Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 22 maja 2025 13:10
  • Data zakończenia: 22 maja 2025 13:26

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Jakiego typu silnik należy wykorzystać do zasilania systemu, który wymaga bardzo wysokiego momentu rozruchowego (przekraczającego moment znamionowy)?

A. Krokowy
B. Bocznikowy
C. Szeregowy
D. Asynchroniczny
Silnik krokowy, mimo że ma swoje zastosowania w precyzyjnych systemach sterowania położeniem, nie jest optymalnym rozwiązaniem do aplikacji wymagających wysokiego momentu rozruchowego. Jego działanie opiera się na sekwencyjnym wzbudzaniu uzwojeń, co ogranicza jego zdolność do generowania dużych momentów na starcie. Silnik asynchroniczny, pomimo że jest powszechnie stosowany w przemyśle, nie charakteryzuje się odpowiednim momentem rozruchowym, ponieważ jego moment rozruchowy jest zazwyczaj mniejszy od momentu znamionowego. W silnikach asynchronicznych występuje zjawisko poślizgu, co powoduje, że przy rozruchu mogą mieć problemy z osiągnięciem wymaganej wydajności w ciężkich aplikacjach. Silnik bocznikowy, choć jest w stanie dostarczyć wyższy moment obrotowy niż silnik asynchroniczny, nie jest tak skuteczny jak silnik szeregowy w kontekście generowania dużego momentu przy rozruchu. W praktyce, wybór silnika do zadania powinien opierać się na szczegółowej analizie wymagań aplikacji, a nie tylko na ogólnych zaletach poszczególnych typów silników. Kluczowe jest zrozumienie, że silniki szeregowe mają unikalną konstrukcję, która czyni je bardziej odpowiednimi w specyficznych warunkach wymagających dużego momentu rozruchowego.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Wprowadzenie przewodu do zacisku, delikatne wygięcia oraz wykonanie oczka na końcu przewodu z żyłą z drutu miedzianego, realizuje się cęgami

A. uniwersalnymi
B. spiczastymi
C. do cięcia bocznymi
D. do cięcia czołowymi
Cęgi uniwersalne, choć są dość uniwersalne, nie nadają się za bardzo do precyzyjnego wygięcia i wkładania przewodów w zaciskach. Ich szeroka budowa sprawia, że ciężko dotrzeć do wąskich miejsc, które często trzeba obsłużyć przy pracy z małymi elementami elektronicznymi. Korzystanie z cęgów do cięcia czołowego po prostu mija się z celem, bo te narzędzia są głównie do przecinania, a nie do formowania kształtu. Z kolei cęgi do cięcia bocznego, nawet jeśli mają ostrza, nie są najlepsze do precyzyjnej roboty jak robienie oczek. Często użytkownicy myślą, że każde narzędzie do cięcia nadaje się też do formowania, co nie jest prawdą. W praktyce złe dobranie narzędzia prowadzi do nieefektywnej pracy i potencjalnego uszkodzenia przewodów. Warto zawsze stosować narzędzia odpowiednie do danego zadania, bo to ma duże znaczenie dla jakości i bezpieczeństwa połączeń, o tym warto pamiętać.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Jakiego koloru powinna być izolacja przewodu PE?

A. Niebieski.
B. Zielony.
C. Żółto-zielony.
D. Brązowy.
Przewód PE, czyli Protective Earth, powinien być w kolorze żółto-zielonym. To jest standard, który obowiązuje w normie IEC 60446 i w innych przepisach dotyczących instalacji elektrycznych. Przewód PE jest naprawdę ważny, bo chroni nas przed porażeniem prądem. Dlatego jasne oznaczenie tego przewodu jest kluczowe dla bezpieczeństwa ludzi i urządzeń. Dzięki żółto-zielonemu kolorowi elektrycy od razu wiedzą, jaka jest jego funkcja, co ułatwia pracę i sprawia, że wszystko jest zgodne z międzynarodowymi standardami. Kiedy coś się dzieje i awaria występuje, ten przewód powinien odprowadzać nadmiar prądu do ziemi, zmniejszając ryzyko porażenia lub uszkodzenia sprzętu. Oznaczenie w odpowiednim kolorze pozwala na szybkie zidentyfikowanie przewodów, co jest niezbędne podczas montażu czy serwisu. Właściwe oznaczenie to też kwestia ważna, bo prawo wymaga, żeby projektanci i wykonawcy przestrzegali tych norm.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Po programowym aktywowaniu czterech wyjść tranzystorowych w sterowniku PLC, które sterują cewkami elektrozaworów, stwierdzono, że nie wszystkie działają poprawnie. Pomiar napięcia UBE (między bazą a emiterem) tranzystorów na poszczególnych wyjściach wykazał następujące wartości: UBE1 = 1 V, UBE2 = 3 V, UBE3 = 0,7 V, UBE4 = 5 V. Wyniki pomiarów sugerują uszkodzenie

A. tranzystorów na wyjściach 2 i 4
B. wyłącznie tranzystora na wyjściu 3
C. wyłącznie tranzystora na wyjściu 4
D. tranzystorów na wyjściach 1 i 3
Widzisz, tu pojawiają się błędy przy analizie problemu, które mogą prowadzić do mylnych diagnoz dotyczących tranzystorów. Z tych pomiarów wynika, że UBE1 ma tylko 1 V, co oznacza, że tranzystor na wyjściu 1 raczej nie działa prawidłowo, ale to nie znaczy, że jest zepsuty. Zmniejszone napięcie UBE na 1 V raczej sugeruje, że tranzystor nie jest na pełnym włączeniu. A jeśli chodzi o wyjście 3, to 0,7 V to całkiem w porządku wartość i nie możemy mówić o uszkodzeniu. Dodatkowo, wskazywanie na problem z wyjściem 2 przy napięciu 3 V, zapominając o tym, że to może być efekt złego podłączenia lub niepoprawnej konfiguracji obwodu, to też nie jest dobre podejście. W takich sytuacjach lepiej spojrzeć na cały układ, nie tylko na jedno wyjście. Przy diagnozowaniu tranzystorów ważne jest, żeby rozumieć, jak różne napięcia wpływają na ich działanie oraz potrafić dobrze interpretować wyniki pomiarów w kontekście całości systemu. W praktyce warto korzystać z dokumentacji technicznej i standardów, żeby trafnie znaleźć źródło problemu i wiedzieć, jak go naprawić.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Cechy medium energii pneumatycznej, jakim jest sprężone powietrze, eliminują ryzyko powstania zagrożenia takiego jak

A. przenoszenie wibracji na pracownika
B. nadmierny hałas generowany przez pracujące urządzenia
C. iskra prowadząca do pożaru lub wybuchu
D. odłamki rozrywanych maszyn
Pierwsza z przedstawionych odpowiedzi odnosi się do odłamków rozrywanych urządzeń, co może się zdarzyć w przypadku zastosowania sprężonego powietrza, zwłaszcza jeśli urządzenia nie są odpowiednio zabezpieczone. Odłamki mogą być efektem nieprawidłowej eksploatacji narzędzi pneumatycznych, co może prowadzić do kontuzji pracowników. Z kolei przenoszenie drgań na pracownika również jest problemem, którym należy się zająć, gdyż narzędzia pneumatyczne generują drgania, które mogą wpływać na zdrowie operatorów. Hałas wywołany pracą urządzeń pneumatycznych to kolejny aspekt, na który należy zwrócić uwagę, ponieważ nadmierny hałas w miejscu pracy może prowadzić do uszkodzeń słuchu. Jednak wszystkie te zagrożenia są związane z niewłaściwym użytkowaniem lub brakiem odpowiednich środków ochrony osobistej w miejscu pracy. Najczęstszym błędem myślowym jest przekonanie, że sprężone powietrze stwarza te same zagrożenia co inne źródła energii, jak na przykład gazy palne. W rzeczywistości, sprężone powietrze, gdy używane jest zgodnie z zasadami bezpieczeństwa i przy zachowaniu odpowiednich standardów, nie generuje ryzyka pożaru ani wybuchu. W kontekście pracy w strefach zagrożonych wybuchem, jak np. w przemyśle chemicznym, sprężone powietrze jest preferowane ze względu na swoje właściwości niepalne.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Który z podanych standardów przesyłania sygnałów cyfrowych pozwala na bezprzewodową transmisję danych?

A. RS 485
B. RS 232
C. USB
D. IRDA
Wybór pozostałych standardów transmisji sygnałów cyfrowych, takich jak RS 485, USB i RS 232, wskazuje na nieporozumienie związane z ich funkcjonalnością oraz zastosowaniem. RS 485 to standard szeregowy, który jest używany w komunikacji na większe odległości, często w aplikacjach przemysłowych. Jego główną zaletą jest zdolność do pracy w trudnych warunkach, lecz nie ma on możliwości przesyłania sygnałów bezprzewodowo, ponieważ wymaga fizycznego połączenia kablowego. USB (Universal Serial Bus) to standard, który służy do podłączania urządzeń i przesyłania danych, ale również wymaga przewodowego połączenia. Co prawda, istnieją technologie USB, które współpracują z bezprzewodowymi adaptatorami, jednak sam standard USB nie jest bezprzewodowy. RS 232 to kolejny przykład standardu szeregowego, znanego ze swojej prostoty i powszechności w starszych urządzeniach, jednak podobnie jak pozostałe wymienione standardy, nie obsługuje transmisji bezprzewodowej. Typowe błędy myślowe prowadzące do wyboru tych opcji mogą wynikać z mylenia pojęć związanych z komunikacją kablową i bezprzewodową, co podkreśla znaczenie zrozumienia różnic pomiędzy tymi technologiami. W kontekście nowoczesnych rozwiązań komunikacyjnych, znajomość standardów bezprzewodowych, takich jak IRDA, jest kluczowa dla efektywnej wymiany danych oraz integracji z nowymi technologiami.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Który z wymienionych materiałów znajduje zastosowanie w konstrukcjach spawanych?

A. Stal niskowęglowa
B. Żeliwo białe
C. Żeliwo szare
D. Stal wysokowęglowa
Stal niskowęglowa jest materiałem, który jest powszechnie stosowany w konstrukcjach spawanych, ponieważ charakteryzuje się dobrą spawalnością oraz wystarczającą wytrzymałością, co czyni ją idealnym wyborem do różnorodnych zastosowań inżynieryjnych. Zawartość węgla w stali niskowęglowej nie przekracza 0,3%, co zapewnia jej dużą plastyczność i łatwość w obróbce. Materiały te są często stosowane w budowie konstrukcji stalowych, takich jak wieże, mosty oraz różne elementy przemysłowe. Dodatkowo, stal niskowęglowa może być poddawana różnym procesom, takim jak hartowanie czy odpuszczanie, co pozwala dostosować jej właściwości do specyficznych wymagań projektu. W praktyce, zgodnie z normą EN 10025, stal niskowęglowa łączy w sobie zdolności do spawania z dobrą odpornością na zmęczenie, co czyni ją niezastąpionym materiałem w inżynierii konstrukcyjnej i mechanice. Przykłady zastosowań obejmują budowę ram samochodowych, elementów maszyn oraz innych konstrukcji narażonych na dynamiczne obciążenia.

Pytanie 27

Elementy z komponentów przeznaczone do montażu urządzenia powinny być posegregowane na stanowisku roboczym według

A. wielkości
B. kształtu
C. poziomu złożoności
D. kolejności montażu
Twoja odpowiedź, która mówi o układaniu części według kolejności montażu, jest naprawdę trafna. Wiesz, to mega ważne, bo jak wszystko jest dobrze zorganizowane na stanowisku pracy, to cały proces idzie sprawniej. Jak masz części poukładane po kolei, to szybciej je znajdziesz i mniejsze ryzyko, że coś sknocisz. Na przykład, w produkcji często korzysta się z metod takich jak 'Just-in-Time', które pomagają w efektywnym dostępie do elementów, kiedy akurat ich potrzebujesz. Warto też pamiętać o dobrych praktykach jak 5S, które podkreślają jak ważny jest porządek. Jeśli narzędzia i części są ustawione według kolejności montażu, to nie tylko przyspiesza pracę, ale i sprawia, że praca jest bezpieczniejsza. Dobrze jest też używać wizualnych oznaczeń i instrukcji w pobliżu, bo to naprawdę pomaga utrzymać całość w porządku i zapewnia jakość oraz terminowość.

Pytanie 28

Jakie środki ochrony osobistej, oprócz kasku ochronnego, powinien założyć pracownik wykonujący konserwację wyłączonego z eksploatacji urządzenia mechatronicznego w hali produkcyjnej?

A. Rękawice ochronne
B. Okulary ochronne
C. Buty ochronne
D. Odzież ochronna
Rękawice ochronne są kluczowym środkiem ochrony indywidualnej, który powinien być noszony przez pracowników zajmujących się konserwacją urządzeń mechatronicznych. Działania konserwacyjne często wiążą się z ryzykiem wystąpienia urazów mechanicznych, takich jak przecięcia, otarcia czy uderzenia. Rękawice ochronne zapewniają barierę między skórą a potencjalnymi źródłami urazów, co znacząco zmniejsza ryzyko kontuzji. Przykładem mogą być rękawice wykonane z materiałów odpornych na przebicia, które są standardem w branżach zajmujących się pracami w trudnych warunkach. Ponadto, w sytuacjach, gdzie używane są chemikalia lub substancje szkodliwe, odpowiednie rękawice chemiczne będą niezbędne do ochrony przed ich działaniem. Zgodnie z normą PN-EN 420:2004, rękawice ochronne powinny być dostosowane do rodzaju pracy i zagrożeń występujących w danym środowisku, dlatego ich wybór powinien być uzależniony od specyfiki wykonywanych zadań. Właściwe użycie rękawic ochronnych w połączeniu z innymi środkami, takimi jak kask czy odzież ochronna, tworzy kompleksowy system bezpieczeństwa.

Pytanie 29

Podczas działania napędu zwrotnego z użyciem silnika prądu stałego zaobserwowano, że prędkość obrotowa silnika jest różna w obu kierunkach oraz że iskrzenie szczotek przy obrocie w jedną stronę jest znacznie większe niż przy obrocie w kierunku przeciwnym. Jakie kroki należy podjąć w celu naprawy silnika?

A. Obtoczyć oraz przeszlifować komutator
B. Zamienić łożyska
C. Znormalizować nacisk szczotek
D. Ustawić szczotki w strefie neutralnej
Ustawić szczotki w strefie neutralnej jest kluczowym działaniem w przypadku silników prądu stałego, które doświadczają nierówności prędkości obrotowej oraz nadmiernego iskrzenia szczotek. Strefa neutralna to obszar w komutatorze, w którym nie występuje pole magnetyczne, co minimalizuje zjawisko iskrzenia. Ustawienie szczotek w tej strefie pozwala na równomierne rozłożenie nacisku na komutator i zmniejszenie zużycia materiału szczotek. W praktyce, aby to osiągnąć, należy dokładnie wyregulować położenie szczotek względem komutatora, co wymaga precyzyjnych narzędzi pomiarowych. Przykładem zastosowania tej metody jest konserwacja silników w przemyśle, gdzie regularne kontrole i ustawienia szczotek wpływają na wydajność silnika oraz jego żywotność. Ponadto, poprawne ustawienie szczotek ma znaczenie w kontekście efektywności energetycznej silnika, co jest zgodne z aktualnymi standardami branżowymi dotyczącymi eksploatacji urządzeń elektrycznych.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Czujnik indukcyjny, którego dane techniczne przedstawiono w tabeli, może pracować w układzie elektrycznym o następujących parametrach:

Typ czujnikaindukcyjny
Konfiguracja wyjścia2-przewodowy NO
Zasięg0÷4 mm
Napięcie zasilania15÷34V DC
Obudowa czujnikaM12
Przyłączeprzewód 2 m
Klasa szczelnościIP67
Prąd pracy max.25 mA
Temperatura pracy-25÷70°C
Rodzaj czoławysunięte
Częstotliwość przełączania maks.300 Hz

A. napięcie zasilania 15 V DC i prąd pracy 0,02 A
B. napięcie zasilania 24 V DC i prąd pracy 30 mA
C. napięcie zasilania 20 V AC i prąd pracy 0,02 A
D. napięcie zasilania 24 V DC i prąd pracy 0,02 A
Wybór innych wartości napięcia zasilania i prądu pracy wskazuje na brak zrozumienia specyfiki pracy czujników indukcyjnych oraz ich parametrów technicznych. Na przykład, napięcie zasilania 15 V DC jest poniżej standardowego zasilania stosowanego w nowoczesnych systemach automatyki, co może prowadzić do niewłaściwego działania czujnika lub jego całkowitego braku reakcji. Prąd pracy 0,02 A, będący równy 20 mA, również może nie być dostateczny dla niektórych zastosowań, w których wymagane są wyższe wartości prądów, co może skutkować niestabilnością działania urządzenia. W przypadku napięcia 20 V AC, pojawia się dodatkowy problem związany z typem prądu – czujniki indukcyjne zazwyczaj są projektowane do pracy z prądem stałym (DC), a niewłaściwe zasilanie prądem zmiennym (AC) może skutkować ich uszkodzeniem. Odpowiedź z napięciem zasilania 24 V DC i prądem pracy 30 mA jest zgodna z normami IEC oraz najlepszymi praktykami stosowanymi w branży, które zapewniają optymalne warunki pracy czujników oraz ich długotrwałą żywotność. Dodatkowo, stosowanie nieodpowiednich wartości może prowadzić do nieprawidłowych odczytów i błędnych decyzji w automatyzacji procesów, co podkreśla konieczność przemyślanej konfiguracji zasilania w systemach automatyki.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Wskaż urządzenie, które można wykorzystać do pomiaru ciśnienia wywieranego przez ciecz na ścianki zbiornika?

A. Pirometr
B. Żyroskop
C. Tensometr
D. Tachometr
Zrozumienie, które urządzenie może być użyte do pomiaru ciśnienia cieczy, wymaga wiedzy o charakterystyce i zastosowaniach różnych czujników. Tachometr, na przykład, jest narzędziem służącym do pomiaru prędkości obrotowej wirujących elementów, a jego zastosowanie jest ograniczone do systemów monitorowania i sterowania prędkości. Użycie tachometru do pomiaru ciśnienia cieczy jest błędne, ponieważ nie jest on w stanie zmierzyć sił działających na ścianki zbiornika ani odkształceń materiału. Żyroskop, z kolei, jest urządzeniem wykorzystywanym do pomiaru kątowych prędkości obrotowych i orientacji, co czyni go nieodpowiednim w kontekście pomiarów ciśnienia. W zastosowaniach, gdzie ciśnienie cieczy ma kluczowe znaczenie, jego wykorzystanie może prowadzić do poważnych błędów w diagnozowaniu i kontrolowaniu procesów. Pirometr, natomiast, służy do pomiaru temperatury na podstawie promieniowania podczerwonego i nie ma zastosowania w kontekście ciśnienia cieczy. Użytkownicy często mylą funkcje tych urządzeń, co prowadzi do niewłaściwych wniosków. Kluczem do prawidłowego wyboru czujnika jest zrozumienie ich specyficznych zastosowań oraz mechanizmów działania, co pozwala na efektywne wykorzystanie technologii w różnych dziedzinach przemysłu.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.