Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 2 maja 2025 18:13
  • Data zakończenia: 2 maja 2025 18:26

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W jakim typie układu sieciowego możemy spotkać przewód PEN?

A. IT
B. TN-S
C. TN-C
D. TT
Odpowiedź TN-C jest prawidłowa, ponieważ w tym układzie sieciowym przewód PEN łączy funkcje przewodu neutralnego (N) i ochronnego (PE). Układ TN-C jest stosowany w wielu instalacjach elektrycznych, w tym w budynkach użyteczności publicznej oraz w przemyśle, gdzie zapewnia zarówno transport energii, jak i ochronę przed porażeniem elektrycznym. Kluczowym aspektem tego układu jest to, że przewód PEN jest wspólny dla wielu odbiorników i umożliwia efektywne prowadzenie instalacji przy ograniczeniu liczby przewodów. Zgodnie z normą PN-EN 60364, przewód PEN musi być odpowiednio zaprojektowany i wykonany, aby zapewnić wysoką niezawodność oraz bezpieczeństwo użytkowników. W praktyce stosowanie przewodu PEN w układzie TN-C jest również korzystne z punktu widzenia kosztów, ponieważ ogranicza ilość potrzebnych przewodów, co przekłada się na mniejsze wydatki materiałowe oraz prostotę instalacji. Na przykład w wielu budynkach mieszkalnych stosuje się układ TN-C, co pozwala na wydajne i bezpieczne zasilanie różnych urządzeń elektrycznych.

Pytanie 2

Korzystając z zamieszczonego fragmentu instrukcji obsługi multimetru, wyznacz względny błąd pomiaru napięcia, jeżeli woltomierz wskazał 120 V.

Instrukcja obsługi multimetru (fragment)

Uchyb pomiaru:

0,1% w.m. ±0,05% w.z. (podzakresy 100 mV, 1 V)

0,2% w.m. ±0,05% w.z. (podzakresy 10 V, 100 V, 1000 V)

gdzie w.m. oznacza wartość zmierzoną, a w.z. wartość zakresu.

A. 0,07%
B. 0,74%
C. 6,10%
D. 0,62%
Istnieje kilka kluczowych aspektów, które mogą prowadzić do błędnych wniosków przy obliczaniu względnego błędu pomiarowego. Przede wszystkim, jedna z powszechnych pułapek polega na nieprawidłowym dodaniu błędu stałego do błędu procentowego. Różne odpowiedzi wskazujące na niewłaściwe wartości mogą wynikać z nieuwzględnienia rzeczywistej wartości zmierzonej przy obliczeniach. Na przykład, korzystając z nieprawidłowego wzoru lub błędnych wartości, można dojść do mylnej konkluzji, że błąd wynosi 0,07% lub 0,74%, co jest dalekie od rzeczywistości. Kolejnym typowym błędem jest pomijanie kontekstu pomiarów, takich jak tolerancje urządzenia czy jego kalibracja, co prowadzi do nieprawidłowego oszacowania dokładności. Należy również pamiętać, że różne urządzenia pomiarowe mają swoje specyfikacje dotyczące błędów. Na przykład, jeśli nie uwzględnimy pełnych danych dotyczących błędu procentowego, nasza ocena pomiaru może być znacząco zaniżona lub zawyżona. Zrozumienie tych aspektów jest niezwykle istotne w kontekście uzyskiwania rzetelnych wyników pomiarowych i podejmowania właściwych decyzji inżynieryjnych. Bez tych umiejętności, można w łatwy sposób wprowadzić się w błąd, co może mieć poważne konsekwencje w praktycznych zastosowaniach elektrotechnicznych.

Pytanie 3

Którym z kluczy nie da się skręcić stojana silnika elektrycznego śrubami jak przedstawiona na ilustracji?

Ilustracja do pytania
A. Imbusowym.
B. Nasadowym.
C. Płaskim.
D. Oczkowym.
Odpowiedź "imbusowym" jest poprawna, ponieważ klucz imbusowy jest przeznaczony do stosowania ze śrubami, które mają gniazdo sześciokątne wewnętrzne. W przypadku przedstawionym na ilustracji mamy do czynienia z klasyczną śrubą o sześciokątnej główce, co oznacza, że do jej dokręcenia można zastosować inne rodzaje kluczy, takie jak klucz nasadowy, oczkowy lub płaski. Każdy z tych kluczy posiada odpowiedni kształt, który umożliwia odpowiednie dopasowanie do główki śruby, co zapewnia efektywne przenoszenie momentu obrotowego. Klucz nasadowy jest powszechnie używany w mechanice, ponieważ jego konstrukcja pozwala na łatwe dokręcanie oraz odkręcanie śrub w trudnodostępnych miejscach. Klucz oczkowy z kolei umożliwia precyzyjne dokręcanie w ciasnych przestrzeniach, a klucz płaski jest podstawowym narzędziem w warsztatach mechanicznych. Wiedza na temat właściwego doboru narzędzi jest kluczowa dla zapewnienia efektywności i bezpieczeństwa pracy w każdej aplikacji mechanicznej.

Pytanie 4

Zakres działania wyzwalaczy elektromagnetycznych w nadprądowych wyłącznikach instalacyjnych o charakterystyce B mieści się w zakresie

A. 5-10 krotności prądu znamionowego
B. 3-5 krotności prądu znamionowego
C. 20-30 krotności prądu znamionowego
D. 10-20 krotności prądu znamionowego
Wyzwalacze elektromagnetyczne w wyłącznikach instalacyjnych nadprądowych o charakterystyce B są zaprojektowane do działania w określonym zakresie prądów zwarciowych, co zapewnia skuteczną ochronę obwodów elektrycznych. W przypadku wyłączników charakterystyki B obszar zadziałania wynosi 3-5 krotności prądu znamionowego. Oznacza to, że przy prądzie zwarciowym, który osiąga wartość od 3 do 5 razy wyższą niż nominalny prąd wyłącznika, następuje jego natychmiastowe wyłączenie. Dzięki temu, wyłączniki te skutecznie chronią przed skutkami przeciążeń i zwarć, co jest kluczowe w instalacjach elektrycznych w budynkach mieszkalnych oraz przemysłowych. Przykładowo, jeśli wyłącznik ma prąd znamionowy 10 A, zadziała przy prądzie zwarciowym w zakresie 30 A do 50 A. Tego typu wyłączniki są zalecane do zastosowań, gdzie istnieje ryzyko wystąpienia krótkotrwałych, ale intensywnych prądów, jak w przypadku silników elektrycznych czy transformatorów. Dodatkowo, zgodnie z normą IEC 60898, wyłączniki te powinny być stosowane w obwodach, gdzie istotna jest ochrona przed skutkami zwarć, co czyni je jednym z podstawowych elementów systemów zabezpieczeń elektrycznych.

Pytanie 5

Jaki rodzaj wkładki topikowej powinien być użyty do ochrony nadprądowej obwodu jednofazowych gniazd do użytku ogólnego?

A. gL
B. aR
C. gG
D. aM
Wkładka topikowa typu gG jest rekomendowanym rozwiązaniem do zabezpieczenia nadprądowego obwodów jednofazowych gniazd ogólnego przeznaczenia. Charakteryzuje się ona zdolnością do ochrony przed przeciążeniami oraz krótkimi spięciami, a także do działania w obwodach wymagających wysokich zdolności zwarciowych. W praktyce, zastosowanie wkładki gG w instalacjach elektrycznych, takich jak gniazda w domach, biurach czy obiektach użyteczności publicznej, zapewnia skuteczną ochronę przed uszkodzeniami spowodowanymi nadmiernym przepływem prądu. Wkładki te są zgodne z normami IEC 60269 oraz PN-EN 60269, które regulują ich parametry techniczne. Dzięki zastosowaniu wkładek gG, można zminimalizować ryzyko uszkodzenia urządzeń elektrycznych oraz przeciążenia obwodów, co jest kluczowe dla bezpieczeństwa użytkowników oraz sprawności całego systemu elektrycznego.

Pytanie 6

Które aparaty oznaczono na schemacie cyframi 1 i 2?

Ilustracja do pytania
A. 1 – wyłącznik nadprądowy; 2 – odłącznik instalacyjny.
B. 1 – wyłącznik różnicowoprądowy; 2 – wyłącznik nadprądowy.
C. 1 – wyłącznik nadprądowy; 2 – wyłącznik nadprądowy.
D. 1 – wyłącznik różnicowoprądowy; 2 – odłącznik instalacyjny.
Wybrana odpowiedź jest poprawna, ponieważ aparaty oznaczone na schemacie cyframi 1 i 2 to wyłącznik różnicowoprądowy oraz wyłącznik nadprądowy. Wyłącznik różnicowoprądowy, oznaczony cyfrą 1, jest systemem zabezpieczającym przed porażeniem prądem elektrycznym poprzez odłączenie obwodu w przypadku wykrycia różnicy prądów między przewodami fazowymi a neutralnymi. Jego charakterystyczne cechy to przycisk testowy oraz oznaczenia N i PE, które wskazują na jego połączenia z przewodami neutralnym i ochronnym. Wyłącznik nadprądowy, oznaczony cyfrą 2, służy do ochrony obwodów przed przeciążeniem oraz zwarciami, automatycznie odłączając zasilanie w takich sytuacjach. W praktyce, stosowanie tych urządzeń jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznych w budynkach mieszkalnych i przemysłowych. Zgodnie z normą PN-EN 61008, wyłączniki różnicowoprądowe powinny być stosowane w miejscach szczególnie narażonych na porażenie prądem, co czyni je niezbędnym elementem w każdej nowoczesnej instalacji.

Pytanie 7

Jaki zakres pomiarowy oraz rodzaj napięcia trzeba ustawić na woltomierzu, aby zmierzyć napięcie zasilające obwód gniazd wtyczkowych w budynku mieszkalnym?

A. 500 V AC
B. 200 V AC
C. 200 V DC
D. 500 V DC
Odpowiedź 500 V AC jest prawidłowa, ponieważ w budynkach mieszkalnych napięcie zasilające gniazdka wtyczkowe wynosi zazwyczaj 230 V w systemie prądu przemiennego (AC). Ustawienie woltomierza na zakres 500 V AC umożliwia pomiar napięcia z dużym marginesem bezpieczeństwa, co jest zgodne z dobrymi praktykami pomiarowymi. Użycie takiego zakresu zapewnia dokładne i bezpieczne pomiary bez ryzyka uszkodzenia urządzenia. Warto zauważyć, że pomiar napięcia AC jest istotny, gdyż instalacje elektryczne w budynkach mieszkalnych są projektowane na prąd przemienny, a nie stały (DC). W praktyce, przed rozpoczęciem pomiarów, zawsze należy upewnić się, że woltomierz jest odpowiednio skalibrowany i spełnia normy bezpieczeństwa, takie jak IEC 61010, które dotyczą sprzętu pomiarowego w obszarze niskiego napięcia.

Pytanie 8

W elektrycznych instalacjach w mieszkaniach oraz budynkach użyteczności publicznej prace konserwacyjne nie obejmują

A. montażu nowych punktów świetlnych
B. czyszczenia lamp oświetleniowych
C. czyszczenia urządzeń w rozdzielniach
D. wymiany gniazd zasilających
Fajnie, że zauważyłeś, że montaż nowych wypustów oświetleniowych to nie konserwacja. Konserwacja polega głównie na utrzymaniu istniejących systemów w dobrym stanie, jak czyszczenie lamp czy wymiana starych gniazdek. Nowe wypusty wymagają więcej planowania i czasem też papierkowej roboty, żeby wszystko było zgodne z przepisami. W praktyce chodzi o to, żeby przedłużać żywotność tego, co już mamy, natomiast nowe instalacje to zupełnie inna bajka, która wiąże się z projektowaniem i dodatkowymi formalnościami.

Pytanie 9

Jaki stopień ochrony powinno mieć urządzenie, które jest odporne na działanie wody zalewającej obudowę z każdej strony?

A. IPX3
B. IPX4
C. IPX5
D. IPX2
Wybierając stopień ochrony IPX4, IPX3, lub IPX2, można łatwo wprowadzić się w błąd co do faktycznej odporności urządzenia na działanie wody. IPX4 oznacza, że urządzenie jest odporne na zachlapania wodą z dowolnego kierunku, co jest niewystarczające dla sytuacji, w której woda może być skierowana na urządzenie w postaci strumienia. IPX3 z kolei zapewnia ochronę przed wodą padającą pod kątem do 60 stopni od pionu, co nie gwarantuje bezpieczeństwa, gdy woda jest kierowana bezpośrednio na urządzenie. Z kolei IPX2 oferuje ochronę tylko przed wodą padającą pod kątem do 15 stopni, co jest niewłaściwe dla urządzeń, które mogą być narażone na intensywny deszcz czy inne formy strug wodnych. Typowe błędy w myśleniu prowadzą do wyboru niewłaściwego stopnia ochrony na podstawie niewłaściwych założeń dotyczących warunków eksploatacji. Właściwe zrozumienie norm IP jest kluczowe, aby uniknąć uszkodzeń sprzętu, co może prowadzić do dużych kosztów napraw oraz zagrożeń dla bezpieczeństwa użytkowników. Dlatego zawsze należy dokładnie analizować wymagania środowiskowe przed wyborem sprzętu, a klasyfikacje IP powinny być stosowane jako punkt odniesienia dla projektowania i doboru urządzeń odpornych na działanie wody.

Pytanie 10

Aby zrealizować połączenie przewodów z żyłami jednodrutowymi przy użyciu złączki WAGO, co powinno się zastosować?

A. prasę hydrauliczną
B. cęgi do zdejmowania izolacji oraz zaciskarkę końcówek
C. cęgi do zdejmowania izolacji oraz wkrętak
D. nóż monterski
Użycie noża monterskiego do wykonywania połączeń przewodów z żyłami jednodrutowymi za pomocą złączek typu WAGO jest kluczowe, ponieważ nóż ten pozwala na precyzyjne i bezpieczne usunięcie izolacji z końców przewodów. Właściwe zdobędziecie wiedzę na temat długości odizolowanego przewodu, co jest istotne w kontekście połączeń, aby uzyskać pewne i trwałe połączenie. Złącza WAGO są popularne w branży elektrycznej ze względu na łatwość zastosowania oraz dobry kontakt elektryczny, jednak ich skuteczność w dużej mierze zależy od poprawnego przygotowania przewodów. Używając noża monterskiego, należy zachować ostrożność, aby nie uszkodzić samego przewodu, co mogłoby prowadzić do problemów z przewodnictwem prądu. Przykładem praktycznego zastosowania może być montaż instalacji elektrycznych w budynkach mieszkalnych, gdzie złącza WAGO można wykorzystać do łączenia kabli w rozdzielniach. Zgodnie z normami branżowymi, zaleca się również regularne sprawdzanie jakości połączeń, co przyczynia się do zwiększenia bezpieczeństwa i niezawodności instalacji.

Pytanie 11

Który z poniższych przewodów powinien być użyty do zasilania ruchomego odbiornika w II klasie ochronności z sieci jednofazowej?

A. H03VV-F 3×0,75
B. H03VVH2-F 2×0,75
C. H05VV-K 3×1,5
D. H05VV-U 2×1,5
Wybór przewodów H03VV-F 3×0,75, H05VV-K 3×1,5 oraz H05VV-U 2×1,5 do zasilenia ruchomego odbiornika wykonane w II klasie ochronności nie jest odpowiedni z kilku powodów. Przewód H03VV-F, chociaż elastyczny, jest przewodem o trzech żyłach, co sugeruje możliwość uziemienia, co nie jest zgodne z zasadami dotyczącymi urządzeń w II klasie ochronności. II klasa nie wymaga dodatkowej żyły uziemiającej, a zatem użycie przewodu z uziemieniem może prowadzić do niepotrzebnych komplikacji w instalacji elektrycznej. Przewód H05VV-K, pomimo że oferuje dobry poziom elastyczności, ma również dodatkową żyłę, co jest zbędne dla urządzeń tej klasy ochronności. Zastosowanie przewodów z uziemieniem w przypadkach, gdzie nie jest to wymagane, może prowadzić do nieprawidłowego podłączenia oraz zwiększać ryzyko uszkodzenia sprzętu. Natomiast H05VV-U, będący przewodem sztywnym, nie jest zalecany do aplikacji ruchomych, ponieważ jego konstrukcja ogranicza elastyczność, co jest kluczowe w przypadku sprzętu, który może być często przestawiany. Wybór niewłaściwego przewodu do zasilania ruchomych odbiorników może skutkować nieefektywną pracą urządzenia, a w najgorszym przypadku stwarzać zagrożenie dla użytkownika oraz dla samego sprzętu, gdyż niektóre przewody mogą nie wytrzymać obciążeń mechanicznych czy niekorzystnych warunków środowiskowych.

Pytanie 12

Która z wymienionych czynności należy do konserwacji elektrycznej w mieszkaniach?

A. Sprawdzenie stanu izolacji oraz powłok przewodów
B. Zamiana wszystkich źródeł oświetlenia w oprawach
C. Zmiana wszystkich końcówek śrubowych w puszkach rozgałęźnych
D. Weryfikacja czasu działania zabezpieczenia przeciwzwarciowego
Sprawdzenie stanu izolacji i powłok przewodów jest kluczowym elementem konserwacji instalacji elektrycznych w mieszkaniach. Izolacja przewodów jest niezbędna do zapewnienia bezpieczeństwa użytkowania, ponieważ uszkodzona lub niewłaściwa izolacja może prowadzić do zwarć, pożarów, a także porażenia prądem. Regularne inspekcje stanu izolacji powinny być przeprowadzane zgodnie z obowiązującymi standardami, takimi jak norma PN-IEC 60364, która określa wymagania dotyczące instalacji elektrycznych w obiektach budowlanych. Przykładowe metody oceny stanu izolacji obejmują pomiar rezystancji przy użyciu megomierza. Zastosowanie odpowiednich technik, takich jak testy izolacji, pozwala na wczesne wykrycie problemów i ich naprawę, co przekłada się na dłuższą żywotność instalacji oraz zwiększa bezpieczeństwo mieszkańców. Dbanie o stan izolacji to nie tylko spełnienie wymogów prawnych, ale także odpowiedzialność za bezpieczeństwo domowników i ich majątek.

Pytanie 13

Który element stosowany w instalacjach sterowania oświetleniem przedstawiono na ilustracji?

Ilustracja do pytania
A. Automat zmierzchowy.
B. Przekaźnik bistabilny.
C. Czujnik ruchu.
D. Ściemniacz oświetlenia.
Automat zmierzchowy to urządzenie, które automatycznie zarządza oświetleniem, dostosowując je do zmieniających się warunków świetlnych w otoczeniu. Na ilustracji przedstawiono model AZH-S, który jest typowym przykładem automatu zmierzchowego. Działa on na zasadzie pomiaru natężenia światła, co pozwala na włączenie oświetlenia po zachodzie słońca, a wyłączenie go w ciągu dnia. To rozwiązanie jest szczególnie przydatne w miejscach, gdzie oświetlenie jest potrzebne tylko w nocy, takich jak ogrody, podjazdy czy parkingi. Dzięki zastosowaniu automatu zmierzchowego można znacząco zmniejszyć zużycie energii, co jest zgodne z zasadami zrównoważonego rozwoju i oszczędności energii. W praktyce, urządzenia te są łatwe do zainstalowania i oferują wiele możliwości konfiguracji, co pozwala na ich dostosowanie do indywidualnych potrzeb użytkowników. Warto również zaznaczyć, że automaty zmierzchowe są zgodne z normami EN 60598-2-1, które dotyczą bezpieczeństwa i wydajności oświetlenia.

Pytanie 14

Jak powinno się przeprowadzać zalecane przez producenta okresowe testy działania wyłącznika różnicowoprądowego?

A. Mierząc czas reakcji przy wymuszeniu prądu upływu wynoszącego IΔn
B. Wykonując kontrolne doziemienie
C. Naciskając przycisk "TEST"
D. Określając minimalny prąd upływu, który powoduje zadziałanie wyłącznika
Naciskanie przycisku 'TEST' na wyłączniku różnicowoprądowym (RCD) jest zalecaną metodą przeprowadzania okresowego sprawdzenia jego działania. To działanie symuluje sytuację, w której dochodzi do prądu upływu, co powinno spowodować natychmiastowe zadziałanie urządzenia. Dzięki temu można zweryfikować, czy wyłącznik działa prawidłowo i czy jest w stanie skutecznie chronić przed porażeniem prądem elektrycznym. Warto podkreślić, że producenci urządzeń elektrycznych oraz normy takie jak PN-EN 61008-1 zalecają regularne testowanie RCD co najmniej raz w miesiącu. Przykład praktycznego zastosowania to wykonanie testu przed rozpoczęciem sezonu letniego, kiedy to wiele osób korzysta z urządzeń elektrycznych na świeżym powietrzu, co zwiększa ryzyko wystąpienia porażenia prądem. Regularne testowanie wyłączników różnicowoprądowych nie tylko zapewnia bezpieczeństwo, ale również może zaoszczędzić koszty związane z naprawami czy stratami energoelektrycznymi wynikającymi z niewłaściwego działania instalacji elektrycznej.

Pytanie 15

Jakie rodzaje żył znajdują się w kablu oznaczonym symbolem SMYp?

A. Sektorowe
B. Jednodrutowe
C. Płaskie
D. Wielodrutowe
Odpowiedzi "Płaskie", "Sektorowe" i "Jednodrutowe" są nieco mylące. Przewody płaskie, chociaż mogą mieć swoje miejsce, to zazwyczaj są używane w sytuacjach, gdzie przestrzeń jest ograniczona, ale nie mają tej elastyczności co wielodrutowe. Przewody sektorowe są bardziej chyba do specyficznych zastosowań, ale nie mogą znieść dużych zgięć. No a te jednodrutowe... no cóż, mają ten problem, że są mniej elastyczne, przez co łatwiej je uszkodzić. Gdy chodzi o miejsce, gdzie trzeba coś często przenosić, to te jednodrutowe nie będą najlepsze, bo szybko się zużywają. Często w takich przypadkach nie myśli się o elastyczności i o tym, jak przewody będą pracować w ruchu. Dobór właściwych przewodów jest kluczowy, bo to wpływa na trwałość i niezawodność całej instalacji. Warto znać te normy i standardy w elektryce.

Pytanie 16

W dokumentacji dotyczącej instalacji elektrycznej w wielopiętrowym budynku mieszkalnym wskazano, że konieczne jest użycie ochronników przeciwprzepięciowych klasy C. Gdzie powinny one zostać zamontowane?

A. w rozdzielnicach mieszkaniowych
B. w złączu budynku
C. na linii zasilającej budynek
D. w puszkach instalacyjnych gniazd odbiorczych
Wybór innych lokalizacji dla instalacji ochronników przeciwprzepięciowych klasy C, takich jak linie zasilające budynek, puszki instalacyjne gniazd odbiorczych czy złącza budynku, nie jest odpowiedni z kilku powodów. Linie zasilające są głównie odpowiedzialne za przesył energii, ale nie stanowią one miejsca, gdzie można efektywnie zainstalować ochronniki, które powinny być zlokalizowane tam, gdzie dochodzi do centralnej dystrybucji zasilania. Instalacja ochronników w puszkach instalacyjnych gniazd odbiorczych również nie przynosi oczekiwanych korzyści, ponieważ w przypadku wystąpienia przepięcia, ochrona jest niekompletna i może nie objąć urządzeń podłączonych do innych obwodów. Złącze budynku, mimo że jest istotnym punktem przyłączeniowym, nie zapewnia pełnej ochrony dla wszystkich obwodów zasilających w budynku. Takie podejście prowadzi do fragmentarycznej ochrony, co może skutkować poważnymi uszkodzeniami sprzętu elektronicznego i instalacji elektrycznej. Kluczowym błędem myślowym jest przekonanie, że ochrona może być stosowana w dowolnym miejscu bez uwzględnienia kontekstu, w jakim działają ochronniki przeciwprzepięciowe. Według norm i najlepszych praktyk, ochrona przed przepięciami powinna być centralizowana w odpowiednich punktach, takich jak rozdzielnice, w celu zapewnienia pełnej ochrony całej instalacji elektrycznej.

Pytanie 17

W układzie przedstawionym na rysunku łącznik nie powoduje wyłączenia żarówki. W celu zdiagnozowania usterki wykonano pomiary, których wyniki zapisano w tabeli.

Lp.Pomiar rezystancji między punktamiWartość
Ω
12 – 30
23 – 50
35 – 6 (łącznik w pozycji otwarty)0
45 – 6 (łącznik w pozycji zamknięty)0
54 – 70

Ilustracja do pytania
A. przerwa w przewodzie neutralnym.
B. niepewne zamocowanie puszki rozgałęźnej do podłoża.
C. uszkodzenie przewodu między punktami 2 – 3.
D. zwarcie międzyprzewodowe między punktami 5 – 6.
Wybór odpowiedzi dotyczącej uszkodzenia przewodu między punktami 2 – 3 jest często wynikiem błędnego rozumienia pojęcia obwodu elektrycznego oraz sposobu działania łączników. Użytkownicy mogą myśleć, że każde uszkodzenie przewodu prowadzi do braku działania urządzenia, jednak w przypadku otwartego obwodu żarówka nie świeci. Z drugiej strony, niepewne zamocowanie puszki rozgałęźnej do podłoża nie ma wpływu na działanie obwodu elektrycznego, gdyż fizyczne położenie nie wpływa na przewodnictwo elektryczne, o ile połączenia są właściwie wykonane. Podobnie, przerwa w przewodzie neutralnym może wydawać się problematyczna, jednak w przypadku obwodu z żarówką i wyłącznikiem nie spowoduje stałego świecenia. Kluczowym błędem myślowym jest przypisywanie problemów z oświetleniem do uszkodzeń przewodów, gdy w rzeczywistości może to być efekt zwarcia, jak wskazuje analiza pomiarów. Takie myślenie wprowadza w błąd i może prowadzić do nieprawidłowych diagnoz oraz nieefektywnego usuwania usterek w instalacji elektrycznej. W celu uniknięcia takich pomyłek, ważne jest zrozumienie działania obwodów oraz umiejętność analizy wyników pomiarów, co powinno być częścią każdych badań nad układami elektrycznymi.

Pytanie 18

Który typ silnika elektrycznego najczęściej stosuje się w urządzeniach gospodarstwa domowego?

A. Silnik indukcyjny jednofazowy
B. Silnik krokowy
C. Silnik synchroniczny trójfazowy
D. Silnik liniowy
Silniki indukcyjne jednofazowe są najczęściej stosowane w urządzeniach gospodarstwa domowego ze względu na ich prostotę konstrukcji, niezawodność oraz stosunkowo niskie koszty produkcji. Jednofazowe silniki indukcyjne działają w oparciu o zasadę indukcji elektromagnetycznej, gdzie prąd zmienny przepływający przez uzwojenie stojana wytwarza pole magnetyczne, które indukuje prąd w wirniku. To z kolei generuje siłę napędową, która wprawia wirnik w ruch obrotowy. Tego typu silniki są powszechnie stosowane w urządzeniach takich jak pralki, lodówki, wentylatory czy miksery. Ich zaletą jest brak szczotek komutatora, co eliminuje problem iskrzenia i konieczność częstej konserwacji. Dzięki swojej prostocie, silniki te charakteryzują się długą żywotnością i są odporne na przeciążenia. Ponadto są stosunkowo ciche i energooszczędne, co czyni je idealnym wyborem do zastosowań domowych. Standardy przemysłowe i dobre praktyki również preferują użycie jednofazowych silników indukcyjnych w kontekście urządzeń gospodarstwa domowego, podkreślając ich efektywność i trwałość.

Pytanie 19

Osoba powinna kontrolować działanie stacjonarnych urządzeń różnicowoprądowych poprzez naciśnięcie przycisku kontrolnego

A. mająca uprawnienia SEP, co 6 miesięcy
B. przeszkolona, co 6 miesięcy
C. posiadająca uprawnienia SEP, co rok
D. przeszkolona, co rok
Odpowiedź, że stacjonarne urządzenia różnicowoprądowe powinny być sprawdzane przez osobę przeszkoloną co sześć miesięcy, jest zgodna z obowiązującymi normami i najlepszymi praktykami w zakresie bezpieczeństwa elektrycznego. Regularne kontrole pozwalają na wczesne wykrycie potencjalnych usterek, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz ochrony przed skutkami porażenia prądem. Osoby przeszkolone mają odpowiednią wiedzę na temat działania tych urządzeń, potrafią ocenić ich stan techniczny oraz zidentyfikować ewentualne problemy. Przykładowo, w przypadku stacjonarnych urządzeń różnicowoprądowych, takich jak wyłączniki różnicowoprądowe, regularne testowanie przycisku kontrolnego pozwala na upewnienie się, że urządzenie działa prawidłowo i jest w stanie zareagować na zwarcia lub inne niebezpieczne sytuacje. Zgodnie z normami, takimi jak PN-EN 60947-2, zaleca się przeprowadzanie takich kontroli co najmniej dwa razy w roku, co potwierdza konieczność przeszkolenia personelu odpowiedzialnego za te działania.

Pytanie 20

Zakres działania wyzwalaczy elektromagnetycznych w instalacyjnych wyłącznikach nadprądowych dla charakterystyki C mieści się w przedziale

A. 20-30 krotności prądu znamionowego
B. 5-10 krotności prądu znamionowego
C. 1-20 krotności prądu znamionowego
D. 3-5 krotności prądu znamionowego
Pytanie dotyczące zakresu działania wyzwalaczy elektromagnetycznych wyłączników instalacyjnych nadprądowych dla charakterystyki C jest istotne dla zrozumienia właściwości tych urządzeń. Odpowiedzi, które sugerują zakresy takie jak "20-30 krotności prądu znamionowego", "3-5 krotności prądu znamionowego" oraz "1-20 krotności prądu znamionowego", nie są zgodne z rzeczywistymi charakterystykami tych wyłączników. Wyłączniki nadprądowe charakteryzujące się charakterystyką C są stworzone do ochrony przed krótkimi spięciami oraz przeciążeniami, które mogą wystąpić w typowych aplikacjach, takich jak silniki elektryczne. Zakres 20-30 krotności jest zbyt wysoki i nieodpowiedni dla standardowych aplikacji, co może prowadzić do niepożądanych skutków, takich jak opóźniona reakcja na rzeczywiste zagrożenia. Odpowiedzi 3-5 krotności oraz 1-20 krotności również nie są właściwe, gdyż wyłączniki C są zaprojektowane do działania w bardziej specyficznym zakresie, który gwarantuje zarówno odpowiednią ochronę, jak i możliwość pracy w warunkach normalnych. W praktyce, wybór niewłaściwego zakresu może skutkować nieefektywną ochroną instalacji, co w skrajnych przypadkach prowadzi do uszkodzenia urządzeń lub nawet pożaru. Dlatego kluczowe jest, aby przy wyborze wyłączników nadprądowych kierować się dokładnymi danymi technicznymi oraz standardami branżowymi, takimi jak PN-EN 60898, które określają wymagania i klasyfikacje dla sprzętu ochronnego w instalacjach elektrycznych.

Pytanie 21

W zakres inspekcji instalacji elektrycznej nie wchodzi

A. pomiar rezystancji uziemienia
B. weryfikacja poprawności oznaczeń przewodów neutralnych oraz ochronnych
C. sprawdzenie oznaczeń obwodów i urządzeń zabezpieczających
D. ocena dostępu do urządzeń, co umożliwia ich wygodną obsługę oraz eksploatację
Pomiar rezystancji uziemienia to kluczowy element zapewnienia bezpieczeństwa i prawidłowego funkcjonowania instalacji elektrycznych. Uziemienie ma na celu odprowadzenie nadmiaru prądu do ziemi, co chroni przed porażeniem elektrycznym i uszkodzeniem urządzeń. Przykładowo, w instalacjach przemysłowych, gdzie stosowane są maszyny o wysokich mocach, pomiar rezystancji uziemienia jest niezbędny do zapewnienia, że układ uziemiający jest skuteczny. Zgodnie z normą PN-EN 61557-4, rezystancja uziemienia powinna być mniejsza niż 10 Ω, co zapewnia odpowiednią ochronę przed skutkami udarów elektrycznych. Regularne pomiary rezystancji uziemienia pozwalają na wczesne wykrywanie problemów, takich jak korozja elementów uziemiających, co może prowadzić do ich degradacji. W praktyce, takie pomiary powinny być przeprowadzane co najmniej raz w roku lub częściej w przypadku instalacji narażonych na zmienne warunki atmosferyczne. Właściwe utrzymanie systemu uziemiającego jest nie tylko wymogiem prawnym, ale także kluczowym elementem ochrony osób i mienia.

Pytanie 22

Który przewód oznacza symbol PE?

A. Ochronno-neutralny
B. Wyrównawczy
C. Uziemiający
D. Ochronny
Odpowiedź "Ochronny" jest prawidłowa, ponieważ przewód oznaczony symbolem PE (ang. Protective Earth) jest kluczowym elementem systemów ochrony przed porażeniem elektrycznym. Przewód PE ma za zadanie prowadzenie prądu doziemnego w przypadku awarii urządzenia, co minimalizuje ryzyko porażenia prądem użytkowników. W praktyce, przewód ten jest integralną częścią instalacji elektrycznych w budynkach, a jego właściwe podłączenie do uziemienia jest niezbędne dla zapewnienia bezpieczeństwa. Zgodnie z normami, takimi jak PN-IEC 60364, przewód PE powinien być stosowany w każdym obwodzie elektrycznym, w którym zainstalowane są urządzenia elektryczne. Jego zastosowanie obejmuje zarówno instalacje przemysłowe, jak i domowe, gdzie uziemienie urządzeń, takich jak lodówki czy pralki, jest niezbędne dla ochrony przed skutkami zwarcia. Warto również podkreślić, że stosowanie przewodu PE w instalacjach elektrycznych jest wymagane przez przepisy prawa budowlanego, co dodatkowo podkreśla jego znaczenie w kontekście bezpieczeństwa użytkowników.

Pytanie 23

Poślizg silnika indukcyjnego osiągnie wartość 1, gdy

A. silnik zostanie zasilony prądem przeciwnym.
B. wirnik silnika będzie w bezruchu.
C. wirnik silnika zostanie dogoniony.
D. silnik znajdzie się w stanie jałowym.
Poślizg silnika indukcyjnego wyraża się jako różnica między prędkością wirnika a prędkością obrotową pola magnetycznego, wyrażona jako procent. Gdy wirnik jest zatrzymany, jego prędkość (ω_wirnika) wynosi 0, a pole magnetyczne wiruje z prędkością synchronizacyjną (ω_s). W takim przypadku poślizg jest równy 1 (100%), co oznacza maksymalne opóźnienie wirnika. W praktyce, taka sytuacja występuje w przypadku rozruchu silnika, gdy nie ma jeszcze momentu obrotowego, a silnik pracuje na pełnym poślizgu. Zrozumienie poślizgu w silniku indukcyjnym ma kluczowe znaczenie dla projektowania i eksploatacji systemów napędowych, zwłaszcza w aplikacjach wymagających precyzyjnego sterowania momentem obrotowym, takich jak w przypadku silników napędzających prasy czy taśmy transportowe. Wiedza ta pozwala na lepsze dostosowanie parametrów eksploatacyjnych silników oraz na zminimalizowanie strat energetycznych i optymalizację ich pracy w różnych warunkach obciążenia.

Pytanie 24

Jakie minimalne wymiary powinien mieć przewód ochronny miedziany w przypadku przewodów fazowych miedzianych o przekrojach 25 mm2 i 35 mm2?

A. 12 mm2
B. 10 mm2
C. 16 mm2
D. 20 mm2
Minimalny przekrój miedzianego przewodu ochronnego powinien wynosić 16 mm2 przy miedzianych przewodach fazowych o przekrojach 25 mm2 i 35 mm2. Takie wymagania wynikają z obliczeń związanych z bezpieczeństwem elektrycznym oraz ochroną przed porażeniem prądem. W polskich normach dotyczących instalacji elektrycznych, takich jak PN-IEC 60364, podano zasady doboru przewodów ochronnych, które uwzględniają maksymalne prądy zwarciowe oraz czas wyłączenia w przypadku awarii. Odpowiedni przekrój przewodu ochronnego jest kluczowy dla zapewnienia skutecznej ochrony instalacji oraz osób korzystających z urządzeń elektrycznych. W praktyce, dobór właściwego przekroju w instalacjach przemysłowych i budowlanych ma na celu minimalizację ryzyka uszkodzenia instalacji oraz zapewnienie odpowiedniego poziomu bezpieczeństwa. Warto również zwrócić uwagę na to, że stosując przewody o odpowiednim przekroju, zmniejszamy straty energii oraz ryzyko przegrzewania się materiałów, co jest istotne z perspektywy trwałości i niezawodności instalacji.

Pytanie 25

Który z wymienionych przełączników instalacyjnych służy do kontrolowania dwóch sekcji źródeł światła w żyrandolu?

A. Schodowy
B. Świecznikowy
C. Krzyżowy
D. Dwubiegunowy
Odpowiedzi takie jak 'Dwubiegunowy', 'Schodowy' czy 'Krzyżowy' nie są odpowiednie w kontekście pytania o sterowanie dwoma sekcjami źródeł światła w żyrandolu. Łącznik dwubiegunowy, choć umożliwia włączanie i wyłączanie obwodów, nie jest przeznaczony do niezależnego sterowania różnymi sekcjami tego samego źródła światła. Zazwyczaj stosuje się go do prostych obwodów, gdzie jedynie kontroluje zasilanie jednego obwodu. Łącznik schodowy jest używany głównie w instalacjach, gdzie potrzebne jest kontrolowanie jednego źródła światła z dwóch różnych miejsc, co z kolei nie ma zastosowania w przypadku żyrandola z wieloma sekcjami. Łącznik krzyżowy służy do rozszerzenia możliwości już istniejącego układu schodowego, umożliwiając sterowanie jednym źródłem światła z więcej niż dwóch miejsc, ale także nie jest odpowiedni dla żyrandola, gdzie potrzebne jest niezależne włączanie poszczególnych sekcji. Typowe błędy myślowe mogą obejmować założenie, że każdy rodzaj łącznika posiada uniwersalne zastosowanie, co nie jest zgodne z rzeczywistością instalacyjną i wymaga szczególnej uwagi przy wyborze odpowiedniego typu łącznika do konkretnej aplikacji oświetleniowej.

Pytanie 26

Zmywarka, która jest na stałe zainstalowana, powinna być podłączona do obwodu

A. zasilającego gniazdka jedynie w kuchni
B. oddzielnego dla zmywarki
C. oddzielnego dla urządzeń gospodarstwa domowego
D. zasilającego gniazdka w łazience oraz kuchni
Zasilanie zmywarki z oddzielnego obwodu jest niezbędne ze względów bezpieczeństwa oraz zgodności z obowiązującymi normami elektrycznymi, takimi jak PN-IEC 60364. Zwiększa to nie tylko bezpieczeństwo użytkowania, ale także zapewnia odpowiednią moc dla urządzenia bez ryzyka przeciążenia innych obwodów. Zmywarki zazwyczaj wymagają większej mocy, zwłaszcza podczas cykli podgrzewania wody, co może powodować przeciążenie, jeśli są zasilane z ogólnych obwodów, zwłaszcza tych współdzielonych z innymi urządzeniami. Przykładowo, korzystając z oddzielnego obwodu, można uniknąć sytuacji, w której włączenie zmywarki podczas pracy innych urządzeń, takich jak piekarnik czy mikrofalówka, prowadzi do wyłączenia bezpieczników. Dobrą praktyką jest również stosowanie odpowiednich zabezpieczeń, takich jak wyłączniki różnicowoprądowe, które dodatkowo chronią przed porażeniem elektrycznym. Takie podejście nie tylko jest zgodne z regulacjami, ale również zwiększa komfort użytkowania w codziennym życiu.

Pytanie 27

Przed dokonaniem pomiarów rezystancji izolacyjnej obwodu oświetleniowego, oprócz odłączenia zasilania, co jeszcze należy zrobić?

A. zamontować źródła światła i otworzyć łączniki instalacyjne tego obwodu
B. zamontować źródła światła i zamknąć łączniki instalacyjne tego obwodu
C. wymontować źródła światła i zamknąć łączniki instalacyjne tego obwodu
D. wymontować źródła światła i otworzyć łączniki instalacyjne tego obwodu
Zamontowanie źródeł światła oraz otwieranie łączników instalacyjnych przed pomiarem rezystancji izolacji obwodu oświetleniowego jest nieodpowiednim działaniem, które może prowadzić do wielu problemów technicznych. Po pierwsze, pozostawienie źródeł światła w obwodzie może skutkować ich uszkodzeniem, gdyż wiele z nich nie jest przystosowanych do wytrzymywania napięcia testowego, które może być znacznie wyższe niż nominalne wartości robocze. Przykładowo, podczas testu rezystancji izolacji przy użyciu napięcia 500V, nieodpowiednio zabezpieczone źródła światła mogą ulec uszkodzeniu, co wiąże się z dodatkowymi kosztami naprawy lub wymiany. Podobnie, otwarcie łączników instalacyjnych może prowadzić do nieprzewidywalnych sytuacji, w których obwód może nie być całkowicie odłączony, co może spowodować powstanie niebezpiecznych warunków pracy. Zgodnie z zasadami BHP oraz wytycznymi dotyczącymi pomiarów elektrycznych, istotne jest, aby zawsze upewnić się, że obwód jest w pełni odłączony przed przystąpieniem do jakichkolwiek testów. Nieprzestrzeganie tych zasad może prowadzić do poważnych zagrożeń dla personelu oraz uszkodzeń sprzętu, co jest nieakceptowalne w profesjonalnych instalacjach elektrycznych.

Pytanie 28

Która z poniższych działań ocenia efektywność ochrony podstawowej przed porażeniem prądem elektrycznym?

A. Pomiar impedancji w pętli zwarciowej
B. Sprawdzanie wyłącznika różnicowoprądowego
C. Pomiar rezystancji izolacji przewodów
D. Weryfikacja stanu izolacji podłóg
Pomiar rezystancji izolacji przewodów jest kluczowym elementem oceny skuteczności ochrony przed porażeniem prądem elektrycznym. Działanie to polega na sprawdzeniu, czy izolacja przewodów jest wystarczająco skuteczna, aby zapobiec niezamierzonym przepływom prądu do ziemi lub na obudowy urządzeń. Wysoka rezystancja izolacji oznacza, że przewody są dobrze izolowane i minimalizują ryzyko porażenia. W praktyce, w budynkach mieszkalnych oraz przemysłowych, pomiar ten powinien być przeprowadzany regularnie, zwłaszcza w przypadku instalacji, które są narażone na uszkodzenia mechaniczne lub działanie czynników zewnętrznych. Zgodnie z normami PN-IEC 60364, przynajmniej raz na pięć lat należy przeprowadzać taki pomiar. Uzyskane wyniki powinny być porównywane z wartościami odniesienia, które zależą od rodzaju instalacji. Odpowiednie procedury zapewniają, że nie tylko urządzenia, ale i całe instalacje elektryczne są bezpieczne dla użytkowników, co jest fundamentalne dla ochrony życia i zdrowia człowieka. Dbanie o odpowiednią rezystancję izolacji to kluczowy krok w zarządzaniu ryzykiem związanym z porażeniem prądem elektrycznym.

Pytanie 29

Aby podłączyć metalowe rury gazowe do uziemionej instalacji ochronnej w budynku jednorodzinnym, konieczne jest

A. zamontowanie odpowiedniej wstawki izolacyjnej pomiędzy miejscem przyłączenia przewodu wyrównawczego a miejscem wprowadzenia rurociągu do obiektu
B. zainstalowanie wstawki izolacyjnej na przyłączu gazowym w odległości co najmniej 10 m od obiektu
C. nałożenie na rurę gazową przyłączeniową otuliny izolacyjnej na długości co najmniej 15 m od obiektu
D. bezpośrednie podłączenie rur gazowych do systemu połączeń wyrównawczych
Zainstalowanie odpowiedniej wstawki izolacyjnej między miejscem przyłączenia przewodu wyrównawczego a miejscem wprowadzenia rurociągu do budynku jest kluczowym działaniem w celu zapewnienia bezpieczeństwa instalacji gazowej. Wstawka izolacyjna działa jako bariera, która zapobiega przewodzeniu prądu elektrycznego między metalowymi rurami gazowymi a uziemioną instalacją budynku. Prawidłowe zastosowanie takich wstawek jest zgodne z normami PN-IEC 60364, które podkreślają znaczenie izolacji w kontekście ochrony przed porażeniem prądem elektrycznym. Przykładem zastosowania tej praktyki może być sytuacja, w której instalacja gazowa znajduje się w bliskim sąsiedztwie instalacji elektrycznych, co zwiększa ryzyko przepięć. Zastosowanie wstawki izolacyjnej minimalizuje ryzyko uszkodzenia rurociągów gazowych, a tym samym podnosi bezpieczeństwo użytkowania budynku. Dbanie o odpowiednie standardy w instalacjach gazowych jest niezbędne, aby uniknąć niebezpieczeństw, takich jak wycieki czy eksplozje, a wstawki izolacyjne stanowią ważny element tej ochrony.

Pytanie 30

Jaką minimalną wartość powinno mieć napięcie probiercze miernika używanego do pomiaru rezystancji izolacji w instalacji elektrycznej pracującej pod napięciem 230/400 V?

A. 250 V
B. 2 500 V
C. 1 000 V
D. 500 V
Minimalna wartość napięcia probierczego miernika używanego do pomiaru rezystancji izolacji w instalacjach elektrycznych o napięciu 230/400 V powinna wynosić 500 V. Taka wartość jest zgodna z międzynarodowymi standardami, takimi jak IEC 61557, które określają wymagania dotyczące pomiaru rezystancji izolacji. Przy napięciu probierczym wynoszącym 500 V, można skutecznie ocenić stan izolacji przewodów oraz innych elementów instalacji, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Pomiar przy tym napięciu pozwala na wykrycie potencjalnych uszkodzeń izolacji, które mogą prowadzić do zwarć czy porażenia prądem. W praktyce, testowanie izolacji w instalacjach elektrycznych wykonywane jest regularnie, szczególnie przed oddaniem do użytkowania nowych instalacji oraz podczas przeglądów okresowych. Użycie napięcia 500 V zapewnia odpowiednią reprezentatywność stanu izolacji, co jest istotne dla dalszej eksploatacji i bezpieczeństwa całej instalacji elektrycznej.

Pytanie 31

Jakie są wartości znamionowe prądu oraz liczba biegunów wyłącznika oznaczonego symbolem S194 B3?

A. 3 A i 4 bieguny
B. 19 A i 3 bieguny
C. 9 A i 4 bieguny
D. 4 A i 3 bieguny
Podejmując decyzję o wyborze wyłącznika elektrycznego, kluczowe jest zrozumienie charakterystyki prądowej oraz liczby biegunów, co ma bezpośredni wpływ na bezpieczeństwo i funkcjonalność instalacji. Odpowiedzi wskazujące na prąd znamionowy 19 A, 4 A czy 9 A są błędne, ponieważ sugerują zastosowanie wyłączników do obciążeń, które wykraczają poza specyfikacje podane dla modelu S194 B3. Przykładowo, wyłącznik o prądzie 19 A byłby przeznaczony do bardziej intensywnych zastosowań, typowych dla dużych instalacji przemysłowych, co jest nieadekwatne w kontekście tego modelu. Natomiast prąd 4 A czy 9 A także wskazuje na zastosowania, które mogą być zbyt wysokie dla standardowego wyłącznika trójfazowego w małych instalacjach. Przy ocenie odpowiedzi warto zwrócić uwagę na zasady doboru wyłączników, które powinny być dostosowane do specyficznych potrzeb obwodu elektrycznego. W praktyce wykorzystywanie wyłączników o nieodpowiednich parametrach może prowadzić do ich nieprawidłowego działania, co z kolei zwiększa ryzyko uszkodzenia podłączonych urządzeń oraz może stwarzać zagrożenie pożarowe. Wszelkie decyzje w tym zakresie powinny być podejmowane na podstawie dokładnej analizy parametrów technicznych oraz zgodności z normami, np. normami IEC 60947 dotyczącymi wyłączników.

Pytanie 32

W jakiej sytuacji poślizg silnika indukcyjnego wyniesie 100%?

A. Gdy silnik będzie zasilany, jego wirnik pozostanie w bezruchu
B. Silnik będzie zasilany prądem w przeciwnym kierunku
C. Silnik będzie funkcjonować w trybie jałowym
D. Wirnik silnika osiągnie prędkość wyższą niż prędkość synchroniczna
W przypadku zasilania silnika przeciwprądem, wirnik nie jest w stanie rozwijać normalnej prędkości obrotowej, jednak nie prowadzi to do 100% poślizgu. Zasilanie przeciwprądem powoduje, że wirnik obraca się w kierunku przeciwnym do kierunku pola magnetycznego, co może prowadzić do inwersji momentu obrotowego, ale nie zatrzymuje wirnika całkowicie. W praktycznych zastosowaniach, takie zjawisko jest wykorzystywane do regeneracji energii, ale nie jest to sytuacja, która generuje 100% poślizgu. Kiedy wirnik zostaje dopędzony powyżej prędkości synchronicznej, jego prędkość obrotowa przekracza pole magnetyczne, co prowadzi do negatywnego poślizgu, a nie do 100%. Przykładem może być silnik, który wchodzi w stan asynchroniczny przy dużym obciążeniu. Z kolei pozostawienie silnika na biegu jałowym nie skutkuje 100% poślizgiem, ponieważ wirnik wciąż obraca się, choć z obniżoną prędkością. Takie błędne zrozumienie poślizgu może prowadzić do niepoprawnych diagnoz w przypadku usterek czy awarii, co w końcu przekłada się na zwiększenie kosztów eksploatacji oraz skrócenie żywotności urządzeń. W związku z tym, kluczowe jest zrozumienie, jak różne sytuacje wpływają na poślizg silnika oraz jakie są ich praktyczne implikacje w kontekście efektywności i bezpieczeństwa pracy urządzeń elektrycznych.

Pytanie 33

Jakie narzędzia są konieczne do wytyczenia trasy instalacji przewodów elektrycznych montowanych na powierzchni?

A. Kątownik, ołówek traserski, sznurek traserski
B. Ołówek traserski, przymiar kreskowy, rysik
C. Ołówek traserski, poziomnica, przymiar taśmowy
D. Kątownik, młotek, punktak
Ołówek traserski, poziomnica i przymiar taśmowy to świetny wybór! Te narzędzia naprawdę są niezbędne, gdy chodzi o trasowanie drogi do układania przewodów natynkowych. Ołówek traserski pozwala na dokładne oznaczanie punktów i linii, co jest podstawą do dalszej roboty. Poziomnica zaś to must-have, żeby upewnić się, że wszystko jest równo i w odpowiednich nachyleniach. To ważne, bo estetyka i funkcjonalność idą w parze. Przymiar taśmowy z kolei umożliwia precyzyjne mierzenie, co też jest kluczowe, żeby dobrze rozmieścić przewody na ścianach. W branży mamy różne standardy, jak normy PN-IEC, które podkreślają, jak ważna jest dokładność i planowanie przy instalacjach elektrycznych. Używanie właściwych narzędzi zwiększa wydajność, a także zmniejsza ryzyko błędów, które mogą skończyć się problemami, jak zwarcia czy uszkodzenia sprzętu. Na przykład, korzystając z poziomnicy przy układaniu przewodów, mamy pewność, że będą one prosto, co będzie miało znaczenie przy montażu osprzętu elektrycznego.

Pytanie 34

Którą wielkość fizyczną można zmierzyć przyrządem pokazanym na rysunku?

Ilustracja do pytania
A. Luminancję.
B. Temperaturę barwową światła.
C. Natężenie oświetlenia.
D. Światłość.
Poprawna odpowiedź to natężenie oświetlenia, które jest mierzonym parametrem przez luksomierz, przyrząd specjalistyczny zaprojektowany do oceny ilości światła padającego na określoną powierzchnię. Natężenie oświetlenia wyrażane jest w luksach (lx), co odnosi się do strumienia świetlnego padającego na powierzchnię jednego metra kwadratowego. W praktyce, luksomierze są używane w wielu dziedzinach, takich jak architektura, fotografia czy ergonomia, aby zapewnić odpowiednie warunki oświetleniowe, które wpływają na komfort oraz efektywność pracy. Na przykład, w biurach często normy dotyczące natężenia oświetlenia wynoszą od 300 do 500 luksów, co jest wystarczające do prowadzenia typowych prac biurowych. Użycie luksomierzy pozwala na optymalizację warunków oświetleniowych, co jest istotne dla zdrowia i wydajności pracowników. To narzędzie jest również kluczowe w budownictwie ekologicznym, gdzie odpowiednie oświetlenie wpływa na oszczędność energii.

Pytanie 35

Która z podanych awarii urządzenia II klasy ochronności stanowi ryzyko porażenia prądem?

A. Uszkodzenie izolacji przewodu zasilającego urządzenie
B. Przerwanie uzwojeń silnika umieszczonego w urządzeniu
C. Zniszczenie przewodu ochronnego PE
D. Zwarcie bezpiecznika wewnętrznego urządzenia
Uszkodzenie izolacji przewodu zasilającego urządzenie stanowi poważne zagrożenie porażenia prądem elektrycznym, ponieważ w przypadku uszkodzenia izolacji, napięcie z sieci elektrycznej może dostać się na zewnętrzne elementy urządzenia, co stwarza ryzyko kontaktu z prądem przez użytkownika. Przykładem zastosowania tej wiedzy w praktyce jest konieczność regularnej inspekcji przewodów zasilających i ich izolacji, co jest zgodne z normami bezpieczeństwa, takimi jak PN-EN 60204-1, które nakładają obowiązek zapewnienia odpowiednich środków ochrony przed porażeniem prądem. W przypadku stwierdzenia jakichkolwiek uszkodzeń, należy niezwłocznie wymienić uszkodzony przewód. Dodatkowo, stosowanie odpowiednich systemów zabezpieczeń, takich jak wyłączniki różnicowoprądowe, może znacząco obniżyć ryzyko porażenia prądem w przypadku awarii izolacji. Wiedza na temat potencjalnych zagrożeń związanych z uszkodzoną izolacją jest kluczowa dla zapewnienia bezpieczeństwa użytkowania urządzeń elektrycznych.

Pytanie 36

Jaką cechę materiału izolacyjnego wskazuje ostatnia litera w oznaczeniu kabla LYc?

A. Odporność na olej
B. Niepalność
C. Odporność na ciepło
D. Zwiększenie wytrzymałości mechanicznej
Wybór złej odpowiedzi może wprowadzić w błąd, gdy chodzi o materiały izolacyjne. Odporność na olej jest przydatna w przemyśle, gdzie przewody mają styczność z chemikaliami, ale to nie to, co oznacza LYc. Inżynierowie patrzą na różne czynniki przy wyborze materiałów elektrycznych, ale w przypadku oznaczenia LYc chodzi głównie o to, jak przewód znosi ciepło. Zwiększanie wytrzymałości na naprężenia mechaniczne jest ważne w wielu przypadkach, ale nie zawsze znaczy, że przewód będzie odporny na wysokie temperatury. To może prowadzić do problemów, jeżeli użyjesz go w nieodpowiednich warunkach. Niepalność to również ważna cecha, ale to nie ma nic wspólnego z oznaczeniem LYc. Kluczowe jest, żeby znać standardy i normy związane z materiałami, żeby uniknąć zagrożeń przy ich używaniu.

Pytanie 37

Ile maksymalnie jednofazowych gniazd wtykowych o napięciu 230 V można zainstalować w pomieszczeniach mieszkalnych zasilanych z jednego obwodu?

A. 10 szt.
B. 13 szt.
C. 3 szt.
D. 6 szt.
Maksymalna zalecana liczba jednofazowych gniazd wtykowych o napięciu 230 V w pomieszczeniach mieszkalnych, zasilanych z jednego obwodu, wynosi 10 sztuk. Jest to zgodne z polskimi normami budowlanymi oraz standardami ochrony przeciwpożarowej. W praktyce oznacza to, że na jednym obwodzie elektrycznym możemy bezpiecznie podłączyć do 10 gniazd, co umożliwia równomierne rozłożenie obciążenia elektrycznego. Przy projektowaniu instalacji elektrycznej konieczne jest uwzględnienie nie tylko liczby gniazd, ale także ich przewidywanego obciążenia. W sytuacji, kiedy przez gniazda będą podłączane urządzenia o dużym poborze mocy, jak np. odkurzacze czy grzejniki, warto ograniczyć liczbę gniazd na obwodzie do mniejszej wartości, aby uniknąć przeciążenia. Dla obwodów o większej liczbie gniazd wtykowych można zastosować dodatkowe zabezpieczenia, takie jak wyłączniki różnicowoprądowe, co zapewnia dodatkową ochronę użytkowników. Dobra praktyka obejmuje również regularne sprawdzanie stanu technicznego instalacji oraz wymianę zużytych komponentów, co zwiększa bezpieczeństwo użytkowania.

Pytanie 38

Jakiego pomiaru należy dokonać, aby ocenić efektywność ochrony przed porażeniem w przypadku uszkodzenia odbiornika klasy I w sieci TT?

A. Ciągłości przewodu neutralnego
B. Rezystancji izolacji przewodu uziemiającego
C. Ciągłości przewodów fazowych
D. Rezystancji uziomu, do którego dołączona jest obudowa odbiornika
Pomiar ciągłości przewodu neutralnego oraz przewodów fazowych, chociaż istotny w kontekście sprawdzania integralności obwodów elektrycznych, nie jest wystarczający, aby ocenić skuteczność ochrony przeciwporażeniowej dla odbiorników I klasy ochronności w sieci TT. Ciągłość przewodu neutralnego jest krytyczna dla prawidłowego funkcjonowania układów elektrycznych, ale nie zapewnia informacji o jakości uziemienia. Przewody neutralne i fazowe mogą być sprawne, ale jeśli uziemienie jest niewłaściwe, może to prowadzić do niebezpiecznych sytuacji, w których obudowa urządzenia może stać się naładowana prądem. Z kolei pomiar rezystancji izolacji przewodu uziemiającego również nie dostarcza pełnych informacji o skuteczności ochrony przeciwporażeniowej, ponieważ dotyczy on tylko stanu izolacji, a nie efektywności połączenia z ziemią. Typowym błędem myślowym jest zakładanie, że dobre wyniki tych pomiarów automatycznie zapewniają bezpieczeństwo, podczas gdy kluczowe jest, aby obudowa była podłączona do efektywnego systemu uziemienia. Normy, takie jak PN-IEC 60364, jasno wskazują, że uziemienie jest fundamentalnym elementem systemów ochrony przed porażeniem elektrycznym. Dlatego regularne pomiary rezystancji uziomu są niezbędne do zapewnienia bezpieczeństwa i zgodności z przepisami.

Pytanie 39

Co symbolizuje kod literowo-cyfrowy C10, umieszczony na wyłączniku nadmiarowo-prądowym?

A. Rodzaj charakterystyki czasowo-prądowej oraz prąd znamionowy
B. Najwyższy czas zadziałania
C. Maksymalny prąd zwarciowy
D. Rodzaj charakterystyki czasowo-prądowej oraz prąd wyłączeniowy
Wybór odpowiedzi dotyczącej dopuszczalnego prądu zwarciowego nie jest właściwy, ponieważ kod C10 nie odnosi się do tego parametru. Dopuszczalny prąd zwarciowy to maksymalny prąd, który wyłącznik może znieść w przypadku zwarcia, natomiast kod C10 dotyczy charakterystyki czasowo-prądowej i prądu znamionowego, co jest fundamentalnie innym zagadnieniem. Z kolei maksymalny czas zadziałania to parametr, który określa, jak szybko wyłącznik zareaguje na nadmierny prąd; jest to również różne od informacji, które niesie kod C10. Typowa pomyłka polega na myleniu tych dwóch różnych aspektów: charakterystyki czasowo-prądowej, która dotyczy sposobu działania wyłącznika w odpowiedzi na zmiany prądu, z parametrami związanymi z jego wytrzymałością na zwarcia. Ostatecznie, każda z opcji, które podałeś, odnosi się do różnych aspektów funkcjonowania wyłączników, co może prowadzić do nieporozumień, jeśli nie zrozumie się podstawowych różnic między nimi. Właściwe zrozumienie tych parametrów jest kluczowe dla zapewnienia bezpieczeństwa elektrycznego oraz efektywności instalacji, a błąd w ich interpretacji może prowadzić do niewłaściwego doboru wyłączników, co zagraża zarówno sprzętowi, jak i użytkownikom.

Pytanie 40

W jakiego rodzaju instalacjach elektrycznych typowe jest stosowanie przewodów w karbowanych rurkach?

A. Podtynkowych
B. Napowietrznych
C. Nadtynkowych
D. Wtynkowych
Rozważając odpowiedzi, które nie są poprawne, można zauważyć, że układanie przewodów w rurkach karbowanych nie jest praktykowane w instalacjach natynkowych. W tego typu instalacjach przewody są często umieszczane na powierzchni ścian, co nie tylko obniża estetykę, ale również naraża je na uszkodzenia mechaniczne. Rurki karbowane pełnią funkcję ochronną, a ich stosowanie w instalacjach natynkowych jest zbędne, ponieważ przewody nie są ukryte w ścianach. Kolejny błąd myślowy dotyczy odpowiedzi odnośnie instalacji wtynkowych. Termin ten jest często mylony z podtynkowymi, jednak wtynkowe oznacza, że przewody są osadzone w elementach budowlanych, co nie wymaga dodatkowej ochrony, jaką zapewniają rurki karbowane. Wreszcie, instalacje napowietrzne również nie wymagają użycia rur karbowanych. Przewody w takich instalacjach są zwykle zawieszone na słupach i nie są narażone na te same warunki, co przewody w ścianach. Dlatego stosowanie rur karbowanych w tych przypadkach byłoby niepraktyczne i nieefektywne. W każdym przypadku, ignorowanie odpowiednich norm i praktyk dotyczących instalacji elektrycznych może prowadzić do problemów z bezpieczeństwem oraz niezawodnością, dlatego zrozumienie różnic pomiędzy typami instalacji jest kluczowe dla właściwego podejścia do tematu.