Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 15 maja 2025 11:36
  • Data zakończenia: 15 maja 2025 12:15

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na podstawie cech przewodnictwa cieplnego, wybierz materiał szeroko wykorzystywany do ociepleń budynków?

A. Cement.
B. Styropian.
C. Miedź.
D. Pustak ceramiczny.
Styropian, znany także jako polistyren ekspandowany (EPS), jest jednym z najczęściej stosowanych materiałów izolacyjnych w budownictwie, zwłaszcza do dociepleń budynków. Jego niska przewodność cieplna, wynosząca około 0,035-0,040 W/mK, sprawia, że jest on bardzo skuteczny w ograniczaniu strat ciepła. Styropian jest lekki, odporny na wilgoć, a także charakteryzuje się dobrą odpornością na działanie chemikaliów. Dla przykładu, powszechnie stosuje się go w systemach ociepleń ścian zewnętrznych (ETICS), gdzie przyklejany jest do powierzchni budynku, a następnie pokrywany tynkiem. W zgodzie z normami budowlanymi, takimi jak PN-EN 13163, styropian spełnia wymagania dotyczące trwałości i efektywności energetycznej, co czyni go podstawowym materiałem w praktykach budowlanych dotyczących izolacji termicznej. Dodatkowo, jego zdolność do recyklingu przyczynia się do zrównoważonego rozwoju w budownictwie.

Pytanie 2

Aby zamontować poziomy wymiennik gruntowy, na początku należy

A. określić lokalizację montażu pompy ciepła
B. wytyczyć miejsce ułożenia wymiennika
C. przygotować wykop
D. usunąć wierzchnią warstwę gleby
Wybór miejsca montażu pompy ciepła oraz zbieranie żyznej warstwy gleby są działaniami, które powinny być podejmowane na późniejszym etapie, a nie przed wytyczeniem miejsca wymiennika. Wyznaczenie miejsca montażu pompy ciepła bez wcześniejszego wytyczenia lokalizacji wymiennika może prowadzić do niedopasowania systemów oraz do nieefektywnego wykorzystania przestrzeni, co może wpłynąć na późniejsze użytkowanie. Zbieranie żyznej warstwy gleby, choć może wydawać się użyteczne, nie jest konieczne na tym etapie, ponieważ to, co jest istotne, to zrozumienie, jak grunt w danym miejscu będzie wpływał na wymianę ciepła. Ponadto wykop jest czynnością, która również następuje po precyzyjnym ustaleniu, gdzie wymiennik zostanie zainstalowany. Właściwe podejście do instalacji wymiennika gruntowego powinno opierać się na logicznym procesie planowania, który zaczyna się od wytyczenia. Typowe błędy myślowe obejmują przekonanie, że wszystkie czynności związane z instalacją mogą być wykonane równocześnie, co prowadzi do chaotycznych działań i może skutkować kosztownymi poprawkami.

Pytanie 3

Jak określa się rurę łączącą najwyżej usytuowaną część systemu wodnego kotła c.o. na drewno kawałkowe z przestrzenią powietrzną otwartego naczynia wzbiorczego?

A. Bezpieczeństwa
B. Informacyjna
C. Odpowietrzająca
D. Przelewowa
Wybór opcji sygnalizacyjnej, przelewowej lub odpowietrzającej sugeruje pewne nieporozumienia dotyczące funkcji poszczególnych elementów w systemach grzewczych. Rura sygnalizacyjna nie jest elementem, który odprowadza nadmiar wody lub pary, lecz służy do monitorowania poziomu wody lub ciśnienia w systemie, co ma znaczenie dla bezpieczeństwa, ale nie jest jej bezpośrednią funkcją. Przelewowa rura, stosowana w niektórych systemach, ma za zadanie odprowadzać nadmiar cieczy, ale nie jest dedykowana do ochrony przed nadmiernym ciśnieniem, jak rura bezpieczeństwa. Z kolei odpowietrzająca rura ma na celu usunięcie powietrza z systemu, co jest istotne dla jego prawidłowego działania, ale także nie pełni funkcji zabezpieczającej. Mylące może być myślenie, że każde połączenie w systemie grzewczym ma tę samą rolę, co prowadzi do błędów w zakresie projektowania i eksploatacji. Fundamentalną kwestią jest zrozumienie, że każdy z tych elementów ma unikalną funkcję i zastosowanie, co jest kluczowe dla bezpieczeństwa oraz efektywności systemu. Właściwe dobranie rodzaju rury w zależności od jej przeznaczenia ma kluczowe znaczenie dla niezawodności i bezpieczeństwa całej instalacji grzewczej.

Pytanie 4

Kiedy odbywa się odbiór instalacji solarnej?

A. przed pierwszym uruchomieniem systemu.
B. po wykonaniu próby ciśnieniowej i przed ustawieniem regulatora.
C. po pierwszym uruchomieniu systemu.
D. po napełnieniu zbiornika i przed ustawieniem mocy pompy.
Odbiór instalacji solarnej po pierwszym uruchomieniu jest kluczowym etapem w zapewnieniu, że system działa zgodnie z wymaganiami projektowymi oraz spełnia normy bezpieczeństwa. Po pierwszym uruchomieniu można ocenić, jak instalacja reaguje na różne warunki operacyjne, takie jak wydajność paneli słonecznych, efektywność wymiany ciepła oraz ogólne zachowanie systemu. Warto zwrócić uwagę na monitorowanie parametrów, takich jak ciśnienie i temperatura, które powinny mieścić się w przyjętych normach. Przykładem zastosowania tego procesu może być sprawdzenie, czy pompa obiegowa działa z odpowiednią mocą, co ma kluczowe znaczenie dla efektywności całej instalacji. Praktyki te są zgodne z wytycznymi branżowymi, takimi jak normy ISO oraz lokalne regulacje dotyczące odnawialnych źródeł energii, które podkreślają znaczenie starannego odbioru technicznego w celu zapewnienia długotrwałej i niezawodnej pracy systemu.

Pytanie 5

Który z poniższych rodzajów zbiorników nie powinien być używany do przechowywania biogazu?

A. Membranowego dachowego
B. Sferycznego membranowego
C. Suchego stalowego wysokociśnieniowego
D. Suchego tłokowego niskociśnieniowego
Odpowiedź 'Suchego stalowego wysokociśnieniowego' jest poprawna, gdyż zbiorniki te nie są odpowiednie do magazynowania biogazu, który jest mieszaniną gazów o zróżnicowanej kompozycji, w tym metanu i dwutlenku węgla. Biogaz jest zwykle przechowywany w warunkach niskiego ciśnienia, co zapewnia bezpieczeństwo oraz minimalizuje ryzyko eksplozji. Zbiorniki membranowe dachowe i sferyczne membranowe są projektowane z myślą o takich wymaganiach, gdyż potrafią dostosować swoją objętość do zmieniającej się ilości gazu oraz regulować ciśnienie wewnętrzne, umożliwiając efektywne zarządzanie biogazem. Na przykład, w systemach biogazowych wykorzystywanych w rolnictwie, stosowanie zbiorników niskociśnieniowych pozwala na efektywne przechowywanie oraz późniejsze wykorzystanie biogazu jako źródła energii, co jest zgodne ze standardami dotyczącymi zrównoważonego rozwoju. Wybór odpowiedniego zbiornika w kontekście bezpieczeństwa i efektywności energetycznej jest kluczowy dla skutecznego funkcjonowania systemów wykorzystujących biogaz.

Pytanie 6

Do struktur piętrzących należy zaliczyć

A. zapory
B. przepławki dla ryb
C. śluzy
D. ujęcia wody
Ujęcia wody, śluzy oraz przepławki dla ryb pełnią różne funkcje w systemach hydrotechnicznych, ale nie kwalifikują się jako budowle piętrzące. Ujęcia wody są miejscami poboru wody, które mają na celu jej transport do systemów wodociągowych lub przemysłowych, jednak nie zatrzymują ani nie gromadzą wody w sposób, który określa budowle piętrzące. Śluzy natomiast służą do regulacji poziomu wody w rzekach i kanałach, umożliwiając żeglugę przez różnice w poziomie wód, lecz także nie mają na celu magazynowania wody. Przepławki dla ryb to konstrukcje umożliwiające migrację ryb przez zapory, ale ich funkcja jest stricte ekologiczna i nie odnosi się do gromadzenia wody. Kluczowym błędem w myśleniu jest utożsamianie budowli hydrotechnicznych z ich funkcjami pomocniczymi lub pobocznymi, co prowadzi do nieprawidłowych wniosków. Aby właściwie zrozumieć różnice między tymi konstrukcjami, ważne jest zapoznanie się z ich specyfiką i zastosowaniem, w oparciu o standardy branżowe oraz dobre praktyki inżynieryjne.

Pytanie 7

Protokół odbioru instalacji fotowoltaicznej powinien być przygotowany

A. po próbnym uruchomieniu instalacji
B. przed każdą inspekcją instalacji
C. po każdej inspekcji instalacji
D. przed próbnym uruchomieniem instalacji
Protokół zdawczo-odbiorczy instalacji fotowoltaicznej powinien być sporządzony po próbnym uruchomieniu instalacji, ponieważ to właśnie na tym etapie można ocenić, czy system działa zgodnie z założeniami projektowymi i normami jakości. Sporządzenie protokołu po próbnym uruchomieniu pozwala na dokładne zarejestrowanie wyników testów, w tym danych dotyczących wydajności, pracy falowników oraz innych komponentów systemu. Dobre praktyki wskazują, że protokoły zdawczo-odbiorcze powinny być szczegółowe i zawierać informacje o wszelkich ewentualnych nieprawidłowościach oraz rekomendacjach dotyczących dalszej eksploatacji. Na przykład, jeśli podczas próbnego uruchomienia zauważymy nieprawidłowości w działaniu falownika, to w protokole powinny znaleźć się wskazówki dotyczące konieczności ich usunięcia przed wprowadzeniem instalacji do użytku. Dodatkowo zgodnie z normami PN-EN 62446-1, protokoły powinny być podstawą do oceny zgodności instalacji z wymaganiami technicznymi i przepisami prawnymi, co podnosi bezpieczeństwo użytkowników oraz efektywność energetyczną systemu.

Pytanie 8

Jakie urządzenie służy do pomiaru temperatury zamarzania mieszanki glikolowej w systemie solarnym?

A. decibelometr.
B. refraktometr.
C. higrometr.
D. glukometr.
Refraktometr to naprawdę ważne narzędzie, zwłaszcza przy analizie stężenia roztworów. W kontekście systemów solarnych, gdzie korzystamy z glikolu, to jest niezbędne, bo te mieszanki zapobiegają zamarzaniu. Działa to tak, że mierzy współczynnik załamania światła, co pozwala dokładnie określić, jak mocny jest roztwór. Im więcej glikolu w mieszance, tym niższa temperatura zamarzania, a to ma spore znaczenie w chłodniejszych warunkach. Z mojego doświadczenia wynika, że inżynierowie regularnie używają refraktometrów, żeby monitorować i dostosowywać stężenie roztworu. Dzięki temu wszystko działa lepiej i dłużej. Fajnie jest, gdy takie pomiary stają się rutyną, bo można szybko wychwycić potencjalne problemy z zamarzaniem płynu, co w efekcie zmniejsza ryzyko awarii.

Pytanie 9

Kiedy powinien być przeprowadzany przegląd techniczny kotła na biomasę?

A. raz w roku, najlepiej przed rozpoczęciem sezonu grzewczego
B. przynajmniej dwa razy w roku
C. co dwa lata
D. jeden raz w roku, najlepiej po zakończeniu sezonu grzewczego
Kiedy mówimy o przeglądzie technicznym kotła na biomasę, to warto pamiętać, że najlepiej robić to raz w roku. Najlepszy moment to przed sezonem grzewczym, bo wtedy można znaleźć jakieś potencjalne usterki na czas. Takie przeglądy to nie tylko kwestia bezpieczeństwa, ale też efektywności kotła. Regularne sprawdzanie stanu technicznego kotła pomaga uniknąć problemów i wydatków w przyszłości. Przykładowo, ważne jest, żeby sprawdzić palnik, wymiennik ciepła czy systemy bezpieczeństwa. Jak wiadomo, normy, takie jak PN-EN 303-5, mówią, że te kontrole są ważne dla ochrony środowiska i bezpieczeństwa użytkowników. Nie bez znaczenia jest, żeby przeglądów dokonywali fachowcy, bo tylko oni będą w stanie zauważyć wszelkie nieprawidłowości i zasugerować, co należy poprawić.

Pytanie 10

Gdzie należy zamontować zewnętrzną jednostkę powietrznej pompy ciepła?

A. w odległości co najmniej 0,5 m od zewnętrznej ściany z wyrzutnią powietrza skierowaną w stronę ściany
B. w odległości co najmniej 0,5 m od zewnętrznej ściany z wyrzutnią powietrza skierowaną poza ścianę
C. bezpośrednio przy zewnętrznej ścianie budynku z czerpnią powietrza zwróconą w stronę ściany
D. bezpośrednio przy zewnętrznej ścianie budynku z wyrzutnią powietrza kierującą się w stronę ściany
Zamontowanie pompy ciepła za blisko ściany, czyli mniej niż 0,5 m, to dość powszechny błąd, który może narobić sporo problemów. Kiedy powietrze wydobywa się z wyrzutni skierowanej do ściany, nie rozprasza się dobrze, przez co może wracać do wlotu. To zdecydowanie nie jest optymalne i może prowadzić do spadku wydajności, a co za tym idzie – większego zużycia energii. Często ludzie nie mają pełnej wiedzy o wymaganiach dotyczących lokalizacji urządzenia, co skutkuje niewłaściwymi decyzjami. Wiesz, są określone standardy budowlane i zalecenia producentów, które dokładnie opisują, jakie odległości powinny być zachowane, aby systemy klimatyzacyjne i grzewcze działały prawidłowo. Ignorowanie tych zasad, jak na przykład montaż czerpni powietrza skierowanej do ściany, może doprowadzić do różnych usterek czy większego hałasu, co w mieszkaniach nie jest zbyt komfortowe. Dlatego naprawdę warto zwracać uwagę na te wytyczne, żeby pompa działała jak należy.

Pytanie 11

Aby oszacować koszty realizacji instalacji fotowoltaicznej na etapie planowania, właściciel nieruchomości powinien otrzymać kosztorys

A. końcowy
B. powykonawczy
C. ofertowy
D. inwestorski
Kosztorys ofertowy jest kluczowym dokumentem w procesie planowania inwestycji, takiej jak instalacja fotowoltaiczna. Obejmuje on szczegółowe zestawienie kosztów poszczególnych elementów projektu, co pozwala właścicielowi domu na dokonanie świadomego wyboru. Kosztorys ofertowy przedstawia zarówno koszty materiałów, jak i robocizny, co jest niezbędne do oceny opłacalności inwestycji. W praktyce, kosztorys ten jest podstawą do negocjacji z wykonawcą i może być użyty w celu uzyskania finansowania zewnętrznego, na przykład kredytu na instalację OZE. Warto również zauważyć, że standardy branżowe, takie jak normy PN-ISO 9001, zalecają prowadzenie kosztorysów na etapie planowania jako elementu zapewnienia jakości. Dzięki temu właściciele domów mogą lepiej przygotować się do potencjalnych wydatków i uniknąć nieprzewidzianych kosztów podczas realizacji projektu. Przygotowując kosztorys ofertowy, warto współpracować z doświadczonymi specjalistami, co zwiększa szanse na uzyskanie rzetelnych i konkurencyjnych ofert.

Pytanie 12

Który typ kotła pozwala na odzyskanie ciepła z pary wodnej obecnej w spalinach?

A. Nadkrytyczny
B. Odzyskowy
C. Przepływowy
D. Kondensacyjny
Wybór innych typów kotłów w kontekście odzyskiwania ciepła pary wodnej może prowadzić do mylnych koncepcji dotyczących ich działania i zastosowania. Kocioł odzyskowy, choć również skierowany na poprawę efektywności, nie jest zaprojektowany do kondensacji pary wodnej, lecz do odzyskiwania ciepła z różnych procesów przemysłowych, co nie zawsze wiąże się z wykorzystaniem spalin. Kocioł przepływowy, z kolei, ma na celu podgrzewanie wody w czasie rzeczywistym, bez magazynowania, co sprawia, że jego struktura i zasady działania nie przewidują odzyskiwania ciepła spalin. W przypadku kotłów nadkrytycznych, ich działanie opiera się na pracy przy wysokim ciśnieniu, co ogranicza możliwości kondensacji pary wodnej i tym samym odzysku energii cieplnej. Typowe błędy myślowe związane z wyborem niewłaściwego kotła mogą wynikać z niewłaściwego zrozumienia procesu kondensacji oraz korzyści, jakie niesie ze sobą efektywne wykorzystanie energii zawartej w spalinach. Zrozumienie podstawowych zasad działania tych różnych typów kotłów oraz ich zastosowania w praktyce jest kluczowe dla wyboru odpowiedniego systemu grzewczego, który odpowiada specyficznym potrzebom użytkownika.

Pytanie 13

W trakcie montażu systemów energii odnawialnej multicyklony wykorzystywane są jako urządzenia redukujące emisję do atmosfery

A. koksu
B. pyłu
C. tlenku siarki
D. tlenku węgla
Pył jest składnikiem, który może być emitowany podczas różnych procesów przemysłowych, w tym w energetyce odnawialnej, gdzie jego ograniczenie jest kluczowe dla ochrony środowiska. Multicyklony to urządzenia wykorzystywane do separacji cząstek stałych z gazów, co pozwala na skuteczne wychwytywanie pyłu przed jego uwolnieniem do atmosfery. W takich instalacjach, jak elektrownie wiatrowe czy biogazownie, multicyklony są używane do kontroli jakości powietrza i redukcji negatywnego wpływu na zdrowie ludzi oraz środowisko. Standardy takie jak ISO 14001 dotyczące systemów zarządzania środowiskowego nakładają na przedsiębiorstwa obowiązek monitorowania i ograniczania emisji pyłów i innych zanieczyszczeń. Przykładem zastosowania multicyklonów może być instalacja w przemyśle biomasy, gdzie odpady organiczne spalane są w komorach, a multicyklony wychwytują pył powstający w trakcie tego procesu, co przyczynia się do redukcji emisji pyłów do atmosfery i poprawy efektywności energetycznej systemu.

Pytanie 14

Jaki typ kotła powinien być użyty do spalania pelletu?

A. Zgazowujący
B. Z podajnikiem ślimakowym
C. Z podajnikiem tłokowym
D. Zasypowy
Wybór kotła do spalania pelletu jest kluczowy dla efektywności i ekologiczności całego systemu grzewczego. Kocioł zasypowy, choć może być stosowany do różnych rodzajów paliw, nie zapewnia odpowiedniego podawania pelletu, co może prowadzić do niestabilności w procesie spalania i w efekcie do obniżenia wydajności energetycznej. W tego rodzaju kotłach konieczne jest ręczne dosypywanie paliwa, co jest mało praktyczne i czasochłonne, w przeciwieństwie do automatycznych systemów podawania. Z kolei kocioł zgazowujący, który wykorzystuje proces zgazowania drewna, jest bardziej skomplikowany i nie jest przystosowany do spalania pelletu bez dodatkowych modyfikacji. Zgazowanie wymaga specyficznych warunków, a pellet, będąc paliwem o innej charakterystyce, może nie zapewniać oczekiwanej jakości spalania w tego typu kotłach. Kocioł z podajnikiem tłokowym, mimo że oferuje mechanizm podawania paliwa, jest rzadko używany do pelletu, ponieważ może powodować problemy z transportowaniem drobnych cząstek tego paliwa, co prowadzi do zatorów. Takie podejście może skutkować niestabilną pracą kotła oraz zwiększonym ryzykiem uszkodzeń mechanicznych. Dlatego, wybierając kocioł do spalania pelletu, należy kierować się jego konstrukcją i rozwiązaniami technicznymi, które zapewniają efektywne i bezpieczne spalanie tego typu paliwa.

Pytanie 15

Zasobnik na wodę użytkową w solarnej instalacji powinien być zlokalizowany

A. w pobliżu kolektora słonecznego
B. w sąsiedztwie kotła c.o.
C. z dala od kotła c.o.
D. w połowie drogi pomiędzy kotłem a kolektorem
Lokalizacja zasobnika wody użytkowej w instalacji solarnej ma kluczowe znaczenie dla efektywności całego systemu. Umieszczenie zasobnika w połowie drogi między kotłem a kolektorem, choć może wydawać się logiczne, w rzeczywistości prowadzi do znacznych strat ciepła. Straty te wynikają z dłuższej drogi transportu wody, co zwiększa czas, w którym ciepło ma szansę uciekać do otoczenia. Z kolei umiejscowienie zasobnika daleko od kotła c.o. może spowodować problemy z zasilaniem ciepłem, co negatywnie wpłynie na komfort użytkowania, zwłaszcza w okresach szczytowego zapotrzebowania na ciepłą wodę. Praktyka ta jest również niezgodna z zaleceniami dotyczącymi projektowania systemów grzewczych, które podkreślają znaczenie minimalizacji strat ciepła w instalacjach. Bliskość zasobnika do kotła pozwala na bardziej efektywne użycie energii, co jest fundamentalne w kontekście zrównoważonego rozwoju i oszczędności energii. Niezrozumienie tych zasad może prowadzić do błędnych decyzji projektowych, które w dłuższej perspektywie zwiększą koszty eksploatacji systemu grzewczego oraz ograniczą jego wydajność.

Pytanie 16

Czujnik termostatyczny systemu "strażak" używany do ochrony kotłów na biomasę powinien być zamontowany

A. na obudowie podajnika
B. w podajniku ślimakowym
C. w czopuchu kotła
D. w komorze paleniskowej
Czujnik termostatyczny systemu "strażak" jest kluczowym elementem zabezpieczającym kotły na biomasę, a jego prawidłowy montaż ma istotne znaczenie dla efektywności systemu. Montaż czujnika na obudowie podajnika zapewnia optymalne warunki do monitorowania temperatury materiału opałowego, co jest niezbędne do zapobiegania przegrzewaniu się i ewentualnym uszkodzeniom. Tego rodzaju umiejscowienie czujnika pozwala na szybkie reagowanie na zmiany temperatury, co jest fundamentalne w kontekście zapewnienia bezpieczeństwa systemu grzewczego. W praktyce, stosowanie czujników termostatycznych w podajnikach podnosi efektywność energetyczną, ponieważ umożliwia precyzyjne dostosowanie pracy kotła do aktualnych potrzeb cieplnych budynku. W przypadku awarii czujnika, system zabezpieczeń może zareagować, co minimalizuje ryzyko pożaru, a także chroni komponenty kotła przed uszkodzeniem. Zgodnie z normami branżowymi, takie jak PN-EN 303-5, prawidłowy montaż czujników jest kluczowym elementem w projektowaniu nowoczesnych systemów grzewczych, co potwierdza znaczenie prawidłowej lokalizacji czujnika w kontekście bezpieczeństwa oraz efektywności operacyjnej.

Pytanie 17

Producent pompy ciepła zasugerował, aby wykonać przyłącze elektryczne chronione wyłącznikiem nadmiarowo-prądowym C20. Oznaczenie to wskazuje, że wyłącznik zadziała podczas uruchamiania pompy przy określonej wielokrotności prądu znamionowego:

A. I = (15-20)In
B. I = (5-10)In
C. I = (10-15)In
D. I = (3-5)In
Wybrane odpowiedzi nie uwzględniają specyfiki działania wyłączników nadmiarowo-prądowych typu C, które charakteryzują się określonym zakresem prądów rozruchowych. Odpowiedzi takie jak (15-20)In, (3-5)In czy (10-15)In przedstawiają błędne założenia co do zachowania wyłączników w warunkach przeciążeniowych. W przypadku wyłączników typu C, ich charakterystyka zadziałania jest dostosowana do obciążeń indukcyjnych, co oznacza, że są one zdolne do tolerowania krótkotrwałych wzrostów prądu, które występują podczas rozruchu silników. Przeciążenia w zakresie 3-5 razy prądu znamionowego są zbyt niskie dla typowych zastosowań w przypadku pomp cieplnych, co może prowadzić do nieprawidłowego działania zabezpieczeń. Odpowiedzi sugerujące wyższe wartości, jak (10-15)In czy (15-20)In, nie są zgodne z rzeczywistością, ponieważ wyłączniki te muszą zadziałać w odpowiednim momencie, aby chronić przed uszkodzeniami, ale nie mogą być zbyt czułe, aby nie wyłączały się w trakcie normalnej pracy urządzenia. Kluczowym błędem jest nieznajomość właściwego zakresu prądów roboczych, co może prowadzić do niewłaściwego doboru elementów zabezpieczających. Zrozumienie, że wyłączniki C są przystosowane do tolerowania wyższych prądów rozruchowych, jest fundamentalne dla zapewnienia zarówno bezpieczeństwa, jak i efektywności systemu elektrycznego w aplikacjach przemysłowych oraz budowlanych.

Pytanie 18

W przypadku bardzo dużych różnic poziomu wody (H>500 m) optymalnym rozwiązaniem jest wykorzystanie turbiny wodnej

A. Peltona
B. Francisa
C. Kaplana
D. Deriaza
Turbina Peltona jest idealnym rozwiązaniem do zastosowania w warunkach dużych spadków wody, szczególnie gdy wysokość spadku przekracza 500 metrów. Działa ona na zasadzie impulsu, co oznacza, że wykorzystuje energię kinetyczną spadającej wody do napędu wirnika. Wysokie spadki wody generują dużą prędkość strumienia, co czyni turbiny Peltona bardzo efektywnymi w takich warunkach. Przykłady zastosowania turbin Peltona można znaleźć w elektrowniach wodnych, takich jak elektrownia HPP Tignes we Francji, gdzie wykorzystuje się tę technologię do produkcji energii elektrycznej z dużych wysokości. Turbiny Peltona są również preferowane w miejscach, gdzie dostępne jest ograniczone przepływy wody, ale bardzo wysoka energia potencjalna. W kontekście dobrych praktyk branżowych, turbiny Peltona są zgodne z normami IEC 60041 dotyczącymi badań hydraulicznych turbin wody, co zapewnia ich niezawodność i wysoką wydajność.

Pytanie 19

Jakie urządzenie wykorzystuje się do mierzenia przepływu płynu solarnego w systemie?

A. areometr
B. rotametr
C. refraktometr
D. manometr
Areometr w rzeczywistości służy do pomiaru gęstości cieczy, a nie do pomiaru przepływu. Jego działanie polega na zanurzeniu go w cieczy i odczytaniu poziomu, na którym unosi się areometr. Może być użyteczny w aplikacjach związanych z kontrolą jakości cieczy, np. w przemyśle spożywczym czy chemicznym, ale nie znajduje zastosowania w pomiarach przepływu. Manometr z kolei to przyrząd używany do pomiaru ciśnienia gazów lub cieczy. Choć ważny w wielu procesach technologicznych, nie dostarcza informacji o przepływie płynu. Zastosowanie manometrów jest kluczowe w systemach hydraulicznych, gdzie monitorowanie ciśnienia jest istotne dla bezpieczeństwa i efektywności działania systemu. Refraktometr to urządzenie pomiarowe służące do określania współczynnika załamania światła w cieczy, co może wskazywać na jej stężenie lub obecność rozpuszczonych substancji. Jest to technika najczęściej wykorzystywana w laboratoriach chemicznych oraz w przemyśle spożywczym, np. do pomiaru stężenia cukru w sokach. Wszystkie te urządzenia mają swoje specyficzne zastosowania, ale nie są skuteczne do pomiaru przepływu płynów, co jest kluczowe w kontekście systemów solarnych. Dlatego niepoprawny wybór przyrządu do pomiaru przepływu może prowadzić do błędnych wyników i problemów w zarządzaniu instalacją.

Pytanie 20

Podczas sporządzania przedmiaru robót dla systemów wodociągowych, długość rur określa się w metrach?

A. wliczając armaturę z kołnierzami
B. bez wyłączania długości łączników oraz armatury łączonej lutowaniem lub gwintowaniem
C. z wyłączeniem długości łączników oraz armatury
D. a liczba podejść ustalana jest wspólnie dla zimnej i ciepłej wody
W przypadku przedmiaru robót dla instalacji wodociągowych istotne jest zrozumienie, że długość rurociągów powinna być mierzona zgodnie z ustalonymi normami i praktykami branżowymi. Nieprawidłowe podejście do obliczeń, takie jak uwzględnianie długości łączników oraz armatury, prowadzi do nieprawidłowych wyników i zaburzenia całego procesu planowania materiałowego. Podejście, które polega na ustalaniu ilości podejść dla wody zimnej i ciepłej razem, pomija różnice w wymaganiach instalacyjnych oraz charakterystykach materiałowych obu systemów. Każdy system wodociągowy ma swoje unikalne cechy, które powinny być analizowane oddzielnie, aby zapewnić ich prawidłowe funkcjonowanie. Dodatkowo, wliczanie armatury kołnierzowej w długość rurociągu jest również błędnym podejściem, gdyż armatura ta często nie jest integralną częścią systemu rurociągów, a jedynie jego uzupełnieniem. W praktyce, przy obliczaniu długości dla projektów hydraulicznych, należy brać pod uwagę jedynie odcinki rur, aby uniknąć nieścisłości i zapewnić prawidłowe wykonanie instalacji. Takie błędy mogą prowadzić do nieefektywności w wykorzystaniu materiałów oraz problemów z późniejszym użytkowaniem instalacji, co jest sprzeczne z zasadami efektywności i trwałości projektów budowlanych.

Pytanie 21

Wyznacz wartość promieniowania bezpośredniego, mając na uwadze, że promieniowanie rozproszone wynosi 300 W/m², a promieniowanie całkowite 1000 W/m²?

A. 1300 W/m²
B. 800 W/m²
C. 700 W/m²
D. 1000 W/m²
Odpowiedź 700 W/m² jest poprawna, ponieważ obliczamy wartość promieniowania bezpośredniego, odejmując promieniowanie rozproszone od promieniowania całkowitego. W tym przypadku, promieniowanie całkowite wynosi 1000 W/m², a promieniowanie rozproszone to 300 W/m². Proces ten jest kluczowy w dziedzinie inżynierii energetycznej oraz architektury, gdzie właściwe zrozumienie składników promieniowania słonecznego jest istotne dla efektywności energetycznej budynków. W praktyce, znajomość tych wartości pozwala na optymalizację projektów systemów fotowoltaicznych oraz oceny wpływu zacienienia na wydajność instalacji. Zgodnie z dobrą praktyką branżową, przy planowaniu systemów odnawialnych źródeł energii, inżynierowie często korzystają z narzędzi symulacyjnych, które uwzględniają zarówno promieniowanie bezpośrednie, jak i rozproszone. Pozwala to na dokładniejsze prognozowanie wydajności systemów i efektywności wykorzystania energii słonecznej w określonych lokalizacjach.

Pytanie 22

Gdzie powinien być zainstalowany zawór bezpieczeństwa w zamkniętej instalacji centralnego ogrzewania?

A. na przyłączach pionów do przewodów rozprowadzających
B. bezpośrednio na kotłach lub wymiennikach ciepła w górnej części ich przestrzeni wodnej
C. w dolnej części każdego pionu oraz przed naczyniem wzbiorczym
D. przed grzejnikami zarówno na gałęzi zasilającej, jak i powrotnej
Zawór bezpieczeństwa jest kluczowym elementem w instalacji centralnego ogrzewania, szczególnie w systemach zamkniętych. Montaż zaworu bezpieczeństwa bezpośrednio na kotłach lub wymiennikach ciepła w górnej części ich przestrzeni wodnej jest zgodny z zasadami inżynierii cieplnej oraz normami bezpieczeństwa. Głównym celem zaworu bezpieczeństwa jest ochrona instalacji przed nadmiernym ciśnieniem, które może prowadzić do uszkodzeń kotła, wymiennika ciepła oraz innych komponentów systemu. Przy odpowiednim umiejscowieniu zaworu, możliwe jest natychmiastowe uwolnienie nadmiaru ciśnienia, co minimalizuje ryzyko awarii. Przykładowo, w instalacjach, w których występują duże różnice temperatur, zawór ten jest niezbędny, aby zapobiec zjawisku przegrzewania i ewentualnemu wybuchowi. Dobrą praktyką jest regularne sprawdzanie stanu technicznego zaworu oraz jego funkcjonalności, aby zapewnić nieprzerwaną i bezpieczną pracę instalacji.

Pytanie 23

W skład odnawialnych źródeł energii wchodzą

A. energia geotermalna, energia słoneczna, węgiel
B. energia wiatru, energia wody, ropa naftowa
C. węgiel kamienny, węgiel brunatny, gaz ziemny
D. energia geotermalna, energia biomasy, biogaz
Odpowiedź wskazująca na energię geotermalną, energię biomasy oraz biogaz jako odnawialne źródła energii jest prawidłowa, ponieważ wszystkie te źródła są zdolne do regeneracji w krótkim czasie i nie prowadzą do wyczerpywania zasobów naturalnych. Energia geotermalna wykorzystuje ciepło z wnętrza Ziemi, co sprawia, że jest to jeden z najbardziej stabilnych i niezawodnych źródeł energii. Można ją wykorzystać do ogrzewania budynków oraz do produkcji energii elektrycznej. Energia biomasy, z kolei, jest pozyskiwana z materiałów organicznych, takich jak odpady rolnicze czy drewno, co pozwala na zamianę odpadów w wartościowe źródło energii, przyczyniając się jednocześnie do zrównoważonego rozwoju. Biogaz, wytwarzany z fermentacji organicznych odpadów, może być wykorzystywany jako paliwo do silników czy do produkcji energii elektrycznej. Dobre praktyki branżowe promują rozwój technologii związanych z tymi źródłami, aby zwiększyć efektywność i zmniejszyć emisję gazów cieplarnianych. Te odnawialne źródła energii mają ogromny potencjał w ramach strategii zrównoważonego rozwoju i walki ze zmianami klimatycznymi.

Pytanie 24

Oznaczenie rur miedzianych symbolem R 290 wskazuje na ich stan

A. półtwardy
B. twardy
C. miękki
D. rekrystalizowany
Odpowiedź "twardy" jest poprawna, ponieważ oznaczenie rur miedzianych R 290 wskazuje na ich stan po procesie obróbki cieplnej, który prowadzi do uzyskania twardości. Rury miedziane twarde są powszechnie używane w instalacjach hydraulicznych i chłodniczych, gdzie wymagana jest wysoka wytrzymałość na ciśnienie oraz odporność na deformacje mechaniczne. Przykłady zastosowań obejmują systemy klimatyzacyjne oraz instalacje gazowe, gdzie niezawodność i trwałość są kluczowe. W standardach branżowych, takich jak PN-EN 1057, klasyfikacja rur miedzianych dzieli je na różne stany, w tym twardy, co pozwala na dobór odpowiedniego materiału do specyficznych zastosowań. Dodatkowo, twarde rury miedziane można łączyć z innymi elementami instalacji za pomocą lutowania, co zapewnia hermetyczność połączeń oraz długotrwałą eksploatację.

Pytanie 25

Pierwszym zadaniem po zakończeniu montażu instalacji solarnej do ogrzewania jest

A. jej odpowietrzenie
B. izolacja jej przewodów
C. napełnianie jej czynnikiem
D. jej próba ciśnieniowa
Izolacja przewodów, odpowietrzenie oraz napełnianie instalacji czynnikiem roboczym to ważne czynności, jednak nie są one odpowiednimi pierwszymi krokami po montażu instalacji grzewczej. Izolacja przewodów, choć istotna dla minimalizacji strat ciepła, nie może być przeprowadzona przed upewnieniem się, że system jest szczelny. Przed przystąpieniem do izolacji konieczne jest przeprowadzenie próby ciśnieniowej, która pozwala na weryfikację integralności systemu. Odpowietrzenie natomiast ma na celu usunięcie powietrza z układu, co jest kluczowe dla jego efektywnego działania, ale powinno być realizowane po potwierdzeniu, że instalacja nie ma wycieków. Napełnianie instalacji czynnikiem roboczym to ostatni krok po skutecznym przeprowadzeniu próby ciśnieniowej. Bez wcześniejszej weryfikacji szczelności, wprowadzenie czynnika może prowadzić do poważnych problemów, takich jak uszkodzenia elementów instalacji lub nieprawidłowe działanie systemu. Przyjęcie poprawnej procedury montażu i uruchamiania instalacji grzewczej jest zgodne z najlepszymi praktykami w branży oraz z respektowaniem standardów jakości, co zapewnia długotrwałą i bezproblemową eksploatację systemu.

Pytanie 26

Dla zapewnienia maksymalnej rocznej wydajności instalacji c.w.u. w Polsce, kąt nachylenia kolektorów słonecznych powinien znajdować się w zakresie

A. 50° ÷ 70°
B. 10° ÷ 30°
C. 70° ÷ 90°
D. 30° ÷ 50°
Odpowiedź 30° ÷ 50° jest prawidłowa, ponieważ optymalne nachylenie kolektorów słonecznych w Polsce powinno być dostosowane do średniej szerokości geograficznej kraju, co sprzyja maksymalnej efektywności całorocznej instalacji ciepłej wody użytkowej (c.w.u.). W tym zakresie nachylenia kolektory mogą najlepiej zbierać energię słoneczną, przede wszystkim w miesiącach zimowych, kiedy słońce znajduje się nisko na niebie. Praktyczne przykłady zastosowania tego nachylenia można zaobserwować w standardowych instalacjach solarnych, które są projektowane zgodnie z normą PN-EN 12975 dotyczącą kolektorów słonecznych. Przy zastosowaniu nachylenia w tym zakresie, użytkownicy mogą osiągnąć znaczne oszczędności na kosztach energii, co jest zgodne z zasadami zrównoważonego rozwoju oraz efektywności energetycznej, promowanymi przez wiele organizacji zajmujących się odnawialnymi źródłami energii. Warto również zaznaczyć, że eksperci zalecają regularne monitorowanie wydajności instalacji oraz dostosowywanie nachylenia w zależności od lokalnych warunków klimatycznych oraz zmieniających się pór roku.

Pytanie 27

Jaką wartość ma 1 roboczogodzina przy montażu 1 szt. kolektora słonecznego, jeśli koszt robocizny za zamontowanie 10 kolektorów słonecznych wynosi 5 000,00 zł, a ustalona stawka za roboczogodzinę to 25,00 zł?

A. 20 r-g/szt.
B. 500 r-g/szt.
C. 1000 r-g/szt.
D. 100 r-g/szt.
To jest 20 roboczogodzin na montaż jednego kolektora słonecznego. Żeby to obliczyć, musimy na początku ustalić, ile czasu zajmie nam montaż 10 kolektorów. Mamy koszt robocizny na poziomie 5000 zł, a stawka za roboczogodzinę to 25 zł. Jak podzielimy te 5000 zł przez 25 zł za godzinę, dostajemy 200 roboczogodzin. Potem dzielimy te 200 roboczogodzin przez 10 kolektorów, co daje nam 20 roboczogodzin na jeden kolektor. Ważne, żeby zrozumieć, jak to działa, bo w zarządzaniu projektami budowlanymi i tworzeniu kosztorysów precyzyjne obliczenia naprawdę mają znaczenie. Dzięki nim lepiej planujemy zasoby i harmonogramy pracy, co jest naprawdę istotne w tej branży.

Pytanie 28

Którego elementu brakuje, aby zapobiec odwrotnemu przepływowi wody z podgrzanego zbiornika do kolektora w czasie nocy?

A. Pompy cyrkulacyjnej
B. Zaworu bezpieczeństwa
C. Zaworu zwrotnego
D. Regulatora systemu
Regulator systemu, pompa cyrkulacyjna oraz zawór bezpieczeństwa pełnią różne, ale istotne funkcje w systemach ogrzewania, jednak ich brak nie jest bezpośrednią przyczyną odwrotnego przepływu wody z nagrzanego zasobnika do kolektora. Regulator systemu zarządza parametrami pracy instalacji, a jego brak może prowadzić do nieoptymalnego działania całego systemu, ale nie zapobiegnie odwrotnemu przepływowi wody. Pompa cyrkulacyjna odpowiada za zapewnienie odpowiedniego przepływu wody w obiegu, natomiast jej brak może spowodować spadek efektywności systemu, ale nie zainicjuje odwrotnego przepływu. Zawór bezpieczeństwa ma na celu ochronę systemu przed nadmiernym ciśnieniem, co również nie ma związku z kwestią odwrotnego przepływu. Typowym błędem myślowym jest mylenie roli zaworu zwrotnego z innymi komponentami – zawór zwrotny działa jako bariera, która blokuje przepływ wody w kierunku przeciwnym do zamierzonego. Właściwe zrozumienie funkcji każdego z tych elementów jest kluczowe dla prawidłowego działania systemu. Aby uniknąć problemów, ważne jest stosowanie się do dobrych praktyk w projektowaniu i eksploatacji systemów grzewczych, co obejmuje także regularne przeglądanie i konserwację wszystkich komponentów.

Pytanie 29

Na liście materiałów potrzebnych do realizacji instalacji fotowoltaicznej znajduje się symbol YDYt 3×2,5. Co oznacza ten symbol w kontekście rodzaju przewodu?

A. wielodrutowymi miedzianymi do podłączenia akumulatora z regulatorem ładowania
B. jednodrutowymi aluminiowymi do połączenia w szereg akumulatorów
C. wielodrutowym miedzianym do realizacji instalacji elektrycznej wewnątrz budynku w tynku
D. jednodrutowymi miedzianymi do realizacji instalacji elektrycznej wewnątrz budynku w tynku
Wybór niepoprawnych odpowiedzi może wynikać z niepełnego zrozumienia symboliki dotyczącej przewodów elektrycznych. Odpowiedzi sugerujące, że przewód YDYt 3×2,5 ma żyły wielodrutowe, są błędne, ponieważ takie przewody, jak YDYt, są z reguły produkowane z żył jednodrutowych, co zapewnia lepsze parametry elektryczne. Zastosowanie żył aluminiowych w odpowiedziach także jest niewłaściwe, gdyż przewody YDYt są zasadniczo miedziane, co wpływa na ich przewodność oraz odporność na korozję. Użycie przewodów jednodrutowych miedzianych w instalacjach elektrycznych wewnątrz budynków jest zgodne z normami, które zalecają ich stosowanie tam, gdzie przewidywana jest niska obciążalność prądowa oraz gdzie przewody są osłonięte. Typowym błędem jest myślenie, że przewody aluminiowe mogą być z równym powodzeniem stosowane w warunkach domowych, co miedziane, co nie jest prawdą; przewody aluminiowe mają gorszą przewodność oraz wymagają specjalnych złączek. Konsekwencje niewłaściwego doboru przewodów mogą prowadzić do przegrzewania się instalacji, co z kolei zwiększa ryzyko pożaru. Z tego powodu ważne jest, aby przed podjęciem decyzji o wyborze przewodów, dobrze zrozumieć ich specyfikacje oraz wymogi dotyczące bezpieczeństwa.

Pytanie 30

System solarny składa się z 3 kolektorów o pojemności 1,1 litra każdy. Pojemność wężownicy w zasobniku c.w.u. wynosi 4,5 dm3, grupy pompowej 1,5 dm3, a przeponowego naczynia wzbiorczego 15 dm3. Długość zamontowanych rur osiąga 30 mb. W jednym metrze rury mieści się 0,05 litra cieczy. Ile glikolu należy przygotować do napełnienia instalacji?

A. 26,8 dm3 glikolu
B. 25,8 dm3 glikolu
C. 25,3 dm3 glikolu
D. 24,3 dm3 glikolu
W przypadku obliczeń dotyczących ilości cieczy w instalacji solarnej, kluczowe jest zrozumienie, że każdy element systemu ma znaczenie i należy dokładnie uwzględnić jego pojemność. Często zdarza się, że niektórzy mogą pomijać pojemności poszczególnych komponentów, co prowadzi do niedoszacowania potrzebnej ilości cieczy. Na przykład, nie uwzględniając pełnej pojemności wężownicy czy grupy pompowej, można dojść do błędnych wniosków, takich jak zaniżanie potrzeby glikolu. Ponadto, nieprecyzyjne przeliczenia dotyczące długości rur i ich pojemności mogą skutkować poważnymi niedoborami cieczy w systemie, co z kolei może wpływać na jego funkcjonowanie. Zastosowanie nieodpowiednich ilości płynów może prowadzić do problemów z efektywnością cieplną oraz ryzykiem uszkodzeń w przypadku niskich temperatur. Dlatego istotne jest, aby zawsze sumować wszystkie objętości do obliczeń, w tym pojemności kolektorów, zasobników, grup pompowych oraz rur, co jest zgodne z najlepszymi praktykami w dziedzinie instalacji solarnych. Prawidłowe obliczenia zapewniają nie tylko efektywność, ale również bezpieczeństwo i niezawodność całego systemu.

Pytanie 31

Jak długo utrzymujemy elementy łączone w technologii klejonej?

A. 15-30 sek.
B. 1-2 min.
C. 35-60 sek.
D. 5-10 sek.
Przyjęcie czasów przytrzymywania elementów klejonych w przedziale 5-10 sek. jest niewłaściwe, ponieważ zbyt krótki okres może nie zapewnić wystarczającej adhezji między powierzchniami. Kleje, szczególnie te używane w przemyśle meblarskim i budowlanym, wymagają określonego czasu wiązania, aby osiągnąć pełną wydolność, co jest niezbędne do zapewnienia trwałości połączenia. Czas 35-60 sek. oraz 1-2 min. także nie są optymalne, ponieważ mogą prowadzić do nadmiernego utwardzenia kleju, co w efekcie powoduje trudności w ustawieniu elementów w trakcie klejenia. Zbyt długi czas przytrzymywania może spowodować, że klej zacznie twardnieć przed właściwym umiejscowieniem elementów, prowadząc do błędów w montażu i konieczności ponownego wykonania prac. W rzeczywistości, zrozumienie właściwego czasu przytrzymywania jest kluczowe w kontekście technologii klejonej, ponieważ każdy rodzaj kleju ma swoje specyfikacje i wymagania dotyczące czasu wiązania. Dlatego ważne jest, aby stosować się do zaleceń producentów klejów oraz przyjętych norm branżowych, aby uniknąć problemów związanych z nieodpowiednią jakością połączeń, co może prowadzić do awarii w przyszłości.

Pytanie 32

Ocena właściwości glikolu polega na ustaleniu wartości pH. Glikol powinien być niezwłocznie wymieniony, jeśli jego odczyn spadnie poniżej

A. pH 11
B. pH 9
C. pH 10
D. pH 7
Odpowiedź pH 7 jest prawidłowa, ponieważ wartość ta oznacza neutralne pH, które jest kluczowe dla zachowania właściwości glikolu. W przemyśle chemicznym oraz podczas obiegu wody w systemach grzewczych i chłodniczych, pH na poziomie 7 wskazuje na brak nadmiernej kwasowości lub zasadowości, co zapewnia optymalne warunki dla pracy wielu komponentów. Spadek wartości pH poniżej 7 może prowadzić do korozji metali i osadzania się niepożądanych substancji, co negatywnie wpływa na efektywność systemu oraz jego żywotność. Ponadto, wiele systemów, takich jak kotły, wymaga regulacji chemii wody, w tym pH, aby uniknąć uszkodzeń. Dlatego ważne jest, aby regularnie monitorować pH glikolu i w razie potrzeby go wymienić, aby zapewnić długoterminową niezawodność systemów, w których jest używany. W branży często stosuje się testy pH jako standardową praktykę konserwacyjną.

Pytanie 33

W jakiej technologii łączy się kolektor słoneczny z wymiennikiem ciepła?

A. Lutowanie twarde
B. Zgrzewanie
C. Lutowanie miękkie
D. Klejenie
Lutowanie miękkie, zgrzewanie i klejenie to techniki, które nie są odpowiednie do łączenia kolektorów słonecznych z wymiennikami ciepła z uwagi na ich ograniczenia w zakresie wytrzymałości oraz odporności na wysokie temperatury i ciśnienia. Lutowanie miękkie, stosujące niższe temperatury topnienia, może nie zapewnić wystarczającej trwałości połączeń w systemach, w których dochodzi do cyklicznych obciążeń termicznych. Tego typu połączenia mogą ulegać osłabieniu w wyniku różnic rozszerzalności cieplnej materiałów. Zgrzewanie, natomiast, polega na łączeniu materiałów poprzez ich podgrzewanie i wywieranie ciśnienia, co może być skuteczne w przypadku niektórych metali, ale nie jest zalecane w kontekście połączeń wymagających wysokiej odporności na działanie czynników zewnętrznych. W przypadku klejenia, chociaż jest to metoda wykorzystywana w różnych zastosowaniach inżynieryjnych, nie spełnia wymagań dotyczących wytrzymałości połączeń w instalacjach solarnych, gdzie kluczowa jest odporność na wysokie temperatury i ciśnienia, które mogą prowadzić do degradacji materiałów klejących. Zrozumienie tych różnic jest kluczowe dla projektowania efektywnych i niezawodnych systemów grzewczych.

Pytanie 34

W trakcie modernizacji elektrowni wodnej dokonano wymiany turbiny na nowy model o znamionowym przepływie Qn większym o 20%. Następnie zainstalowano rurę ssącą, co spowodowało wzrost użytecznego spadu Hu na turbinie z 1,6 m do 2 m. W rezultacie moc nominalna elektrowni Pn, wyrażona równaniem Pn = 9,81xQnxHuxη, wzrosła o około

A. 30%
B. 50%
C. 40%
D. 20%
Analiza błędnych odpowiedzi na zagadnienie dotyczące wzrostu mocy nominalnej elektrowni wodnej ujawnia typowe pomyłki w zrozumieniu wpływu zmian parametrów na wydajność systemu. Odpowiedzi, które sugerują wzrost o 20%, 30% lub 40%, ignorują kluczową rolę współzależności pomiędzy przełykiem znamionowym a spadem użytecznym w obliczeniach mocy. Warto zrozumieć, że wzrost przełyku o 20% oraz wzrost spadu użytecznego o 25% nie są niezależnymi zjawiskami, lecz komplementarnymi elementami, które należy rozpatrywać łącznie. Wiele osób błędnie zakłada, że zmiana jednego parametru wystarczy do oszacowania wzrostu mocy, co prowadzi do niedoszacowania rzeczywistego potencjału wzrostu mocy w wyniku modernizacji systemu. Kolejnym typowym błędem myślowym jest lekceważenie zasady mnożenia wpływów, co jest kluczowe w przypadku złożonych systemów, jakimi są elektrownie wodne. W praktyce, nie uwzględnianie interakcji między zmiennymi może prowadzić do nieefektywnych decyzji w zakresie modernizacji oraz niewłaściwego planowania inwestycji. Zrozumienie tych zasad jest istotne dla inżynierów oraz osób odpowiedzialnych za zarządzanie i rozwój systemów energetycznych, aby optymalnie wykorzystać dostępne zasoby i zminimalizować straty energetyczne.

Pytanie 35

Jaki maksymalny roczny poziom wydajności jednostkowej może uzyskać instalacja solarna z powierzchnią absorberów kolektorów słonecznych równą 15 m2, zaplanowana do podgrzewania wody użytkowej przy dobowym zapotrzebowaniu wynoszącym 500 dm3?

A. 1000 ÷ 1100 kWh/m2/rok
B. 700 ÷ 800 kWh/m2/rok
C. 400 ÷ 500 kWh/m2/rok
D. 100 ÷ 200 kWh/m2/rok
Instalacja słoneczna o powierzchni absorberów wynoszącej 15 m², zaprojektowana do podgrzewania wody użytkowej, osiągająca wydajność w zakresie 400 ÷ 500 kWh/m²/rok, jest zgodna z rzeczywistymi parametrami efektywności systemów solarnych. Wartości te są typowe dla instalacji słonecznych w umiarkowanym klimacie, gdzie kolektory solarne efektywnie wykorzystują promieniowanie słoneczne do podgrzewania wody. W praktyce, taka instalacja może zaspokoić zapotrzebowanie na wodę użytkową, które w tym przypadku wynosi 500 dm³ na dobę, co odpowiada około 182,5 m³ rocznie. Przy tej wydajności, można oczekiwać, że instalacja będzie w stanie dostarczyć wystarczającą ilość energii do podgrzewania wymaganej ilości wody. Dobrą praktyką w projektowaniu systemów solarnych jest uwzględnienie lokalnych warunków klimatycznych oraz orientacji kolektorów, co może wpłynąć na osiągane wyniki. Standardy dotyczące instalacji solarnych, takie jak normy EN 12975, dostarczają ram dla oceny wydajności systemów solarno- cieplnych, co czyni tę odpowiedź zasadne.

Pytanie 36

Warunkiem, który nie wpływa na ważność gwarancji na system solarny, jest

A. dokumentacja fotograficzna instalacji
B. rachunek za zrealizowaną instalację
C. właściwie uzupełniona karta gwarancyjna
D. złożony protokół uruchomienia
Wszystkie wymienione elementy, z wyjątkiem dokumentacji fotograficznej, są kluczowe dla prawidłowego funkcjonowania gwarancji na instalację solarną. Prawidłowo wypełniona karta gwarancyjna jest podstawowym dokumentem, który identyfikuje zarówno wykonawcę, jak i użytkownika, a także specyfikacje systemu. Bez tego dokumentu producent może nie uznać gwarancji. Wypełniony protokół uruchomienia jest niezbędny, ponieważ potwierdza, że system został poprawnie zainstalowany i skonfigurowany zgodnie z zaleceniami producenta. Jest to kluczowy krok, ponieważ nieprawidłowe uruchomienie może prowadzić do awarii, które nie będą objęte gwarancją. Faktura za wykonaną instalację jest równie ważna, gdyż stanowi potwierdzenie zakupu i wykonania usługi, co jest niezbędne do zgłaszania wszelkich roszczeń gwarancyjnych. Nieuzasadnione poleganie na dokumentacji fotograficznej, jako środka potwierdzającego spełnienie wymogów gwarancyjnych, może prowadzić do mylnych wniosków, że wystarczy tylko udokumentować instalację wizualnie, co jest błędnym podejściem. Tego rodzaju błędy myślowe mogą wynikać z niepełnego zrozumienia standardów branżowych oraz możliwości, jakie stawiają przed użytkownikami oraz wykonawcami instalacji solarnych. Ważne jest, aby stosować się do wytycznych, aby zapewnić pełne wsparcie w zakresie gwarancji.

Pytanie 37

Największe ryzyko stłuczenia podczas transportu elementów systemu solarnego mają

A. pompy obiegowe
B. karbowane rury do łączenia kolektora z grupą pompową
C. czujniki temperatury
D. rury próżniowe
Rury próżniowe są elementem systemu solarnego, który odgrywa kluczową rolę w efektywności energetycznej instalacji. Ich delikatna konstrukcja, oparta na szkle, pozwala na utrzymanie próżni wewnętrznej, co znacząco zwiększa ich zdolność do absorpcji energii słonecznej. W praktyce, podczas transportu, rury te wymagają szczególnej ostrożności ze względu na ich kruchość. W standardach transportu i przechowywania elementów systemów solarnych zaleca się używanie specjalnych opakowań ochronnych oraz unikanie uderzeń i upadków, które mogłyby skutkować stłuczeniem. Dobre praktyki wskazują również na konieczność oznaczania miejsc, gdzie rury są transportowane, aby zmniejszyć ryzyko uszkodzeń. Podczas montażu systemów solarnych, ważne jest, aby technicy byli świadomi wrażliwości tych elementów i zachowywali odpowiednie środki ostrożności, co nie tylko zwiększa trwałość instalacji, ale również zapewnia jej efektywność w dłuższym okresie czasu.

Pytanie 38

Na podstawie danych w tabeli oblicz wartość kosztorysową prac montażowych instalacji urządzeń energetyki odnawialnej.

Rodzaj kosztówRobociznaMateriałSprzęt
Koszty bezpośrednie2 0005 0004 000
Koszty pośrednie 80%1 600-3 200
Koszty zakupu 10%-500-
Wartość kosztorysowa bez zysku

A. 16 300 zł
B. 9 100 zł
C. 10 800 zł
D. 15 800 zł
Wybierając jedną z niepoprawnych odpowiedzi, można zauważyć, że kluczowym błędem jest niedoszacowanie całkowitych kosztów prac montażowych. Wiele osób może skupić się jedynie na bezpośrednich wydatkach związanych z robocizną czy materiałami, pomijając istotny element, jakim są koszty pośrednie. Koszty pośrednie, które wynoszą 80% kosztów bezpośrednich, odgrywają fundamentalną rolę w procesie kalkulacji, ponieważ uwzględniają wszystkie dodatkowe wydatki, takie jak narzędzia, transport, a także ogólne koszty operacyjne. Ponadto, oszacowanie kosztów zakupu materiałów na poziomie 10% kosztów bezpośrednich materiałów jest często niewystarczające, co prowadzi do dalszych rozbieżności w finalnym kosztorysie. Przyjmując zaniżone wartości, można łatwo dojść do wniosku, że całkowite koszty są znacznie niższe, co jest mylące i może prowadzić do problemów finansowych w trakcie realizacji projektu. Tego typu błędne wyliczenia są często wynikiem braku zrozumienia całego procesu kosztorysowania. Dlatego ważne jest, aby zawsze uwzględniać wszystkie kategorie kosztów oraz stosować uznawane w branży metody kalkulacji, które pomogą uniknąć pułapek budżetowych i zapewnią rzetelność projektu.

Pytanie 39

Stacja napełniająca zasilana energią słoneczną działa z prędkością 3 dm³/s. Jaką maksymalną objętość może napełnić w przeciągu dwóch godzin?

A. 21,60 m³
B. 10,80 m³
C. 32,40 m³
D. 6,00 m³
Niepoprawne odpowiedzi 6,00 m³, 10,80 m³ oraz 32,40 m³ wynikają z błędnych interpretacji danych dotyczących wydajności stacji napełniającej oraz czasu jej pracy. Przykładem błędnego myślenia jest przyjęcie, że stacja napełniająca, pracując z wydajnością 3 dm³/s, mogłaby napełnić instalację w sposób, który nie uwzględnia rzeczywistego czasu pracy. Odpowiedzi te mogą sugerować, że użytkownik nie zrozumiał, jak przeliczać jednostki objętości lub pomylił jednostki miary. Na przykład, w przypadku odpowiedzi 6,00 m³, użytkownik mógł pomylić jednostki decymetrów sześciennych z metrami sześciennymi, co prowadzi do drastycznie zaniżonego wyniku. Odpowiedź 10,80 m³ może wynikać z błędnego obliczenia czasu pracy systemu; użytkownik mógł zakładać, że czas ten wynosił jedynie 3600 sekund, co jest jedną godziną. Wreszcie, odpowiedź 32,40 m³ sugeruje, że użytkownik zinterpretował wydajność jako dłuższą niż 2 godziny, co jest również błędnym założeniem. Te błędy pokazują, jak ważne jest dokładne rozumienie zarówno jednostek miary, jak i zasad obliczeń w inżynierii, a także potwierdzają potrzebę kształcenia w zakresie przeliczania jednostek oraz umiejętności praktycznych przy rozwiązywaniu rzeczywistych problemów inżynieryjnych.

Pytanie 40

Jak powinny być przechowywane rury miedziane?

A. pod zadaszeniem na drewnianym podeście
B. w pomieszczeniach bez dostępu do powietrza
C. w czystych i suchych pomieszczeniach
D. na otwartym terenie budowy bez ochrony
Magazynowanie rur miedzianych w pomieszczeniach czystych i suchych jest kluczowe dla ochrony ich właściwości fizycznych oraz chemicznych. Miedź, jako materiał, jest podatna na korozję, zwłaszcza w obecności wilgoci i zanieczyszczeń. Utrzymywanie rur w suchym środowisku zapobiega osadzaniu się wilgoci na ich powierzchni, co mogłoby prowadzić do korozji pittingowej. Ponadto, czyste pomieszczenia minimalizują ryzyko zanieczyszczenia rur pyłem, brudem czy substancjami chemicznymi, które mogą wpłynąć na ich trwałość i integralność. W praktyce, dla projektów budowlanych, zaleca się stosowanie specjalistycznych magazynek, które zapewniają odpowiednią wentylację i ochronę przed szkodliwymi czynnikami. Dobre praktyki branżowe również sugerują regularne kontrole stanu magazynowanych materiałów, aby w porę zauważyć i eliminować ewentualne zagrożenia dla ich jakości. Tego typu procedury są zgodne z normami ISO 9001, które podkreślają znaczenie zarządzania jakością w przechowywaniu materiałów budowlanych.