tych wartości prowadzi do problemów z komunikacją w sieci oraz zwiększa ryzyko wystąpienia luk bezpieczeństwa.

Pytanie 12

Ikona z wykrzyknikiem, którą widać na ilustracji, pojawiająca się przy nazwie urządzenia w Menedżerze urządzeń, wskazuje, że to urządzenie

Ilustracja do pytania
A. zostało dezaktywowane
B. sterowniki zainstalowane na nim są w nowszej wersji
C. nie funkcjonuje prawidłowo
D. funkcjonuje poprawnie
Ikona z wykrzyknikiem przy nazwie urządzenia w Menedżerze urządzeń wskazuje na problem z poprawnym działaniem tego urządzenia. Może to być spowodowane kilkoma czynnikami takimi jak brak odpowiednich sterowników uszkodzenie sprzętu lub konflikt zasobów z innym urządzeniem. Menedżer urządzeń jest narzędziem systemowym w systemach Windows które pozwala na monitorowanie i zarządzanie sprzętem komputerowym. Wykrzyknik stanowi ostrzeżenie dla użytkownika że należy podjąć działania w celu rozwiązania problemu. W praktyce rozwiązanie problemu może obejmować aktualizację lub ponowną instalację sterowników. Warto korzystać z oficjalnych stron producentów do pobierania najnowszych wersji sterowników co jest zgodne z dobrą praktyką branżową. W sytuacji gdy aktualizacja sterowników nie pomaga warto sprawdzić fizyczne połączenia sprzętowe i upewnić się że urządzenie jest poprawnie podłączone. Taka diagnostyka jest istotnym elementem pracy technika komputerowego i pozwala na utrzymanie stabilności systemu operacyjnego oraz sprawne funkcjonowanie urządzeń peryferyjnych.

Pytanie 13

W tabeli przedstawiono numery podzespołów, które są ze sobą kompatybilne

Lp.PodzespółParametry
1.ProcesorINTEL COREi3-4350- 3.60 GHz, x2/4, 4 MB, 54W, HD 4600, BOX, s-1150
2.ProcesorAMD Ryzen 7 1800X, 3.60 GHz, 95W, s-AM4
3.Płyta głównaGIGABYTE ATX, X99, 4x DDR3, 4x PCI-E 16x, RAID, HDMI, D-Port, D-SUB, 2x USB 3.1, 8 x USB 2.0, S-AM3+
4.Płyta głównaAsus CROSSHAIR VI HERO, X370, SATA3, 4xDDR4, USB3.1, ATX, WI-FI AC, s- AM4
5.Pamięć RAMCorsair Vengeance LPX, DDR4 2x16GB, 3000MHz, CL15 black
6.Pamięć RAMCrucial Ballistix DDR3, 2x8GB, 1600MHz, CL9, black
?

A. 1, 4, 6
B. 2, 4, 6
C. 1, 3, 5
D. 2, 4, 5
Odpowiedź 2, 4, 5 jest prawidłowa, ponieważ wszystkie wymienione komponenty są ze sobą kompatybilne. Procesor AMD Ryzen 7 1800X (numer 2) jest zgodny z płytą główną Asus CROSSHAIR VI HERO (numer 4), która używa gniazda AM4, co jest wymagane do tego procesora. Płyta główna obsługuje pamięć RAM DDR4, co idealnie pasuje do Corsair Vengeance LPX (numer 5), która jest pamięcią DDR4 o odpowiednich parametrach, co zapewnia optymalną wydajność. Kiedy składamy komputer, kluczowe jest, aby wszystkie komponenty były ze sobą zgodne, co zapewnia ich prawidłowe działanie. Na przykład, kompatybilność pamięci RAM z płytą główną i procesorem wpływa na stabilność systemu oraz wydajność w intensywnych zastosowaniach. Dobranie odpowiednich komponentów, jak w tej odpowiedzi, zapewnia nie tylko wydajność, ale również przyszłościowość zestawu, pozwalając na ewentualne aktualizacje bez potrzeby wymiany całego sprzętu.

Pytanie 14

Jaki adres IPv6 jest stosowany jako adres link-local w procesie autokonfiguracji urządzeń?

A. fe80::/10
B. fe88::/10
C. de80::/10
D. he88::/10
Adres IPv6 fe80::/10 jest przeznaczony do użycia jako adres link-local, co oznacza, że jest stosowany do komunikacji w obrębie lokalnej sieci. Adresy link-local są automatycznie przypisywane przez urządzenia sieciowe przy użyciu protokołu autokonfiguracji, na przykład Neighbor Discovery Protocol (NDP). Adresy te są wykorzystywane do komunikacji między urządzeniami w tej samej sieci lokalnej bez konieczności konfiguracji serwera DHCP. Przykładem zastosowania adresu link-local może być sytuacja, w której dwa urządzenia, takie jak router i komputer, muszą wymieniać informacje konfiguracyjne, takie jak adresy MAC. Link-local jest również wykorzystywany w protokole IPv6 do wykrywania i identyfikacji sąsiednich urządzeń, co jest kluczowe dla wydajności sieci. Zgodnie z RFC 4862, adresy link-local są typowe dla lokalnych segmentów sieci i nie są routowalne poza tę sieć, co zapewnia bezpieczeństwo i ograniczenie nieautoryzowanego dostępu do sieci lokalnej.

Pytanie 15

Jak najlepiej chronić zebrane dane przed dostępem w przypadku kradzieży komputera?

A. wdrożyć szyfrowanie partycji
B. ustawić atrybut ukryty dla wszystkich istotnych plików
C. przygotować punkt przywracania systemu
D. ochronić konta za pomocą hasła
Szyfrowanie partycji to jedna z najskuteczniejszych metod zabezpieczania danych na komputerze, szczególnie w kontekście kradzieży. Dzięki szyfrowaniu, nawet jeśli osoba nieuprawniona uzyska dostęp do fizycznego nośnika danych, nie będzie w stanie odczytać ani zrozumieć ich zawartości bez odpowiedniego klucza deszyfrującego. Przykładem jest wykorzystanie systemów szyfrowania takich jak BitLocker w systemach Windows czy FileVault w macOS, które pozwalają na pełne szyfrowanie dysków. W praktyce, przed rozpoczęciem szyfrowania zaleca się wykonanie kopii zapasowej danych, aby uniknąć ich utraty w przypadku błędów podczas procesu. Standardy branżowe, takie jak NIST SP 800-111, wskazują na szyfrowanie jako kluczowy element ochrony danych w organizacjach. Dodatkowo, szyfrowanie partycji powinno być częścią szerszej strategii zabezpieczeń, obejmującej regularne aktualizacje oprogramowania oraz stosowanie silnych haseł. To podejście skutecznie chroni wrażliwe informacje osobowe i korporacyjne przed nieautoryzowanym dostępem.

Pytanie 16

Którego z poniższych zadań nie wykonują serwery plików?

A. Zarządzanie bazami danych
B. Odczyt i zapis danych na dyskach twardych
C. Wymiana danych pomiędzy użytkownikami sieci
D. Udostępnianie plików w sieci
Serwery plików to specjalistyczne systemy informatyczne, których głównym celem jest przechowywanie, zarządzanie i udostępnianie plików w sieci. Odpowiedź, że nie realizują one zadań związanych z zarządzaniem bazami danych, jest poprawna, ponieważ funkcja ta wymaga innej architektury, jak w przypadku serwerów baz danych, które są zoptymalizowane do przetwarzania i zarządzania danymi w sposób wydajny oraz umożliwiają prowadzenie skomplikowanych zapytań. Przykładem serwera plików jest Samba, który umożliwia wymianę plików w systemach Windows, a także NFS (Network File System) stosowany w środowiskach Unix/Linux. Standardy takie jak SMB/CIFS dla Samsy czy NFSv4 definiują, jak pliki mogą być udostępniane i zarządzane w sieci, co jest kluczowe w wielu organizacjach. W praktyce, serwery plików są nieocenione w kontekście minimalizacji redundancji danych oraz usprawnienia współpracy między różnymi użytkownikami i systemami operacyjnymi.

Pytanie 17

Jaki adres IPv4 identyfikuje urządzenie funkcjonujące w sieci o adresie 14.36.64.0/20?

A. 14.36.48.1
B. 14.36.65.1
C. 14.36.80.1
D. 14.36.17.1
Adresy IPv4 14.36.17.1, 14.36.48.1 i 14.36.80.1 są spoza sieci 14.36.64.0/20, co czyni je niepoprawnymi. Adres 14.36.17.1 leży w innej klasie i nie pasuje do wymaganej struktury tej sieci. Z kolei 14.36.48.1 jest też poza zakresem, zwłaszcza że w trzecim oktetach '48' przekracza maksymalną wartość w tej sieci. A 14.36.80.1? No cóż, też nie łapie się w ten zakres. Często błąd w przydzielaniu adresów IP wynika z niezrozumienia struktury adresów oraz maski podsieci, co potem może prowadzić do problemów z siecią. Dlatego warto znać zasady dotyczące adresów IP, bo to ważne dla właściwego zarządzania siecią.

Pytanie 18

W usłudze, jaką funkcję pełni protokół RDP?

A. poczty elektronicznej w systemie Linux
B. pulpitu zdalnego w systemie Windows
C. SCP w systemie Windows
D. terminalowej w systemie Linux
Protokół RDP (Remote Desktop Protocol) jest standardowym rozwiązaniem opracowanym przez firmę Microsoft, które umożliwia zdalny dostęp do pulpitu systemu operacyjnego Windows. Dzięki RDP użytkownicy mogą łączyć się z komputerem zdalnym, co pozwala na zdalne wykonywanie zadań, zarządzanie systemem oraz korzystanie z aplikacji, jak gdyby znajdowali się fizycznie przy tym urządzeniu. Protokół RDP obsługuje wiele funkcji, takich jak kompresja danych, szyfrowanie oraz zarządzanie sesjami, co czyni go bezpiecznym i wydajnym rozwiązaniem dla użytkowników oraz administratorów systemów. Przykładowo, w przypadku pracy zdalnej, RDP pozwala na dostęp do zasobów firmy bez konieczności fizycznej obecności w biurze, co jest szczególnie istotne w kontekście rosnącej popularności pracy zdalnej i hybrydowej. Warto zaznaczyć, że RDP jest zgodny z wieloma dobrami praktykami, takimi jak zastosowanie silnych haseł oraz wieloskładnikowej autoryzacji, co znacznie podnosi poziom bezpieczeństwa zdalnych połączeń.

Pytanie 19

Część płyty głównej, która odpowiada za transmisję danych pomiędzy mikroprocesorem a pamięcią operacyjną RAM oraz magistralą karty graficznej, jest oznaczona na rysunku numerem

Ilustracja do pytania
A. 5
B. 3
C. 6
D. 4
Elementy płyty głównej oznaczone numerami innymi niż 6 nie pełnią funkcji wymiany danych między mikroprocesorem a pamięcią RAM i magistralą karty graficznej. Układ numer 3 znany jako South Bridge (południowy mostek) zarządza komunikacją z wolniejszymi komponentami takimi jak dyski twarde porty USB i inne urządzenia peryferyjne. South Bridge nie ma bezpośredniego połączenia z procesorem i pamięcią RAM ale komunikuje się z nimi poprzez North Bridge. Układ numer 4 to Super I/O który zarządza podstawowymi funkcjami wejścia wyjścia jak klawiatura mysz i porty komunikacyjne. Super I/O jest odpowiedzialny za obsługę urządzeń o niższej przepustowości które nie wymagają szybkiego dostępu do procesora. Numer 5 na schemacie odnosi się do procesora i jego pamięci podręcznej L1 która jest bezpośrednio zintegrowana z procesorem w celu przyspieszenia przetwarzania danych. Procesor sam w sobie nie zarządza połączeniami między różnymi komponentami systemu ale wykonuje obliczenia i przetwarza dane. Wybór numeru innego niż 6 jako odpowiedzi wskazuje na nieporozumienie dotyczące roli poszczególnych elementów płyty głównej oraz ich funkcji w architekturze komputera. Zrozumienie tych ról jest kluczowe dla właściwego projektowania i optymalizacji systemów komputerowych szczególnie w kontekście wydajności i kompatybilności sprzętowej w nowoczesnych aplikacjach informatycznych.

Pytanie 20

Jakie narzędzie w systemie Windows umożliwia kontrolę prób logowania do systemu?

A. instalacji
B. programów
C. zabezpieczeń
D. systemu
Dziennik zabezpieczeń w systemie Windows to kluczowe narzędzie odpowiedzialne za monitorowanie i rejestrowanie prób logowania oraz innych istotnych zdarzeń związanych z bezpieczeństwem. Odpowiedź "zabezpieczeń" (#3) jest prawidłowa, ponieważ dziennik ten zbiera informacje o wszystkich próbach logowania, zarówno udanych, jak i nieudanych, co jest niezbędne dla administratorów systemów w celu analizy potencjalnych incydentów bezpieczeństwa. Użycie dziennika zabezpieczeń pozwala na śledzenie aktywności użytkowników oraz identyfikację nieautoryzowanych prób dostępu. Przykładowo, administrator może wykorzystać informacje z dziennika zabezpieczeń do audytu działań użytkowników oraz do przeprowadzania analiz ryzyka, co jest zgodne z najlepszymi praktykami w zakresie zarządzania bezpieczeństwem informacji (np. ISO 27001). Dziennik ten jest również użyteczny w kontekście spełniania wymogów regulacyjnych, takich jak RODO, gdzie monitorowanie dostępu do danych osobowych jest kluczowym elementem zgodności. Regularna analiza dziennika zabezpieczeń jest istotna dla utrzymania wysokiego poziomu bezpieczeństwa w organizacji.

Pytanie 21

W dokumentacji przedstawiono typ systemu plików

„Zaawansowany system plików zapewniający wydajność, bezpieczeństwo, niezawodność i zaawansowane funkcje niespotykane w żadnej wersji systemu FAT. Na przykład dzięki standardowemu rejestrowaniu transakcji i technikom odzyskiwania danych system gwarantuje spójność woluminów. W przypadku awarii system wykorzystuje plik dziennika i informacje kontrolne do przywrócenia spójności systemu plików."

A. NTFS
B. FAT
C. EXT4
D. FAT32
NTFS czyli New Technology File System to zaawansowany system plików stworzony przez Microsoft charakteryzujący się wysoką wydajnością niezawodnością i bezpieczeństwem danych. NTFS wspiera zaawansowane funkcje takie jak rejestrowanie transakcji co oznacza że wszystkie operacje na plikach są rejestrowane w logu dzięki czemu w przypadku awarii systemu można przywrócić spójność danych. Ponadto NTFS obsługuje uprawnienia do plików i katalogów co pozwala na precyzyjne zarządzanie dostępem użytkowników co jest kluczowe w dużych środowiskach sieciowych. System ten wspiera również kompresję plików szyfrowanie oraz przydział miejsca na dysku co zwiększa efektywność wykorzystania przestrzeni dyskowej. Dodatkowym atutem NTFS jest obsługa struktur danych takich jak bitmowy przydział miejsca co umożliwia szybkie wyszukiwanie i przydzielanie wolnego miejsca na dysku. W kontekście współczesnych standardów bezpieczeństwa i niezawodności NTFS jest preferowanym wyborem do zarządzania danymi w środowiskach opartych na systemach Windows co czyni go fundamentalnym elementem infrastruktury IT w wielu organizacjach

Pytanie 22

Jakim wynikiem jest suma liczb binarnych 1001101 oraz 11001?

A. 1100110
B. 1000111
C. 1100111
D. 1000110
Odpowiedź 1100110 jest jak najbardziej trafna, ponieważ to wynik poprawnego sumowania liczb binarnych 1001101 i 11001. Sumowanie w systemie binarnym działa podobnie jak w dziesiętnym, ale mamy tylko dwie cyfry: 0 i 1. Zaczynamy od prawej strony i dodajemy odpowiednie bity. W pierwszej kolumnie mamy 0+1 i wychodzi 1, w drugiej 1+0 też 1, a w trzeciej jest 0+0, co daje 0. Potem mamy 1+1 w czwartej kolumnie, co daje 10, czyli musimy przenieść 1. Więc w piątej kolumnie mamy 1+1+1 (to przeniesienie) i wychodzi 11, więc znów przenosimy 1. W szóstej kolumnie 0+1+1 (przeniesienie) daje 10, czyli 0 z przeniesieniem 1, a w siódmej kolumnie 1 (przeniesienie) plus 0 daje 1. Finalnie otrzymujemy 1100110. Umiejętność sumowania binarnego jest naprawdę ważna w programowaniu, zwłaszcza jeśli chodzi o operacje na bitach i systemy komputerowe, które działają właśnie na danych w formie binarnej. Fajnie by było, gdybyś miał to na uwadze, bo to będzie ci potrzebne w dalszej nauce o systemach operacyjnych czy o programowaniu w asemblerze.

Pytanie 23

Jakie zastosowanie ma narzędzie tracert w systemach operacyjnych rodziny Windows?

A. uzyskiwania szczegółowych danych dotyczących serwerów DNS
B. analizowania trasy przesyłania pakietów w sieci
C. pokazywania oraz modyfikacji tablicy trasowania pakietów w sieciach
D. tworzenia połączenia ze zdalnym serwerem na wyznaczonym porcie
Narzędzie tracert, będące częścią systemów operacyjnych rodziny Windows, służy do śledzenia trasy, jaką pokonują pakiety danych w sieci. Działa na zasadzie wysyłania pakietów ICMP (Internet Control Message Protocol) typu Echo Request do docelowego adresu IP, a następnie rejestruje odpowiedzi od urządzeń pośredniczących, zwanych routerami. Dzięki temu użytkownik może zidentyfikować każdy przeskok, czyli 'hop', przez który przechodzą pakiety, oraz zmierzyć opóźnienia czasowe dla każdego z tych przeskoków. Praktyczne zastosowanie narzędzia tracert jest niezwykle istotne w diagnostyce sieci, pomagając administratorom w lokalizowaniu problemów z połączeniami, takich jak zbyt długie czasy odpowiedzi lub utraty pakietów. Dzięki temu można efektywnie analizować wydajność sieci oraz identyfikować wąskie gardła. Zgodnie z najlepszymi praktykami branżowymi, narzędzie to powinno być częścią regularnych audytów sieciowych, pozwalając na utrzymanie wysokiej jakości usług i optymalizację infrastruktury sieciowej.

Pytanie 24

Jakie urządzenie powinno być użyte w sieci Ethernet, aby zredukować liczbę kolizji pakietów?

A. Regenerator
B. Koncentrator
C. Bramkę VoIP
D. Przełącznik
Regenerator, koncentrator i bramka VoIP to różne sprzęty w sieci, ale nie mają na celu ograniczania kolizji w taki sposób jak przełącznik. Regenerator po prostu wzmacnia sygnał, gdy mamy długie odcinki kabla, ale nie ogarnia problemu kolizji, bo nie kontroluje ruchu. Koncentrator działa trochę jak przełącznik, ale rozsyła sygnał do wszystkich portów, co zwiększa ryzyko kolizji w sieci. Jak dużo urządzeń korzysta z jednego medium, to większe szanse na kolizję, bo nie ma żadnego mechanizmu segregacji ruchu. A bramka VoIP? No to ona zamienia dźwięki na dane, żeby można było gadać przez Internet, ale z kolizjami w Ethernetem nie ma nic wspólnego. Ważne, żeby przy wyborze urządzeń sieciowych rozumieć, jak one działają i do czego służą. W końcu mylenie koncentratora z przełącznikiem to typowy błąd. Zrozumienie tych różnic to klucz do skutecznego projektowania i zarządzania sieciami komputerowymi.

Pytanie 25

Jaki protokół stosują komputery, aby informować rutera o przynależności do konkretnej grupy multicastowej?

A. OSPF
B. RIP
C. UDP
D. IGMP
OSPF (Open Shortest Path First) to protokół routingu stosowany w sieciach IP, ale jego funkcjonalność jest zupełnie inna niż IGMP. OSPF służy do dynamicznego wykrywania i zarządzania trasami w sieci, a nie do zarządzania członkostwem w grupach multicastowych. Jego celem jest zapewnienie optymalnej ścieżki dla ruchu IP poprzez algorytmy takie jak Dijkstra, co ma kluczowe znaczenie w dużych, złożonych sieciach. UDP (User Datagram Protocol) to natomiast protokół transportowy, który umożliwia przesyłanie danych bez gwarancji dostarczenia, co czyni go nieodpowiednim do zarządzania członkostwem w grupach rozgłoszeniowych. W kontekście przesyłania multicastowego, UDP może być używany jako protokół transportowy dla strumieni danych, lecz nie zarządza on informacjami o tym, które urządzenia należą do danej grupy. RIP (Routing Information Protocol) to inny protokół routingu, który, podobnie jak OSPF, nie ma funkcji związanych z zarządzaniem grupami multicastowymi. W związku z tym, odpowiedzi związane z OSPF, UDP i RIP są nieprawidłowe, ponieważ nie odpowiadają na pytanie o sposób, w jaki komputery informują routery o członkostwie w grupach rozgłoszeniowych. Zrozumienie różnic między tymi protokołami a IGMP jest kluczowe dla prawidłowego projektowania i zarządzania sieciami, aby skutecznie wykorzystywać ich specyfikę w praktycznych zastosowaniach.

Pytanie 26

Jakie polecenie należy wydać, aby skonfigurować statyczny routing do sieci 192.168.10.0?

A. static 192.168.10.0 MASK 255.255.255.0 192.168.10.1 5 route
B. static route 92.168.10.1 MASK 255.255.255.0 192.168.10.0 5
C. route ADD 192.168.10.0 MASK 255.255.255.0 192.168.10.1 5
D. route 192.168.10.1 MASK 255.255.255.0 192.168.10.0 5 ADD
Wszystkie inne odpowiedzi, które nie są poprawne, mają różne błędy w składni i w podejściu. Na przykład, pierwsza opcja, gdzie pojawia się "static route", jest niepoprawna, bo takie polecenie po prostu nie istnieje w standardzie. W odpowiedzi z "route 192.168.10.1 MASK 255.255.255.0 192.168.10.0 5 ADD" masz złą kolejność argumentów, co powoduje, że polecenie jest źle interpretowane. Pamiętaj, że "ADD" powinno być na początku, to naprawdę ma znaczenie dla prawidłowego działania komendy. Ostatnia opcja także ma błędy składniowe, co prowadzi do nieporozumień przy definiowaniu tras w tablicy routingu. Musisz pamiętać, że zrozumienie poleceń dotyczących trasowania jest kluczowe w zarządzaniu siecią. Błędne zdefiniowanie tras może wywołać problemy z łącznością i nieefektywne wykorzystanie zasobów. Dlatego dobra znajomość składni i logicznego porządku poleceń to podstawa dla każdego, kto zajmuje się administracją sieci.

Pytanie 27

Wykonanie polecenia tar -xf dane.tar w systemie Linux spowoduje

A. pokazanie informacji o zawartości pliku dane.tar
B. wyodrębnienie danych z archiwum o nazwie dane.tar
C. stworzenie archiwum dane.tar, które zawiera kopię katalogu /home
D. przeniesienie pliku dane.tar do katalogu /home
Polecenie 'tar -xf dane.tar' jest używane w systemie Linux do wyodrębnienia zawartości archiwum tar o nazwie 'dane.tar'. Flaga '-x' oznacza 'extract', co jest kluczowe, ponieważ informuje program tar, że zamierzamy wydobyć pliki z archiwum. Flaga '-f' wskazuje, że będziemy pracować z plikiem, a następnie podajemy nazwę pliku archiwum. Pozycjonowanie tych flag jest istotne, ponieważ tar interpretuje je w określony sposób. W praktyce, kiedy używasz tego polecenia, otrzymujesz dostęp do zawartości archiwum, która może zawierać różne pliki i katalogi, w zależności od tego, co zostało pierwotnie skompresowane. Użycie tar jest powszechne w zadaniach związanych z tworzeniem kopii zapasowych oraz przenoszeniem zbiorów danych między systemami. Dobrą praktyką jest również używanie flagi '-v', co pozwala na wyświetlenie informacji o plikach podczas ich wyodrębniania, co ułatwia monitorowanie postępu. Warto również wspomnieć, że tar jest integralną częścią wielu procesów w systemach opartych na Unixie, a znajomość jego działania jest niezbędna dla administratorów systemów.

Pytanie 28

Partycja, na której zainstalowany jest system operacyjny, określana jest jako partycja

A. systemowa
B. folderowa
C. rozszerzona
D. wymiany
Odpowiedź 'systemowa' jest poprawna, ponieważ partycja systemowa to ta, na której zainstalowany jest system operacyjny. W kontekście systemu Windows, Linux czy macOS, partycja systemowa zawiera pliki niezbędne do uruchomienia systemu oraz do jego działania. Przykładowo, w systemie Windows, domyślną partycją systemową jest zazwyczaj dysk C:, gdzie znajdują się pliki systemowe, programy oraz dane użytkownika. Dobrą praktyką jest, aby partycja systemowa była oddzielona od danych użytkownika; umożliwia to łatwiejsze zarządzanie danymi oraz ich backup. W przypadku problemów z systemem operacyjnym, posiadanie oddzielnej partycji na dane może znacznie ułatwić reinstalację systemu bez utraty osobistych plików. W standardach zarządzania systemami operacyjnymi, partycja systemowa jest kluczowym elementem architektury, umożliwiającym efektywne uruchamianie i zarządzanie zasobami komputera.

Pytanie 29

Urządzenie pokazane na ilustracji służy do

Ilustracja do pytania
A. weryfikacji poprawności połączenia
B. ściągania izolacji z przewodu
C. instalacji przewodów w złączach LSA
D. zaciskania wtyków RJ45
Narzędzie przedstawione na rysunku to narzędzie do instalacji przewodów w złączach LSA znane również jako narzędzie Krone. Jest ono powszechnie stosowane w telekomunikacji oraz instalacjach sieciowych do zakończenia przewodów w panelach krosowych lub gniazdach. Narzędzie to umożliwia wciśnięcie przewodów w złącza IDC (Insulation Displacement Connector) bez konieczności zdejmowania izolacji co zapewnia szybkie i niezawodne połączenie. Wciśnięcie przewodu powoduje przemieszczenie izolacji co skutkuje bezpośrednim kontaktem przewodnika z metalowymi stykami. Dzięki temu technologia LSA zapewnia trwałe i stabilne połączenia bez ryzyka uszkodzenia przewodów. Narzędzie to posiada również funkcję odcinania nadmiaru przewodu co jest istotne dla utrzymania porządku w stosowanych instalacjach. Stosowanie narzędzi LSA jest standardem w branży co wynika z ich precyzji oraz wydajności. Wielu specjalistów uznaje je za niezbędny element wyposażenia podczas pracy z systemami telekomunikacyjnymi co potwierdza ich niezastąpioną rolę w procesie instalacji.

Pytanie 30

Aby chronić sieć WiFi przed nieautoryzowanym dostępem, należy między innymi

A. włączyć filtrowanie adresów MAC
B. korzystać tylko z kanałów wykorzystywanych przez inne sieci WiFi
C. wybrać nazwę identyfikatora sieci SSID o długości co najmniej 16 znaków
D. dezaktywować szyfrowanie informacji
Włączenie filtrowania adresów MAC jest skuteczną metodą zabezpieczania sieci bezprzewodowej przed nieautoryzowanym dostępem. Filtrowanie adresów MAC polega na zezwalaniu na dostęp do sieci wyłącznie urządzeniom, których unikalne adresy fizyczne (MAC) zostały wcześniej zapisane w urządzeniu routera lub punktu dostępowego. Dzięki temu, nawet jeśli potencjalny intruz zna nazwę SSID i hasło do sieci, nie będzie mógł uzyskać dostępu, jeśli jego adres MAC nie znajduje się na liście dozwolonych. Praktyczne zastosowanie tej metody polega na regularnej aktualizacji listy dozwolonych adresów, szczególnie po dodaniu nowych urządzeń. Warto jednak pamiętać, że filtrowanie adresów MAC nie jest niezawodną metodą, ponieważ adresy MAC mogą być fałszowane przez bardziej zaawansowanych hakerów. Dlatego zaleca się stosowanie tej techniki w połączeniu z innymi metodami zabezpieczania, takimi jak silne szyfrowanie WPA3, które oferuje lepszą ochronę danych przesyłanych przez sieć. Filtrowanie adresów MAC jest zgodne z dobrymi praktykami bezpieczeństwa w sieciach lokalnych i jest szeroko stosowane w środowiskach zarówno domowych, jak i biznesowych.

Pytanie 31

Aby uniknąć różnic w kolorystyce pomiędzy zeskanowanymi zdjęciami na wyświetlaczu komputera a ich oryginałami, konieczne jest przeprowadzenie

A. kadrowanie skanera
B. modelowanie skanera
C. kalibrację skanera
D. interpolację skanera
Kalibracja skanera to proces, w którym dostosowuje się parametry urządzenia, aby osiągnąć maksymalną zgodność kolorystyczną między zeskanowanymi obrazami a oryginałami. Proces ten jest niezbędny, ponieważ różnice w kolorach mogą wynikać z różnic w oprogramowaniu, sprzęcie, a także z ustawień skanera. Kalibracja polega na wykorzystaniu wzorców kolorystycznych, które pozwalają na dokładne odwzorowanie barw. Przykładem zastosowania kalibracji może być sytuacja, gdy grafika drukarska musi być zgodna z jej cyfrowym odpowiednikiem. Aby to osiągnąć, operator skanera wykonuje kalibrację na podstawie znanych standardów kolorów, takich jak sRGB czy Adobe RGB, co zapewnia spójność i powtarzalność kolorów. Ponadto, regularna kalibracja jest zalecana jako dobra praktyka w branży, aby zminimalizować błędy kolorystyczne, które mogą wystąpić z biegiem czasu.

Pytanie 32

Wskaż błędny sposób podziału dysku MBR na partycje

A. 1 partycja podstawowa i dwie rozszerzone
B. 1 partycja podstawowa oraz jedna rozszerzona
C. 2 partycje podstawowe i jedna rozszerzona
D. 3 partycje podstawowe oraz jedna rozszerzona
W przypadku podziału dysku MBR istnieje wiele błędnych koncepcji dotyczących liczby partycji podstawowych i rozszerzonych, które mogą prowadzić do nieporozumień. Zgodnie z zasadami MBR, maksymalnie można stworzyć cztery partycje podstawowe lub trzy partycje podstawowe oraz jedną partycję rozszerzoną. W przypadku podziału na dwie partycje rozszerzone i jedną podstawową, powstaje problem, ponieważ partycja rozszerzona jest strukturą, która jedynie umożliwia utworzenie wielu partycji logicznych. Partycja rozszerzona nie może występować w liczbie większej niż jedna. Typowym błędem jest mylenie partycji podstawowych z logicznymi – partycje logiczne są zawarte wewnątrz partycji rozszerzonej i nie mogą istnieć samodzielnie bez odpowiedniej struktury rozszerzonej. Z tego powodu, odpowiedzi sugerujące możliwość utworzenia więcej niż jednej partycji rozszerzonej są nieprawidłowe. Warto również zauważyć, że wybór MBR jako systemu partycjonowania jest czasami ograniczający, szczególnie w przypadku nowoczesnych dysków twardych, gdzie lepszym rozwiązaniem może być GPT, które oferuje bardziej zaawansowane funkcje, takie jak większa liczba partycji oraz lepsze wsparcie dla większych dysków. Zrozumienie tych zasad jest kluczowe dla właściwego zarządzania danymi i projektowania struktur dyskowych.

Pytanie 33

Jakim protokołem komunikacyjnym, który gwarantuje niezawodne przesyłanie danych, jest protokół

A. TCP
B. UDP
C. ARP
D. IPX
Protokół TCP (Transmission Control Protocol) jest jednym z podstawowych protokołów w zestawie protokołów stosowanych w Internecie i zapewnia niezawodne, uporządkowane dostarczanie strumieni danych pomiędzy urządzeniami. Kluczową cechą TCP jest jego mechanizm kontroli przepływu i retransmisji, który pozwala na wykrywanie i korekcję błędów w przesyłanych danych. Dzięki temu, w przypadku utraty pakietu, protokół TCP automatycznie go retransmituje, co znacząco zwiększa niezawodność komunikacji. TCP jest wykorzystywany w wielu aplikacjach, gdzie wymagane jest pewne dostarczenie danych, takich jak przeglądarki internetowe (HTTP/HTTPS), protokoły poczty elektronicznej (SMTP, IMAP) oraz protokoły transferu plików (FTP). W kontekście standardów branżowych, TCP współpracuje z protokołem IP (Internet Protocol) w tzw. modelu TCP/IP, który jest fundamentem współczesnej komunikacji sieciowej. W praktyce, zastosowanie TCP jest powszechne tam, gdzie ważne jest, aby wszystkie dane dotarły w całości i w odpowiedniej kolejności, co czyni go wyborem standardowym w wielu krytycznych aplikacjach.

Pytanie 34

Wykonanie polecenia ipconfig /renew w trakcie ustawiania interfejsów sieciowych doprowadzi do

A. zwolnienia wszystkich dzierżaw adresów IP z DHCP
B. usunięcia zawartości bufora programu DNS
C. odnowienia wszystkich dzierżaw adresów IP z DHCP
D. pokazania identyfikatora klasy DHCP dla adapterów sieciowych
Polecenie 'ipconfig /renew' jest używane do odnowienia dzierżaw adresów IP przydzielonych przez serwer DHCP (Dynamic Host Configuration Protocol). Gdy komputer lub urządzenie sieciowe łączy się z siecią, serwer DHCP może przydzielić mu tymczasowy adres IP na określony czas, zwany dzierżawą. Użycie 'ipconfig /renew' informuje klienta DHCP, aby ponownie skontaktował się z serwerem i zaktualizował swoje ustawienia sieciowe, co pozwala przydzielić nowy adres IP lub odnowić istniejący, zapewniając ciągłość połączenia. Jest to szczególnie przydatne w sytuacjach, gdy adres IP wygasa lub gdy zmienia się konfiguracja sieci, na przykład przy przenoszeniu urządzenia do innej podsieci. W praktyce, administratorzy sieci często stosują to polecenie, aby szybko rozwiązać problemy z połączeniem sieciowym, a także w sytuacjach, gdy urządzenia muszą uzyskać nową konfigurację IP po dokonaniu zmian w infrastrukturze sieciowej. Warto również dodać, że polecenie to powinno być stosowane zgodnie z najlepszymi praktykami zarządzania siecią, aby minimalizować zakłócenia i zapewnić stabilność połączeń.

Pytanie 35

Zilustrowany schemat przedstawia zasadę funkcjonowania

Ilustracja do pytania
A. cyfrowego aparatu fotograficznego
B. skanera płaskiego
C. myszy optycznej
D. drukarki termosublimacyjnej
Schemat przedstawia działanie myszy optycznej. Mysz optyczna wykorzystuje diodę LED do oświetlenia powierzchni pod nią. Odbite światło przechodzi przez soczewkę i trafia na matrycę CMOS lub CCD, która jest odpowiedzialna za przetwarzanie obrazu na sygnały cyfrowe. Dzięki temu sensor optyczny rejestruje ruch myszy względem powierzchni. Układ cyfrowego przetwarzania sygnału DSP analizuje zmiany obrazu i przekłada je na ruch kursora na ekranie. Mysz optyczna jest preferowana nad mechaniczną ze względu na brak ruchomych części, co zwiększa jej trwałość i precyzję. Współczesne myszki optyczne korzystają z zaawansowanych sensorów oferujących wysoką rozdzielczość do precyzyjnej pracy graficznej czy w grach komputerowych. Standardy USB oraz RF zapewniają łatwość podłączenia do komputera. Technologia ta jest szeroko stosowana w różnych branżach, gdzie wymagana jest precyzja i niezawodność urządzeń wejściowych.

Pytanie 36

Zrzut ekranu przedstawiony powyżej, który pochodzi z systemu Windows, stanowi efekt działania komendy

Ilustracja do pytania
A. route
B. ifconfig
C. ping
D. netstat
Polecenie netstat jest używane do wyświetlania bieżących połączeń sieciowych zarówno przychodzących jak i wychodzących na komputerze z systemem Windows. Generuje ono szczegółowy raport o wszystkich aktywnych połączeniach TCP oraz stanie portów. Jest to kluczowe narzędzie dla administratorów sieci do monitorowania i diagnostyki problemów związanych z siecią. Przykładowo netstat może pomóc w identyfikacji nieautoryzowanych połączeń, które mogą wskazywać na obecność złośliwego oprogramowania. Netstat umożliwia również sprawdzenie stanu połączeń w różnych stanach takich jak ustanowione zamykane czy oczekujące. Ta funkcjonalność jest niezwykle przydatna podczas analizy ruchu sieciowego w celu optymalizacji czy wykrywania nieprawidłowości. Jako dobra praktyka zaleca się regularne korzystanie z netstat w ramach rutynowych audytów bezpieczeństwa sieci by zrozumieć i kontrolować przepływ danych w infrastrukturze sieciowej. Netstat jest również narzędziem zgodnym z zasadami zarządzania konfiguracją sieci co czyni go wszechstronnym wyborem dla profesjonalistów IT. Dzięki jego zastosowaniu można uzyskać całościowy obraz stanu sieci co jest fundamentem skutecznego zarządzania i zabezpieczania środowiska IT.

Pytanie 37

Który procesor będzie działał z płytą główną o zaprezentowanej specyfikacji?

A. Procesor Podstawka Taktowanie Athlon 64 FX AM2 160 MHz
B. Procesor Podstawka Taktowanie Intel Celeron  1150 3000 MHz
C. Procesor Podstawka Taktowanie AMD FX1150n AM3+ 3900 MHz
D. Procesor Podstawka Taktowanie Intel Core i7 1151 1150 MHz
Analiza niepoprawnych odpowiedzi ujawnia szereg powszechnych nieporozumień dotyczących kompatybilności procesorów z płytami głównymi. W przypadku odpowiedzi dotyczącej procesora Intel Core i7 z podstawką 1151, kluczowym błędem jest założenie, że płyta główna z gniazdem 1150 obsługuje procesory zaprojektowane dla gniazda 1151. Procesory te różnią się nie tylko fizycznym rozmiarem podstawki, ale także charakterystyką zasilania i architekturą, co czyni je niekompatybilnymi. Takie myślenie prowadzi do frustrujących prób uruchomienia systemu, które z reguły kończą się niepowodzeniem. Podobnie, procesory o gniazdach AM2 i AM3+, takie jak Athlon 64 FX i AMD FX1150n, są całkowicie niekompatybilne z płytą główną wyposażoną w gniazdo 1150. Warto zrozumieć, że każda generacja procesorów ma swoje specyficzne wymagania i standardy, które muszą być spełnione, aby zapewnić prawidłowe działanie systemu. Użytkownicy często popełniają błąd, koncentrując się tylko na parametrach technicznych, takich jak taktowanie, pomijając kluczowe informacje dotyczące podstawki. Kluczowe jest zatem, aby przed zakupem procesora zawsze weryfikować kompatybilność z płytą główną na podstawie dokumentacji producenta oraz sprawdzonych źródeł branżowych. To podejście nie tylko minimalizuje ryzyko błędnych zakupów, ale również zapewnia optymalną wydajność systemu.

Pytanie 38

Wykonanie polecenia ```NET USER GRACZ * /ADD``` w wierszu poleceń systemu Windows spowoduje

A. pokazanie komunikatu o błędnej składni polecenia
B. utworzenie konta GRACZ bez hasła oraz nadanie mu uprawnień administratora komputera
C. wyświetlenie monitu o podanie hasła
D. utworzenie konta GRACZ z hasłem *
W analizie odpowiedzi, które zostały uznane za niepoprawne, można dostrzec kilka powszechnych nieporozumień. Po pierwsze, stwierdzenie o wyświetleniu komunikatu o niewłaściwej składni polecenia jest mylne, ponieważ składnia NET USER jest poprawna, a przy użyciu gwiazdki '*' system nie tylko akceptuje polecenie, ale również inicjuje proces żądania hasła. Kolejna nieprawidłowa koncepcja dotyczy przypisania konta GRACZ uprawnień administratora. W rzeczywistości, polecenie to domyślnie nie nadaje kontu żadnych dodatkowych uprawnień, a nowe konta użytkowników są tworzone jako standardowe konta, które nie mają uprawnień administracyjnych, chyba że wyraźnie wskazano inaczej. Ostatnia mylna odpowiedź sugeruje, że konto GRACZ może zostać dodane bez hasła, co jest niezgodne z polityką bezpieczeństwa systemu Windows. Tworzenie kont bez haseł stwarza poważne zagrożenie dla bezpieczeństwa, dlatego system wymaga wprowadzenia hasła podczas tworzenia nowego konta. Często użytkownicy zaniedbują te zasady, co prowadzi do poważnych luk w zabezpieczeniach. Zrozumienie tych różnic jest kluczowe dla skutecznego zarządzania systemem i zapewnienia bezpieczeństwa danych.

Pytanie 39

ile bajtów odpowiada jednemu terabajtowi?

A. 108 bajtów
B. 1010 bajtów
C. 1014 bajtów
D. 1012 bajtów
Jeden terabajt (TB) jest równy 10^12 bajtów, co oznacza, że w systemach komputerowych, które często używają pojęcia terabajta, odniesieniem są jednostki oparte na potęgach dziesięciu. Ta definicja opiera się na standardzie SI, gdzie terabajt jest uznawany jako 1 000 000 000 000 bajtów. Przykładem praktycznego zastosowania tej wiedzy jest obliczanie pojemności dysków twardych oraz pamięci masowej. W obliczeniach dotyczących pamięci komputerowej, istotne jest, aby rozumieć różnice między terabajtem a tebibajtem (TiB), które wynosi 2^40 bajtów (około 1,1 TB). W kontekście rozwoju technologii, znajomość tych jednostek jest kluczowa przy doborze odpowiednich rozwiązań do przechowywania danych, co jest szczególnie istotne w branży IT, analizie dużych zbiorów danych oraz przy projektowaniu systemów informatycznych.

Pytanie 40

Który z poniższych adresów IP należy do grupy C?

A. 129.175.11.15
B. 198.26.152.10
C. 125.12.15.138
D. 190.15.30.201
Adresy IP 125.12.15.138, 129.175.11.15 oraz 190.15.30.201 nie należą do klasy C, co może być mylące bez zrozumienia struktury adresowania IP. Klasyfikacja adresów IP opiera się na pierwszym oktecie adresu, który wskazuje, do której klasy należy dany adres. Adresy w klasie A mają pierwszy oktet w przedziale 1-126, a ich przeznaczeniem są bardzo duże sieci. Adresy klasy B mają pierwszy oktet w przedziale 128-191, co oznacza, że są używane w średniej wielkości sieciach. Natomiast adresy klasy C, jak już wcześniej wspomniano, mają pierwszy oktet w przedziale 192-223. Adres 125.12.15.138 mieści się w klasie A, co oznacza, że jest przeznaczony do dużych sieci, a jego zastosowanie jest bardziej skomplikowane, bliskie zarządzania globalnym zasobami. Z kolei adres 129.175.11.15 również należałby do klasy B, co wskazuje na inny typ organizacji oraz inne podejście do zarządzania podsieciami. Podobnie, adres 190.15.30.201 to adres klasy B, a nie C, co może prowadzić do niepoprawnej konfiguracji sieci. Typowe błędy w analizie adresów IP polegają na nieuwzględnieniu całej struktury oktetów i ich wpływu na routing oraz zarządzanie. Dobrą praktyką jest znajomość nie tylko klas adresów, ale także ich zastosowania w kontekście potrzeb Twojej organizacji i jej rozwoju.