Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 23 maja 2025 09:13
  • Data zakończenia: 23 maja 2025 09:42

Egzamin zdany!

Wynik: 37/40 punktów (92,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Osoby wykonujące wymianę instalacji elektrycznej o napięciu 230/400 V w obiekcie przemysłowym powinny mieć kwalifikacje potwierdzone świadectwem, które jest co najmniej typu

A. E do 1 kV
B. D do 15 kV
C. D do 1 kV
D. E do 30 kV
Odpowiedź E do 1 kV jest prawidłowa, ponieważ osoby wykonujące prace przy instalacjach elektrycznych o napięciu do 1 kV muszą posiadać odpowiednie kwalifikacje. W Polsce, zgodnie z przepisami prawa, uprawnienia te potwierdzane są świadectwem kwalifikacyjnym, które powinno być wydane przez odpowiednie instytucje. Prace w obiektach przemysłowych, w których napięcie wynosi 230/400 V, są najczęściej związane z instalacjami niskonapięciowymi. Wymagania dotyczące szkoleń i certyfikacji osób zajmujących się instalacjami elektrycznymi są ściśle określone w normach, takich jak PN-EN 50110-1, która odnosi się do eksploatacji urządzeń elektrycznych. Pracownicy muszą być świadomi zagrożeń związanych z elektrycznością oraz umieć stosować odpowiednie środki ochrony osobistej. Przykładowo, osoby z uprawnieniami E do 1 kV będą w stanie wykonać wymianę osprzętu elektrycznego, takich jak gniazda, włączniki czy oświetlenie, zapewniając jednocześnie bezpieczeństwo pracy oraz zgodność z obowiązującymi normami.

Pytanie 2

Które z poniższych wymagań nie jest konieczne do spełnienia przy wprowadzaniu do użytku po remoncie urządzenia napędowego z silnikiem trójfazowym Pn = 15 kW, Un = 400 V (Δ), fn = 50 Hz?

A. Wyniki testów technicznych urządzenia są zadowalające
B. Urządzenie spełnia kryteria efektywnego zużycia energii
C. Moc silnika jest odpowiednia do wymagań napędzanego sprzętu
D. Silnik jest wyposażony w przełącznik gwiazda-trójkąt
Odpowiedź wskazująca na to, że silnik jest wyposażony w przełącznik gwiazda-trójkąt jest poprawna, ponieważ to wymaganie nie jest konieczne do spełnienia przy przyjmowaniu urządzenia napędowego do eksploatacji po remoncie. Przełącznik gwiazda-trójkąt jest stosowany w silnikach elektrycznych, aby umożliwić ich rozruch przy niższej mocy znamionowej, co zmniejsza szczytowy prąd rozruchowy i zmniejsza obciążenie mechaniczne. Jednak nie jest to wymóg w kontekście przyjmowania do eksploatacji, ponieważ urządzenia mogą funkcjonować prawidłowo bez takiego przełącznika, zwłaszcza gdy nie ma potrzeby minimalizacji prądu rozruchowego. W praktyce, w zależności od zastosowania, niektóre silniki mogą być uruchamiane bezpośrednio, co jest całkowicie akceptowalne, zwłaszcza w zastosowaniach, gdzie napęd jest normalnie obciążony. Przykładem mogą być silniki napędzające wentylatory lub pompy, gdzie obciążenie jest od samego początku znaczące, co eliminuje potrzebę stosowania przełączników gwiazda-trójkąt.

Pytanie 3

Który z poniższych pomiarów potwierdza ciągłość przewodu ochronnego w układzie TN-S?

A. Rezystancji uziomu
B. Impedancji pętli zwarcia
C. Rezystancji izolacji przewodu ochronnego
D. Prądu upływu w przewodzie ochronnym
Pomiary takie jak rezystancja izolacji przewodu ochronnego, prąd upływu w przewodzie ochronnym oraz rezystancja uziomu, mimo że są istotne dla ogólnego bezpieczeństwa systemów elektrycznych, nie potwierdzają bezpośrednio ciągłości przewodu ochronnego w sieci TN-S. Rezystancja izolacji odnosi się do stanu izolacji przewodów, co ma na celu zapobieganie wyciekom prądów do ziemi, jednak nie daje jednoznacznych informacji o ciągłości przewodu ochronnego. Prąd upływu może wskazywać na problemy związane z izolacją, ale jego pomiar nie dostarcza danych na temat ciągłości samego przewodu ochronnego. Z kolei rezystancja uziomu dotyczy przewodów uziemiających, a nie ochronnych, i ma na celu zapewnienie, że prąd zwarciowy skutecznie przepływa do ziemi, co jest innym zagadnieniem. Często myląc te parametry, można dojść do błędnych wniosków, co może prowadzić do niewłaściwego diagnozowania problemów z instalacją i w konsekwencji do zagrożenia bezpieczeństwa. Zrozumienie różnych ról tych pomiarów jest kluczowe dla właściwej oceny stanu instalacji elektrycznych i zapewnienia odpowiednich środków ochrony przed porażeniem prądem elektrycznym.

Pytanie 4

Jakie wymagania muszą być spełnione podczas pomiaru rezystancji izolacyjnej w instalacji elektrycznej po wcześniejszym odłączeniu zasilania?

A. Włączone urządzenia do gniazd wtyczkowych, aktywne łączniki oświetleniowe, usunięte źródła światła
B. Wyłączone urządzenia z gniazd wtyczkowych, aktywne łączniki oświetleniowe, usunięte źródła światła
C. Włączone urządzenia do gniazd wtyczkowych, aktywne łączniki oświetleniowe, zamontowane źródła światła
D. Wyłączone urządzenia z gniazd wtyczkowych, aktywne łączniki oświetleniowe, zamontowane źródła światła
Prawidłowa odpowiedź wskazuje na konieczność wyłączenia odbiorników z gniazd wtyczkowych oraz wymontowania źródeł światła przed przystąpieniem do pomiaru rezystancji izolacji. To kluczowe kroki, które mają na celu zapewnienie bezpieczeństwa oraz dokładności pomiarów. W czasie testów rezystancji izolacji, włączenie odbiorników lub pozostawienie źródeł światła w obwodzie mogłoby prowadzić do błędnych wyników, które nie oddają rzeczywistego stanu izolacji. Przykładowo, podłączenie urządzeń może stworzyć drogę dla prądu, co zafałszuje pomiar rezystancji. W branży elektrycznej zaleca się, aby przed każdym pomiarem izolacji, upewnić się, że wszystkie urządzenia są odłączone, co jest zgodne z normą PN-EN 61557, która określa wymagania dotyczące pomiarów. Tylko w ten sposób można rzetelnie ocenić stan izolacji oraz wykryć ewentualne uszkodzenia, co jest kluczowe dla bezpieczeństwa użytkowników i integrności instalacji.

Pytanie 5

Jakie oznaczenie stopnia ochrony powinna mieć obudowa urządzenia elektrycznego, które jest zainstalowane w pomieszczeniach o dużej wilgotności?

A. IP32
B. IP22
C. IP11
D. IP44
Oznaczenie stopnia ochrony IP44 wskazuje, że urządzenie elektryczne jest chronione przed ciałami stałymi o średnicy 1 mm oraz przed wodą, która może padać w dowolnym kierunku. To czyni je odpowiednim rozwiązaniem do stosowania w pomieszczeniach wilgotnych, takich jak łazienki czy kuchnie, gdzie występuje ryzyko kontaktu z wodą i wilgocią. Zgodnie z normą IEC 60529, IP44 zapewnia odpowiedni poziom ochrony, który minimalizuje ryzyko uszkodzeń związanych z wilgocią, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. W praktyce, urządzenia takie jak oświetlenie zewnętrzne, gniazda elektryczne czy wyłączniki umieszczone w wilgotnych pomieszczeniach powinny posiadać tę klasę ochrony, aby zminimalizować ryzyko zwarcia elektrycznego oraz wypadków. Dobrą praktyką jest również regularne sprawdzanie stanu obudów i uszczelek, aby zapewnić ich ciągłą skuteczność ochrony przed wodą i zanieczyszczeniami.

Pytanie 6

Jakie z wymienionych elementów można wymieniać w instalacjach elektrycznych o napięciu 230 V bez konieczności wyłączania zasilania?

A. Elementów łącznikowych.
B. Opraw oświetleniowych.
C. Wyłączników różnicowoprądowych.
D. Wkładek bezpiecznikowych.
Wkładki bezpiecznikowe są elementami instalacji elektrycznych, które można wymieniać bez konieczności wyłączania zasilania, o ile zastosowane są odpowiednie rozwiązania technologiczne, takie jak wkładki bezpiecznikowe typu 'hot swap'. W praktyce oznacza to, że użytkownicy mogą wymieniać te elementy, aby przywrócić funkcjonalność obwodu, minimalizując ryzyko wystąpienia przerw w zasilaniu. Wkładki bezpiecznikowe mają kluczowe znaczenie dla bezpieczeństwa instalacji, ponieważ zabezpieczają obwody przed przeciążeniem i zwarciem. Prawidłowa wymiana tych wkładek, bez wyłączania zasilania, jest zgodna z normami bezpieczeństwa elektrycznego, takimi jak PN-IEC 60947, które określają wymagania dla urządzeń przeznaczonych do pracy w instalacjach elektrycznych. Przykładowo, w obiektach przemysłowych, gdzie nieprzerwane zasilanie ma kluczowe znaczenie, możliwość wymiany wkładek bezpiecznikowych w czasie pracy instalacji przyczynia się do zwiększenia efektywności operacyjnej.

Pytanie 7

W instalacji elektrycznej w łazience pojawiła się potrzeba dodania gniazda wtyczkowego w pierwszej strefie ochronnej, które ma być zasilane z obwodu zabezpieczonego przez SELV o napięciu nieprzekraczającym 25 V AC. Gdzie powinno być umieszczone źródło zasilania dla tego gniazda?

A. W obrębie strefy 0
B. W obrębie strefy 1
C. Na zewnątrz stref 0 i 1
D. Tylko na zewnątrz strefy 2
Odpowiedź "Na zewnątrz stref 0 i 1" jest prawidłowa, ponieważ w instalacjach elektrycznych w łazienkach przestrzegane są określone strefy ochronne, które mają na celu minimalizację ryzyka porażenia prądem. Strefa 0 obejmuje miejsca bezpośredniego kontaktu z wodą, takie jak wnętrze wanny czy brodzika, gdzie nie można instalować urządzeń elektrycznych z wyjątkiem tych ściśle przystosowanych do takich warunków. Strefa 1 to obszar bezpośrednio nad strefą 0, gdzie również stosuje się szczególne ograniczenia. Dla gniazda zasilanego prądem o niskim napięciu (SELV) poniżej 25 V AC, nie ma zagrożenia porażeniem prądem w przypadku awarii, dlatego jego źródło zasilania może znajdować się w bezpiecznym obszarze, czyli na zewnątrz stref 0 i 1. Przykładem praktycznym może być zainstalowanie takiego gniazda pod lustrem, gdzie nie ma bezpośredniego kontaktu z wodą, a jednak można z niego bezpiecznie korzystać. Zgodność z normami dotyczącymi bezpieczeństwa, takimi jak PN-EN 61140, jest kluczowa w takich instalacjach, aby zapewnić użytkownikom maksimum bezpieczeństwa.

Pytanie 8

Przed rozpoczęciem pomiaru rezystancji izolacji uzwojeń wirnika silnika z pierścieniem w pierwszej kolejności należy

A. odłączyć rezystory rozruchowe
B. sprawdzić ciągłość obwodu wirnika
C. zwierać uzwojenie stojana
D. wymienić szczotki
Odłączenie rezystorów rozruchowych przed pomiarem rezystancji izolacji uzwojeń wirnika silnika pierścieniowego jest kluczowym krokiem, aby uniknąć uszkodzeń sprzętu oraz zapewnić dokładność pomiarów. Rezystory rozruchowe są stosowane w obwodach silników w celu kontroli prądu rozruchowego, co oznacza, że są one podłączone do układu w momencie uruchamiania silnika. Jeśli nie zostaną odłączone, mogą powstać niepożądane połączenia, które zakłócą wyniki pomiarów rezystancji izolacji oraz mogą spowodować uszkodzenie miernika. Zgodnie z normą IEC 61557-1 dotyczącą pomiarów ochronnych w instalacjach elektrycznych, należy zawsze dbać o bezpieczeństwo i dokładność pomiarów, co obliguje do odpowiedniego przygotowania układów przed ich wykonaniem. Działania takie są istotne w kontekście zapobiegania awariom, które mogą prowadzić do kosztownych napraw lub przestojów w pracy maszyn. W praktyce, przed każdym pomiarem izolacji, zaleca się także sprawdzenie stanu szczotek i wirnika, ale najpierw kluczowe jest odłączenie obwodów, które mogłyby wpłynąć na pomiar.

Pytanie 9

Który z jednofazowych wyłączników zabezpieczających spełnia wymagania ochrony przed porażeniem przy impedancji pętli zwarcia Z = 4,2 Ω?

A. C16
B. B10
C. C10
D. B16
Wybór innego wyłącznika nadprądowego nie spełnia wymagań dotyczących ochrony przeciwporażeniowej przy podanej impedancji pętli zwarcia, co może prowadzić do poważnych konsekwencji w aspekcie bezpieczeństwa. Wyłączniki C10 oraz C16, które mają charakterystykę C, są przeznaczone do zabezpieczania obwodów, w których występują duże prądy rozruchowe, typowe dla silników i urządzeń indukcyjnych. Chociaż mogą być skuteczne w pewnych zastosowaniach, to w kontekście ochrony przed porażeniem elektrycznym są niewłaściwe, zwłaszcza przy niskich impedancjach pętli zwarcia. Czas reakcji tych wyłączników jest dłuższy niż w przypadku charakterystyki B, co może skutkować dłuższym czasem, w którym osoba narażona na porażenie prądem elektrycznym jest narażona na niebezpieczeństwo. W praktyce, niewłaściwy dobór wyłącznika może prowadzić do obniżonego poziomu bezpieczeństwa użytkowników oraz zwiększonego ryzyka uszkodzenia instalacji. Percepcja, że wyłączniki o wyższej charakterystyce są bardziej skuteczne, jest błędna w kontekście ochrony ludzkiego życia, co jest kluczowe w normach i zaleceniach dotyczących instalacji elektrycznych. Ważne jest, aby dobrze rozumieć zasady działania wyłączników oraz ich odpowiednie zastosowanie w zależności od specyfikacji instalacji elektrycznych.

Pytanie 10

Korzystając z tabeli, w której zamieszczono dopuszczalne wartości obciążalności prądowej długotrwałej, dobierz przekrój przewodów jednożyłowych typu DY do wykonania trójfazowego obwodu instalacji mieszkaniowej ułożonej w rurach. Obwód ma zasilać odbiorniki energii elektrycznej o łącznej mocy znamionowej 16 kVA przy napięciu znamionowym 400 V.

Przekrój przewodu mm²Jeden lub kilka przewodów 1-żyłowych ułożonych w rurzePrzewody płaszczowe, rurowe, wtynkowePrzewody gołe
Żyła Cu, AŻyła Al., AŻyła Cu, AŻyła Al, AŻyła Cu, AŻyła Al, A
A.1,011-15-19-
B.1,515-18-24-
C.2,5201526203226
D.4,0252034274233

A. C.
B. B.
C. A.
D. D.
Odpowiedź D jest poprawna, ponieważ została oparta na właściwych obliczeniach. Aby dobrać odpowiedni przekrój przewodów jednożyłowych typu DY, należy najpierw obliczyć prąd obciążenia obwodu trójfazowego. Moc znamionowa wynosząca 16 kVA przy napięciu 400 V prowadzi do obliczenia prądu obciążenia jako 16 kVA / (√3 * 400 V) co daje około 23.09 A. Z tabeli obciążalności prądowej wynika, że przewód o przekroju 4 mm² ma obciążalność 25 A, co przewyższa wymaganą wartość prądu. W praktyce, stosowanie odpowiednich przekrojów przewodów jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych. Przewody o niewłaściwym przekroju mogą się przegrzewać, co może prowadzić do uszkodzeń, a nawet pożaru. W zainstalowanych systemach elektrycznych zaleca się także stosowanie kabelków o zapasie mocy, co pozwala na przyszłe rozbudowy instalacji oraz może pomóc w uniknięciu potencjalnych problemów.

Pytanie 11

Jakie urządzenia są najmniej podatne na obecność wyższych harmonicznych w napięciu oraz prądzie zasilającym?

A. Silniki indukcyjne
B. Piece grzewcze
C. Lampy wyładowcze
D. Transformatory
Piece grzewcze to takie urządzenia, które radzą sobie całkiem dobrze nawet z wyższymi harmonicznymi napięcia i prądów. W przeciwieństwie do silników indukcyjnych czy transformatorów, które mogą mieć z tym poważne problemy, piece grzewcze zamieniają energię elektryczną w ciepło. To oznacza, że ich działanie nie zależy od kształtu fali zasilającej, więc są dość odporne na różne zniekształcenia. Jeśli chodzi o standardy, jak IEC 61000, które dotyczą odporności na zakłócenia elektromagnetyczne, to piece grzewcze mogą dobrze działać nawet w trudnych warunkach z dużymi zniekształceniami harmonicznymi. W przemyśle piece grzewcze, na przykład elektryczne piekarniki w piekarni czy systemy ogrzewania, mogą pracować stabilnie i efektywnie, co sprawia, że są popularnym wyborem tam, gdzie jakość zasilania może nastręczać problemów.

Pytanie 12

W trakcie naprawy części instalacji elektrycznej zasilającej silnik indukcyjny, uszkodzone przewody aluminiowe zamieniono na przewody H07V-R o przekroju żyły 50 mm2. Jaki powinien być minimalny przekrój przewodu PE, aby warunek samoczynnego wyłączenia zasilania został spełniony?

A. 25 mm2
B. 35 mm2
C. 50 mm2
D. 20 mm2
Odpowiedź 25 mm2 jest poprawna, ponieważ zgodnie z normami PN-IEC 60364-5-54, minimalny przekrój przewodu ochronnego (PE) powinien być co najmniej równy 1,5 mm2 dla instalacji o maksymalnym prądzie znamionowym do 32 A. W przypadku instalacji z przewodami zasilającymi o znacznych przekrojach, takich jak 50 mm2 w przypadku przewodów H07V-R, wymagana jest zasada, że przekrój przewodu PE powinien wynosić co najmniej 50% przekroju przewodu fazowego w przypadku aluminium lub 25% w przypadku miedzi. Tutaj mamy do czynienia z przewodami aluminiowymi, więc obliczając 50% z 50 mm2, otrzymujemy 25 mm2. Taki przekrój zapewnia odpowiednią zdolność przewodu PE do przewodzenia prądu w przypadku awarii, co jest kluczowe dla ochrony ludzi oraz urządzeń. Przykładem zastosowania tej zasady może być instalacja elektryczna w przemyśle, gdzie wymagania bezpieczeństwa są szczególnie restrykcyjne.

Pytanie 13

Który z podanych łączników chroni przewody w systemach elektrycznych przed skutkami zwarć?

A. Przekaźnik termiczny
B. Stycznik
C. Wyłącznik nadprądowy
D. Odłącznik
Wyłącznik nadprądowy jest kluczowym elementem zabezpieczeń w instalacjach elektrycznych, którego głównym zadaniem jest ochrona przewodów przed skutkami zwarć oraz przeciążeń. Działa na zasadzie automatycznego przerwania obwodu, gdy prąd przekroczy określoną wartość nominalną. Dzięki temu minimalizuje ryzyko uszkodzenia instalacji oraz pożaru. W praktyce, wyłączniki nadprądowe są stosowane w różnych typach instalacji, od domowych po przemysłowe. Przykładem mogą być obwody zasilające urządzenia, które mogą generować nagłe skoki prądu, takie jak silniki elektryczne. Zgodnie z normą PN-EN 60898-1, wyłączniki nadprądowe powinny być dobierane w zależności od charakterystyki obciążenia oraz rodzaju zabezpieczanego obwodu, co zapewnia ich skuteczność i niezawodność w działaniu. Warto również wspomnieć, że stosowanie wyłączników nadprądowych jest częścią dobrych praktyk w zakresie projektowania instalacji elektrycznych, co znacząco przyczynia się do bezpieczeństwa użytkowania.

Pytanie 14

Jak wymiana uzwojenia pierwotnego na inne, wykonane z drutów nawojowych o podwójnym przekroju i tej samej liczbie zwojów, wpłynie na działanie transformatora, przy zachowanym uzwojeniu wtórnym?

A. Zredukuje się moc pobierana z transformatora
B. Zwiększy się efektywność transformatora
C. Zmaleje napięcie na końcówkach uzwojenia wtórnego
D. Wzrasta napięcie na końcówkach uzwojenia wtórnego
Wymiana uzwojenia pierwotnego na druty o większym przekroju, przy tej samej liczbie zwojów, wpływa korzystnie na sprawność transformatora. Zwiększenie przekroju drutów prowadzi do obniżenia oporu elektrycznego uzwojenia, co w efekcie zmniejsza straty mocy na skutek efektu Joule'a (straty I²R). To oznacza, że przy tej samej wartości prądu, straty ciepła w uzwojeniu pierwotnym będą mniejsze, co przekłada się na wyższą sprawność całego urządzenia. W praktyce, zastosowanie drutów o większym przekroju jest zgodne z zasadami inżynierii, gdzie dąży się do minimalizacji strat energii oraz poprawy efektywności energetycznej urządzeń. W przemyśle energetycznym, efektywność transformatorów jest kluczowa, ponieważ ma bezpośredni wpływ na zużycie energii i koszty operacyjne. Na przykład, w elektrowniach i stacjach transformacyjnych stosuje się takie rozwiązania, aby zminimalizować straty energii i poprawić parametry pracy urządzeń.

Pytanie 15

Przygotowując miejsce do przeprowadzania badań odbiorczych trójfazowego silnika indukcyjnego o parametrach: UN = 230/400 V, PN = 4 kW, należy, oprócz wizualnej inspekcji i analizy stanu izolacji uzwojeń, uwzględnić między innymi realizację pomiarów

A. drgań
B. charakterystyki stanu jałowego
C. izolacji łożysk
D. rezystancji uzwojeń
Pomiar rezystancji uzwojeń silnika indukcyjnego jest kluczowym etapem w diagnostyce stanu technicznego tego urządzenia. Wartość rezystancji uzwojeń pozwala ocenić ich stan, a także zidentyfikować ewentualne uszkodzenia. W praktyce, pomiar ten powinien być przeprowadzany zgodnie z normami, takimi jak PN-EN 60034-1, które określają metody badania właściwości elektrycznych maszyn elektrycznych. Rezystancja uzwojeń wpływa na straty mocy, a ich zbyt wysoka wartość może wskazywać na problemy z przewodami lub złączeniami. Regularne monitorowanie rezystancji uzwojeń umożliwia wczesne wykrywanie problemów, co jest kluczowe dla utrzymania efektywności energetycznej i niezawodności pracy maszyny. W praktyce, wartości rezystancji uzwojeń porównuje się z danymi producenta oraz z wynikami pomiarów z przeszłości, co pozwala na identyfikację trendów i potencjalnych zagrożeń dla pracy silnika.

Pytanie 16

Jak wpłynie na napięcie dolnej strony transformatora wzrost liczby aktywnych zwojów w uzwojeniu górnym, przy niezmienionym napięciu zasilania?

A. Spadnie do zera
B. Zmniejszy się
C. Wzrośnie
D. Nie ulegnie zmianie
Zrozumienie działania transformatora wymaga znajomości podstawowych zasad dotyczących napięcia, zwojów oraz ich wzajemnych relacji. Odpowiedzi sugerujące, że napięcie się nie zmieni, mogą wynikać z błędnego założenia, że liczba zwojów nie ma wpływu na napięcie wyjściowe. Takie podejście ignoruje fundamentalne zasady transformacji energii. W rzeczywistości, napięcie na uzwojeniu dolnym jest bezpośrednio związane z liczbą zwojów w uzwojeniu górnym. Jeśli liczba zwojów w uzwojeniu górnym wzrasta, napięcie na dolnym uzwojeniu musi się obniżyć, aby zachować równowagę w transformatorze. Z kolei twierdzenie, że napięcie wzrośnie, jest oparte na niewłaściwym zrozumieniu mechanizmu działania transformatora, gdzie zwiększenie liczby zwojów w jednym uzwojeniu automatycznie nie prowadzi do wzrostu napięcia w innym. Ostatnia możliwość, że napięcie spadnie do zera, może być wynikiem skrajnego myślenia, które nie uwzględnia faktu, że transformator, przy odpowiednim zasilaniu, zawsze wytwarza pewne napięcie na uzwojeniu dolnym, choć może być ono mniejsze niż w przypadku mniejszej liczby zwojów w uzwojeniu górnym. Dobrą praktyką w analizie układów elektrycznych jest zawsze uwzględnianie proporcji i zależności między poszczególnymi elementami, co pozwala na lepsze zrozumienie działania i przewidywanie konsekwencji zmian w układzie.

Pytanie 17

Jaka powinna być nominalna wartość prądu bezpiecznika aparatu zamontowanego w obwodzie pierwotnym transformatora jednofazowego o parametrach: U1N= 230 V, U2N= 13 V, używanego w ładowarce do akumulatorów, jeśli przewidywana wartość prądu ładowania akumulatorów wynosi 15 A?

A. 16A
B. 10A
C. 1A
D. 6A
Wartość prądu znamionowego bezpiecznika aparatowego powinna być odpowiednio dobrana do przewidywanego prądu obciążenia. W omawianym przypadku, transformator jednofazowy o parametrach znamionowych U1N= 230 V i U2N= 13 V, przy założonym prądzie obciążenia 15 A, wymaga zastosowania bezpiecznika o wartości prądowej nieco wyższej niż maksymalny prąd roboczy. Dlatego bezpiecznik o wartości 16 A będzie odpowiedni, ponieważ zapewnia margines bezpieczeństwa, chroniąc jednocześnie obwód przed przeciążeniem. W praktyce, dobierając bezpieczniki, należy kierować się zasadą, że ich wartość powinna być wyższa niż przewidywane prądy robocze, co jest zgodne z normą PN-EN 60947-3, która wskazuje na konieczność zapewnienia ochrony przed zwarciami i przeciążeniami. To podejście nie tylko zwiększa bezpieczeństwo systemu, ale także wydłuża żywotność urządzeń, w tym transformatorów i akumulatorów.

Pytanie 18

Która z poniższych tachoprądnic, poza pomiarem prędkości obrotowej wirującego wału, pozwala również na określenie kierunku jego obrotu?

A. Prądu stałego
B. Synchroniczna
C. Dwufazowa z wirnikiem klatkowym
D. Dwufazowa z wirnikiem kubkowym
Tachoprądnice prądu stałego to takie fajne urządzenia, które nie tylko mierzą, jak szybko kręci się wał, ale też potrafią rozpoznać, w którą stronę ten wał się obraca. Działają na zasadzie indukcji elektromagnetycznej, co oznacza, że jak zmienia się pole magnetyczne, to tworzy się prąd w uzwojeniach. Jeśli wirnik zmienia kierunek, to też zmienia się polaryzacja sygnału, co jest mega ważne, gdy chcemy wiedzieć, w którą stronę coś się kręci. To przydaje się szczególnie w automatyce przemysłowej, gdzie kontrola kierunku obrotów silnika jest kluczowa. W praktyce spotkasz je w systemach regulacji prędkości silników, na przykład w robotach czy pojazdach elektrycznych, gdzie precyzyjne sterowanie ruchem ma ogromne znaczenie. Fajnie też wiedzieć, że branżowe standardy, jak IEC 60034, regulują wymagania dotyczące tych urządzeń, co pokazuje, jak ważne są w przemyśle.

Pytanie 19

Kontrole instalacji elektrycznej w obiektach użyteczności publicznej powinny być przeprowadzane nie rzadziej niż co

A. 3 lata
B. 4 lata
C. 2 lata
D. 5 lat
Przeglądy instalacji elektrycznej w budynkach użyteczności publicznej powinny być przeprowadzane nie rzadziej niż co 5 lat, co jest zgodne z przepisami oraz normami zawartymi w Polskich Normach (PN). Regularne przeglądy mają na celu zapewnienie bezpieczeństwa użytkowników obiektów oraz zachowanie sprawności technicznej instalacji. W trakcie przeglądów dokonuje się oceny stanu technicznego instalacji, co pozwala na wczesne wykrycie ewentualnych usterek czy nieprawidłowości, które mogłyby prowadzić do niebezpiecznych sytuacji, takich jak pożar czy porażenie prądem. Przykładowo, w obiektach takich jak szkoły czy szpitale, gdzie bezpieczeństwo jest kluczowe, regularne przeglądy są niezbędne, aby spełniać wymogi prawa oraz zapewnić komfort i bezpieczeństwo ich użytkowników. Pamiętajmy, że odpowiedzialność za przeprowadzanie tych przeglądów spoczywa na właścicielu obiektu, który powinien współpracować z wyspecjalizowanymi firmami elektrycznymi, aby mieć pewność, że prace są prowadzone zgodnie z aktualnymi normami i najlepszymi praktykami.

Pytanie 20

Zgodnie z aktualnymi regulacjami, czas pomiędzy następnymi kontrolami skuteczności ochrony przed porażeniem prądem dla instalacji elektrycznych w pomieszczeniach z wyziewami żrącymi, w strefach zagrożonych wybuchem oraz na terenie otwartym nie może przekraczać

A. jeden rok
B. dwa lata
C. pół roku
D. pięć lat
Odpowiedź "jeden rok" jest poprawna, ponieważ zgodnie z obowiązującymi przepisami, w tym normami IEC 60364 oraz krajowymi regulacjami, instalacje elektryczne w pomieszczeniach narażonych na działanie substancji żrących, zagrożone wybuchem czy na otwartej przestrzeni powinny być regularnie kontrolowane. Przepisy te mają na celu zapewnienie bezpieczeństwa użytkowników oraz ochrony przed ewentualnymi awariami, które mogą prowadzić do poważnych konsekwencji, w tym pożarów lub wybuchów. Regularne kontrole co roku pozwalają na wczesne identyfikowanie potencjalnych problemów, takich jak korozja elementów instalacji, luźne połączenia czy inne usterki, które w takich warunkach mogą pojawić się szybciej niż w standardowych warunkach. Przykładem zastosowania tej regulacji może być przemysł chemiczny, gdzie substancje agresywne mogą wpływać na stan techniczny instalacji elektrycznych i w konsekwencji na bezpieczeństwo pracy. Dlatego przestrzeganie rocznego terminu kontroli jest kluczowe dla minimalizacji ryzyka i zapewnienia odpowiednich standardów pracy.

Pytanie 21

Dla urządzenia zasilanego trójfazową instalacją elektryczną o napięciu nominalnym 400 V maksymalny pobór mocy wynosi 13 kW. Określ minimalną wartość prądu znamionowego zabezpieczenia przedlicznikowego, przyjmując rezystancyjny charakter odbiorników i pomijając problem selektywności zabezpieczeń?

A. 20 A
B. 10 A
C. 16 A
D. 25 A
W przypadku obiektu zasilanego instalacją elektryczną trójfazową o napięciu znamionowym 400 V, aby obliczyć minimalną wartość prądu znamionowego zabezpieczenia przedlicznikowego, należy skorzystać z zależności między mocą, napięciem a prądem. Znamionowa moc wynosząca 13 kW (13 000 W) w połączeniu z napięciem 400 V umożliwia obliczenie prądu za pomocą wzoru: P = √3 * U * I, gdzie P to moc, U to napięcie, a I to prąd. Przekształcając wzór, otrzymujemy: I = P / (√3 * U). Podstawiając dane: I = 13000 / (√3 * 400) ≈ 18,7 A. W praktyce dobieramy zabezpieczenie na wartość wyższą, aby zapewnić odpowiedni margines. Z tego powodu wybrana wartość 20 A jest odpowiednia, zgodna z dobrymi praktykami doboru zabezpieczeń, które powinny mieć również margines na ewentualne przeciążenia. Zastosowanie zabezpieczeń o wartości minimalnej 20 A zapewnia lepszą ochronę przed uszkodzeniem instalacji oraz zmniejsza ryzyko wyzwolenia zabezpieczeń podczas normalnej pracy urządzeń. Warto także pamiętać o konieczności przestrzegania norm PN-IEC 60364, które stanowią wytyczne dotyczące projektowania i wykonania instalacji elektrycznych.

Pytanie 22

Urządzenia elektryczne o klasie ochrony 0 mogą być stosowane wyłącznie w sytuacji

A. wcześniejszego zweryfikowania efektywności ochrony w instalacji
B. wdrożenia ochrony przed porażeniem w formie separacji elektrycznej lub izolacji miejsca wykonywania pracy
C. korzystania z nich pod nadzorem technicznym ze strony dostawcy energii elektrycznej
D. zasilania ich z gniazd z ochronnym bolcem uziemiającym
Urządzenia elektryczne klasy ochronności 0 są projektowane w sposób, który nie zapewnia żadnej formy ochrony przed porażeniem elektrycznym. W związku z tym ich stosowanie wymaga zastosowania dodatkowych środków ochrony, takich jak separacja elektryczna lub izolacja stanowiska pracy. Zgodnie z normą PN-IEC 61140, urządzenia tej klasy powinny być wykorzystywane w środowiskach, gdzie ryzyko porażenia jest minimalizowane poprzez odpowiednie techniki zabezpieczające. Przykładem może być stosowanie tych urządzeń w pomieszczeniach suchych, gdzie nie ma ryzyka kontaktu z wodą, oraz w sytuacjach, gdzie pracownicy są odpowiednio przeszkoleni w zakresie bezpieczeństwa. W praktyce, można zastosować również urządzenia ochronne, które odcinają zasilanie w przypadku wykrycia upływu prądu, co dodatkowo zwiększa bezpieczeństwo. Dlatego kluczowe jest, aby przed użyciem takich urządzeń, upewnić się, że są spełnione wszystkie warunki ochrony przeciwporażeniowej oraz że urządzenia są wykorzystywane zgodnie z ich przeznaczeniem.

Pytanie 23

Aby zabezpieczyć silnik o parametrach znamionowych podanych poniżej, należy dobrać wyłącznik silnikowy według oznaczenia producenta

Silnik 3~ Typ MAS063-2BA90-Z
0,25 kW 0,69 A Izol. F
IP 54 2755 obr/min cosφ 0,81
400 V (Y) 50 Hz


A. MMS-32S – 1,6A
B. PKZM01 – 0,63
C. MMS-32S – 4A
D. PKZM01 – 1
Wybór wyłącznika silnikowego PKZM01 – 1 jest poprawny, ponieważ jego znamionowy prąd 1 A jest zgodny z wymaganiami silnika o mocy 0,25 kW i prądzie znamionowym 0,69 A. Wyłączniki silnikowe powinny być dobierane na podstawie prądu znamionowego silnika, co w tym przypadku oznacza, że wymagany prąd roboczy wyłącznika powinien być nieco wyższy niż prąd znamionowy silnika, aby zapewnić odpowiednią ochronę. PKZM01 – 1, przy prądzie 1 A, zapewnia odpowiedni margines bezpieczeństwa, co jest zgodne z dobrymi praktykami w branży. Dodatkowo, wyłączniki serii PKZ są wyposażone w funkcję zabezpieczenia przeciążeniowego i zwarciowego, co czyni je odpowiednim wyborem do ochrony silników. W przypadku awarii, wyłącznik ten zadziała szybko, chroniąc zarówno silnik, jak i podłączone instalacje. Wykorzystując wyłączniki zgodne z normami IEC 60947-4-1, można być pewnym ich niezawodności i efektywności działania.

Pytanie 24

W instalacji trójfazowej natężenie prądu obciążenia przewodów fazowych Ib wynosi 21 A, a maksymalne dopuszczalne obciążenie tych przewodów Id to 30 A. Który z wymienionych wyłączników nadprądowych powinien być użyty do ochrony tej instalacji?

A. B16
B. B25
C. B20
D. B10
Dobra decyzja z tym wyłącznikiem B25! Wybierając go, postawiłeś na coś, co naprawdę pasuje do wartości prądu obciążenia, która wynosi 21 A. Z tego, co wiemy, wyłącznik powinien mieć wyższą wartość nominalną niż maksymalny prąd roboczy, ale nie może też za bardzo przekraczać obciążalności przewodów. Tu mamy 30 A dla przewodów, więc 25 A dla wyłącznika to świetny wybór. Dzięki temu nie tylko chronisz instalację przed przeciążeniem, ale też zmniejszasz ryzyko uszkodzenia przewodów. Gdybyś wybrał wyłącznik o wyższej wartości, mogłoby to prowadzić do niebezpiecznych sytuacji, w których obciążenia mogą przekraczać to, co jest dozwolone. Generalnie, wyłączniki B25 są dosyć popularne w instalacjach trójfazowych i dobrze się sprawdzają, bo utrzymują wartość prądu na odpowiednim poziomie. Ważne, żeby nie przekraczać 80% tej wartości nominalnej, co w twoim przypadku jest akurat spełnione.

Pytanie 25

Jaką czynność należy wykonać podczas inspekcji instalacji elektrycznej w budynku mieszkalnym przed jego oddaniem do użytku?

A. Weryfikacja czasu samoczynnego odłączenia zasilania
B. Zmierzanie rezystancji izolacji instalacji elektrycznej
C. Ocena prawidłowego doboru przekroju kabli
D. Przeprowadzenie próby ciągłości przewodów ochronnych oraz połączeń wyrównawczych
Sprawdzenie właściwego doboru przekroju przewodów jest kluczowym elementem oceny instalacji elektrycznej. Przekroje przewodów muszą być odpowiednio dobrane do obciążenia, jakie będą musiały znieść. Niewłaściwy dobór może prowadzić do przegrzewania się przewodów, co z kolei zwiększa ryzyko pożaru oraz uszkodzenia urządzeń elektrycznych. Zgodnie z normą PN-IEC 60364-5-52, należy uwzględnić zarówno parametry obciążeniowe, jak i długość przewodów oraz warunki ich ułożenia. Przykładowo, dla instalacji w domach jednorodzinnych, niezbędne jest, by przekrój przewodu zasilającego gniazdka był odpowiedni do przewidywanego obciążenia, co pozwala na bezpieczne użytkowanie. Dobre praktyki nakazują także regularne przeglądy instalacji elektrycznych, a w szczególności zwrócenie uwagi na te aspekty podczas inspekcji przed oddaniem budynku do użytku, co zapewnia bezpieczeństwo mieszkańców.

Pytanie 26

Jakie mogą być przyczyny nadmiernego iskrzenia szczotek na pierścieniach w silniku pierścieniowym?

A. Zbyt wysoką temperaturą otoczenia.
B. Nieprawidłową kolejnością faz.
C. Zbyt słabym dociskiem szczotek do pierścieni
D. Brakiem symetrii napięć zasilających.
Zbyt słaby docisk szczotek do pierścieni jest kluczowym czynnikiem, który może prowadzić do nadmiernego iskrzenia w silniku pierścieniowym. Właściwy docisk szczotek zapewnia odpowiedni kontakt elektryczny między szczotkami a pierścieniami, co jest niezbędne do prawidłowego działania silnika. Niewystarczający docisk skutkuje nieregularnym przewodnictwem i zwiększonym oporem, co prowadzi do miejscowego przegrzewania się i iskrzenia. Praktyczne przykłady z przemysłu pokazują, że regularne kontrole i właściwa konserwacja komponentów silnika, w tym szczotek i pierścieni, są kluczowe dla utrzymania efektywności pracy oraz minimalizacji uszkodzeń. W branży stosuje się standardy takie jak ISO 9001, które kładą nacisk na ciągłe doskonalenie procesów produkcyjnych, w tym również na monitorowanie stanu technicznego urządzeń. Dbałość o odpowiedni docisk szczotek może znacznie wydłużyć żywotność silnika oraz zminimalizować koszty eksploatacji.

Pytanie 27

Który z poniższych rodzajów silników wyróżnia się najlepszą kontrolą prędkości obrotowej poprzez modyfikację wartości napięcia zasilającego?

A. Synchroniczny jawnobiegunowy
B. Prądu stałego
C. Asynchroniczny klatkowy
D. Asynchroniczny pierścieniowy
Silniki prądu stałego charakteryzują się doskonałą regulacją prędkości obrotowej, co czyni je idealnym wyborem w aplikacjach wymagających precyzyjnego sterowania. Dzięki prostocie zmiany napięcia zasilającego, można łatwo dostosować prędkość obrotową silnika do konkretnego zadania. Przykłady zastosowania obejmują napędy w robotyce, gdzie wymagana jest zmienna prędkość w zależności od zadań do wykonania, czy też w wentylatorach, gdzie regulacja obrotów wpływa na efektywność energetyczną. W przemyśle, silniki prądu stałego są wykorzystywane w maszynach takich jak dźwigi czy taśmociągi, gdzie precyzyjne zarządzanie prędkością jest kluczowe dla bezpieczeństwa i efektywności procesu. Dobre praktyki wskazują na wykorzystanie kontrolerów PWM (Pulse Width Modulation) do efektywnej regulacji napięcia oraz ograniczenia strat energii. Warto również zauważyć, że silniki te są bardziej odpowiednie do zadań, gdzie wymagana jest często zmiana kierunku obrotów, co również wpływa na ich popularność w różnorodnych aplikacjach.

Pytanie 28

Jakie numery wskazano na schemacie z dokumentacji techniczno-ruchowej elementów zamiennych, które są częścią silnika szlifierki?

A. Od 1 do 6
B. Od 47 do 52
C. Od 19 do 26
D. Od 7 do 14
Odpowiedź 'Od 7 do 14' jest jak najbardziej trafna. Te numery odnoszą się do konkretnych części zamiennych w silniku szlifierki, które są mega ważne dla jej działania. W dokumentacji techniczno-ruchowej znajdziesz, że przypisane są do takich elementów jak wirnik czy chłodzenie. Bez nich, szlifierka raczej nie zadziała tak, jak powinna. Na przykład, wirnik odpowiada za ruch obrotowy, co bezpośrednio przekłada się na to, jak skutecznie szlifujemy. Wiedza o tych częściach i ich numerach jest kluczowa, bo pozwala szybko znaleźć odpowiednie zamienniki w razie awarii. Takie podejście naprawdę ułatwia życie nie tylko inżynierom, ale i tym, którzy zajmują się konserwacją maszyn. Dobrze jest też pamiętać, że poprawna identyfikacja części wpływa na bezpieczeństwo i sprawność operacyjną szlifierki.

Pytanie 29

Przygotowując miejsce do przeprowadzenia badań odbiorczych trójfazowego silnika indukcyjnego o parametrach: UN = 230/400 V, PN = 4 kW, należy, oprócz inspekcji oraz oceny stanu izolacji uzwojeń, uwzględnić między innymi wykonanie pomiarów

A. drgań
B. charakterystyki stanu jałowego
C. rezystancji uzwojeń
D. izolacji łożysk
Pomiar rezystancji uzwojeń trójfazowego silnika indukcyjnego jest kluczowy dla oceny jego stanu technicznego. Rezystancja uzwojeń pozwala na ocenę ich integralności oraz wykrycie potencjalnych uszkodzeń, takich jak zwarcia czy przerwy. W praktyce, pomiar ten jest często realizowany przy użyciu omomierza, a wartości rezystancji powinny być zgodne z danymi producenta. Niekiedy, po dokonaniu pomiaru, porównuje się wyniki z normami zawartymi w dokumentacji technicznej silnika. Dobrą praktyką jest także wykonywanie pomiarów rezystancji w różnych warunkach temperaturowych, ponieważ wpływ temperatury na rezystancję może być znaczący. Warto dodać, że w przypadku silników wykonanych z materiałów o wysokiej przewodności, takich jak miedź, rezystancja powinna być minimalna, co świadczy o ich dobrej kondycji. Regularne pomiary rezystancji uzwojeń mogą również pomóc w planowaniu działań konserwacyjnych oraz przewidywaniu potencjalnych awarii, co jest zgodne z zasadami zarządzania majątkiem technicznym.

Pytanie 30

Jaka powinna być minimalna wartość natężenia prądu przy pomiarze ciągłości przewodu ochronnego?

A. 200 mA
B. 400 mA
C. 500 mA
D. 100 mA
Minimalna wartość natężenia prądu podczas wykonywania pomiaru ciągłości przewodu ochronnego wynosząca 200 mA jest określona przez normy, takie jak PN-EN 61557-4. Pomiary te mają na celu potwierdzenie, że przewody ochronne są w stanie zapewnić odpowiednią ochronę przed porażeniem elektrycznym. Wartość ta została ustalona na podstawie doświadczeń inżynieryjnych i badań, które wykazały, że natężenie prądu na poziomie 200 mA jest wystarczające do wykrycia ewentualnych wad w izolacji przewodów, a jednocześnie jest na tyle bezpieczne, aby nie stanowić zagrożenia dla osób wykonujących pomiar. W praktyce, podczas testów, jeśli wartość ta nie zostanie osiągnięta, może to sugerować problemy z przewodem ochronnym, co może prowadzić do niebezpiecznych sytuacji w instalacji elektrycznej. Regularne wykonywanie takich pomiarów jest kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz zgodności z przepisami. Prawidłowe pomiary ciągłości przewodów ochronnych powinny być częścią regularnego serwisu i konserwacji instalacji elektrycznej, aby zapewnić ich prawidłowe funkcjonowanie.

Pytanie 31

Które z poniższych zjawisk nie wpływa na pogorszenie jakości energii elektrycznej?

A. Przepięcia
B. Czystość powietrza
C. Wahania napięcia
D. Obecność harmonicznych
Czystość powietrza nie jest czynnikiem wpływającym na jakość energii elektrycznej, ponieważ nie ma bezpośredniego związku z parametrami elektrycznymi sieci. Jakość energii elektrycznej określana jest przez stabilność napięcia, częstotliwość, zawartość harmonicznych oraz obecność przepięć i zapadów napięcia. Czystość powietrza może mieć wpływ na inne aspekty funkcjonowania instalacji, takie jak chłodzenie urządzeń czy ochrona przed korozją, ale nie bezpośrednio na jakość samej energii. W kontekście eksploatacji maszyn, urządzeń i instalacji elektrycznych, czystość powietrza jest bardziej istotna z punktu widzenia utrzymania sprzętu w dobrej kondycji, a nie jakości energii elektrycznej jako takiej. W praktyce, osoby zajmujące się eksploatacją instalacji powinny zwracać uwagę na zanieczyszczenia, które mogą osadzać się na urządzeniach, powodując ich przegrzewanie lub przyspieszoną korozję.

Pytanie 32

Podczas pomiaru rezystancji izolacji przewodów, jakie napięcie testowe jest zazwyczaj stosowane dla obwodów o napięciu znamionowym 230 V?

A. 750 V
B. 230 V
C. 100 V
D. 500 V
Pomiar rezystancji izolacji jest kluczowym krokiem w ocenie stanu technicznego instalacji elektrycznych. Dla obwodów o napięciu znamionowym 230 V zaleca się stosowanie napięcia testowego 500 V. Wybór tego napięcia wynika z norm i standardów, które nakładają wymogi dotyczące minimalnej wartości napięcia testowego, aby zapewnić wiarygodne wyniki pomiarów. Rozporządzenia takie jak PN-HD 60364-6:2016-07 wskazują, że dla obwodów o napięciu znamionowym do 500 V, napięcie testowe powinno wynosić 500 V. Zastosowanie wyższego napięcia testowego niż napięcie znamionowe jest konieczne, aby wykryć ewentualne uszkodzenia izolacji, które mogą pojawić się w warunkach rzeczywistej eksploatacji. Dzięki temu można zidentyfikować miejsca, gdzie izolacja może być osłabiona, co pozwala na podjęcie kroków naprawczych przed wystąpieniem awarii. To podejście jest powszechnie stosowane w branży, zapewniając bezpieczeństwo i niezawodność instalacji elektrycznej.

Pytanie 33

Jakie jest maksymalne dopuszczalne wartości impedancji pętli zwarcia w instalacji elektrycznej o napięciu nominalnym 230 V działającej w układzie TN-S, zabezpieczonej wyłącznikiem nadprądowym C16, aby zapewnić samoczynne wyłączenie zasilania jako środek ochrony przeciwporażeniowej w przypadku awarii?

A. 0,71 Ω
B. 4,79 Ω
C. 2,87 Ω
D. 1,43 Ω
Maksymalna dopuszczalna impedancja pętli zwarcia dla instalacji z wyłącznikiem nadprądowym C16 w sieci TN-S wynosi 1,43 Ω, co zapewnia odpowiednie warunki do samoczynnego wyłączenia zasilania w przypadku uszkodzenia. Taki wyłącznik nadprądowy zadziała, gdy prąd zwarciowy osiągnie wartość wystarczającą do jego uruchomienia, co w przypadku C16 wynosi 16 A. Aby zapewnić skuteczną ochronę, impedancja pętli zwarcia powinna być tak dobrana, aby prąd zwarciowy przekraczał wartość zadziałania wyłącznika. Przy napięciu 230 V, zgodnie z zasadą Ohma (U = I * R), maksymalna impedancja wynosi: Z = U / I = 230 V / 16 A = 14,375 Ω, co daje duży margines, ale w praktyce akceptowana wartość dla bezpiecznego działania to 1,43 Ω. Przykłady praktycznych zastosowań obejmują instalacje w budynkach mieszkalnych, gdzie ważne jest zapewnienie szybkiego odłączenia prądu w przypadku awarii. Standardy PN-IEC 60364-4-41 oraz PN-EN 61140 określają wymagania dotyczące ochrony przeciwporażeniowej, a także metodyka obliczania impedancji pętli zwarcia, co pozwala na właściwe zabezpieczenie przed porażeniem elektrycznym.

Pytanie 34

Który z podanych przewodów nie jest stosowany jako przewód fazowy w instalacjach trójfazowych?

A. Przewód L2
B. Przewód L3
C. Przewód L1
D. Przewód N
W instalacjach trójfazowych przewód neutralny (N) pełni kluczową rolę w zrównoważeniu obciążenia i zapewnieniu stabilności systemu. Przewód neutralny jest odpowiedzialny za powrót prądu do źródła i wyrównanie potencjałów między fazami. W standardowych systemach trójfazowych, oznaczonych jako L1, L2, L3, przewody te są wykorzystywane jako przewody fazowe, które prowadzą prąd do odbiorników. Przewód neutralny nie przenosi prądu w sposób ciągły, ale umożliwia jego powrót w sytuacjach asymetrii obciążenia. Może być też wykorzystywany do podłączenia niektórych urządzeń jednofazowych w instalacjach trójfazowych. Dzięki temu system całkowicie funkcjonuje stabilnie, a użytkownicy mogą korzystać z zasilania w sposób bezpieczny i efektywny. Zrozumienie funkcji przewodu neutralnego jest kluczowe dla prawidłowej eksploatacji i konserwacji systemów elektrycznych, co jest niezbędne dla każdego technika elektryka.

Pytanie 35

Zabezpieczenie bezpiecznej pracy grzejnika trójfazowego zapewnia

A. osłona elementów grzejnych
B. regulacja mocy grzejnej
C. wymuszony obieg powietrza
D. wyprowadzenie punktu neutralnego elementów grzejnych
Osłona elementów grzejnych jest kluczowym elementem zapewniającym bezpieczną eksploatację grzejnika trójfazowego. Tego rodzaju osłona chroni użytkowników przed bezpośrednim kontaktem z elementami grzejnymi, które mogą osiągać wysokie temperatury. W praktyce, stosowanie osłon jest zgodne z normami bezpieczeństwa, takimi jak PN-EN 60335, które regulują wymagania dotyczące bezpieczeństwa urządzeń elektrycznych. Osłony mogą być wykonane z materiałów odpornych na działanie wysokiej temperatury i powinny być zamocowane w sposób uniemożliwiający ich przypadkowe zdjęcie. Dobrze zaprojektowana osłona nie tylko chroni przed poparzeniami, ale także minimalizuje ryzyko pożaru. Przykładem zastosowania osłon mogą być grzejniki stosowane w domach, które często wyposażane są w dodatkowe elementy zabezpieczające, aby zminimalizować ryzyko wypadków. Oprócz osłon, ważne jest również regularne sprawdzanie stanu technicznego urządzenia oraz jego instalacji, co jest podstawą odpowiedzialnej eksploatacji grzejników.

Pytanie 36

Jakie uszkodzenie lub defekt można wykryć podczas przeglądu instalacji elektrycznej w budynku mieszkalnym?

A. Brak ciągłości połączeń
B. Pogorszenie się stanu mechanicznego złącz i połączeń
C. Pogorszenie się stanu izolacji
D. Przekroczenie dopuszczalnego czasu zadziałania wyłącznika ochronnego
Pogorszenie się stanu mechanicznego złącz i połączeń jest kluczowym elementem, który można zlokalizować podczas oględzin instalacji elektrycznej. Wszelkie uszkodzenia mechaniczne złącz mogą prowadzić do zwiększonego oporu, co z kolei może skutkować przegrzewaniem się złącz oraz potencjalnymi awariami systemu. W praktyce, obserwacja stanu mechanicznego złącz pozwala na wczesne wykrywanie problemów, które mogą prowadzić do niebezpiecznych sytuacji, takich jak zwarcia czy pożary. Na przykład, złącza, które wykazują oznaki korozji lub zużycia, powinny być wymieniane, aby zapewnić bezpieczeństwo i niezawodność instalacji elektrycznej. W branży elektrycznej istnieją określone standardy, takie jak normy IEC 60364, które zalecają regularne przeglądy oraz konserwację elementów instalacji, co jest kluczowe dla zapewnienia ich prawidłowego funkcjonowania i bezpieczeństwa użytkowników. Przeprowadzanie systematycznych inspekcji złącz i połączeń jest zatem nie tylko zalecane, ale wręcz konieczne w kontekście utrzymania instalacji elektrycznej w dobrym stanie.

Pytanie 37

Aby zidentyfikować części silników w wersji przeciwwybuchowej, które mają podwyższoną temperaturę, przeprowadza się pomiary temperatury ich obudowy. W którym miejscu silnika nie powinno się przeprowadzać tych pomiarów?

A. W centralnej części obudowy blisko skrzynki przyłączeniowej
B. Na tarczy łożyskowej, od strony napędowej w pobliżu pokrywy łożyska
C. Na końcu obudowy w rejonie napędu
D. W sąsiedztwie pokrywy wentylatora
Pomiar temperatury silników w wykonaniu przeciwwybuchowym jest kluczowy dla zapewnienia ich bezpieczeństwa i niezawodności. Wybór odpowiedniego miejsca do pomiaru temperatury jest niezwykle istotny, ponieważ nieprawidłowe lokalizacje mogą prowadzić do błędnych odczytów oraz mogą nie uwzględniać rzeczywistych warunków pracy silnika. W przypadku podwyższonej temperatury obudowy silnika, pomiar w pobliżu pokrywy wentylatora jest niewłaściwy, gdyż to miejsce jest często narażone na wpływ zewnętrznych warunków atmosferycznych oraz może być miejscem intensywnego przepływu powietrza, co prowadzi do fałszywych wskazań. Standardy branżowe, takie jak IEC 60079, określają, że należy unikać pomiaru w tych miejscach, aby zapewnić dokładność i wiarygodność danych. Zamiast tego, pomiary powinny być wykonywane w miejscach, gdzie temperatura jest rzeczywiście reprezentatywna dla stanu silnika, na przykład pośrodku obudowy lub na tarczy łożyskowej, co pozwala na lepsze śledzenie potencjalnych problemów z przegrzewaniem.

Pytanie 38

Aby uzyskać widoczną przerwę w obwodzie elektrycznym, należy użyć

A. przekaźnika
B. wyłącznika
C. stycznika
D. odłącznika
Odłącznik to urządzenie wykorzystywane do zapewnienia widocznej przerwy w obwodzie elektrycznym, co jest kluczowe z punktu widzenia bezpieczeństwa. Jego głównym zadaniem jest umożliwienie całkowitego odłączenia obwodu od źródła zasilania, co pozwala na bezpieczne przeprowadzanie prac konserwacyjnych lub naprawczych. W odróżnieniu od innych urządzeń, takich jak wyłącznik czy stycznik, odłącznik oferuje mechaniczną przerwę w obwodzie, która jest wizualnie dostępna, co pozwala operatorowi na jednoznaczne stwierdzenie, że dany układ jest odłączony od zasilania. Stosowanie odłączników jest zgodne z normami, takimi jak IEC 60947, które określają wymagania dotyczące urządzeń rozdzielczych. Przykładowe zastosowania odłączników to instalacje przemysłowe oraz systemy energetyczne, gdzie nieodzowne jest zapewnienie bezpieczeństwa pracowników podczas interwencji w obwodach elektrycznych.

Pytanie 39

Który z poniższych wyłączników nadprądowych powinien być zastosowany do zabezpieczenia obwodu zasilającego trójfazowy silnik klatkowy o następujących parametrach znamionowych: P = 11 kW, U = 400 V, cos φ = 0,73, η = 80%?

A. S303 C20
B. S303 C32
C. S303 C25
D. S303 C40
Odpowiedź S303 C32 jest poprawna, ponieważ przy wyborze wyłącznika nadprądowego dla trójfazowego silnika klatkowego o mocy znamionowej 11 kW, napięciu 400 V oraz współczynniku mocy cos φ = 0,73, istotne jest obliczenie prądu znamionowego silnika. Prąd ten można wyznaczyć z wzoru: I = P / (√3 * U * cos φ). Po podaniu wartości (P = 11 kW, U = 400 V, cos φ = 0,73), uzyskujemy prąd około 18,5 A. Wyłącznik C32 ma prąd znamionowy 32 A, co zapewnia odpowiedni margines ochrony w przypadku przeciążenia oraz pozwala na bezpieczną i niezawodną pracę silnika. Wybór wyłącznika z niższą wartością prądową, jak C25 czy C20, mógłby prowadzić do zbyt częstych wyłączeń w przypadku normalnych warunków pracy silnika. Praktyczne zastosowanie wyłącznika C32 w obwodach zasilających silniki trójfazowe jest zgodne z normami IEC 60947-2, które zalecają odpowiednie marginesy dla wyłączników chroniących silniki. Dodatkowo, zastosowanie tego wyłącznika zmniejsza ryzyko uszkodzenia silnika oraz zapewnia bezpieczeństwo całego systemu zasilania.

Pytanie 40

Pomiar jakiego parametru umożliwia wykrycie przebicia izolacji uzwojeń silnika indukcyjnego trójfazowego w stosunku do obudowy?

A. rezystancji przewodu ochronnego
B. prądu upływu
C. prądu stanu jałowego
D. rezystancji uzwojeń stojana
Pomiar prądu upływu jest skuteczną metodą wykrywania przebicia izolacji uzwojeń silnika indukcyjnego trójfazowego względem obudowy. Prąd upływu to prąd, który przepływa z uzwojeń przez izolację do obudowy silnika. W przypadku uszkodzenia izolacji, wartość prądu upływu wzrasta, co może prowadzić do niebezpiecznych sytuacji, w tym do porażenia prądem. Praktyczne zastosowanie tej metody polega na wykorzystaniu specjalistycznych mierników, które rejestrują wartość prądu upływu podczas pracy silnika. Zgodnie z normą IEC 60364, dopuszczalne wartości prądu upływu powinny być ściśle przestrzegane, aby zapewnić bezpieczeństwo użytkowników oraz prawidłowe działanie urządzeń. Regularne pomiary prądu upływu mogą być również częścią procedur konserwacyjnych, co pozwala na wczesne wykrywanie problemów z izolacją i zapobieganiu awariom. Warto pamiętać, że pomiar ten powinien być przeprowadzany w warunkach pełnego obciążenia, aby uzyskać wiarygodne wyniki.