Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 24 kwietnia 2025 10:44
  • Data zakończenia: 24 kwietnia 2025 11:05

Egzamin niezdany

Wynik: 13/40 punktów (32,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Urządzenie sieciowe, które widoczna jest na ilustracji, to

Ilustracja do pytania
A. konwerter mediów
B. router
C. przełącznik
D. firewall
Pierwszym błędnym podejściem jest zaklasyfikowanie urządzenia jako konwertera mediów. Konwertery mediów są specjalistycznymi urządzeniami stosowanymi do zamiany jednego typu medium transmisyjnego na inny, np. z miedzianego przewodu Ethernet na światłowód. Nie zarządzają one ruchem sieciowym na poziomie IP, jak to robią routery. Konwertery mediów działają na warstwie fizycznej modelu OSI, co wyklucza ich jako odpowiedź w tym przypadku. Innym błędnym rozważaniem jest uznanie urządzenia za firewall. Firewalle działają na różnych poziomach modelu OSI, ale ich podstawowym zadaniem jest filtrowanie ruchu i ochrona sieci przed nieautoryzowanym dostępem. Chociaż niektóre nowoczesne routery mogą mieć wbudowane funkcje firewalla, ich główną funkcją jest routing, a nie zabezpieczanie sieci. Przełącznik natomiast operuje na drugiej warstwie modelu OSI i jego zadaniem jest przekazywanie ramek danych w obrębie jednej sieci lokalnej na podstawie adresów MAC. Przełączniki nie zarządzają ruchem między różnymi sieciami, co jest kluczową funkcją routera. Wybór innych odpowiedzi niż router wynika z nieporozumienia dotyczącego funkcji poszczególnych urządzeń sieciowych oraz ich miejsca w infrastrukturze sieciowej, co jest fundamentalną wiedzą w dziedzinie IT.

Pytanie 2

Sieci lokalne o architekturze klient-serwer cechują się tym, że

A. istnieje jeden dedykowany komputer, który udostępnia zasoby w sieci.
B. żaden z komputerów nie pełni funkcji dominującej w stosunku do innych.
C. wszystkie komputery klienckie mogą korzystać z zasobów innych komputerów.
D. wszystkie komputery w sieci mają równorzędny status.
W modelu sieci lokalnych, w którym każdy komputer jest równoprawny z pozostałymi, mamy do czynienia z architekturą typu peer-to-peer. W takim modelu, wszystkie urządzenia mają równy status i mogą zarówno udostępniać, jak i pobierać zasoby, co prowadzi do trudności w zarządzaniu i zabezpieczaniu zasobów. Ta koncepcja może prowadzić do dezorganizacji, ponieważ brak centralnego zarządzania utrudnia utrzymanie porządku i kontroli dostępu. W sytuacji, gdy żaden komputer nie pełni roli nadrzędnej, zyskujemy większą elastyczność, lecz kosztem wydajności oraz bezpieczeństwa. Przekłada się to na szereg problemów, takich jak trudności w aktualizacji oprogramowania czy synchronizacji danych, ponieważ każda zmiana musi być przeprowadzona na każdym komputerze z osobna. Kolejnym błędem w myśleniu jest przekonanie, że wszystkie komputery klienckie mogą w pełni korzystać z zasobów innych komputerów. W praktyce, w architekturze klient-serwer, dostęp do zasobów jest ściśle kontrolowany przez serwer, co zapewnia bezpieczeństwo i właściwe zarządzanie danymi. Warto zaznaczyć, że w modelu peer-to-peer mogą występować problemy z wydajnością, zwłaszcza przy dużej liczbie użytkowników, co nie jest problemem w dobrze zorganizowanej sieci klient-serwer, gdzie serwer jest zoptymalizowany do obsługi wielu jednoczesnych połączeń.

Pytanie 3

Urządzenie z funkcją Plug and Play, które zostało ponownie podłączone do komputera, jest identyfikowane na podstawie

A. unikalnego identyfikatora urządzenia
B. lokalizacji oprogramowania urządzenia
C. specjalnego oprogramowania sterującego
D. lokalizacji sprzętu
Odpowiedź dotycząca unikalnego identyfikatora urządzenia (UID) jest prawidłowa, ponieważ każdy sprzęt Plug and Play, po podłączeniu do komputera, jest identyfikowany na podstawie tego unikalnego identyfikatora, który jest przypisany do danego urządzenia przez producenta. UID pozwala systemowi operacyjnemu na właściwe rozpoznanie urządzenia i przypisanie mu odpowiednich sterowników. Dzięki temu użytkownik nie musi manualnie instalować oprogramowania, a system automatycznie rozpoznaje, co to za urządzenie. Przykładem mogą być drukarki, które po podłączeniu do komputera są automatycznie wykrywane i instalowane dzięki UID. W praktyce oznacza to, że proces dodawania nowych urządzeń do komputera stał się znacznie bardziej intuicyjny i przyjazny dla użytkownika. W celu zapewnienia pełnej zgodności, standardy takie jak USB (Universal Serial Bus) korzystają z unikalnych identyfikatorów, co jest uznawane za dobrą praktykę w projektowaniu nowoczesnych systemów komputerowych.

Pytanie 4

Symbolika tego procesora wskazuje na

Ilustracja do pytania
A. jego niewielkich wymiarach obudowy
B. bardzo niskie zużycie energii przez procesor
C. brak blokady mnożnika (unlocked)
D. mobilnej wersji procesora
Wiesz, przy rozkminianiu niepoprawnych odpowiedzi warto zrozumieć, czemu niektóre oznaczenia procesorów mogą być mylące. Oznaczenie modelu nie mówi nam nic o rozmiarze obudowy. To zależy od standardu socketu, jak LGA czy PGA, a nie od konkretnego modelu. I te oznaczenie K w nazwie procesora nie ma nic wspólnego z mobilną wersją. W sumie wersje mobilne mają inne litery i cyferki, które mówią o ich energooszczędności i termice, co jest ważne dla laptopów i innych przenośnych sprzętów. A jeszcze jedno - wcale nie jest tak, że oznaczenie tego procesora sugeruje niskie zużycie energii. Te oznaczenia T czy U to już inna bajka, bo są projektowane z myślą o niskim poborze energi, co ma sens w kontekście laptopów. Natomiast jeśli chodzi o procesory z odblokowanym mnożnikiem, to chodzi głównie o maksymalizację wydajności, a nie o minimalizację zużycia energii. Dlatego ważne jest, żeby znać te różnice - to pomaga w lepszym doborze sprzętu do swoich potrzeb, co ma znaczenie dla profesjonalistów i zapaleńców IT.

Pytanie 5

Jaką rolę należy przypisać serwerowi z rodziny Windows Server, aby mógł świadczyć usługi rutingu?

A. Usługi domenowe w Active Directory
B. Serwer sieci Web (IIS)
C. Usługi zasad i dostępu sieciowego
D. Usługi zarządzania dostępem w Active Directory
Wybór usługi zarządzania dostępu w usłudze Active Directory jako odpowiedzi na pytanie o ruting jest błędny, ponieważ ta rola skupia się głównie na kontrolowaniu dostępu do zasobów w sieci, a nie na zarządzaniu ruchem sieciowym. Usługi te mają na celu autoryzację i uwierzytelnianie użytkowników oraz urządzeń w sieci, co jest ważne, ale nie wystarcza do realizacji zadań rutingowych. Z drugiej strony, usługi domenowe w usłudze Active Directory są fundamentalne dla organizacji i zarządzania użytkownikami, ale nie zajmują się bezpośrednio przesyłaniem pakietów danych pomiędzy różnymi segmentami sieci, co jest kluczowe w kontekście rutingu. Serwer sieci Web (IIS) ma zupełnie inną funkcję, koncentrując się na hostowaniu aplikacji internetowych, a nie na zarządzaniu ruchem sieciowym. Takie nieprawidłowe podejście może wynikać z mylnej interpretacji roli poszczególnych serwisów w infrastrukturze IT. W praktyce, aby poprawnie skonfigurować serwer do pełnienia roli routera, należy skupić się na odpowiednich usługach, które rzeczywiście obsługują ruting, a odpowiedzi nie związane z tym tematem prowadzą do błędnych wniosków, co może skutkować brakiem efektywności w zarządzaniu siecią.

Pytanie 6

Rozmiar pliku wynosi 2kB. Jaką wartość to reprezentuje?

A. 2000 bitów
B. 2048 bitów
C. 16384 bity
D. 16000 bitów
Odpowiedzi 2000 bitów oraz 2048 bitów są nieprawidłowe, ponieważ nie opierają się na standardowym przeliczeniu jednostek danych. Odpowiedź 2000 bitów wynika z błędnego zrozumienia koncepcji kilobajta, ponieważ ktoś może błędnie przyjąć, że 1 kB to 1000 bajtów zamiast właściwych 1024 bajtów. Z kolei 2048 bitów wynika z mylenia przeliczenia bajtów z bitami, gdyż nie uwzględnia się, że 1 kB to 1024 bajty, a każdy bajt to 8 bitów. Zatem tak naprawdę 2048 bitów odpowiada 256 bajtom, co nie ma związku z podanym rozmiarem 2 kB. Odpowiedź 16000 bitów również jest błędna, gdyż nie uwzględnia poprawnych przeliczeń, co prowadzi do nieprawidłowych wniosków. Błędy te mogą wynikać z nieaktualnej wiedzy na temat jednostek miary, które są kluczowe w informatyce i technologii komputerowej. Właściwe zrozumienie i przeliczenie bajtów i bitów jest niezbędne do efektywnej pracy z danymi, a także do zrozumienia, jak różne jednostki wpływają na wydajność systemów komputerowych. W praktyce, programiści i inżynierowie IT muszą być świadomi tych przeliczeń, aby podejmować właściwe decyzje dotyczące architektury systemów oraz optymalizacji transferów danych.

Pytanie 7

Interfejs SLI (ang. Scalable Link Interface) jest wykorzystywany do łączenia

A. napędu Blu-ray z kartą dźwiękową
B. czytnika kart z płytą główną
C. karty graficznej z odbiornikiem TV
D. dwóch kart graficznych
Wydaje się, że w niektórych odpowiedziach jest zamieszanie na temat tego, co robi SLI. Po pierwsze, łączenie czytnika kart z płytą główną to zupełnie inna sprawa, bo nie chodzi o synchronizację grafiki, tylko o przesyłanie danych. Podobnie napęd Blu-ray z kartą dźwiękową to coś całkiem innego niż SLI, bo te części mają różne funkcje w systemie. Łączenie karty graficznej z telewizorem też nie dotyczy SLI, gdyż telewizor nie przetwarza grafiki, tylko wyświetla obraz. Ważne jest, żeby zrozumieć, że SLI działa tylko z kartami graficznymi i ich współpracą, co pozwala na lepszą wydajność. Często błędnie myli się pojęcia przesyłu danych z obliczeniami, co prowadzi do tych niepoprawnych odpowiedzi. Wydaje mi się, że lepiej to zrozumiesz, jak jeszcze raz przeanalizujesz tę technologię.

Pytanie 8

Jak nazywa się materiał używany w drukarkach 3D?

A. substancja katalityczna
B. filament
C. ciecz
D. proszek węglowy
Filament to najpopularniejszy materiał eksploatacyjny stosowany w drukarkach 3D, szczególnie w technologii FDM (Fused Deposition Modeling). Jest to tworzywo sztuczne w formie długiego, cienkiego drutu, który jest podgrzewany i wytłaczany przez głowicę drukującą, tworząc trójwymiarowy obiekt warstwa po warstwie. Filamenty mogą być wykonane z różnych materiałów, takich jak PLA (kwas polilaktyczny), ABS (akrylonitryl-butadien-styren), PETG (poliester), TPU (termoplastyczny poliuretan) i wiele innych, co pozwala na różnorodność zastosowań w zależności od wymagań projektu. Przykładowo, filament PLA jest biodegradowalny i idealny do prototypowania, podczas gdy ABS jest bardziej odporny na wysokie temperatury i nadaje się do wykonania trwałych części. Wybór odpowiedniego filamentu jest kluczowy dla osiągnięcia pożądanej jakości wydruku oraz właściwości mechanicznych gotowego produktu. Ważnymi standardami w branży są normy dotyczące jakości filamentów, takie jak ISO 9001, które pomagają zapewnić ich spójność i niezawodność.

Pytanie 9

Do weryfikacji integralności systemu plików w środowisku Linux trzeba zastosować polecenie

A. fstab
B. mkfs
C. fsck
D. man
Odpowiedzi 'fstab', 'man' oraz 'mkfs' odnoszą się do różnych elementów zarządzania systemem plików w Linuxie, jednak żaden z tych terminów nie jest właściwy w kontekście sprawdzania integralności systemu plików. 'fstab' (File System Table) to plik konfiguracyjny, który zawiera informacje o systemach plików, które mają być montowane podczas uruchamiania systemu. Jest to istotne narzędzie, ale nie ma bezpośredniego związku z kontrolą integralności. 'man' to polecenie służące do przeglądania dokumentacji systemowej i instrukcji obsługi, co może być przydatne do zrozumienia funkcji narzędzi, ale nie służy do sprawdzania systemu plików. Z kolei 'mkfs' (Make File System) to polecenie używane do formatowania partycji i tworzenia nowych systemów plików, co jest procesem przydatnym, ale również nie ma związku z kontrolą integralności już istniejących systemów plików. Typowym błędem myślowym jest pomylenie narzędzi do zarządzania systemem plików z narzędziami do ich naprawy. Kluczowym zadaniem 'fsck' jest analiza i naprawa uszkodzeń, co jest niezbędne w celu zapewnienia stabilności i bezpieczeństwa danych. Dlatego, zrozumienie różnicy między tymi komendami jest kluczowe dla skutecznego zarządzania systemem operacyjnym.

Pytanie 10

W systemie Linux, co oznacza znak "~" w ścieżce dostępu do plików?

A. Katalog domowy użytkownika
B. Katalog tymczasowy
C. Katalog główny
D. Katalog root
W systemie Linux istnieje kilka specjalnych symboli, które mają swoje specyficzne znaczenie w kontekście ścieżek plików. Znak "~" jest jednym z nich i odnosi się do katalogu domowego użytkownika, ale istnieje pokusa, by mylić go z innymi, bardziej ogólnymi katalogami. Katalog główny, oznaczony jako "/", jest fundamentem struktury systemu plików w Linuxie. To miejsce, od którego zaczynają się wszystkie inne katalogi, takie jak "/bin", "/etc", czy "/var". Jest to mylne, gdyż "~" nie odnosi się do tej lokalizacji, ale do bardziej spersonalizowanego miejsca. Z kolei katalog tymczasowy, często oznaczany jako "/tmp", jest używany do przechowywania tymczasowych plików, które mogą być usunięte po restarcie systemu lub po określonym czasie. Nie ma on żadnego związku z "~", który jest stałym punktem odniesienia dla każdego użytkownika. Katalog root, oznaczony jako "/root", jest katalogiem domowym użytkownika root, czyli superużytkownika systemu. Choć jest to katalog domowy, to specyficzny dla tylko jednego użytkownika, root, a nie dla bieżącego użytkownika, dlatego "~" nie odnosi się do niego, chyba że jesteśmy zalogowani jako root. Rozróżnianie tych ścieżek jest kluczowe dla zrozumienia, jak działa system plików w Linuxie i jak możemy efektywnie nawigować i zarządzać plikami.

Pytanie 11

Cechą charakterystyczną pojedynczego konta użytkownika w systemie Windows Serwer jest

A. maksymalna wielkość profilu użytkownika.
B. maksymalna wielkość pojedynczego pliku, który użytkownik ma prawo zapisać na dysku serwera.
C. maksymalna wielkość pulpitu przypisanego użytkownikowi.
D. numer telefonu, pod który powinien oddzwonić serwer, gdy użytkownik nawiąże połączenie telefoniczne.
Błędne odpowiedzi odnoszą się do elementów konta użytkownika, które nie są standardowymi cechami definiującymi jego funkcjonalność w systemie Windows Server. W przypadku pierwszej koncepcji, dotyczącej maksymalnej wielkości pliku, warto zaznaczyć, że ograniczenia dotyczące wielkości plików są ustalane na poziomie systemu plików, a nie indywidualnych kont użytkowników. Takie ustawienia mogą być stosowane do partycji dyskowych, ale nie są bezpośrednio przypisane do konta użytkownika. Odpowiedź dotycząca maksymalnej wielkości pulpitu użytkownika również jest nieodpowiednia, ponieważ pulpity są bardziej zbiorem aplikacji i okien, które są przypisane do sesji użytkownika, a nie mają przypisanego limitu. Kolejna odpowiedź, odnosząca się do maksymalnej wielkości profilu użytkownika, zamiast tego dotyczy aspektów przechowywania danych i ich dostępności. Profile użytkowników w systemie Windows Server są odpowiedzialne za przechowywanie ustawień i danych osobistych, ale ich wielkość nie jest restrykcjonowana w standardowy sposób przez system. Te różnice w zrozumieniu funkcji konta użytkownika mogą prowadzić do mylnych wniosków, dlatego kluczowe jest gruntowne poznanie architektury systemu oraz zasad zarządzania kontami. W kontekście zarządzania kontami użytkowników, zaleca się regularne szkolenia oraz korzystanie z dokumentacji Microsoft, aby zapewnić zrozumienie i zastosowanie odpowiednich najlepszych praktyk.

Pytanie 12

Program "VirtualPC", dostępny do pobrania z witryny Microsoft, jest przeznaczony do korzystania:

A. z wirtualnych systemów operacyjnych na lokalnym dysku
B. z bezpłatnego konta o pojemności 100 MB w hostingu Microsoft
C. z darmowej pomocy technicznej TechNet.Soft firmy Virtual Soft
D. z osobistego konta o pojemności 1 GB w serwerze wirtualnym Microsoft
Program VirtualPC to oprogramowanie wirtualizacyjne, które pozwala na uruchamianie wielu systemów operacyjnych na jednym fizycznym komputerze, wykorzystując lokalny dysk twardy jako bazę. Jest to narzędzie przydatne dla deweloperów, testerów oprogramowania oraz administratorów systemów, którzy muszą pracować w różnych środowiskach. Dzięki VirtualPC można tworzyć wirtualne maszyny, co umożliwia testowanie aplikacji w różnych systemach operacyjnych, takich jak Windows, Linux, czy inne. To podejście jest zgodne z najlepszymi praktykami w branży IT, które zakładają minimalizację ryzyka przez izolację testów od głównego środowiska operacyjnego. Przy użyciu VirtualPC można także eksperymentować z konfiguracjami systemów bez obawy o destabilizację głównego systemu, co jest szczególnie istotne w kontekście ochrony danych i bezpieczeństwa. Ponadto, można w łatwy sposób przenosić wirtualne maszyny między różnymi komputerami, co zwiększa elastyczność i wygodę pracy.

Pytanie 13

Które medium transmisyjne umożliwia izolację galwaniczną pomiędzy systemami przesyłu danych?

A. Przewód koncentryczny
B. Skrętka nieekranowana
C. Skrętka ekranowana
D. Światłowód
Skrętka ekranowana, skrętka nieekranowana i przewód koncentryczny, mimo że są powszechnie stosowanymi mediami transmisyjnymi, nie oferują separacji galwanicznej. Skrętka ekranowana, na przykład, jest wyposażona w ekran, który ma na celu zredukowanie zakłóceń elektromagnetycznych, ale nie izoluje sygnału elektrycznego, co oznacza, że może występować ryzyko wprowadzenia szumów czy różnicy potencjałów elektrycznych. Również skrętka nieekranowana, powszechnie używana w lokalnych sieciach komputerowych, całkowicie opiera się na połączeniach elektrycznych, co czyni ją wrażliwą na zakłócenia. Przewód koncentryczny, choć ma zastosowanie w systemach telewizyjnych i transmisji danych, również przenosi sygnał w postaci sygnału elektrycznego, co nie zapewnia separacji galwanicznej. W praktyce, ta podatność na zakłócenia może prowadzić do poważnych problemów w sieciach, takich jak niestabilność połączeń czy awarie sprzętu. W związku z tym, przy projektowaniu nowoczesnych systemów komunikacyjnych, zaleca się stosowanie technologii, które oferują galwaniczną separację, szczególnie w środowiskach o wysokim ryzyku zakłóceń elektromagnetycznych. Dlatego wybór światłowodu jako medium transmisyjnego staje się kluczowy dla zapewnienia niezawodności i stabilności systemów transmisji danych.

Pytanie 14

Postcardware to typ

A. karty sieciowej
B. wirusa komputerowego
C. usługi poczty elektronicznej
D. licencji oprogramowania
Postcardware to specyficzny rodzaj licencji oprogramowania, który wprowadza unikalny model dystrybucji. W przeciwieństwie do tradycyjnych licencji, które często wymagają zakupu, postcardware umożliwia użytkownikom korzystanie z oprogramowania za darmo, pod warunkiem, że w zamian wyślą autorowi pocztówkę lub inny rodzaj wiadomości. Taki model promuje interakcję między twórcami a użytkownikami, a także zwiększa świadomość na temat oprogramowania. Przykłady zastosowania postcardware można znaleźć w przypadku projektów open source, gdzie autorzy zachęcają do kontaktu z nimi w celu wyrażenia uznania za ich pracę. Dzięki temu, postcardware przyczynia się do budowania społeczności wokół oprogramowania oraz wzmacnia więź między twórcą a użytkownikiem. Jest to również forma marketingu, która podkreśla wartość osobistego kontaktu, co może prowadzić do większej lojalności użytkowników. Taki model dystrybucji jest zgodny z duchem współpracy i otwartości, które są fundamentem wielu inicjatyw technologicznych i wspiera rozwój innowacyjnych rozwiązań.

Pytanie 15

Granice domeny kolizyjnej nie są określane przez porty takich urządzeń jak

A. most (ang. bridge)
B. przełącznik (ang. switch)
C. router
D. koncentrator (ang. hub)
Routery, przełączniki i mosty to urządzenia, które mają zdolność do wydzielania domen kolizyjnych, co jest ich kluczową funkcjonalnością w zarządzaniu ruchem sieciowym. Routery operują na warstwie sieciowej modelu OSI i mają za zadanie kierowanie pakietów danych pomiędzy różnymi sieciami, co pozwala im tworzyć odrębne domeny kolizyjne dla każdej z nich. Przełączniki (ang. switches) działają na warstwie drugiej i są w stanie analizować adresy MAC, aby przesyłać dane tylko do konkretnego portu, co również pozwala na segregowanie ruchu i minimalizowanie kolizji. Mosty (ang. bridges) pełnią podobną funkcję, łącząc różne segmenty sieci i umożliwiając im komunikację, ale także ograniczają domeny kolizyjne, dbając o efektywność przesyłania danych. W kontekście projektowania sieci, błędem jest przyjmowanie, że wszystkie urządzenia mają te same właściwości. Niezrozumienie różnic między tymi technologiami prowadzi do nieefektywnych rozwiązań oraz problemów z wydajnością sieci. Aby unikać takich błędów, konieczne jest gruntowne zapoznanie się z zasadami działania poszczególnych urządzeń oraz ich odpowiednim zastosowaniem zgodnie z dobrymi praktykami branżowymi.

Pytanie 16

Usługa w systemie Windows Server, która umożliwia zdalną instalację systemów operacyjnych na komputerach zarządzanych przez serwer, to

A. GPO
B. FTP
C. DFS
D. WDS
FTP (File Transfer Protocol) to protokół sieciowy używany do przesyłania plików pomiędzy komputerami, ale nie jest to narzędzie do zdalnej instalacji systemów operacyjnych. Jego głównym zastosowaniem jest transfer danych, co czyni go nieodpowiednim rozwiązaniem do złożonych procesów instalacji. DFS (Distributed File System) z kolei jest technologią, która umożliwia zarządzanie danymi rozproszonymi w różnych lokalizacjach, ale nie ma funkcji zdalnego uruchamiania instalacji systemów operacyjnych. GPO (Group Policy Object) to mechanizm, który pozwala na centralne zarządzanie ustawieniami konfiguracji systemu i aplikacji w środowisku Active Directory, jednak również nie umożliwia instalacji systemu operacyjnego. Problem z tymi odpowiedziami wynika z nieporozumienia dotyczącego funkcji tych technologii. Użytkownicy mogą błędnie przypuszczać, że FTP, DFS lub GPO mają zastosowanie w kontekście zdalnej instalacji systemów, podczas gdy są to narzędzia przeznaczone do innych celów. Kluczowe przy określaniu odpowiedniego rozwiązania jest zrozumienie, które technologie są zaprojektowane do specyficznych zadań, takich jak WDS do zdalnej instalacji systemów operacyjnych. Dlatego ważne jest dokładne zapoznanie się z funkcjami poszczególnych narzędzi, aby uniknąć mylnych wyborów w zarządzaniu infrastrukturą IT.

Pytanie 17

Taśma drukarska stanowi kluczowy materiał eksploatacyjny w przypadku drukarki

A. termicznej
B. igłowej
C. atramentowej
D. laserowej
Drukarki laserowe, termiczne i atramentowe działają na zupełnie innych zasadach, co implikuje, że stosowanie taśmy barwiącej w tych urządzeniach jest nieprawidłowe. Drukarki laserowe wykorzystują technologię elektrostatyczną, w której obraz jest tworzony na bębnie naładowanym elektrycznie, a następnie pokrywany tonerem, który jest utrwalany na papierze przez proces grzewczy. W związku z tym, tonery stanowią materiał eksploatacyjny dla tej kategorii drukarek, a użycie taśmy barwiącej nie ma zastosowania. Drukarki termiczne natomiast, w zależności od typu, mogą wykorzystywać specjalny papier termiczny lub kartridże z tuszem, ale w żadnym wypadku taśmy barwiące nie są stosowane. Drukarki atramentowe z kolei używają kartridży z płynnych atramentów, które są nanoszone na papier za pomocą dysz. W tym przypadku, błędne jest myślenie, że taśmy barwiące mogą być używane, ponieważ mechanizm druku opiera się na innej technologii. Często zdarza się, że użytkownicy mylą różne technologie druku, co prowadzi do niepoprawnych wyborów materiałów eksploatacyjnych, co może skutkować nie tylko słabą jakością wydruku, ale również uszkodzeniem urządzenia. Dlatego istotne jest zrozumienie zasad działania danego typu drukarki i dobieranie do niej odpowiednich materiałów eksploatacyjnych zgodnie z zaleceniami producenta.

Pytanie 18

Który zakres adresów IPv4 jest poprawnie przypisany do danej klasy?

Zakres adresów IPv4Klasa adresu IPv4
A.1.0.0.0 ÷ 127.255.255.255A
B.128.0.0.0 ÷ 191.255.255.255B
C.192.0.0.0 ÷ 232.255.255.255C
D.233.0.0.0 ÷ 239.255.255.255D

A. D
B. B
C. A
D. C
Zrozumienie klas adresów IP jest fundamentalne dla projektowania i zarządzania sieciami komputerowymi. Klasa A obejmuje adresy od 1.0.0.0 do 127.255.255.255, z czego pierwszy oktet jest używany do identyfikacji sieci, a pozostałe trzy dla hostów, co pozwala na 126 sieci z ogromną liczbą hostów, jednak adres 127.0.0.0 jest zarezerwowany dla pętli zwrotnej. Klasa C, od 192.0.0.0 do 223.255.255.255, jest przeznaczona dla małych sieci, oferując dużą liczbę sieci, ale z ograniczoną liczbą hostów – maksymalnie 254 hosty na sieć. Klasa D, zaczynająca się od 224.0.0.0 do 239.255.255.255, jest zarezerwowana dla multicastingu i nie jest używana do adresacji hostów. Często błędnym założeniem jest przypisywanie klasy D do standardowej komunikacji między hostami, co nie jest zgodne z rzeczywistą funkcją tej klasy. Błędy w rozpoznawaniu klas mogą prowadzić do nieefektywnego wykorzystania zasobów adresowych i problemów z routingiem, dlatego ważne jest, aby dobrze rozumieć specyfikacje definiowane przez standardy takie jak RFC 791, które opisują struktury i użycie adresów IP w sieciach komputerowych.

Pytanie 19

Aplikacją systemu Windows, która umożliwia analizę wpływu różnych procesów i usług na wydajność CPU oraz oceny stopnia obciążenia pamięci i dysku, jest

A. resmon
B. credwiz
C. cleanmgr
D. dcomcnfg
Jeśli wybrałeś coś innego niż 'resmon', to może być trochę mylące. Na przykład 'credwiz' to narzędzie do zarządzania poświadczeniami, a nie do monitorowania wydajności. Można się w tym pogubić i pomyśleć, że jego funkcje są podobne do innych narzędzi. 'Cleanmgr', czyli Oczyszczanie dysku, pomaga zwolnić miejsce na dysku, ale nie pokaże ci, jak wykorzystuje się pamięć czy procesor. Ludzie czasami myślą, że sprzątanie na dysku od razu poprawia wydajność, a to nie zawsze tak działa. A 'dcomcnfg'? To narzędzie do zarządzania DCOM i też nie nadaje się do monitorowania obciążenia systemu. Fajnie jest zrozumieć, że każde z tych narzędzi ma inny cel. Wiedza o różnicach pomoże lepiej zarządzać systemem i zwiększyć jego wydajność.

Pytanie 20

W dokumentacji płyty głównej znajduje się informacja "Wsparcie dla S/PDIF Out". Co to oznacza w kontekście tej płyty głównej?

A. analogowe złącze sygnału wyjścia wideo
B. cyfrowe złącze sygnału audio
C. cyfrowe złącze sygnału wideo
D. analogowe złącze sygnału wejścia wideo
Wybór opcji dotyczących analogowych złączy sygnałów video jest niepoprawny, ponieważ S/PDIF odnosi się wyłącznie do cyfrowego sygnału audio, a nie video. Zrozumienie różnicy między sygnałem analogowym a cyfrowym jest kluczowe w kontekście nowoczesnych systemów audio-wideo. Sygnały analogowe, w tym analogowe złącza sygnału wyjścia video, są podatne na różne zakłócenia, co może prowadzić do degradacji jakości obrazu i dźwięku. Z kolei cyfrowe złącza, takie jak S/PDIF, zapewniają lepszą jakość sygnału, ponieważ przesyłają dane w formie cyfrowej, co eliminuje błędy wynikające z zakłóceń elektromagnetycznych. Odpowiedzi dotyczące analogowych sygnałów wyjścia video mogą wynikać z mylenia terminów związanych z audio i video; jest to powszechny błąd wśród osób, które nie są dobrze zaznajomione z technologią audio-wideo. Aby poprawnie podłączyć źródło dźwięku do odpowiednich urządzeń, istotne jest, aby znać różne typy złączy i ich zastosowanie. W praktyce, wybór odpowiedniego złącza powinien opierać się na specyfikacji urządzeń oraz wymaganiach dotyczących jakości dźwięku i obrazu.

Pytanie 21

Jaki jest standard 1000Base-T?

A. standard sieci Ethernet o prędkości 100Mb/s
B. standard sieci Ethernet o prędkości 1000MB/s
C. standard sieci Ethernet o prędkości 1000Mb/s
D. standard sieci Ethernet o prędkości 1GB/s
Wybór odpowiedzi, która sugeruje, że 1000Base-T to standard o przepustowości 100Mb/s, jest wynikiem nieporozumienia dotyczącego klasyfikacji standardów Ethernet. 1000Base-T to technologia, która osiąga prędkości do 1000 Mb/s, co jest równoważne z 1 Gb/s. Wprowadzenie do sieci szerokopasmowej wymaga zrozumienia różnic między standardami. Standard 100Base-T, który operuje z prędkością 100 Mb/s, oznacza zupełnie inne parametry i zastosowania. W praktyce, wykorzystywanie 100Base-T w sytuacjach, gdzie wymagana jest wyższa wydajność, prowadzi do wąskich gardeł i ograniczeń w transferze danych, co jest niepożądane w nowoczesnych środowiskach IT. Ponadto, pomylenie jednostek miary - Megabitów (Mb) z Gigabitami (Gb) - to typowy błąd, który może prowadzić do poważnych konsekwencji w projektowaniu i wdrażaniu infrastruktury sieciowej. Upewnienie się, że używamy odpowiednich standardów oraz rozumiemy ich możliwości, jest kluczowe dla zapewnienia efektywności operacyjnej i wydajności sieci. Dlatego istotne jest, aby w kontekście planowania sieci, nie ograniczać się do zastanawiania się nad przepustowością 100Mb/s, lecz uwzględniać nowoczesne standardy, takie jak 1000Base-T, które odpowiadają na rosnące wymagania użytkowników.

Pytanie 22

Na ilustracji, strzałka wskazuje na złącze interfejsu

Ilustracja do pytania
A. FDD
B. IDE
C. LPT
D. COM
IDE, czyli Integrated Drive Electronics, to interfejs do podłączania dysków twardych do komputerów. To jest interfejs szeregowy, co znaczy, że przesyła dane jeden bit na raz, a nie tak jak LPT, który przesyła równolegle. Głównie używa się go do dysków twardych i napędów optycznych, a nie do zewnętrznych urządzeń jak drukarki. Porty IDE są zazwyczaj w środku komputera i mają inną budowę, przez co łatwo je odróżnić od LPT. Z kolei porty COM, znane jako porty szeregowe, służą do komunikacji i podłączania np. modemów czy myszek. Wysyłają dane bit po bicie, co sprawia, że są wolniejsze od portów równoległych, ale mają tę zaletę, że można je podłączyć na dłuższym kablu. Złącza COM są mniejsze od LPT i mają zazwyczaj 9 lub 25 pinów. Mniejsza też jest ich rola, bo FDD, czyli napędy dyskietek, w ogóle nie są powiązane z LPT. Te napędy tylko przechowują dane, nie służą do komunikacji. Ważne jest, żeby rozumieć różnice między tymi interfejsami, bo mylenie ich może prowadzić do błędów w identyfikacji czy użyciu. Warto też zwrócić uwagę na specyfikacje techniczne, żeby dobrze je wykorzystać i wiedzieć, co robić w razie problemów sprzętowych.

Pytanie 23

Jaką cechę posiada przełącznik w sieci?

A. Z odebranych ramek wydobywa adresy MAC
B. Korzysta z protokołu EIGRP
C. Z przesyłanych pakietów pobiera docelowe adresy IP
D. Działa na fragmentach danych określanych jako segmenty
Wybór odpowiedzi, która sugeruje, że przełącznik sieciowy używa protokołu EIGRP, wskazuje na nieporozumienie dotyczące roli różnych urządzeń w architekturze sieci. EIGRP (Enhanced Interior Gateway Routing Protocol) jest protokołem routingu używanym w routerach do wymiany informacji o trasach w sieciach rozległych (WAN). Przełączniki natomiast operują na warstwie drugiej modelu OSI, skupiając się głównie na adresach MAC i lokalnym przesyłaniu danych. Z kolei odpowiedź dotycząca operowania na segmentach danych myli rolę przełącznika z funkcją routera, który zajmuje się przekazywaniem pakietów na podstawie adresów IP, co jest zarezerwowane dla innej warstwy modelu OSI (warstwa trzecia). Zrozumienie tej różnicy jest kluczowe, ponieważ przełączniki nie analizują adresów IP ani nie podejmują decyzji na ich podstawie. Na końcu, wybór dotyczący odczytywania docelowych adresów IP z przesyłanych pakietów jest typowym błędem myślowym, który wynika z mylenia operacji przełączania z routowaniem. Aby skutecznie projektować i zarządzać sieciami, istotne jest, aby rozumieć, które urządzenia operują na jakich warstwach oraz jakie są ich funkcje i protokoły, z których korzystają. Ta wiedza jest kluczowa w kontekście projektowania infrastruktury sieciowej oraz zapewnienia jej prawidłowego funkcjonowania.

Pytanie 24

Który standard złącza DVI pozwala na przesyłanie wyłącznie sygnałów analogowych?

Ilustracja do pytania
A. Rys. B
B. Rys. A
C. Rys. C
D. Rys. D
Złącze DVI-A jest dedykowane wyłącznie do przesyłania sygnałów analogowych mimo że standard DVI obsługuje różne typy sygnałów. DVI-A używa sygnałów podobnych do VGA co czyni je kompatybilnym z monitorami analogowymi. Ze względu na swoją konstrukcję DVI-A jest wykorzystywane do podłączania starszych urządzeń które nie obsługują sygnałów cyfrowych. Z technicznego punktu widzenia piny złącza DVI-A są zorganizowane w taki sposób aby przesyłać jedynie sygnały analogowe co wyklucza możliwość transmisji cyfrowej. W praktyce złącza DVI-A można znaleźć w sytuacjach gdy istnieje potrzeba podłączenia urządzeń z wyjściem VGA do nowoczesnych kart graficznych które posiadają tylko złącza DVI. W kontekście standardów DVI-A nie jest już powszechnie stosowane w nowych urządzeniach ale nadal znajduje zastosowanie w starszym sprzęcie. Zrozumienie różnicy między DVI-A a innymi standardami DVI jak DVI-D czy DVI-I jest kluczowe przy doborze odpowiednich kabli i adapterów w środowiskach mieszanych gdzie używane są zarówno monitory analogowe jak i cyfrowe.

Pytanie 25

W standardzie Ethernet 100BaseTX do przesyłania danych używane są żyły kabla UTP podłączone do pinów

Ilustracja do pytania
A. 4, 5, 6, 7
B. 1, 2, 5, 6
C. 1, 2, 3, 4
D. 1, 2, 3, 6
W sieci Ethernet 100BaseTX wykorzystywane są cztery piny w złączu RJ-45 do przesyłania i odbierania danych. Wśród dostępnych odpowiedzi niektóre zawierają błędne kombinacje pinów. Na przykład piny 4, 5, 6 i 7 nie są używane w standardzie Ethernet 100BaseTX do transmisji danych, co może wynikać z mylnego zrozumienia, że wszystkie piny w kablu są aktywne lub że inne standardy mogą używać innych konfiguracji pinów. Piny 1, 2, 5 i 6 również nie są poprawną konfiguracją, ponieważ mimo iż zawierają dwa właściwe piny (1 i 2), to piny 5 i 6 są błędnie zgrupowane. Tego typu błędy są często wynikiem nieznajomości specyfikacji technicznych i standardów sieciowych, takich jak EIA/TIA-568A i 568B, które precyzyjnie określają, które pary przewodów mają być używane do transmisji danych. Ważne jest, aby zawsze odnosić się do oficjalnej dokumentacji, która wskazuje właściwe parowanie przewodów, aby zapewnić prawidłowe działanie sieci i uniknąć zakłóceń sygnału czy problemów z łącznością, które mogą wynikać z nieprawidłowego okablowania. Prawidłowa konfiguracja wpływa na jakość i stabilność połączeń, dlatego też każdy technik sieciowy powinien być świadomy tych standardów i ich praktycznego zastosowania w codziennej pracy z sieciami komputerowymi.

Pytanie 26

Jaką funkcję pełni punkt dostępowy, aby zabezpieczyć sieć bezprzewodową w taki sposób, aby jedynie urządzenia z wybranymi adresami MAC mogły się do niej łączyć?

A. Radius (Remote Authentication Dial In User Service)
B. Autoryzacja
C. Przydzielenie SSID
D. Filtrowanie adresów MAC
Nadanie SSID, uwierzytelnianie oraz usługa RADIUS to techniki, które mają różne funkcje w zakresie zarządzania dostępem do sieci, lecz nie odpowiadają bezpośrednio na pytanie dotyczące zabezpieczania sieci poprzez ograniczenie dostępu tylko do określonych adresów MAC. SSID, czyli Service Set Identifier, jest jedynie nazwą sieci bezprzewodowej, która jest widoczna dla użytkowników i umożliwia im jej lokalizację, ale sama w sobie nie zabezpiecza dostępu. Uwierzytelnianie, z kolei, obejmuje proces potwierdzania tożsamości użytkowników lub urządzeń, ale może dotyczyć różnych metod, takich jak hasła czy certyfikaty, i nie odnosi się bezpośrednio do filtrowania fizycznych adresów MAC. Usługa RADIUS jest systemem, który pozwala na centralne zarządzanie uwierzytelnianiem, autoryzacją oraz rozliczaniem dostępu w sieciach komputerowych, ale również nie jest tożsama z mechanizmem filtrowania adresów MAC. Wiele osób może mylić te różne metody, myśląc, że umieszczają one dodatkowe zabezpieczenia w sieci, podczas gdy nie są one bezpośrednio związane z ograniczaniem dostępu na podstawie adresów MAC. Warto zrozumieć, że skuteczne zabezpieczenie sieci bezprzewodowej polega na wielowarstwowym podejściu, które integruje różne techniki zabezpieczeń, a nie tylko na jednej metodzie. Bezpieczne środowisko sieciowe wymaga zrozumienia i zastosowania odpowiednich praktyk w zakresie bezpieczeństwa, takich jak regularne aktualizacje oprogramowania, silne hasła, a także monitoring ruchu sieciowego.

Pytanie 27

Aby podłączyć 6 komputerów do sieci przy użyciu światłowodu, potrzebny jest kabel z co najmniej taką ilością włókien:

A. 24
B. 6
C. 12
D. 3
Aby podłączyć 6 komputerów za pomocą światłowodu, konieczne jest posiadanie kabla z co najmniej 12 włóknami. Każdy komputer wymaga jednego włókna na transmisję i jednego na odbiór, co daje łącznie 12 włókien, by umożliwić pełne duplexowe połączenie. W praktyce, w przypadku większych instalacji, często stosuje się więcej włókien, aby zapewnić przyszłą rozbudowę lub dodatkowe połączenia. Standardy branżowe, takie jak IEEE 802.3, sugerują, aby w projektach sieciowych uwzględniać zapasowe włókna na wypadek awarii lub konieczności rozbudowy. Użycie włókien wielomodowych lub jednomodowych również ma znaczenie, w zależności od odległości, jaką sygnał musi pokonać. Na przykład, w przypadku dużych odległości, zastosowanie włókien jednomodowych jest bardziej opłacalne z uwagi na mniejsze straty sygnału. Takie praktyki zwiększają niezawodność i elastyczność sieci, co jest kluczowe w nowoczesnych środowiskach pracy.

Pytanie 28

Jakie są zakresy częstotliwości oraz maksymalne prędkości przesyłu danych w standardzie 802.11g WiFi?

A. 2,4 GHz, 300 Mbps
B. 5 GHz, 54 Mbps
C. 2,4 GHz, 54 Mbps
D. 5 GHz, 300 Mbps
Odpowiedzi wskazujące na pasmo 5 GHz są błędne, ponieważ standard 802.11g został zaprojektowany do działania wyłącznie w zakresie 2,4 GHz. Pasmo 5 GHz jest właściwe dla nowszych standardów, takich jak 802.11n czy 802.11ac, które oferują lepszą szybkość transmisji i mniejsze zakłócenia, ale 802.11g nie jest jednym z nich. Ponadto, maksymalna szybkość transmisji danych 300 Mbps jest charakterystyczna dla standardu 802.11n, który wprowadził wiele usprawnień, takich jak MIMO (Multiple Input Multiple Output), zyskując przewagę nad starszymi standardami. W przypadku 802.11g, 54 Mbps to maksymalna prędkość, która została osiągnięta dzięki zastosowaniu modulacji QPSK oraz 64-QAM, co zapewniała efektywne wykorzystanie dostępnego pasma. Typowym błędem jest mylenie różnych standardów Wi-Fi i ich możliwości, co prowadzi do niewłaściwego doboru sprzętu oraz ustawień sieciowych. Dobrze jest zrozumieć, jakie ograniczenia i możliwości niosą ze sobą różne standardy, a także jak wpływają one na użyteczność oraz efektywność sieci w praktyce. Dlatego kluczowe jest, aby przy projektowaniu sieci lokalnych zwracać uwagę na specyfikacje poszczególnych standardów, aby uniknąć nieporozumień i zapewnić optymalne działanie systemów komunikacyjnych.

Pytanie 29

Na rysunku można zobaczyć schemat topologii fizycznej, która jest kombinacją topologii

Ilustracja do pytania
A. pierścienia i gwiazdy
B. siatki i gwiazdy
C. siatki i magistrali
D. magistrali i gwiazdy
Topologie sieci komputerowych to kluczowe pojęcie w informatyce, wpływające na wydajność, niezawodność i koszt infrastruktury sieciowej. Topologia pierścienia, w której każde urządzenie jest podłączone do dwóch innych, tworząc zamkniętą pętlę, nie łączy się bezpośrednio z topologią gwiazdy w sposób przedstawiony na rysunku. Topologia pierścienia wymaga, aby dane krążyły w określonym kierunku, co jest niekompatybilne z elastyczną strukturą gwiazdy, która centralizuje połączenia w jednym punkcie. Siatka, chociaż oferuje redundancję poprzez wiele połączeń między urządzeniami, nie jest efektywna kosztowo i technicznie trudna do zarządzania w małych i średnich sieciach, gdzie dominują prostsze struktury. W praktyce, topologia siatki jest stosowana głównie w sieciach o znaczeniu krytycznym, takich jak wojskowe czy telekomunikacyjne, gdzie niezawodność ma kluczowe znaczenie. Magistrala z kolei to linia prosta, do której podłączone są urządzenia, co pozwala na ekonomiczne przesyłanie danych, ale cierpi na ograniczenia związane z przepustowością i odpornością na awarie, ponieważ uszkodzenie magistrali może zatrzymać całą komunikację. Taki układ wymaga terminatorów na końcach, aby zapobiec odbiciom sygnałów. W kontekście pytania, należy zrozumieć, że kombinacja magistrali i gwiazdy jest wyborem oferującym kompromis pomiędzy elastycznością i kosztami, szczególnie w zastosowaniach komercyjnych, gdzie można łatwo dodawać nowe urządzenia do istniejącej infrastruktury bez dużych nakładów inwestycyjnych i technicznych, co czyni ją preferowaną w wielu współczesnych implementacjach sieciowych.

Pytanie 30

Atak na system komputerowy przeprowadzany jednocześnie z wielu maszyn w sieci, który polega na zablokowaniu działania tego systemu przez zajęcie wszystkich dostępnych zasobów, określany jest mianem

A. Brute force
B. DDoS
C. Spoofing
D. Atak słownikowy
Atak DDoS, czyli Distributed Denial of Service, to forma ataku, w której wiele komputerów, często zainfekowanych złośliwym oprogramowaniem (botnet), współpracuje w celu zablokowania dostępu do zasobów systemu komputerowego. Głównym celem takiego ataku jest przeciążenie serwera, aby uniemożliwić normalne funkcjonowanie usług, co może prowadzić do poważnych strat finansowych oraz problemów z reputacją. W praktyce ataki DDoS mogą być przeprowadzane na różne sposoby, w tym poprzez nadmierne wysyłanie zapytań HTTP, UDP flood, czy też SYN flood. W kontekście bezpieczeństwa IT, organizacje powinny wdrażać rozwiązania ochronne, takie jak firewalle, systemy detekcji intruzów (IDS) oraz korzystać z usług ochrony DDoS oferowanych przez dostawców zewnętrznych, co jest zgodne z najlepszymi praktykami w zarządzaniu bezpieczeństwem informacji. Ponadto, podnoszenie świadomości pracowników na temat zagrożeń związanych z cyberatakami jest kluczowe dla zapobiegania takim incydentom.

Pytanie 31

Które stwierdzenie opisuje profil tymczasowy użytkownika?

A. Po wylogowaniu się użytkownika, zmiany dokonane przez niego w ustawieniach pulpitu oraz w plikach nie będą zachowane
B. Umożliwia używanie dowolnego komputera w sieci z ustawieniami i danymi użytkownika przechowywanymi na serwerze
C. Jest generowany przy pierwszym logowaniu do komputera i przechowywany na lokalnym dysku twardym
D. Jest tworzony przez administratora systemu i zapisywany na serwerze, tylko administrator systemu ma prawo wprowadzać w nim zmiany
Wszystkie odpowiedzi, które zakładają, że profil tymczasowy użytkownika może przechowywać zmiany po wylogowaniu, są błędne. Profil tymczasowy jest zaprojektowany tak, aby użytkownik mógł korzystać z komputera bez wpływania na system lub inne profile użytkowników. Odpowiedzi sugerujące, że profil tymczasowy przechowuje dane na serwerze lub na lokalnym dysku, są mylące i nie oddają rzeczywistego charakteru tego typu profilu. Użytkownicy mylą pojęcia związane z profilem tymczasowym i profilami stałymi. Profil stały, tworzony przez administratora, rzeczywiście może przechowywać ustawienia i dane na serwerze, co umożliwia użytkownikowi dostęp do tych samych danych i ustawień niezależnie od miejsca logowania. Ludzie często utożsamiają profil tymczasowy z technologią chmurową, zakładając, że dane są automatycznie synchronizowane między urządzeniami, co nie jest prawdą. Takie myślenie prowadzi do nieporozumień w przypadku zarządzania użytkownikami i ich danymi. W rzeczywistości, zastosowanie profilu tymczasowego w praktyce ma na celu nie tylko uproszczenie zarządzania danymi użytkowników, ale również zwiększenie bezpieczeństwa systemu operacyjnego poprzez unikanie nieautoryzowanych zmian. To ważne, aby zrozumieć, jak różne rodzaje profili wpływają na zarządzanie użytkownikami i jakie są ich konsekwencje w kontekście bezpieczeństwa systemu.

Pytanie 32

W sytuacji, gdy brakuje odpowiedniej ilości pamięci RAM do przeprowadzenia operacji, takiej jak uruchomienie aplikacji, system Windows pozwala na przeniesienie nieużywanych danych z pamięci RAM do pliku

A. config.sys
B. tpm.sys
C. pagefile.sys
D. nvraid.sys
Odpowiedzi 'tpm.sys', 'config.sys' i 'nvraid.sys' nie pasują do tematu przenoszenia danych z pamięci RAM. 'tpm.sys' jest sterownikiem dla modułu TPM, który przede wszystkim dba o bezpieczeństwo i zarządzanie kluczami, nie o pamięć. 'config.sys' to stary plik konfiguracyjny z czasów DOS, a teraz już nie jest potrzebny. No i 'nvraid.sys' to sterownik do RAID, też nie ma nic wspólnego z przenoszeniem danych z RAM-u do dysku. Czasami można pomylić te pliki i ich funkcje, ale ważne jest, żeby zrozumieć, jak to wszystko działa. Wiedza na temat plików systemowych naprawdę pomaga w lepszym zrozumieniu wydajności komputera.

Pytanie 33

Jaki jest adres broadcastowy dla sieci posiadającej adres IP 192.168.10.0/24?

A. 192.168.0.0
B. 192.168.10.0
C. 192.168.10.255
D. 192.168.0.255
Adres rozgłoszeniowy sieci o adresie IP 192.168.10.0/24 to 192.168.10.255, ponieważ w przypadku adresu klasy C z maską /24 ostatni bajt (osiem bitów) jest używany do identyfikacji hostów w sieci. Maski sieciowe, takie jak /24, oznaczają, że pierwsze 24 bity adresu (czyli trzy pierwsze bajty) są stałe dla danej sieci, a ostatnie 8 bitów może być zmieniane, co oznacza, że mamy 2^8 = 256 możliwych adresów hostów w tej sieci, od 192.168.10.0 do 192.168.10.255. Adres 192.168.10.0 jest zarezerwowany jako adres identyfikujący sieć, a adres 192.168.10.255 jest używany jako adres rozgłoszeniowy, który pozwala na wysyłanie pakietów do wszystkich urządzeń w tej sieci. Użycie adresów rozgłoszeniowych jest istotne, gdyż umożliwia efektywne zarządzanie sieciami lokalnymi oraz komunikację między urządzeniami. Przykładem zastosowania adresów rozgłoszeniowych jest wysyłanie informacji o aktualizacjach do wszystkich komputerów w lokalnej sieci jednocześnie, co pozwala na oszczędność czasu i zasobów.

Pytanie 34

W jaki sposób oznaczona jest skrętka bez zewnętrznego ekranu, mająca każdą parę w osobnym ekranie folii?

A. S/FTP
B. F/STP
C. U/FTP
D. F/UTP
Odpowiedź U/FTP oznacza, że skrętka nie ma zewnętrznego ekranu, ale każda z par przewodów jest chroniona przez ekran z folii. To podejście jest szczególnie korzystne w środowiskach o wysokim poziomie zakłóceń elektromagnetycznych, gdzie izolacja par przewodów pozwala na zredukowanie szumów oraz utrzymanie integralności sygnału. U/FTP jest zgodne z międzynarodowymi standardami, takimi jak ISO/IEC 11801, które definiują wymagania dla systemów okablowania miedzianego. Przykładem zastosowania U/FTP są instalacje sieciowe w biurach, gdzie bliskość różnych urządzeń elektronicznych może generować zakłócenia. Użycie skrętki U/FTP pozwala na osiągnięcie lepszej wydajności transmisji danych, co jest kluczowe w nowoczesnych sieciach komputerowych, szczególnie przy wysokich prędkościach transferu.

Pytanie 35

W drukarce laserowej do stabilizacji druku na papierze używane są

A. promienie lasera
B. rozgrzane wałki
C. głowice piezoelektryczne
D. bęben transferowy
W drukarkach laserowych proces utrwalania wydruku na papierze jest kluczowym etapem, który zapewnia trwałość i jakość wydruku. Rozgrzane wałki, znane jako wałki utrwalające, pełnią w tym procesie fundamentalną rolę. Po nałożeniu tonera na papier, wałki te przekształcają energię cieplną na ciśnienie, co powoduje stopienie tonera i jego wniknięcie w strukturę papieru. Dzięki temu, po zakończeniu procesu utrwalania, wydruk staje się odporny na działanie wody, tarcia oraz blaknięcie. Ważne jest, aby wałki były odpowiednio rozgrzane do temperatury około 180-200 stopni Celsjusza, co zapewnia optymalną jakość i trwałość wydruku. Utrwalanie przy użyciu wałków jest zgodne z najlepszymi praktykami w branży, co potwierdzają liczne standardy ISO dotyczące jakości wydruków. Warto również zauważyć, że dobry stan wałków jest kluczowy dla utrzymania wysokiej jakości druku, dlatego regularna konserwacja i czyszczenie urządzenia są niezbędne. Przykładem zastosowania tej technologii są biura, które potrzebują wydruków o wysokiej jakości, takich jak raporty czy prezentacje, gdzie estetyka i trwałość wydruku są kluczowe.

Pytanie 36

Jakie urządzenie w warstwie łącza danych modelu OSI analizuje adresy MAC zawarte w ramkach Ethernet i na tej podstawie decyduje o przesyłaniu sygnału między segmentami sieci lub jego blokowaniu?

A. Most.
B. Wzmacniak.
C. Koncentrator.
D. Punkt dostępowy.
Most (ang. bridge) to urządzenie sieciowe warstwy łącza danych modelu OSI, które analizuje adresy MAC zawarte w ramkach Ethernet. Jego głównym zadaniem jest przesyłanie danych pomiędzy różnymi segmentami sieci lokalnej, co pozwala na efektywne zarządzanie ruchem. Most wykorzystuje tablicę adresów MAC do podejmowania decyzji, czy przesłać ramkę do docelowego segmentu, czy zablokować jej wysyłkę, gdy adres MAC nie jest znany. Dzięki temu mosty wspierają redukcję kolizji na sieci, co jest kluczowe w środowiskach z dużą liczbą urządzeń. Przykładem praktycznego zastosowania mostów jest ich użycie w sieciach o dużym natężeniu ruchu, gdzie pozwalają na segmentację sieci i efektywne zarządzanie pasmem. Mosty są zgodne z normami IEEE 802.1D, co czyni je standardowym rozwiązaniem w branży sieciowej, zapewniającym wysoką wydajność oraz niezawodność.

Pytanie 37

W systemach Microsoft Windows komenda netstat -a pokazuje

A. statystyki odwiedzin witryn internetowych
B. aktualne ustawienia konfiguracyjne sieci TCP/IP
C. tabelę trasowania
D. wszystkie aktywne połączenia protokołu TCP
Polecenie netstat -a w systemach Microsoft Windows służy do wyświetlania wszystkich aktywnych połączeń oraz portów nasłuchujących w protokole TCP i UDP. Umożliwia administratorom sieci oraz użytkownikom identyfikację otwartych portów, co jest istotne dla monitorowania bezpieczeństwa sieci oraz diagnozowania problemów z połączeniami. Przykładem praktycznego zastosowania tego polecenia jest sytuacja, w której administrator chce sprawdzić, czy na serwerze nie są otwarte nieautoryzowane porty, co mogłoby sugerować możliwe zagrożenie bezpieczeństwa. Dodatkowo, wynik polecenia może być użyty do analizy wydajności sieci, wskazując na problemy z przepustowością lub zbyt dużą ilością połączeń do jednego z serwisów. Stosowanie narzędzi takich jak netstat jest zgodne z najlepszymi praktykami w zarządzaniu sieciami, umożliwiając proaktywne podejście do bezpieczeństwa i wydajności sieci. Warto pamiętać, że zrozumienie wyjścia netstat jest kluczowe w kontekście zarządzania siecią i odpowiedzi na incydenty bezpieczeństwa.

Pytanie 38

Jakim interfejsem można przesyłać dane między płyta główną, przedstawioną na ilustracji, a urządzeniem zewnętrznym, nie zasilając jednocześnie tego urządzenia przez ten interfejs?

Ilustracja do pytania
A. PCI
B. PCIe
C. SATA
D. USB
Interfejs PCI jest starszą technologią służącą do podłączania kart rozszerzeń do płyty głównej. Nie jest używany do bezpośredniego podłączania zewnętrznych urządzeń peryferyjnych i co ważniejsze, sam w sobie nie prowadzi zasilania do zewnętrznych urządzeń. PCIe, czyli PCI Express, jest nowocześniejszym standardem służącym głównie do obsługi kart graficznych i innych kart rozszerzeń. Choć PCIe może przesyłać dane z dużą przepustowością, nie jest to typowy interfejs do łączenia zewnętrznych urządzeń peryferyjnych takich jak dyski zewnętrzne. USB, z kolei, jest najbardziej znamiennym interfejsem dla podłączania zewnętrznych urządzeń peryferyjnych, takich jak myszki, klawiatury, czy pamięci typu pendrive. Cechą charakterystyczną USB jest to że oprócz przesyłania danych, przesyła również zasilanie do podłączonego urządzenia, co czyni go nieodpowiednim zgodnie z treścią pytania które wyklucza interfejsy zasilające podłączone urządzenia. Myślenie, że PCI lub PCIe mogłyby pełnić rolę interfejsów do zewnętrznych urządzeń peryferyjnych tak jak USB jest błędne w kontekście praktycznego zastosowania i standardów branżowych które wyraźnie definiują ich role w architekturze komputerowej. Zrozumienie różnic w zastosowaniu i funkcjonalności tych interfejsów jest kluczowym elementem wiedzy o budowie i działaniu współczesnych systemów komputerowych co pozwala na ich efektywne wykorzystanie w praktycznych zastosowaniach IT.

Pytanie 39

Zamiana taśmy barwiącej wiąże się z eksploatacją drukarki

A. termicznej
B. atramentowej
C. laserowej
D. igłowej
Drukarki igłowe wykorzystują taśmy barwiące jako kluczowy element do reprodukcji tekstu i obrazów. W przeciwieństwie do drukarek laserowych czy atramentowych, które używają toneru czy atramentu, drukarki igłowe działają na zasadzie mechanicznego uderzenia igieł w taśmę barwiącą, co pozwala na przeniesienie atramentu na papier. Wymiana taśmy barwiącej jest konieczna, gdy jakość wydruku zaczyna się pogarszać, co może objawiać się niewyraźnym tekstem lub niedoborem koloru. Przykładem zastosowania drukarek igłowych są systemy księgowe, które wymagają wielokrotnego drukowania takich dokumentów jak faktury czy raporty, gdzie trwałość druku jest kluczowa. Dobre praktyki sugerują, aby regularnie kontrolować stan taśmy barwiącej oraz wymieniać ją zgodnie z zaleceniami producenta, co zapewnia optymalną jakość wydruków i wydajność sprzętu.

Pytanie 40

Który z trybów nie jest dostępny dla narzędzia powiększenia w systemie Windows?

A. Zadokowany
B. Lupy
C. Płynny
D. Pełnoekranowy
Odpowiedzi wskazujące na dostępność trybów takich jak pełnoekranowy, zadokowany czy lupy mogą wynikać z nieporozumienia dotyczącego funkcjonalności narzędzia lupa w systemie Windows. Tryb pełnoekranowy rzeczywiście istnieje i umożliwia użytkownikom maksymalizację obszaru roboczego, co jest niezwykle istotne w kontekście pracy z niewielkimi detalami w dokumentach lub obrazach. Przy użyciu tego trybu, użytkownicy mogą lepiej skoncentrować się na szczegółach, które są dla nich istotne. Z kolei tryb zadokowany, który umieszcza narzędzie lupa w wybranej części ekranu, jest przydatny dla osób, które chcą mieć stały dostęp do powiększenia, nie tracąc przy tym widoku na inne aplikacje. Wbudowane opcje lupy w systemie Windows są zgodne z dobrymi praktykami dostępu do technologii, zapewniając wsparcie dla osób z problemami wzrokowymi. Typowym błędem jest założenie, że wszystkie tryby są dostępne jednocześnie, co prowadzi do nieporozumień. Warto zrozumieć, że każde narzędzie ma swoje ograniczenia i specyfikacje, a brak trybu płynnego w narzędziu lupa w Windows podkreśla konieczność świadomego korzystania z dostępnych opcji, aby maksymalizować ich efektywność. Zrozumienie tych aspektów jest kluczowe dla efektywnego wykorzystania narzędzi dostępnych w systemach operacyjnych i wspiera użytkowników w codziennych zadaniach.