Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 28 maja 2025 21:53
  • Data zakończenia: 28 maja 2025 22:21

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Aby przeprowadzić bezdotykowy pomiar bardzo wysokiej temperatury, powinno się użyć

A. termometru rezystancyjnego
B. termometru półprzewodnikowego
C. termopary
D. pirometru
Pirometr to instrument przeznaczony do bezdotykowego pomiaru temperatury, wykorzystujący promieniowanie podczerwone emitowane przez obiekty. Jego działanie opiera się na zasadzie, że wszystkie obiekty emitują promieniowanie w zależności od swojej temperatury. Pirometry są szczególnie przydatne w sytuacjach, gdzie tradycyjne metody pomiaru, takie jak termometry cieczowe czy termopary, są niewłaściwe lub niemożliwe do zastosowania, na przykład w przypadku gorących lub trudno dostępnych powierzchni. W przemyśle metalurgicznym, hutniczym czy w obiektach energetycznych pirometry znajdują szerokie zastosowanie do monitorowania procesów technologicznych oraz do oceny temperatury w piecach. Standardy takie jak ASTM E2877-13 definiują metody i procedury pomiarowe dla pirometrów, co zwiększa ich wiarygodność i precyzję. Dzięki zastosowaniu pirometrów można także uniknąć kontaktu z niebezpiecznymi materiałami oraz zredukować ryzyko uszkodzenia czujników w ekstremalnych warunkach temperaturowych.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Jakiego typu przewód jest zalecany do komunikacji w magistrali CAN?

A. Przewodu koncentrycznego
B. Skrętki dwuprzewodowej
C. Skrętki czteroparowej, ekranowanej
D. Przewodu dziewięciożyłowego
Wybór nieodpowiedniego przewodu do komunikacji w magistrali CAN może prowadzić do licznych problemów, takich jak zakłócenia sygnału, błędy w transmisji oraz obniżona wydajność całego systemu. Skrętka czteroparowa, mimo że jest popularna w sieciach Ethernet i innych systemach komunikacyjnych, nie jest zoptymalizowana pod kątem wymagań magistrali CAN. System ten wymaga przewodu o specyficznych właściwościach, takich jak niska impedancja i efektywna ochrona przed zakłóceniami, co skrętka czteroparowa nie zapewnia. Przewód koncentryczny stosowany jest w telekomunikacji i nie nadaje się do zastosowania w magistrali CAN, ponieważ jego konstrukcja nie wspiera metod różnicowych, które są kluczowe dla stabilnej komunikacji w tym standardzie. Ponadto, przewód dziewięciożyłowy jest zbyt skomplikowany i nieefektywny do implementacji w systemach CAN, które wykorzystują jedynie dwa przewody do komunikacji. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków często opierają się na mylnej interpretacji zastosowania różnych typów przewodów bez uwzględnienia specyfikacji technicznych i wymagań dotyczących sygnałów CAN. Rekomendacje branżowe jasno wskazują, że dla magistrali CAN najlepszym wyborem jest skrętka dwuprzewodowa, co zapewnia efektywność i niezawodność całego systemu.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Zasada hydrostatycznego smarowania, która polega na oddzieleniu współdziałających powierzchni samoistnie powstającym klinem smarnym, stosowana jest w

A. zaworach kulowych
B. łożyskach ślizgowych
C. hamulcach tarczowych
D. łożyskach kulkowych
Zasada smarowania hydrostatycznego w łożyskach ślizgowych polega na rozdzieleniu współpracujących powierzchni za pomocą cienkiej warstwy oleju, która tworzy klin smarny. Ten proces jest kluczowy dla minimalizacji tarcia oraz zużycia elementów. W łożyskach ślizgowych, podczas pracy, dochodzi do wytworzenia ciśnienia w oleju, co umożliwia uniesienie elementu ruchomego i zredukowanie kontaktu metal-metal. Przykłady zastosowania obejmują maszyny przemysłowe, takie jak tokarki czy frezarki, gdzie precyzyjne ruchy są kluczowe. Dobre praktyki w projektowaniu takich łożysk uwzględniają odpowiednie dobranie materiałów, które nie tylko zmniejszają tarcie, ale także zwiększają trwałość. Stosowanie smarowania hydrostatycznego pozwala na wydłużenie okresów między konserwacjami oraz zwiększenie efektywności energetycznej urządzeń, co jest zgodne z normami ISO 281 dotyczącymi trwałości łożysk.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Zwiększenie wartości częstotliwości wyjściowej falownika zasilającego silnik indukcyjny, przy niezmiennym obciążeniu silnika, prowadzi do

A. zwiększenia prędkości obrotowej
B. zmniejszenia prędkości obrotowej
C. spadku rezystancji uzwojeń
D. wzrostu rezystancji uzwojeń
Wzrost wartości częstotliwości wyjściowej falownika zasilającego silnik indukcyjny prowadzi do zwiększenia prędkości obrotowej silnika. Wynika to z faktu, że prędkość obrotowa silnika indukcyjnego jest bezpośrednio proporcjonalna do częstotliwości zasilania, co jest opisane równaniem: n = (120 * f) / p, gdzie n to prędkość obrotowa w obrotach na minutę (RPM), f to częstotliwość w hercach (Hz), a p to liczba par biegunów silnika. W praktyce oznacza to, że zmiana częstotliwości zasilania pozwala na precyzyjne sterowanie prędkością obrotową silnika, co jest kluczowe w wielu aplikacjach przemysłowych, takich jak napędy wentylatorów, pomp czy przenośników taśmowych. Wzrost prędkości obrotowej może również skutkować zwiększeniem wydajności procesu produkcyjnego oraz optymalizacją zużycia energii, ponieważ falowniki pozwalają na dostosowanie parametrów pracy silnika w zależności od aktualnych potrzeb. Współczesne standardy w automatyce przemysłowej promują wykorzystanie falowników jako najbardziej efektywnego sposobu zarządzania napędami elektrycznymi, co przekłada się na większą elastyczność i oszczędności energetyczne.

Pytanie 19

Aby połączyć dwa stalowe elementy w procesie zgrzewania, należy

A. docisnąć je podczas podgrzewania miejsca łączenia.
B. stopić je w miejscu zetknięcia bez użycia spoiwa.
C. wprowadzić płynne spoiwo pomiędzy te elementy.
D. stopić je w miejscu styku z użyciem spoiwa.
Zgrzewanie elementów stalowych bez użycia odpowiedniego podgrzania oraz docisku prowadzi do nieefektywnego połączenia, co może skutkować osłabieniem struktury. Odpowiedzi sugerujące stopienie materiałów w miejscu styku bez dodawania spoiwa lub z dodatkiem spoiwa zakładają, że podstawowe zasady zgrzewania, takie jak generowanie ciepła poprzez opór, są pomijane. Proces ten wymaga precyzyjnego zarządzania temperaturą oraz siłą docisku, co jest kluczowe dla uzyskania wysokiej jakości połączenia. Zastosowanie ciekłego spoiwa w miejscu styku jest typowe dla lutowania, a nie zgrzewania, co jest fundamentalnym błędem w rozumieniu tych procesów. W rzeczywistości, w zgrzewaniu nie jest przewidziane stosowanie spoiw, ponieważ celem jest stopienie materiałów na krawędziach, co prowadzi do ich wzajemnego związania. Liczne standardy, takie jak AWS D1.1, podkreślają znaczenie odpowiednich warunków zgrzewania, które obejmują zarówno temperaturę, jak i nacisk. Ignorowanie tych parametrów może prowadzić do powstania wad strukturalnych, takich jak pęknięcia czy niepełne połączenia, co w konsekwencji zagraża bezpieczeństwu konstrukcji.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Jakie narzędzie powinno się zastosować do przygotowania przewodu LgY 0,75 mm2 przed jego montażem w listwie zaciskowej?

A. Klucz płaski
B. Zaciskarkę konektorów
C. Klucz dynamometryczny
D. Zaciskarkę tulejek
Wybór klucza płaskiego lub klucza dynamometrycznego do przygotowania przewodu LgY 0,75 mm² do montażu w listwie zaciskowej jest nieodpowiedni, ponieważ narzędzia te nie są przeznaczone do wykonywania połączeń elektrycznych. Klucz płaski jest używany głównie do luzowania lub dokręcania nakrętek i śrub, co nie ma zastosowania w kontekście zaciskania przewodów. Z kolei klucz dynamometryczny, który służy do precyzyjnego dokręcania połączeń z określonym momentem obrotowym, również nie ma zastosowania w procesie przygotowania przewodów do montażu w listwie zaciskowej. W przypadku połączeń elektrycznych kluczowe jest zapewnienie odpowiedniej struktury połączenia, co osiąga się jedynie za pomocą narzędzi dedykowanych do tego celu, a nie standardowych narzędzi mechanicznych. Wybór niewłaściwego narzędzia może prowadzić do słabych połączeń, co skutkuje podwyższoną rezystancją i ryzykiem awarii instalacji. Zaciskarka konektorów, chociaż może wydawać się lepszym wyborem, nie jest odpowiednia w kontekście przewodów LgY, które wymagają specyficznego typu zaciskania. Podsumowując, nieprzemyślane podejście do doboru narzędzi może prowadzić do poważnych błędów, które zagrażają zarówno efektywności instalacji, jak i bezpieczeństwu użytkowników.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Rysunek przedstawia symbol graficzny bramki

Ilustracja do pytania
A. NOR
B. Ex-OR
C. Ex-NOR
D. NAND
Wybór niewłaściwej bramki logicznej może wynikać z nieporozumienia dotyczącego podstaw działania różnych typów bramek. Na przykład, bramka NOR w rzeczywistości generuje stan wysoki tylko wtedy, gdy wszystkie jej wejścia są niskie, co jest całkowicie przeciwne do działania bramki Ex-OR. Takie błędne rozumienie przyczyny i skutku stanu na wyjściu może prowadzić do pomyłek w projektowaniu układów cyfrowych. Z kolei bramka NAND działa odwrotnie do AND, generując stan wysoki, dopóki nie wszystkie jej wejścia są wysokie. Mylenie NAND z bramką Ex-OR może wynikać z nieprecyzyjnego pojmowania, jak różne bramki łączą wejścia, aby uzyskać różne wyniki. Przykładowo, bramka Ex-OR, dzięki swojej unikalnej charakterystyce, jest niezwykle użyteczna w operacjach arytmetycznych, takich jak dodawanie w systemach binarnych, gdzie istotne jest, aby zrozumieć, że generuje ona wynik tylko wtedy, gdy stany wejściowe są różne. Ostatecznie, kluczowym błędem jest nie zrozumienie roli dodatkowej linii na wejściu bramki Ex-OR, co stanowi podstawową cechę odróżniającą ją od innych bramek. Rozważając te różnice, można lepiej zrozumieć, jak projektować układy cyfrowe oparte na logicznych interakcjach między różnymi bramkami.

Pytanie 29

Jakim urządzeniem można zmierzyć siłę nacisku tłoka w siłowniku hydraulicznym?

A. hallotronem
B. tensometrem
C. termistorem
D. pirometrem
Tensometr to urządzenie pomiarowe, które wykorzystuje zjawisko zmiany oporu elektrycznego w wyniku odkształcenia materiału. W kontekście siłowników hydraulicznych, tensometry mogą być używane do precyzyjnego pomiaru siły nacisku tłoka, ponieważ siła ta powoduje odkształcenie elementu pomiarowego, co bezpośrednio wpływa na zmianę jego oporu. Dzięki temu, tensometry pozwalają na uzyskanie dokładnych i wiarygodnych wyników pomiarów, które są kluczowe w wielu zastosowaniach inżynieryjnych, takich jak automatyka przemysłowa, systemy hydrauliczne oraz testowanie materiałów. Przykładem zastosowania tensometrów w praktyce może być monitorowanie siły nacisku w maszynach do formowania, gdzie precyzyjna kontrola siły jest niezbędna do zapewnienia jakości produkcji. W branży inżynieryjnej stosuje się różne normy, takie jak ISO 376, które dotyczą metod pomiarowych przy użyciu tensometrów, co podkreśla ich znaczenie oraz zastosowanie w profesjonalnych pomiarach.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

W celu zwiększenia wskaźnika lepkości w układzie hydraulicznym oraz zmniejszenia zużycia jego elementów należy użyć oleju o oznaczeniu

DodatkiRodzaj oleju
HHHLHMHVHG
AntyutleniająceTakTakTakTak
Chroniące przed korozjąTakTakTakTak
Polepszające smarnośćTakTakTak
Zmniejszające zużycieTakTakTak
Zwiększające wskaźnik lepkościTak
O szczególnych właściwościach smarującychTak

A. HH
B. HV
C. HL
D. HM
Odpowiedź HV jest poprawna, ponieważ oleje hydrauliczne o oznaczeniu HV (High Viscosity Index) zawierają dodatki, które zwiększają wskaźnik lepkości. Oznacza to, że ich lepkość zmienia się w mniejszym stopniu w zależności od temperatury, co jest kluczowe w zastosowaniach hydraulicznych, gdzie stabilność lepkości w różnych warunkach roboczych jest niezwykle istotna. Użycie oleju o wysokim wskaźniku lepkości zapewnia lepszą ochronę elementów hydraulicznych, co przekłada się na ich dłuższą żywotność i mniejsze zużycie. Przykładem zastosowania oleju HV może być hydraulika stosowana w maszynach budowlanych, gdzie zmienne warunki pracy i temperatura mogą wpływać na wydajność systemu. Praktyki branżowe zalecają stosowanie olejów HV w sytuacjach, gdy urządzenia działają w szerszym zakresie temperatur, co minimalizuje ryzyko ich uszkodzenia i poprawia efektywność działania.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Elementy, które umożliwiają przepływ medium wyłącznie w jednym kierunku, to zawory

A. regulacyjne
B. zwrotne
C. dławiące
D. rozdzielające
Zawory zwrotne, znane również jako zawory jednostronne, pełnią kluczową rolę w systemach hydraulicznych i pneumatycznych, zapewniając przepływ czynnika roboczego tylko w jednym kierunku. Ich podstawowym zadaniem jest zapobieganie cofaniu się cieczy lub gazu, co może prowadzić do poważnych uszkodzeń urządzeń oraz obiegów. W praktyce, zawory zwrotne są często stosowane w instalacjach wodociągowych, systemach odwadniających, a także w układach pneumatycznych, gdzie ich skuteczność jest niezbędna dla prawidłowego funkcjonowania całego systemu. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie stosowania odpowiednich komponentów, w tym zaworów zwrotnych, aby zapewnić niezawodność i bezpieczeństwo działania instalacji. Warto również zaznaczyć, że w przypadku ich zastosowania w budownictwie, zawory zwrotne chronią przed powstawaniem podciśnienia, co może prowadzić do niepożądanych skutków, takich jak uszkodzenia instalacji lub zmniejszenie efektywności energetycznej urządzeń. Z tego względu, znajomość i umiejętność doboru zaworów zwrotnych w odpowiednich aplikacjach jest niezwykle istotna dla inżynierów i techników.

Pytanie 37

Do czego służy stabilizator napięcia?

A. do przekształcania napięcia przemiennego w napięcie stałe
B. do utrzymywania stałego napięcia niezależnie od zmian natężenia prądu obciążenia oraz zmian napięcia wejściowego
C. do wygładzania napięcia po prostowaniu przez prostownik
D. do konwersji napięcia przemiennego na napięcie przemienne o innej częstotliwości oraz innej wartości skutecznej
Stabilizator napięcia jest urządzeniem, które ma za zadanie utrzymywanie stałego napięcia na wyjściu, niezależnie od zmian natężenia prądu obciążenia oraz fluktuacji napięcia wejściowego. W praktyce oznacza to, że gdy obciążenie zmienia się, a także gdy napięcie zasilające ulega zmianie (na przykład w wyniku wahań w sieci energetycznej), stabilizator zapewnia, że napięcie na wyjściu pozostaje na pożądanym poziomie. Przykładem zastosowania stabilizatorów napięcia są zasilacze do urządzeń elektronicznych, takich jak komputery czy telewizory, które wymagają stałego napięcia do prawidłowego działania. W branży elektronicznej oraz elektrycznej, stosowanie stabilizatorów napięcia jest zgodne z dobrymi praktykami, które mają na celu zapewnienie niezawodności i bezpieczeństwa urządzeń. Stabilizatory mogą również chronić sprzęt przed uszkodzeniami spowodowanymi nadmiernym wzrostem napięcia lub jego spadkiem. Warto zaznaczyć, że stabilizatory mogą działać w różnych trybach, w tym jako liniowe lub impulsowe, w zależności od zastosowania i wymagań dotyczących efektywności energetycznej.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.