Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 19 maja 2025 11:06
  • Data zakończenia: 19 maja 2025 11:31

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który z wymienionych parametrów można zmierzyć przyrządem przedstawionym na ilustracji?

Ilustracja do pytania
A. Prąd upływu.
B. Rezystancję izolacji.
C. Impedancję pętli zwarcia.
D. Chwilową moc obciążenia.
Rezystancja izolacji jest kluczowym parametrem, który można zmierzyć przy pomocy miernika izolacji, znanego również jako megomierz. Urządzenie to jest wykorzystywane do oceny stanu izolacji elektrycznej w instalacjach i urządzeniach elektrycznych. Pomiar ten jest niezwykle istotny, ponieważ odpowiednia rezystancja izolacji zapewnia bezpieczeństwo użytkowania i zapobiega porażeniom prądem, a także minimalizuje ryzyko awarii. Miernik izolacji generuje wysokie napięcie, które powoduje, że prąd przepływa przez izolację. Na podstawie zmierzonego prądu można obliczyć rezystancję, która jest wyrażana w megaomach (MΩ). W praktyce, normy takie jak PN-EN 61557-2 określają wymagania dotyczące pomiarów rezystancji izolacji. Regularne pomiary rezystancji izolacji są zalecane w ramach działań prewencyjnych, szczególnie w przemyśle, gdzie eksploatacja urządzeń elektrycznych odbywa się w trudnych warunkach. Dbanie o odpowiednie wartości rezystancji izolacyjnej to nie tylko wymóg prawny, ale również dobra praktyka, która przyczynia się do zapewnienia długotrwałej i bezawaryjnej pracy instalacji.

Pytanie 2

Z oznaczenia kabla YDYp 3x1 mm2 300/500 V wynika, że maksymalne wartości skuteczne napięć pomiędzy żyłą przewodu a ziemią oraz pomiędzy poszczególnymi żyłami wynoszą odpowiednio

A. 300 V i 500 V
B. 200 V i 300 V
C. 200 V i 500 V
D. 500 V i 300 V
Wybór 300 V i 500 V jest jak najbardziej trafny. Przewód YDYp 3x1 mm2 300/500 V ma dwa ważne parametry. Pierwszy, 300 V, to maksymalne napięcie między żyłą a ziemią, a drugi, 500 V, dotyczy napięcia między żyłami. Te oznaczenia są zgodne z normami bezpieczeństwa, co jest istotne, gdy instalujemy elektrykę w domach czy biurach. W praktyce używa się takich przewodów do zasilania różnych rzeczy, jak oświetlenie czy gniazdka. Dzięki tym wartościom nie tylko efektywnie działamy, ale przede wszystkim dbamy o bezpieczeństwo, zmniejszając ryzyko porażenia prądem. Pamiętaj, że wybór odpowiednich przewodów jest kluczowy, by spełniały one polskie normy PN-IEC dotyczące instalacji elektrycznych.

Pytanie 3

Które urządzenie stosowane w instalacjach elektrycznych przedstawiono na rysunku?

Ilustracja do pytania
A. Odłącznik bezpiecznikowy.
B. Wyłącznik nadmiarowoprądowy.
C. Wyłącznik przepięciowy.
D. Rozłącznik bezpiecznikowy.
Wybór niewłaściwej odpowiedzi może wynikać z mylenia różnych typów urządzeń zabezpieczających. Na przykład, odłącznik bezpiecznikowy, często mylony z rozłącznikiem, ma na celu odłączenie zasilania, ale nie zabezpiecza obwodu przed przepięciami czy przeciążeniami w ten sam sposób. Natomiast wyłącznik przepięciowy, który również może wydawać się atrakcyjną opcją, służy głównie do ochrony przed szkodliwymi skokami napięcia, które mogą uszkodzić podłączone urządzenia, a nie jest to jego funkcja w rozłączniku bezpiecznikowym. Wyłącznik nadmiarowoprądowy, z drugiej strony, może chronić przed przeciążeniem, jednak nie ma zdolności do odłączania obwodu w kontekście zapewnienia bezpieczeństwa operatora w sytuacji awaryjnej. Takie nieporozumienia mogą prowadzić do nieprawidłowego doboru urządzeń zabezpieczających, co w konsekwencji zwiększa ryzyko uszkodzeń instalacji oraz naraża użytkowników na niebezpieczeństwo. Kluczowym błędem jest zatem brak znajomości różnic w działaniach i zastosowaniach tych urządzeń, co powinno być uwzględnione podczas projektowania lub modernizacji instalacji elektrycznych. Właściwy dobór zabezpieczeń jest istotny dla zapewnienia bezpieczeństwa i efektywności działania całego systemu elektrycznego.

Pytanie 4

Jaka jest minimalna wartość rezystancji izolacji przewodu, gdy mierzymy induktorem w sieci o napięciu znamionowym badanego obwodu U < 500 V?

A. < 0,5 MΩ
B. ≥ 0,25 MΩ
C. ≥ 0,5 MΩ
D. < 0,25 MΩ
Odpowiedzi, które podają wartości rezystancji izolacji poniżej 0,5 MΩ, nie są odpowiednie. Nie spełniają one podstawowych wymagań, co może być niebezpieczne. Wartości < 0,25 MΩ czy < 0,5 MΩ nie dają dobrego poziomu izolacji, co prowadzi do ryzyka porażenia prądem lub uszkodzenia sprzętu. W zasadzie, jeżeli rezystancja jest poniżej 0,5 MΩ, to może to oznaczać problemy z izolacją przewodów. To z kolei może prowadzić do naprawdę poważnych konsekwencji, jak pożary. Często myli się wartości rezystancji, chcąc uprościć pomiary, ale to jest naprawdę ryzykowne w kontekście bezpieczeństwa elektrycznego. Należy pamiętać, że dobra izolacja chroni nie tylko osoby pracujące w pobliżu, ale również sprzęt i systemy. Gdy wartości rezystancji są niższe niż wymagane 0,5 MΩ, może to wynikać z niewłaściwego stanu instalacji lub zużycia materiałów izolacyjnych. To jeszcze bardziej podkreśla, jak ważne są regularne kontrole i pomiary, żeby wszystko było zgodne z normami bezpieczeństwa instalacji elektrycznych.

Pytanie 5

Jaką rolę odgrywa uzwojenie biegunów komutacyjnych w urządzeniach prądu stałego?

A. Generuje moment magnetyczny o stałym kierunku
B. Tworzy nieruchome, stałe pole magnetyczne
C. Kompensuje SEM samoindukcji, co eliminuje iskrzenie na szczotkach
D. Redukuje hałas podczas eksploatacji
Uzwojenie biegunów komutacyjnych w maszynach prądu stałego pełni kluczową rolę w kompensacji siły elektromotorycznej (SEM) samoindukcji, co jest istotne dla prawidłowego funkcjonowania silników. W trakcie pracy silnika, gdy zmienia się kierunek prądu, powstaje SEM samoindukcji, która może prowadzić do iskrzenia na szczotkach. Uzwojenie biegunów komutacyjnych, poprzez odpowiednie wytwarzanie pola magnetycznego, pomaga zminimalizować to zjawisko, co przekłada się na dłuższą żywotność szczotek oraz zmniejszenie strat energetycznych. Przykładem zastosowania tej zasady jest wykorzystanie silników prądu stałego w aplikacjach, gdzie wymagana jest duża niezawodność, jak w napędach elektrycznych tramwajów czy w robotyce. Dobre praktyki w projektowaniu maszyn prądu stałego uwzględniają parametry uzwojenia komutacyjnego, co umożliwia uzyskanie optymalnej charakterystyki pracy silnika oraz minimalizację zakłóceń.

Pytanie 6

Jaki jest minimalny dopuszczalny przekrój przewodów miedzianych stosowanych w budynkach jako wewnętrzne linie zasilające (WLZ)?

A. 4 mm2
B. 16 mm2
C. 10 mm2
D. 6 mm2
Minimalny dopuszczalny przekrój przewodów miedzianych stosowanych w wewnętrznych liniach zasilających (WLZ) wynosi 10 mm2. Ta wartość jest określona przez normy dotyczące instalacji elektrycznych, takie jak PN-IEC 60364, które wskazują na konieczność zabezpieczenia przewodów przed przegrzewaniem oraz zapewnienia odpowiedniej nośności prądowej. Przekrój 10 mm2 jest stosowany, aby zminimalizować straty mocy i zapewnić bezpieczeństwo eksploatacji. Przykładowo, w budynkach jednorodzinnych, gdzie przewody te muszą obsługiwać różnorodne urządzenia elektryczne, zastosowanie przewodów o odpowiednio dużym przekroju pozwala na uniknięcie przeciążeń i potencjalnych zagrożeń pożarowych. W praktyce, stosowanie przewodów o zbyt małym przekroju może prowadzić do ich przegrzewania, co z kolei zwiększa ryzyko awarii systemu zasilania oraz uszkodzenia urządzeń elektrycznych.

Pytanie 7

Montaż gniazda wtykowego pozbawionego styku ochronnego oraz podłączenie do niego urządzenia elektrycznego klasy I ochronności może prowadzić do

A. zagrożenia porażeniem prądem elektrycznym
B. zwarcia w obwodzie elektrycznym
C. przeciążenia obwodu elektrycznego
D. uszkodzenia podłączonego urządzenia elektrycznego
Zamontowanie gniazda wtykowego bez styku ochronnego i podłączenie do niego urządzenia elektrycznego klasy I stwarza poważne zagrożenie porażeniem prądem elektrycznym. Urządzenia tej klasy mają metalowe obudowy, które są w związku z tym potencjalnie niebezpieczne w przypadku awarii izolacji. Styk ochronny w gniazdku jest kluczowy, ponieważ zapewnia bezpieczeństwo poprzez uziemienie obudowy urządzenia, co zapobiega gromadzeniu się ładunków elektrycznych. W przypadku braku styku ochronnego, w sytuacji, gdy izolacja urządzenia ulegnie uszkodzeniu, napięcie może pojawić się na obudowie, co prowadzi do ryzyka porażenia prądem podczas kontaktu z użytkownikiem. Przykładowo, w przypadku użycia sprzętu AGD, takiego jak pralka, która nie ma odpowiedniej ochrony, użytkownik może być narażony na niebezpieczeństwo. Dlatego kluczowe jest stosowanie gniazd zgodnych z normami, takimi jak PN-EN 60309, które uwzględniają zabezpieczenia w instalacjach elektrycznych. Przeprowadzając prace instalacyjne, należy zawsze upewnić się, że gniazda są zgodne ze standardami i posiadają odpowiednie elementy ochronne.

Pytanie 8

Przy jakiej wartości prądu różnicowego zmiennego sinusoidalnie nie powinien zadziałać sprawny wyłącznik różnicowoprądowy typu AC o prądzie IΔN = 30 mA?

A. IΔ = 10 mA
B. IΔ = 40 mA
C. IΔ = 30 mA
D. IΔ = 20 mA
Zrozumienie, dlaczego odpowiedzi takie jak IΔ = 20 mA, IΔ = 30 mA oraz IΔ = 40 mA są błędne, wymaga analizy zasad funkcjonowania wyłączników różnicowoprądowych. Wyłącznik różnicowoprądowy o prądzie nominalnym 30 mA ma być zaprojektowany tak, aby działał w przypadku wykrycia różnicy prądów na poziomie 30 mA lub wyższym. Odpowiedzi wskazujące wartości 20 mA, 30 mA i 40 mA przedstawiają różne błędne koncepcje. W szczególności, prąd IΔ = 20 mA jest nadal w obrębie zakresu, w którym wyłącznik może zadziałać, ponieważ jest on niższy niż 30 mA, co oznacza, że w sytuacji, gdy wystąpi prąd różnicowy na tym poziomie, wyłącznik zareaguje, aby chronić użytkowników. Odpowiedź 30 mA jest marnotrawstwem, ponieważ wyłącznik zadziała w momencie osiągnięcia tego poziomu prądu, co nie jest zgodne z pytaniem, które dotyczy wartości, przy której nie powinien zadziałać. Natomiast prąd 40 mA przekracza wartość nominalną wyłącznika, co wskazuje, że w takim przypadku powinien on zadziałać, aby zapobiec niebezpieczeństwu. Takie błędne rozumowanie wynika często z nieprawidłowego zrozumienia funkcji wyłączników różnicowoprądowych oraz ich działania w kontekście ochrony elektrycznej, co potwierdzają standardy takie jak IEC 60364, które podkreślają konieczność stosowania odpowiednich wartości progowych dla zabezpieczeń.

Pytanie 9

Jaką wartość ma prędkość obrotowa pola magnetycznego stojana silnika indukcyjnego przy danych: fN = 50 Hz; p = 4?

A. 750 obr./min
B. 1 450 obr./min
C. 1 500 obr./min
D. 720 obr./min
W analizie błędnych odpowiedzi, kluczowym zagadnieniem jest zrozumienie, jak prawidłowo obliczyć prędkość obrotową pola magnetycznego stojana silnika indukcyjnego. Wśród propozycji odpowiedzi pojawiają się prędkości, które są mylące dla osób nieznających podstaw teorii obwodów elektrycznych. Na przykład, odpowiedź 720 obr./min może wydawać się atrakcyjna, ale wynika z niepoprawnego zastosowania wzorów lub nieprawidłowego zrozumienia poślizgu silnika. W rzeczywistości, prędkość obrotowa pola magnetycznego jest ściśle związana z częstotliwością zasilania i liczbą par biegunów. W przypadku silników indukcyjnych pracujących na częstotliwości 50 Hz z 4 parami biegunów, prędkość teoretyczna wynosi 1500 obr./min. Zboczenie od tej wartości bez uwzględnienia poślizgu jest najczęstszym błędem. Odpowiedzi 1450 obr./min oraz 1500 obr./min również nie są właściwe, ponieważ nie uwzględniają realiów pracy silników, gdzie poślizg powoduje, że rzeczywista prędkość obrotowa w warunkach roboczych jest niższa. Kluczowym błędem jest niewłaściwe zrozumienie mechanizmu działania silnika indukcyjnego oraz roli, jaką odgrywa poślizg w jego pracy. Warto zatem zwrócić uwagę na standardy, które ukierunkowują projektowanie i eksploatację silników, takie jak IEC 60034-1, które jasno definiują właściwości i parametry dotyczące wydajności tych urządzeń.

Pytanie 10

Przeciążenie w instalacji elektrycznej polega na

A. nagłym wzroście napięcia elektrycznego w sieci powyżej wartości nominalnej.
B. wystąpieniu w instalacji fali przepięciowej spowodowanej wyładowaniem atmosferycznym.
C. przekroczeniu maksymalnego prądu znamionowego instalacji.
D. bezpośrednim połączeniu dwóch faz w systemie.
Przeciążenie instalacji elektrycznej polega na przekroczeniu prądu znamionowego, co ma istotne znaczenie dla bezpieczeństwa i funkcjonowania systemów elektrycznych. Prąd znamionowy to maksymalny prąd, jaki instalacja lub urządzenie może bezpiecznie przewodzić bez ryzyka uszkodzenia. Przekroczenie tej wartości może prowadzić do przegrzewania się przewodów, co z kolei może skutkować uszkodzeniem izolacji, a w skrajnych przypadkach nawet pożarem. Dlatego tak ważne jest, aby projektując instalację elektryczną, odpowiednio dobrać przekroje przewodów oraz zabezpieczenia, takie jak bezpieczniki czy wyłączniki różnicowoprądowe, które chronią przed skutkami przeciążenia. W praktyce, w przypadku zakupu nowych urządzeń elektrycznych, należy zwracać uwagę na ich moc i prąd znamionowy, aby uniknąć przeciążenia instalacji. Przykładowo, jeżeli w danym obwodzie zainstalowane są urządzenia, których łączna moc przekracza wartość znamionową obwodu, może to prowadzić do poważnych problemów z bezpieczeństwem elektrycznym.

Pytanie 11

Jakie napięcie należy stosować podczas określania rezystancji izolacji w obwodach SELV lub PELV?

A. 1000 V
B. 250 V
C. 750 V
D. 500 V
Odpowiedź 250 V jest prawidłowa, ponieważ w obwodach SELV (Safety Extra Low Voltage) i PELV (Protected Extra Low Voltage) stosuje się ograniczone napięcia, które nie mogą przekraczać wartości 250 V przy pomiarze rezystancji izolacji. Te standardy są zgodne z międzynarodowymi zasadami bezpieczeństwa, takimi jak normy IEC 60364. W praktyce, pomiar rezystancji izolacji w obwodach SELV i PELV przy napięciu 250 V pozwala na zapewnienie bezpieczeństwa użytkowników i minimalizowanie ryzyka porażenia prądem. Przykładem zastosowania tego typu pomiarów jest inspekcja instalacji elektrycznych w obiektach użyteczności publicznej, gdzie kluczowe jest utrzymanie wysokiego poziomu ochrony. Dodatkowo, w obwodach SELV i PELV, które są zazwyczaj używane w aplikacjach niskonapięciowych, zaleca się regularne kontrole rezystancji izolacji, aby wykryć ewentualne uszkodzenia oraz degradację izolacji, co jest niezbędne dla zapewnienia długoterminowej niezawodności i bezpieczeństwa systemów elektrycznych.

Pytanie 12

W wyniku uszkodzenia mechanicznego obudowa gniazda wtyczkowego w łazience uległa zniszczeniu. Co w takiej sytuacji powinno się zrobić?

A. wymienić gniazdo na nowe
B. uszczelnić pęknięcia za pomocą kleju do tworzywa
C. zakleić gniazdo taśmą izolacyjną
D. zdemontować gniazdo i zaślepić puszkę
Wymiana gniazda wtyczkowego jest kluczowym krokiem w przypadku uszkodzenia obudowy, ponieważ gwarantuje bezpieczeństwo użytkowników i zapewnia prawidłowe funkcjonowanie instalacji elektrycznej. Uszkodzona obudowa może prowadzić do odsłonięcia przewodów elektrycznych, co zwiększa ryzyko porażenia prądem oraz zwarcia. Zgodnie z normami bezpieczeństwa elektrycznego, takimi jak PN-IEC 60364, każda uszkodzona komponenta powinna być wymieniana, aby zapobiec potencjalnym zagrożeniom. Przykładowo, w przypadku gniazd wtyczkowych umieszczonych w łazienkach, gdzie panuje wysoka wilgotność, niezbędne jest korzystanie z gniazd o podwyższonej odporności na wodę i pył, co podkreśla znaczenie stosowania komponentów spełniających odpowiednie normy. Regularne kontrole oraz wymiana uszkodzonych elementów to najlepsza praktyka, która zwiększa bezpieczeństwo i niezawodność domowej instalacji elektrycznej. Przykładem może być sytuacja, w której gniazdo w łazience zostało uszkodzone – jego wymiana powinna być dokonywana przez wykwalifikowanego elektryka, aby zminimalizować ryzyko błędów w montażu.

Pytanie 13

Jakie środki stosuje się w instalacjach elektrycznych w celu zabezpieczenia przed dotykiem pośrednim (dodatkowa ochrona)?

A. ogrodzenia oraz obudowy
B. umiejscowienie poza zasięgiem dłoni
C. urządzenia różnicowoprądowe ochronne
D. separację elektryczną
Ochrona przed dotykiem pośrednim jest kluczowym zagadnieniem w projektowaniu instalacji elektrycznych. Wiele osób może mylnie sądzić, że zastosowanie ochronnych urządzeń różnicowoprądowych jest wystarczające do zapewnienia bezpieczeństwa. Choć te urządzenia są istotnym elementem ochrony przed porażeniem prądem, ich rola polega głównie na wykrywaniu różnic w prądzie, co nie eliminuje całkowicie ryzyka dotyku pośredniego. Ponadto, stosowanie ogrodzeń i obudów, choć przydatne, nie jest skutecznym sposobem na ochronę przed dotykiem pośrednim, ponieważ nie zawsze zapewnia odpowiednie zabezpieczenie w przypadku awarii czy uszkodzeń. Lokowanie elementów elektrycznych poza zasięgiem ręki również nie jest wystarczającym środkiem ochronnym, gdyż nie eliminuje ryzyka wystąpienia sytuacji niebezpiecznych w przypadku, gdy użytkownicy mają dostęp do takich urządzeń. W rzeczywistości kluczowym elementem zapobiegania porażeniom jest zapewnienie odpowiedniej separacji elektrycznej, która gwarantuje, że użytkownicy nie mają fizycznego kontaktu z częściami instalacji narażonymi na działanie napięcia. Z tego powodu, koncentrując się na tych błędnych podejściach, można zrozumieć, jak istotne jest właściwe projektowanie systemów elektrycznych w celu zapewnienia maksymalnego bezpieczeństwa użytkowników. Zachowanie odpowiednich standardów, takich jak norma PN-EN 61140, jest niezbędne, aby wyeliminować ryzyko porażenia prądem i zapewnić skuteczną ochronę przed dotykiem pośrednim.

Pytanie 14

Który element przedstawiono na ilustracji?

Ilustracja do pytania
A. Wkładkę topikową bezpiecznika mocy.
B. Izolator przepustowy wysokiego napięcia.
C. Bezpiecznik aparatowy.
D. Izolator wsporczy.
Wkładka topikowa bezpiecznika mocy to kluczowy element zabezpieczający w obwodach elektrycznych, który chroni przed przeciążeniami i zwarciami. Na ilustracji widać charakterystyczne cechy tego komponentu, takie jak metalowe końcówki, które zapewniają dobrą przewodność elektryczną, oraz oznaczenia techniczne, które wskazują na parametry znamionowe wkładki. Wkładki topikowe są stosowane głównie w instalacjach przemysłowych i komercyjnych, gdzie występuje duże ryzyko przeciążeń. Zgodnie z normą IEC 60269, wkładki te powinny być dobierane na podstawie maksymalnego prądu, który może przepływać przez dany obwód, co wymaga precyzyjnego obliczenia. Przykłady zastosowania wkładek topikowych to ochrona silników elektrycznych, transformatorów oraz innych urządzeń, które mogą być narażone na nagłe skoki prądu. Użycie odpowiednich wkładek topikowych jest niezbędne dla zapewnienia bezpieczeństwa i niezawodności systemów elektrycznych.

Pytanie 15

Jakim symbolem oznacza się przewód jednożyłowy, wykonany z aluminiowych drutów i mający izolację z polichlorku winylu, o średnicy żyły 2,5 mm2?

A. ADY 2,5 mm2
B. YDY 2,5 mm2
C. YLY 2,5 mm2
D. ALY 2,5 mm2
Odpowiedzi ADY 2,5 mm2, YLY 2,5 mm2 oraz YDY 2,5 mm2 są niepoprawne, ponieważ nie spełniają właściwych kryteriów dotyczących materiału przewodnika oraz rodzaju konstrukcji. Oznaczenie ADY sugeruje, że przewód ma rdzeń aluminiowy, jednak nie odnosi się do specyfikacji, iż jest to przewód wielodrutowy. W praktyce, przewody aluminiowe jednożyłowe są rzadziej stosowane, ponieważ ich sztywność ogranicza elastyczność w instalacji w porównaniu do przewodów wielodrutowych. Z kolei oznaczenie YLY wskazuje na przewód miedziany, co jest niezgodne z wymaganiami pytania, które dotyczy przewodu aluminiowego. Warto pamiętać, że zastosowanie przewodów miedzianych w sytuacjach, gdzie aluminium powinno być użyte, może prowadzić do problemów z przewodnictwem oraz zwiększonego ryzyka przegrzania, co z kolei może skutkować uszkodzeniem instalacji. Ostatecznie, YDY oznacza przewód z żyłą miedzianą o odpowiednich parametrach, co znowu nie jest zgodne z wymaganiami pytania. Ważne jest, aby znać różnice w oznaczeniach i ich znaczenie dla bezpieczeństwa oraz efektywności systemów elektrycznych, aby unikać nieporozumień i potencjalnych zagrożeń w praktyce inżynieryjnej.

Pytanie 16

Ogranicznik przepięć klasy D, który można zainstalować w systemie elektrycznym o maksymalnym napięciu 1000 V, instaluje się w

A. niskonapięciowych liniach elektroenergetycznych.
B. rozgałęzieniach systemu elektrycznego w budynku oraz w rozdzielnicach dla mieszkań.
C. złączach oraz miejscach, gdzie instalacja wchodzi do budynku z systemem piorunochronnym, zasilanego z linii napowietrznej.
D. gniazdach elektrycznych, puszkach w instalacji oraz bezpośrednio w urządzeniach.
Wybór montażu ogranicznika przepięć w rozgałęzieniach instalacji elektrycznej czy w rozdzielnicach nie jest optymalnym rozwiązaniem, gdyż te miejsca są zbyt daleko od rzeczywistych punktów użycia urządzeń, które wymagają ochrony. Oczywiście, ważne jest zabezpieczenie całej instalacji, ale ograniczniki powinny być stosowane tam, gdzie mogą efektywnie działać, czyli blisko urządzeń. Linia elektroenergetyczna niskiego napięcia to również niewłaściwe miejsce dla ograniczników klasy D, ponieważ ich zadaniem jest ochrona konkretnych urządzeń, a nie samej infrastruktury zasilającej. Wprowadzenie ich do gniazd wtyczkowych, puszek w instalacji czy urządzeń bezpośrednio zapewnia ochronę przed przepięciami w momencie ich wystąpienia, co jest kluczowe w kontekście współczesnych instalacji elektrycznych, które często zasilają wrażliwe na zakłócenia elektroniki. Instalowanie ograniczników w złączach i miejscach wprowadzenia instalacji do budynku, szczególnie w obiektach z instalacją piorunochronną, może nie zapewnić wystarczającej ochrony, gdyż wyładowania atmosferyczne mogą zjawiskowo obciążać instalację. Z tego względu przy planowaniu i wykonaniu instalacji elektrycznych kluczowe jest dobre rozumienie zasad działania ograniczników przepięć oraz ich prawidłowe umiejscowienie zgodnie z normami i zaleceniami branżowymi.

Pytanie 17

Podłączenie gniazda wtykowego pozbawionego styku ochronnego do urządzenia elektrycznego klasy I ochronności spowoduje

A. zagrożenie porażeniem prądem elektrycznym
B. zwarcie w systemie elektrycznym
C. przeciążenie systemu elektrycznego
D. uszkodzenie urządzenia elektrycznego
Zgłoszona odpowiedź, dotycząca zagrożenia porażeniem prądem elektrycznym, jest absolutnie trafna. Gniazdo wtyczkowe bez styku ochronnego nie zapewnia odpowiedniego zabezpieczenia dla urządzeń elektrycznych, szczególnie tych klasy I, które wymagają ochrony przeciwporażeniowej poprzez uziemienie. Urządzenia klasy I korzystają z obudowy przewodzącej, która powinna być podłączona do uziemienia, aby w przypadku uszkodzenia izolacji prąd mógł być odprowadzony do ziemi, a nie przez użytkownika. W sytuacji, gdy takie urządzenie zostanie podłączone do gniazda bez styku ochronnego, istnieje wysokie ryzyko, że w przypadku awarii, prąd będzie mógł przepływać przez obudowę, co może prowadzić do porażenia prądem. Dlatego kluczowe jest przestrzeganie norm, takich jak PN-IEC 60364, które regulują zasady instalacji elektrycznych i określają, że gniazda powinny być projektowane z myślą o bezpieczeństwie użytkowników. W codziennym użytkowaniu, zapewnienie odpowiednich gniazd z uziemieniem jest podstawą bezpieczeństwa w każdym obiekcie.

Pytanie 18

Aby zmierzyć wartości elektryczne o stałym przebiegu, należy zastosować miernik o budowie

A. ferrodynamicznym
B. elektromagnetycznym
C. magnetoelektrycznym
D. elektrodynamicznym
Pomiar wielkości elektrycznych o przebiegu stałym wymaga zastosowania odpowiednich technologii pomiarowych, a wybór niewłaściwego ustroju może prowadzić do błędnych wyników. Ustrój ferrodynamiczny, choć użyteczny w pomiarach prądu zmiennego, opiera się na zasadzie siły elektromotorycznej wywołanej przez zmienne pole magnetyczne. W przypadku prądu stałego brak zmienności pola sprawia, że wynik pomiaru byłby nieprecyzyjny. Ustrój elektromagnetyczny również nie jest właściwy, ponieważ jego działanie bazuje na indukcji elektromagnetycznej, a więc również najlepiej sprawdza się w pomiarach prądu zmiennego. Z kolei ustrój elektrodynamiczny, który wykorzystuje zasadę działania siły działającej na przewodnik w polu magnetycznym, także nie jest dostosowany do pomiarów prądu stałego, co może prowadzić do nieprawidłowych odczytów. Wybór niewłaściwego ustroju pomiarowego może być wynikiem błędnego zrozumienia zasad działania różnych technologii pomiarowych, co jest typowym błędem wśród osób, które nie mają wystarczającej wiedzy na temat specyfiki pomiarów elektrycznych. Dlatego kluczowe jest zrozumienie różnic w konstrukcji i zasadzie działania różnych ustrojów pomiarowych oraz ich właściwego zastosowania w praktyce inżynierskiej.

Pytanie 19

W obiekcie zasilanym napięciem 400 V (3/N/PE 50Hz) zainstalowano następujące urządzenia:
1. przepływowy podgrzewacz wody - 12 kW - obwód trójfazowy
2. zmywarka - 3,5 kW - obwód jednofazowy
3. kuchenka elektryczna - 9,5 kW - obwód trójfazowy
4. pralka automatyczna - 4,5 kW - obwód jednofazowy

Każde z urządzeń stanowi odrębny obwód w tablicy rozdzielczej. Jakie wyłączniki instalacyjne należy zastosować z odpowiednimi wartościami prądu znamionowego, według kolejności dla każdego urządzenia (w kolejności 1,2,3,4)?

A. 20 A, 16 A, 20 A, 16 A
B. 16 A, 20 A, 20 A, 16 A
C. 20 A, 16 A, 16 A, 20 A
D. 16 A, 20 A, 20 A, 16 A
Wybór innych wartości prądów znamionowych dla wyłączników instalacyjnych może prowadzić do niewłaściwej ochrony odbiorników i stwarzać ryzyko ich uszkodzenia, a nawet pożaru. Dla przykładu, zastosowanie wyłącznika o prądzie 16 A dla kuchenki elektrycznej o mocy 9,5 kW w obwodzie 3-fazowym jest błędne, ponieważ moc ta wymaga przynajmniej 20 A. Prąd znamionowy wyłączników powinien być zawsze dobrany na podstawie obliczeń mocy i zastosowanej metody ochrony. Wybór zbyt niskiego prądu znamionowego może prowadzić do częstego wyłączania się zabezpieczenia, co nie tylko jest niewygodne, ale także może doprowadzić do uszkodzenia urządzenia przez nienależyte zasilanie. Z kolei użycie wyłącznika o zbyt wysokim prądzie może nie zapewnić odpowiedniej ochrony przed przeciążeniem, co stwarza ryzyko przegrzania i uszkodzenia przewodów. W normach instalacyjnych oraz w praktyce inżynierskiej kluczowe jest przestrzeganie zasad doboru zabezpieczeń, które uwzględniają zarówno moc odbiorników, jak i ich charakterystykę. Istotne jest również, aby uwzględniać współczynniki obciążenia, które mogą wpływać na rzeczywisty pobór prądu przez urządzenia. Dlatego też właściwe zrozumienie i stosowanie tych zasad jest niezbędne dla zapewnienia bezpieczeństwa instalacji elektrycznych.

Pytanie 20

Który z wymienionych rodzajów wkładek topikowych powinien być użyty do zabezpieczenia przed zwarciem jednofazowego silnika indukcyjnego klatkowego?

A. gR
B. gG
C. aL
D. aM
Wkładki topikowe typu aM są zaprojektowane specjalnie do zabezpieczania silników elektrycznych, w tym jednofazowych silników indukcyjnych klatkowych, przed zwarciem. Ich konstrukcja pozwala na tolerowanie przeciążeń, które mogą wystąpić podczas rozruchu silnika, co czyni je idealnym wyborem w tego typu aplikacjach. Wkładki aM oferują wysoką zdolność przerywania prądu oraz szybkie działanie, co jest kluczowe w przypadku zwarć. Przykładowo, w zastosowaniach przemysłowych, gdzie silniki są narażone na różne obciążenia, wkładki aM zapewniają nie tylko ochronę, ale również zwiększają niezawodność całego systemu. Dobrą praktyką jest stosowanie wkładek aM w połączeniu z odpowiednimi zabezpieczeniami przeciążeniowymi, aby zapewnić kompleksową ochronę silników. Tego rodzaju wkładki są zgodne z normami IEC 60269 oraz EN 60269, co potwierdza ich wysoką jakość i skuteczność.

Pytanie 21

Kabel oznaczony symbolem DYd 750 jest wykonany z

A. drutu pokrytego gumą
B. drutu pokrytego polwinitem
C. linki pokrytej polwinitem
D. linki pokrytej gumą
Przewód oznaczony symbolem DYd 750 wykonany jest z drutu izolowanego polwinitem, co oznacza, że jego główną funkcją jest zapewnienie odpowiedniej elastyczności oraz odporności na różne czynniki zewnętrzne. Polwinit to rodzaj materiału izolacyjnego, który jest szeroko stosowany w przemyśle elektrotechnicznym ze względu na swoje właściwości dielektryczne oraz odporność na działanie wilgoci i chemikaliów. Przewody tego typu są powszechnie używane w instalacjach elektrycznych, w tym w budownictwie oraz w różnych urządzeniach elektrotechnicznych. Dzięki zastosowaniu drutu, przewód charakteryzuje się lepszą przewodnością elektryczną w porównaniu do linki, co czyni go bardziej efektywnym w aplikacjach wymagających stałego połączenia elektrycznego. W standardach branżowych, takich jak PN-EN 60228, przewody tego typu są klasyfikowane jako posiadające wyspecyfikowane właściwości użytkowe, co czyni je odpowiednimi do różnych zastosowań, w tym zasilania w obiektach przemysłowych oraz mieszkalnych.

Pytanie 22

Które z podanych wskazówek nie odnosi się do realizacji nowych instalacji elektrycznych w lokalach mieszkalnych?

A. Gniazda wtykowe w każdym pomieszczeniu powinny pochodzić z wydzielonego obwodu
B. Odbiorniki o dużej mocy powinny być zasilane z osobnych obwodów
C. Gniazda wtykowe w kuchni powinny być podłączane do oddzielnego obwodu
D. Obwody oświetleniowe należy oddzielić od gniazd wtykowych
Wymienione zależności, które sugerują różne podejścia do instalacji elektrycznych w pomieszczeniach mieszkalnych, mogą wydawać się rozsądne, jednak w rzeczywistości opierają się na błędnych założeniach. Na przykład, zasilanie gniazd wtykowych w kuchni z osobnego obwodu jest praktyką zalecaną ze względu na konieczność obsługi urządzeń o dużym poborze mocy, takich jak kuchenki czy zmywarki. Odbiorniki dużej mocy powinny być zasilane z wydzielonych obwodów, aby zapobiec przeciążeniom i zwiększyć bezpieczeństwo użytkowania. Oddzielenie obwodów oświetleniowych od gniazd wtykowych również ma swoje uzasadnienie, ponieważ pozwala na niezależne zarządzanie oświetleniem i zasilaniem urządzeń, co w praktyce ułatwia diagnostykę i naprawy awarii. Z perspektywy normatywnej, wszystkie te podejścia są zgodne z europejskimi standardami bezpieczeństwa instalacji elektrycznych, które mają na celu minimalizację ryzyka związanego z użytkowaniem energii elektrycznej. Błędne wnioski wynikają często z niepełnego zrozumienia zasad projektowania instalacji elektrycznych i mogą prowadzić do sytuacji niebezpiecznych, takich jak przeciążenia, które w skrajnych przypadkach mogą skutkować pożarami. Dlatego tak ważne jest, aby przestrzegać sprawdzonych zasad i standardów, aby zapewnić zarówno komfort, jak i bezpieczeństwo użytkowników instalacji elektrycznych.

Pytanie 23

Jakim symbolem oznacza się przewód jednożyłowy z żyłą wykonaną z drutu aluminiowego, w izolacji PCV, o przekroju żyły 2,5 mm2?

A. ALY 2,5 mm2
B. YLY 2,5 mm2
C. ADY 2,5 mm2
D. YDY 2,5 mm2
Odpowiedź ADY 2,5 mm² jest poprawna, ponieważ oznaczenie to odnosi się do przewodów jednożyłowych wykonanych z drutu aluminiowego, które są izolowane polwinitą (PVC). Przewody te charakteryzują się odpowiednimi właściwościami elektrycznymi i mechanicznymi, co czyni je odpowiednimi do stosowania w różnorodnych instalacjach elektrycznych, w tym w budownictwie, przemyśle czy instalacjach domowych. Przekrój żyły wynoszący 2,5 mm² jest standardowym rozwiązaniem dla obwodów o niewielkim poborze prądu, takich jak oświetlenie czy gniazdka. Zastosowanie przewodów aluminiowych staje się coraz bardziej popularne ze względu na ich niską masę i korzystne właściwości przewodzące, pod warunkiem, że są odpowiednio dobrane do obciążenia. W przemyśle elektrycznym ważne jest również, aby wszelkie elementy instalacji spełniały normy bezpieczeństwa, co potwierdza odpowiednia certyfikacja. W kontekście zastosowania, przewody ADY często wykorzystuje się w instalacjach, gdzie nie ma dużych przeciążeń, a warunki pracy są umiarkowane.

Pytanie 24

Jakie oznaczenie, zgodnie z normą zharmonizowaną, odpowiada polskiemu oznaczeniu kabla DY 300/500 V?

A. H05V-K
B. H05V-U
C. H03W-F
D. H03VH-H
Oznaczenie H05V-U odnosi się do przewodów elektrycznych, które są zgodne z europejską normą harmonizowaną. Oznaczenie to oznacza przewody o napięciu roboczym 300/500 V, przeznaczone do instalacji w budynkach, które charakteryzują się dużą elastycznością oraz odpornością na działanie olejów i wysokiej temperatury. Przewody te są powszechnie stosowane w różnorodnych aplikacjach, takich jak instalacje oświetleniowe, sprzęt AGD oraz urządzenia przenośne. Dzięki zastosowaniu odpowiednich materiałów izolacyjnych, przewody H05V-U wykazują doskonałe właściwości dielektryczne, co zapewnia ich wysoką niezawodność i bezpieczeństwo użytkowania. Dodatkowo, norma ta podkreśla znaczenie stosowania przewodów, które spełniają rygorystyczne wymogi dotyczące ochrony przed zwarciami i przeciążeniami, co jest kluczowe w zapewnieniu bezpieczeństwa instalacji elektrycznych. W praktyce, wybór przewodów zgodnych z oznaczeniem H05V-U gwarantuje wysoką jakość wykonania i długowieczność instalacji elektrycznych oraz minimalizuje ryzyko wystąpienia awarii.

Pytanie 25

Który wyłącznik jest oznaczony symbolem CLS6-B6/2?

A. Dwubiegunowy różnicowoprądowy
B. Dwubiegunowy podnapięciowy
C. Dwubiegunowy przepięciowy
D. Dwubiegunowy instalacyjny nadprądowy
Wyłącznik oznaczony symbolem CLS6-B6/2 to instalacyjny nadprądowy wyłącznik dwubiegunowy, który jest kluczowym elementem w systemach elektrycznych. Jego główną funkcją jest ochrona obwodów przed przeciążeniem i zwarciem, co zapobiega uszkodzeniom urządzeń, a także minimalizuje ryzyko pożaru. Instalacyjne wyłączniki nadprądowe są projektowane zgodnie z normą IEC 60898, co zapewnia ich wysoką jakość i niezawodność. Przykładowe zastosowanie to użycie tego typu wyłączników w instalacjach domowych, gdzie chronią obwody oświetleniowe oraz gniazda elektryczne. W zależności od specyfikacji, wyłączniki mogą być skonfigurowane do ochrony obwodów jednofazowych lub trójfazowych, co sprawia, że są wszechstronne. Dodatkowo, ich funkcjonalność może być wzbogacona o elementy takie jak współpraca z urządzeniami różnicowoprądowymi, co zwiększa bezpieczeństwo instalacji. Wybór odpowiedniego wyłącznika jest kluczowy dla efektywności i bezpieczeństwa całego systemu elektrycznego.

Pytanie 26

W zakres inspekcji instalacji elektrycznej nie wchodzi

A. ocena dostępu do urządzeń, co umożliwia ich wygodną obsługę oraz eksploatację
B. sprawdzenie oznaczeń obwodów i urządzeń zabezpieczających
C. weryfikacja poprawności oznaczeń przewodów neutralnych oraz ochronnych
D. pomiar rezystancji uziemienia
Pomiar rezystancji uziemienia to kluczowy element zapewnienia bezpieczeństwa i prawidłowego funkcjonowania instalacji elektrycznych. Uziemienie ma na celu odprowadzenie nadmiaru prądu do ziemi, co chroni przed porażeniem elektrycznym i uszkodzeniem urządzeń. Przykładowo, w instalacjach przemysłowych, gdzie stosowane są maszyny o wysokich mocach, pomiar rezystancji uziemienia jest niezbędny do zapewnienia, że układ uziemiający jest skuteczny. Zgodnie z normą PN-EN 61557-4, rezystancja uziemienia powinna być mniejsza niż 10 Ω, co zapewnia odpowiednią ochronę przed skutkami udarów elektrycznych. Regularne pomiary rezystancji uziemienia pozwalają na wczesne wykrywanie problemów, takich jak korozja elementów uziemiających, co może prowadzić do ich degradacji. W praktyce, takie pomiary powinny być przeprowadzane co najmniej raz w roku lub częściej w przypadku instalacji narażonych na zmienne warunki atmosferyczne. Właściwe utrzymanie systemu uziemiającego jest nie tylko wymogiem prawnym, ale także kluczowym elementem ochrony osób i mienia.

Pytanie 27

Która zależność musi być spełniona podczas wymiany uszkodzonych przewodów instalacji elektrycznej i ewentualnej zmiany ich zabezpieczeń nadprądowych?

Iz – prąd obciążalności długotrwałej przewodu
Ib – prąd znamionowy zabezpieczenia przeciążeniowego
IB – prąd wynikający z przewidywanej mocy przesyłanej przewodem

A. IN ≤ IB ≤ IZ
B. IB ≤ IZ ≤ IN
C. IZ ≤ IN ≤ IB
D. IB ≤ IN ≤ IZ
Wybór odpowiedzi, która nie spełnia relacji IB ≤ IN ≤ IZ, prowadzi do nieprawidłowego rozumienia zasad projektowania instalacji elektrycznych. Niektóre z niepoprawnych odpowiedzi sugerują, że prąd obciążenia może być większy od prądu znamionowego zabezpieczenia, co jest fundamentalnym błędem. Taki błąd może prowadzić do sytuacji, w której zabezpieczenie nie zadziała w odpowiednim momencie, co z kolei skutkuje przegrzaniem przewodów i ich uszkodzeniem. Istotne jest, aby pamiętać, że prąd znamionowy zabezpieczenia powinien być zawsze dostosowany do przewidywanego obciążenia; w przeciwnym razie może dojść do ryzyka awarii. Ponadto, nieodpowiednie przypisanie wartości prądu obciążenia w stosunku do obciążalności przewodów prowadzi do nieefektywnego działania całej instalacji. Zgodnie z normami, przed przystąpieniem do wymiany przewodów lub zmiany zabezpieczeń, należy dokładnie obliczyć zarówno IB, jak i IZ oraz zrozumieć, jak te wartości wpływają na dobór IN. Ignorowanie tych zasad może prowadzić do kosztownych błędów w instalacji elektrycznej, które mogą zagrażać bezpieczeństwu użytkowników i mienia.

Pytanie 28

Woltomierz działający na zasadzie magnetoelektrycznej, który mierzy napięcie sinusoidalnie z dodatkiem składowej stałej, wskaże wartość

A. chwilową napięcia
B. średnią napięcia
C. znamionową napięcia
D. skuteczną napięcia
Wybór odpowiedzi dotyczącej skutecznej, chwilowej lub znamionowej wartości napięcia w kontekście tego pytania wskazuje na niepełne zrozumienie zasad działania woltomierzy magnetoelektrycznych oraz różnic pomiędzy różnymi typami pomiarów napięcia. Skuteczna wartość napięcia, często używana w analizach obwodów prądu przemiennego, odnosi się do wartości rms (root mean square), która jest miarą dostarczanej energii. Mimo że pomiar skuteczny jest istotny w kontekście obliczeń związanych z mocą, woltomierz magnetoelektryczny w tym przypadku nie wskazuje tej wartości w przypadku napięcia sinusoidalnego ze składową stałą. Z kolei chwilowa wartość napięcia odnosi się do pomiaru w danym momencie czasu, co nie jest praktycznym zastosowaniem w przypadku długoterminowego pomiaru napięcia, a ponadto nie uwzględnia składowej stałej. Odpowiedź dotycząca znamionowej wartości napięcia także nie jest właściwa, gdyż wartość znamionowa jest określona dla określonych warunków pracy urządzenia i służy do oceny jego specyfikacji, co również nie jest tożsame z pomiarem rzeczywistym. W efekcie, wybierając nieprawidłowe odpowiedzi, można nieświadomie wpłynąć na skuteczność i bezpieczeństwo aplikacji elektrycznych, co jest sprzeczne z dobrą praktyką inżynieryjną oraz standardami branżowymi.

Pytanie 29

Które oznaczenie literowe ma przewód o przekroju przedstawionym na rysunku?

Ilustracja do pytania
A. YDY
B. YDYp
C. DY
D. LgY
Wybór innych oznaczeń literowych, takich jak LgY, YDYp czy DY, wskazuje na pewne nieporozumienia związane z klasyfikacją i charakterystyką przewodów elektrycznych. Oznaczenie LgY odnosi się do przewodów instalacyjnych, które zazwyczaj są mniej elastyczne i nie posiadają ekranu, co ogranicza ich zastosowanie w środowiskach narażonych na zakłócenia elektromagnetyczne. Z kolei YDYp to przewód, który nie jest standardowym oznaczeniem i może budzić wątpliwości co do swojej specyfikacji technicznej, co może prowadzić do nieodpowiednich wyborów materiałowych w projektach elektrycznych. Oznaczenie DY odnosi się do przewodów, które są w zasadzie przewodami jednożyłowymi, co jest niezgodne z przedstawionym rysunkiem ilustrującym przewód z trzema żyłami. Typowe błędy myślowe prowadzące do wyboru tych niepoprawnych odpowiedzi obejmują dezorientację w zakresie oznaczeń oraz niewłaściwe powiązanie ich z konkretnymi zastosowaniami. Aby skutecznie identyfikować przewody, kluczowe jest zrozumienie różnic między poszczególnymi oznaczeniami oraz ich zastosowaniem w praktycznych sytuacjach. Wiedza ta jest istotna dla zapewnienia bezpieczeństwa i efektywności instalacji elektrycznych.

Pytanie 30

Jaką cechę materiału izolacyjnego wskazuje ostatnia litera w oznaczeniu kabla LYc?

A. Odporność na olej
B. Niepalność
C. Zwiększenie wytrzymałości mechanicznej
D. Odporność na ciepło
Oznaczenie przewodu LYc wskazuje, że materiał izolacyjny jest odporny na wysoką temperaturę. To jest mega ważne, szczególnie w zastosowaniach, gdzie przewody pracują w trudnych warunkach, jak w przemyśle czy podczas budowy. Przykładowo, przewody w piecach przemysłowych muszą wytrzymać naprawdę duże temperatury, bo inaczej izolacja może się uszkodzić. Dlatego dobrze jest wybierać przewody, które mają dużą odporność na ciepło, zgodne z normami, jak IEC czy EN. Z mojego doświadczenia, zwracanie uwagi na klasyfikację materiałów izolacyjnych jest kluczowe. Muszą one spełniać normy dotyczące temperatury pracy i bezpieczeństwa pożarowego, to ważne dla ochrony budynków i sprzętu.

Pytanie 31

Który z poniższych przewodów jest przeznaczony do stosowania na zewnątrz budynków?

A. YKY
B. YDY
C. LNY
D. NYM
Przewód YKY jest specjalnie zaprojektowany do stosowania na zewnątrz budynków. Głównym atutem tego przewodu jest jego izolacja i powłoka ochronna, które zapewniają odporność na warunki atmosferyczne, takie jak deszcz, śnieg czy promieniowanie UV. Dzięki zastosowaniu polwinitowej izolacji oraz dodatkowej powłoki ochronnej, przewód YKY spełnia wymagania norm dotyczących instalacji zewnętrznych. Ważne jest, aby podczas montażu przewodów na zewnątrz budynków stosować materiały certyfikowane i przetestowane pod kątem wytrzymałości na ekstremalne warunki środowiskowe. Przewód YKY jest również odporny na uszkodzenia mechaniczne, co czyni go idealnym wyborem do stosowania na otwartej przestrzeni, gdzie mogą występować różnego rodzaju zagrożenia fizyczne. Z mojego doświadczenia wynika, że przewody te są powszechnie używane w instalacjach ogrodowych, oświetleniowych oraz w miejscach, gdzie wymagana jest niezawodność i trwałość przez długi czas.

Pytanie 32

Przedstawione w tabeli parametry techniczne dotyczą

Parametry techniczne
  • Moc przyłączeniowa
  • Rodzaj przyłącza
  • Rodzaj uziomu
  • Typy przewodów
  • Liczba obwodów

A. instalacji odgromowej budynku.
B. instalacji elektrycznej.
C. linii kablowej zasilającej budynek.
D. linii napowietrznej niskiego napięcia.
Wybór instalacji elektrycznej jako poprawnej odpowiedzi jest zasłużony, ponieważ parametry techniczne przedstawione w tabeli, takie jak moc przyłączeniowa, rodzaj przyłącza, uziemienie oraz liczba obwodów, są kluczowe dla prawidłowego zaprojektowania i funkcjonowania instalacji elektrycznej w obiektach budowlanych. Moc przyłączeniowa wskazuje na maksymalne zapotrzebowanie na energię elektryczną, co jest istotne przy doborze odpowiednich przewodów i zabezpieczeń. Rodzaj przyłącza oraz system uziemienia są niezwykle ważne dla bezpieczeństwa użytkowników, gdyż wpływają na właściwe odprowadzenie ładunków elektrycznych i ochronę przed porażeniem prądem. Typy przewodów oraz liczba obwodów są również kluczowe dla zapewnienia stabilności i elastyczności instalacji, umożliwiając podział obciążenia oraz efektywne zarządzanie energią w budynku. Zgodność z normami PN-IEC 60364 oraz innymi standardami branżowymi jest niezbędna dla osiągnięcia wysokich standardów bezpieczeństwa oraz efektywności energetycznej.

Pytanie 33

Które z poniższych wskazówek nie odnosi się do realizacji nowych instalacji elektrycznych w obiektach mieszkalnych?

A. Odbiorniki o dużej mocy należy zasilać z dedykowanych obwodów
B. Gniazda wtyczkowe w kuchni powinny być zasilane z oddzielnego obwodu
C. Obwody oświetleniowe powinny być oddzielone od gniazd wtyczkowych
D. Gniazda wtyczkowe w każdym pomieszczeniu powinny być zasilane z oddzielnego obwodu
Gniazda wtyczkowe każdego pomieszczenia zasilane z osobnego obwodu nie są praktyką zalecaną w kontekście nowych instalacji elektrycznych w mieszkaniach. W rzeczywistości gniazda wtyczkowe są zazwyczaj grupowane w obwody, co pozwala na efektywniejsze wykorzystanie przewodów oraz zmniejszenie kosztów instalacji. Zgodnie z normami PN-IEC 60364, zaleca się zasilanie gniazd wtyczkowych w różnych pomieszczeniach z jednego obwodu, co czyni instalację bardziej elastyczną i łatwiejszą w eksploatacji. Przykładowo, w przypadku lokali mieszkalnych często stosuje się obwody trójfazowe, które zapewniają równomierne obciążenie i zmniejszają ryzyko przeciążenia. Gniazda wtyczkowe w kuchni, które wymagają osobnego obwodu, są wyjątkiem, ponieważ często zasilają urządzenia o dużej mocy, takie jak piekarniki czy lodówki. Ostatecznie, taka praktyka oszczędza na kosztach instalacji i ułatwia przyszłe modyfikacje bez potrzeby rozbudowy infrastruktury elektrycznej.

Pytanie 34

Które z poniższych parametrów technicznych odnoszą się do przekaźnika bistabilnego?

A. Napięcie zasilania, prąd obciążenia, wartość prądu impulsu sterującego, opóźnienie zadziałania, sygnalizacja załączenia
B. Napięcie znamionowe, znamionowy prąd różnicowy zadziałania, prąd znamionowy ciągły, obciążalność zwarciowa, częstotliwość znamionowa, liczba biegunów
C. Liczba biegunów, rodzaj charakterystyki, prąd znamionowy, szerokość w modułach
D. Typ modułu, zakres zliczania, rodzaj wyjścia, parametry wyjścia, napięcie zasilania, tryby pracy licznika
Przekaźnik bistabilny to element automatyki, który po zadziałaniu przechodzi w stan, w którym pozostaje do momentu ponownego zadziałania. Parametry techniczne, takie jak napięcie zasilania, prąd obciążenia, wartość prądu impulsu sterującego, opóźnienie zadziałania oraz sygnalizacja załączenia, są kluczowe dla jego prawidłowego funkcjonowania. Napięcie zasilania określa, jakie napięcie musi być dostarczone do przekaźnika, aby mógł on prawidłowo działać. Prąd obciążenia to maksymalny prąd, który może przechodzić przez styk przekaźnika, co jest istotne przy doborze urządzenia do konkretnych aplikacji. Wartość prądu impulsu sterującego wskazuje, jaki prąd jest potrzebny do zmiany stanu przekaźnika i jest kluczowa dla jego efektywności. Opóźnienie zadziałania pozwala na określenie czasu reakcji, co jest istotne w aplikacjach wymagających precyzyjnego sterowania. Sygnalizacja załączenia informuje użytkownika o stanie przekaźnika, co ma znaczenie w kontekście bezpieczeństwa i diagnostyki. Przykładowo, w systemach automatyki budynkowej, przekaźniki bistabilne mogą być używane do kontroli oświetlenia oraz zarządzania innymi urządzeniami, co czyni je niezbędnymi w inteligentnych instalacjach. Zrozumienie tych parametrów jest kluczowe dla projektowania i wdrażania systemów automatyki zgodnych z obowiązującymi standardami branżowymi.

Pytanie 35

Która z poniższych czynności ocenia efektywność ochrony uzupełniającej przed porażeniem prądem elektrycznym?

A. Pomiar rezystancji izolacji przewodów
B. Badanie stanu izolacji podłóg
C. Pomiar impedancji pętli zwarciowej
D. Badanie wyłącznika różnicowoprądowego
Badanie wyłącznika różnicowoprądowego (RCD) jest kluczowym krokiem w ocenie skuteczności ochrony przed porażeniem prądem elektrycznym. Wyłączniki różnicowoprądowe są zaprojektowane w celu wykrywania różnicy prądów między przewodem fazowym a neutralnym. W momencie, gdy prąd upływowy, wskazujący na potencjalne porażenie prądem, przekroczy ustalony próg, wyłącznik natychmiast odłącza zasilanie, co minimalizuje ryzyko urazu. Badanie RCD polega na sprawdzeniu, czy wyłącznik działa prawidłowo i odłącza obwód w określonym czasie i przy zadanym prądzie upływowym, co jest zgodne z normami takimi jak PN-EN 61008. Praktycznym przykładem jest rutynowe testowanie RCD w obiektach użyteczności publicznej, gdzie bezpieczeństwo użytkowników ma kluczowe znaczenie. Regularne kontrole RCD powinny być częścią planu konserwacji instalacji elektrycznych, aby zapewnić stałą ochronę przed zagrożeniami związanymi z prądem elektrycznym.

Pytanie 36

Które urządzenie przedstawiono na ilustracji?

Ilustracja do pytania
A. Regulator temperatury.
B. Przekaźnik priorytetowy.
C. Automat zmierzchowy.
D. Przekaźnik czasowy.
Urządzenie przedstawione na ilustracji to przekaźnik czasowy, co można stwierdzić na podstawie charakterystycznych oznaczeń obecnych na jego obudowie, w tym symboli związanych z czasem oraz pokręteł służących do ustawiania opóźnień. Przekaźniki czasowe są kluczowymi elementami w systemach automatyki, umożliwiającymi kontrolowanie działania urządzeń w określonych odstępach czasu. Na przykład, w instalacjach oświetleniowych, przekaźniki czasowe mogą być ustawiane tak, aby włączać światło o zmierzchu i wyłączać je o świcie, co jest zgodne z zasadami efektywnego zarządzania energią. Dodatkowo, oznaczenia takie jak 'T1' i 'T2' na urządzeniu wskazują na różne funkcje czasowe, co potwierdza jego przeznaczenie. Zastosowanie przekaźników czasowych jest powszechne w różnych sektorach, od budynków mieszkalnych, gdzie automatyzują oświetlenie, po przemysł, gdzie kontrolują maszyny w zależności od czasu pracy. Stosowanie przekaźników czasowych w zgodzie z normami branżowymi, takimi jak IEC 60947, zapewnia bezpieczeństwo oraz efektywność operacyjną systemów elektrycznych i elektronicznych.

Pytanie 37

W jakiej jednostce miary określa się moment obrotowy, który należy zastosować przy dokręcaniu śrub w urządzeniach elektrycznych?

A. kg
B. kgˑm2
C. Pa
D. Nˑm
Moment siły, znany również jako moment obrotowy, jest miarą siły, która powoduje obrót ciała wokół osi. Jednostką momentu siły w międzynarodowym układzie jednostek SI jest niutonometr (N·m). W kontekście dokręcania zacisków śrubowych aparatów elektrycznych, używanie odpowiedniego momentu siły jest kluczowe, aby zapewnić prawidłowe i bezpieczne połączenie elektryczne. Zbyt mały moment może prowadzić do luzów, co z kolei może skutkować przerwaniem kontaktu elektrycznego, a zbyt duży moment może spowodować uszkodzenie śrub lub elementów, które są łączone. W praktyce, producenci sprzętu często podają zalecany moment dokręcania w instrukcjach obsługi, co może być wzorem do naśladowania w codziennym użytkowaniu. Stosowanie momentu siły w N·m jest również zgodne z normami branżowymi, co podkreśla jego znaczenie w zapewnieniu bezpieczeństwa i niezawodności w instalacjach elektrycznych.

Pytanie 38

Przedstawiona na ilustracji wstawka kalibrowa bezpiecznika przeznaczona jest do instalacji o napięciu znamionowym

Ilustracja do pytania
A. co najmniej 500 V i wkładek topikowych o prądzie znamionowym co najmniej 63 A
B. nie wyższym niż 500 V i wkładek topikowych o prądzie znamionowym nie przekraczającym 63 A
C. co najmniej 500 V i wkładek topikowych o prądzie znamionowym nie przekraczającym 63 A
D. nie wyższym niż 500 V i wkładek topikowych o prądzie znamionowym co najmniej 63 A
Wybrana odpowiedź jest poprawna, ponieważ na ilustracji przedstawiona jest wstawka kalibrowa bezpiecznika z oznaczeniami "63 A" oraz "500 V". Te oznaczenia wskazują, że wstawka jest przeznaczona do instalacji, w których napięcie znamionowe nie może przekraczać 500 V oraz dla wkładek topikowych o prądzie znamionowym nie przekraczającym 63 A. W praktyce, zastosowanie odpowiednich bezpieczników jest kluczowe dla zapewnienia bezpieczeństwa w systemach elektroenergetycznych oraz ochrony przed przeciążeniem i zwarciem. Standardy takie jak PN-EN 60269, które dotyczą bezpieczników, określają wymagania dotyczące ich instalacji oraz właściwości, co pozwala na ich prawidłowe zastosowanie w różnych warunkach. W przypadku stosowania wyższych napięć lub większych prądów, konieczne jest stosowanie innych typów wkładek, co zwiększa ryzyko uszkodzeń i zagrożeń. Dlatego tak ważne jest, aby podczas wyboru zabezpieczeń kierować się wskazaniami producentów oraz normami branżowymi.

Pytanie 39

Jakie narzędzia trzeba przygotować do wyznaczenia miejsca na zainstalowanie rozdzielnicy podtynkowej w ścianie murowanej?

A. Sznurek traserski, młotek, punktak
B. Przymiar kreskowy, ołówek traserski, rysik
C. Rysik, kątownik, punktak, młotek
D. Przymiar taśmowy, poziomnica, ołówek traserski
Poprawna odpowiedź to przymiar taśmowy, poziomnica oraz ołówek traserski. Te narzędzia są kluczowe w procesie trasowania, ponieważ zapewniają precyzję oraz dokładność wymagane przy montażu rozdzielnicy podtynkowej. Przymiar taśmowy pozwala na dokładne mierzenie odległości i wyznaczanie miejsca, gdzie rozdzielnica powinna być umiejscowiona. Poziomnica jest niezbędna do sprawdzenia, czy zamontowana rozdzielnica jest w idealnej pozycji, co ma kluczowe znaczenie dla dalszych prac instalacyjnych. Ołówek traserski umożliwia zaznaczenie punktów na ścianie, co ułatwia przeniesienie wymiarów na materiał budowlany. Standardy branżowe podkreślają znaczenie precyzyjnego pomiaru w instalacjach elektrycznych, co bezpośrednio przekłada się na bezpieczeństwo oraz funkcjonalność całego systemu. Użycie tych narzędzi w odpowiednich technikach trasowania, takich jak wyznaczanie pionów i poziomów, zapewnia, że instalacja będzie zgodna z normami budowlanymi i elektrycznymi, co jest kluczowe dla zachowania bezpieczeństwa użytkowania.

Pytanie 40

Jaką rolę pełnią uzwojenia pomocnicze w silniku prądu stałego?

A. Obniżają rezystancję obwodu twornika
B. Generują napięcie remanentu
C. Usuwają niekorzystne efekty wynikające z działania twornika
D. Przeciwdziałają rozbieganiu się silnika w przypadku spadku obciążenia
Uzwojenia pomocnicze w silniku prądu stałego to naprawdę ważny temat, bo mają spory wpływ na to, jak ten silnik działa. Kiedy silnik jest w ruchu, to nieuniknione są pewne zjawiska, jak efekt rozbiegowy czy spadek momentu obrotowego. Uzwojenia pomocnicze, poprzez swoje połączenia, pomagają w stabilizacji tego momentu obrotowego i wpływają na ogólną wydajność silnika. W praktyce widać to na przykład w elektromagnesach czy w napędach maszyn przemysłowych, gdzie te uzwojenia zwiększają stabilność pracy silnika. Co więcej, ich zastosowanie pomaga w poprawie charakterystyk silnika, gdy obciążenie się zmienia, co jest naprawdę istotne w inżynierii elektrycznej. Warto też zwrócić uwagę na to, że dobrze zaprojektowane uzwojenia pomocnicze mogą zmniejszyć wahania prądu i wydłużyć żywotność silnika. Zgodność z normami IEC i IEEE przy ich implementacji jest kluczowa, żeby silnik działał na optymalnym poziomie i był niezawodny przez długi czas.