Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 4 maja 2025 17:51
  • Data zakończenia: 4 maja 2025 18:02

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

W skład systemu do przygotowania sprężonego powietrza nie wchodzi

A. filtr powietrza
B. sprężarka
C. smarownica
D. reduktor ciśnienia
Sprężarka jest kluczowym elementem systemu sprężonego powietrza, odpowiedzialnym za podnoszenie ciśnienia powietrza poprzez kompresję. Jej głównym zadaniem jest wytwarzanie sprężonego powietrza, które jest następnie wykorzystywane w różnych procesach przemysłowych, takich jak zasilanie narzędzi pneumatycznych, transport materiałów czy systemy chłodzenia. W praktyce, sprężarki mogą mieć różne typy, w tym sprężarki tłokowe, śrubowe i membranowe, każdy z nich dostosowany do specyficznych zastosowań. Standardy branżowe, takie jak ISO 8573, definiują wymagania dotyczące jakości sprężonego powietrza, co podkreśla znaczenie sprężarki w zapewnieniu czystości i efektywności systemu. W odpowiedzi na potrzeby przemysłowe, sprężarki są często integrowane z dodatkowymi komponentami, takimi jak filtry, reduktory ciśnienia i smarownice, które wspomagają utrzymanie odpowiednich parametrów pracy systemu, jednak same w sobie nie należą do zespołu przygotowania sprężonego powietrza.

Pytanie 3

Jaki rodzaj czujnika, montowanego na metalowym cylindrze siłownika pneumatycznego, powinno się wykorzystać do monitorowania położenia tłoka?

A. Czujnik indukcyjny
B. Czujnik magnetyczny
C. Czujnik tensometryczny
D. Czujnik optyczny
Czujnik magnetyczny jest idealnym rozwiązaniem do kontroli położenia tłoka w siłownikach pneumatycznych, w szczególności tych wykonanych z metalu. Działa na zasadzie detekcji pola magnetycznego generowanego przez magnes zamontowany na tłoku. Dzięki temu czujnik może precyzyjnie określić położenie tłoka, co jest kluczowe w aplikacjach wymagających dokładności i powtarzalności. Przykłady zastosowań czujników magnetycznych to automatyka przemysłowa, linie montażowe oraz systemy robotyczne, gdzie precyzyjne pozycjonowanie jest niezbędne. W standardach branżowych, takich jak ISO 6431 czy IEC 60947, czujniki magnetyczne są rekomendowane do monitorowania ruchu w siłownikach, co potwierdza ich trwałość i niezawodność w trudnych warunkach przemysłowych. Ich bezdotykowa natura sprawia, że nie ma ryzyka zużycia mechanicznego, co dodatkowo zwiększa ich żywotność.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Jakie urządzenie chroni silnik przed zwarciem i przeciążeniem?

A. wyłącznik silnikowy
B. odgromnik
C. termistor
D. przekaźnik termiczny
Wyłącznik silnikowy to urządzenie zabezpieczające, które chroni silniki przed zwarciem oraz przeciążeniem. Jego działanie opiera się na wykrywaniu prądów, które przekraczają ustalone wartości graniczne, co może prowadzić do uszkodzenia silnika. W przypadku wykrycia przeciążenia, wyłącznik silnikowy automatycznie odcina zasilanie, co zapobiega przegrzaniu i potencjalnym uszkodzeniom mechanicznym. W praktycznych zastosowaniach wyłączniki silnikowe stosowane są w różnych aplikacjach, od przemysłowych do budowlanych, zapewniając bezpieczeństwo operacyjne. Zgodnie z normami IEC 60947-4-1, instalacja wyłączników silnikowych powinna być zgodna z zasadami ochrony przeciwporażeniowej oraz zabezpieczeń przed skutkami zwarć. Oprócz zabezpieczenia przed przeciążeniem, wiele modeli wyłączników silnikowych wyposażonych jest w dodatkowe funkcje, takie jak serwisowe wskaźniki błędów, które informują użytkowników o awariach, co zwiększa bezpieczeństwo i efektywność operacyjną.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Jaką rolę odgrywają cewki w systemach elektrycznych?

A. Zbierają energię w polu magnetycznym
B. Tworzą przeszkodę elektryczną
C. Tworzą przeszkodę optyczną
D. Zbierają energię w polu elektrycznym
Ok, więc pierwsza pomyłka to przekonanie, że cewki zbierają energię w polu elektrycznym. Ale to tak naprawdę kondensatory robią, bo magazynują ładunek elektryczny. Cewki działają głównie z prądem zmiennym i opierają się na indukcji elektromagnetycznej. Kolejna rzecz, to mylenie cewek z barierą elektryczną. Bariera elektryczna dotyczy izolacji, a cewki mają zupełnie inną funkcję, bardziej związaną z indukcją. A trzecia pomyłka to wspomnienie o barierze optycznej, co brzmi dziwnie, bo cewki nie mają nic wspólnego z optyką. Cewki są pasywnymi elementami, które wpływają na prąd i napięcie, ale nie zajmują się optyką czy barierami elektrycznymi. Te nieporozumienia biorą się często z braku zrozumienia indukcji elektromagnetycznej i różnic między elementami elektronicznymi, co prowadzi do błędnych wniosków.

Pytanie 8

Ciągłe sensory oraz wzmacniacze operacyjne stanowią standardowe komponenty systemu sterowania?

A. cyfrowego
B. binarnego
C. analogowego
D. programowalnego
Odpowiedź 'analogowego' jest na pewno trafna. Sensory, które działają ciągle, jak na przykład termistory czy fotorezystory, to istotne elementy układów analogowych. One przetwarzają różne fizyczne zmiany na sygnały, które płynnie się zmieniają. Potem te sygnały są wzmacniane przez wzmacniacze operacyjne, co jest naprawdę ważne, gdy potrzebujemy precyzyjnych pomiarów. W praktyce można je znaleźć w różnych systemach automatyzacji czy pomiarowych, gdzie dokładność ma kluczowe znaczenie. Dobrze jest też pamiętać o filtrowaniu sygnałów i ich kalibracji, żeby błędy pomiarowe były jak najmniejsze. W kontekście norm, układy analogowe są projektowane zgodnie z normami IEC, co zapewnia ich niezawodność. Moim zdaniem to bardzo ważne, żeby znać te zasady, bo są podstawą w inżynierii.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Silnik liniowy przekształca

A. ruch liniowy w ruch obrotowy
B. energię mechaniczną w energię elektryczną
C. energię elektryczną w energię mechaniczną
D. ruch obrotowy w ruch liniowy
Wybór odpowiedzi, która sugeruje, że silnik liniowy zamienia ruch liniowy na ruch obrotowy, oparty jest na błędnym zrozumieniu zasad działania tych urządzeń. Silniki liniowe i obrotowe różnią się zasadniczo w sposobie generacji ruchu. Silnik liniowy prowadzi do powstania ruchu bezpośrednio wzdłuż osi, co eliminuje potrzebę konwersji ruchu obrotowego, jak ma to miejsce w tradycyjnych silnikach. Z kolei odpowiedzi sugerujące zamianę energii mechanicznej na energię elektryczną również wprowadzają w błąd, ponieważ silnik liniowy nie generuje energii elektrycznej, lecz ją konsumuje, aby wytworzyć ruch mechaniczny. Kolejna nieprawidłowa odpowiedź wskazuje na zamianę energii elektrycznej na mechaniczną, co jest poprawne, ale nie odnosi się do zasadniczej funkcji silnika liniowego. Kluczowym jest zrozumienie, że silniki liniowe są projektowane specjalnie do działania w linii prostej, co sprawia, że ich zastosowanie jest znacznie bardziej efektywne w sytuacjach wymagających precyzyjnych ruchów liniowych. Użytkownicy często mylą silniki liniowe z innymi typami silników, co prowadzi do nieporozumień w ich zastosowaniach oraz funkcjach. W praktyce, silniki liniowe są wykorzystywane w systemach automatyki, transportu i robotyki, gdzie ich unikalne właściwości przekształcania energii elektrycznej w ruch liniowy są kluczowe dla efektywności operacyjnej.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

W trakcie serwisowania urządzenia mechatronicznego, w którym istnieje ryzyko wystąpienia napięcia elektrycznego, technik mechatronik powinien stosować

A. rękawic ochronnych i fartucha ochronnego
B. nienaruszonych narzędzi izolowanych
C. okularów ochronnych i fartucha ochronnego
D. szczypiec oraz zestawu wkrętaków
Używanie nieuszkodzonych narzędzi izolowanych jest kluczowym elementem zapewnienia bezpieczeństwa podczas pracy z urządzeniami mechatronicznymi, w których może występować niebezpieczne napięcie elektryczne. Narzędzia izolowane, takie jak śrubokręty, szczypce czy klucze, są zaprojektowane z myślą o minimalizacji ryzyka porażenia prądem elektrycznym. Izolacja narzędzi powinna spełniać odpowiednie normy, takie jak IEC 60900, które określają wymagania dotyczące narzędzi używanych w obszarach narażonych na wysokie napięcia. Przykładem zastosowania izolowanych narzędzi może być naprawa elektrycznych systemów sterowania w robotach przemysłowych, gdzie dostęp do napięciowych elementów urządzenia wiąże się z ryzykiem. W praktyce, stosowanie tych narzędzi powinno być rutyną w codziennej pracy mechatronika, a przed każdym użyciem należy upewnić się, że nie ma widocznych uszkodzeń izolacji. Regularne kontrole i konserwacja narzędzi izolowanych są również niezbędne, aby zapewnić ich niezawodność i skuteczność.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Jaką odległość określa skok siłownika?

A. odległość pomiędzy krućcem zasilającym a końcem tłoczyska, gdy jest w wysuniętej pozycji
B. odległość między obudową siłownika a końcem tłoczyska w pozycji wysunięcia
C. odległość między obudową siłownika a końcem tłoczyska, gdy jest w pozycji wsuniętej
D. odległość między skrajnymi położeniami końca tłoczyska (w stanie wsunięcia i wysunięcia)
Zrozumienie skoku siłownika jest fundamentalne dla prawidłowego funkcjonowania układów hydraulicznych i pneumatycznych. Odpowiedzi, które sugerują inne definicje skoku, mogą prowadzić do istotnych nieporozumień w projektowaniu i użytkowaniu tych systemów. W szczególności odpowiadając na definicje oparte na odległości między obudową siłownika a końcem tłoczyska, niezależnie od jego stanu, nie uwzględniają one kluczowego aspektu, jakim jest zmiana długości tłoczyska podczas jego pracy. Każdy siłownik ma dwa skrajne położenia, które są istotne dla określenia jego skoku. Definiowanie skoku jako odległości od krućca zasilającego również nie uwzględnia rzeczywistego ruchu tłoczyska, co jest kluczowe w mechanice płynów. Typowym błędem myślowym jest koncentrowanie się na elementach zewnętrznych siłownika, zamiast na jego wewnętrznej mechanice. Niezrozumienie tego, co oznacza pełny ruch tłoczyska w obu skrajnych położeniach, może prowadzić do niewłaściwego doboru komponentów, co z kolei może skutkować awariami w systemach automatyki. Dlatego fundamentalne jest, aby rozumieć, że skok siłownika to nie tylko prosty parametr, lecz kluczowy wymiar w kontekście wydajności i bezpieczeństwa działania układów automatycznych.

Pytanie 17

W normalnych warunkach działania wyłącznika różnicowoprądowego wektorowa suma natężeń prądów sinusoidalnych przepływających w przewodach fazowych oraz neutralnym wynosi

A. 3 A
B. 1 A
C. 2 A
D. 0 A
W przypadku wyłącznika różnicowoprądowego, jego podstawowym zadaniem jest monitorowanie różnicy natężeń prądu między przewodami fazowymi a przewodem neutralnym. W warunkach normalnej pracy, gdy urządzenie działa prawidłowo, suma wektorowa natężeń prądów płynących przez przewody powinna wynosić 0 A. Oznacza to, że prąd wpływający do obwodu przez przewód fazowy jest równy prądowi wypływającemu przez przewód neutralny. Przykładowo, jeśli w obwodzie mamy trzy przewody fazowe, każdy z określonym natężeniem prądu, to ich suma wektorowa, uwzględniająca odpowiednie fazy, powinna wskazywać na zerowe natężenie w przewodzie neutralnym. Zgodnie z normą PN-IEC 61008, wyłączniki różnicowoprądowe są projektowane w taki sposób, aby skutecznie wykrywać różnice prądów oraz zapewniać bezpieczeństwo użytkowników poprzez automatyczne odłączenie obwodu w przypadku wykrycia upływu prądu. Taka funkcjonalność jest kluczowa w instalacjach elektrycznych, gdzie bezpieczeństwo i ochrona przed porażeniem prądem są priorytetami.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Pomiary izolacyjności w instalacjach elektrycznych realizuje się

A. omomierzem
B. megaomomierzem
C. laboratoryjnym mostkiem Thomsona
D. technicznym mostkiem Thomsona
Chociaż istnieje wiele narzędzi do pomiarów elektrycznych, nie każde z nich jest odpowiednie do oceny rezystancji izolacji. Omomierz, który jest jednym z wymienianych urządzeń, jest używany do pomiaru rezystancji w obwodach niskonapięciowych, ale nie nadaje się do pomiarów izolacji. Podczas pomiarów rezystancji izolacji kluczowe jest stosowanie wysokich napięć, które są generowane tylko przez megaomomierze. Z kolei laboratoria często korzystają z mostków Thomsona, jednak te urządzenia są bardziej przeznaczone do precyzyjnych pomiarów rezystancji w warunkach laboratoryjnych, a nie do oceny stanu izolacji w rzeczywistych instalacjach. Istotnym błędem w myśleniu jest przekonanie, że jakiekolwiek urządzenie pomiarowe wystarczy do oceny izolacji. W rzeczywistości, aby zapewnić bezpieczeństwo i niezawodność instalacji, należy korzystać z odpowiednich narzędzi i technik, które są zgodne z wytycznymi branżowymi. Ignorowanie tej zasady może prowadzić do niebezpiecznych sytuacji, takich jak porażenie prądem czy pożar, co jest sprzeczne z najlepszymi praktykami w dziedzinie elektryki. Właściwy wybór narzędzi pomiarowych jest kluczowy dla uzyskania wiarygodnych wyników oraz zapobiegania potencjalnym zagrożeniom.

Pytanie 27

Falownik to urządzenie przetwarzające moc, które konwertuje prąd

A. zmienny o częstotliwości 50 Hz na prąd stały
B. zmienny o regulowanej częstotliwości na prąd zmienny 50 Hz
C. trój fazowy na prąd jednofazowy
D. stały na prąd zmienny o regulowanej częstotliwości
Wszystkie podane niepoprawne odpowiedzi zawierają nieporozumienia dotyczące funkcji falownika. Falownik nie przekształca prądu zmiennego o częstotliwości 50 Hz na prąd stały, ponieważ jego podstawowym zadaniem jest konwersja prądu stałego na prąd zmienny. Wskazanie, że falownik zamienia prąd trójfazowy na jednofazowy, również jest błędne, ponieważ falownik nie zmienia liczby faz, a raczej generuje prąd zmienny z dostępnego prądu stałego. Co więcej, sugestia, że falownik przekształca zmienny prąd o regulowanej częstotliwości na prąd zmienny 50 Hz, jest myląca – falownik działa w odwrotnym kierunku, regulując częstotliwość wyjściowego prądu zmiennego. Zrozumienie funkcji falownika wymaga znajomości jego roli w kontekście systemów zasilania oraz zastosowań w automatyzacji. Dodatkowo, często popełnianym błędem jest mylenie różnych rodzajów przetworników, takich jak prostowniki, które zamieniają prąd zmienny na stały. W praktyce, aby uniknąć takich nieporozumień, ważne jest zapoznanie się z właściwościami technicznymi falowników oraz ich zastosowaniem w różnych sektorach przemysłowych, co pozwala na skuteczniejsze projektowanie i wdrażanie systemów zasilania.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Która z wymienionych działań, które są częścią montażu osłon przy użyciu wielu mocowań śrubowych, powinna być realizowana ściśle zgodnie z wytycznymi?

A. Polerowanie ręczne powierzchni
B. Dokręcanie śrub
C. Smarowanie odpowiednim smarem
D. Dobór narzędzi
Dobór narzędzi ma znaczenie, lecz nie jest tak krytyczny jak dokręcanie śrub. Odpowiednie narzędzia mogą ułatwić proces montażu, ale nawet najlepsze narzędzia nie naprawią błędów wynikających z niewłaściwego dokręcenia. Smarowanie odpowiednim smarem również ma swoje uzasadnienie, ale nie wpływa na bezpieczeństwo połączenia w takim stopniu, jak właściwe dokręcenie. W przypadku smarów, ich zastosowanie jest często elementem poprawiającym wydajność połączenia, jednak brak smarowania nie zawsze prowadzi do katastrofy, o ile śruby są dokręcone zgodnie z instrukcjami. Polerowanie ręczne powierzchni jest procesem estetycznym i może wpływać na właściwości tarcia, jednak nie jest to czynność, która bezpośrednio wpływa na integralność połączenia, a przede wszystkim nie wymaga tak ścisłego przestrzegania procedur jak dokręcanie. Myląc te czynności, można dojść do błędnych wniosków, że są one równoważne, kiedy tak naprawdę praktyki te mają różne cele i znaczenie w procesie montażu. Ignorując znaczenie dokręcania, można nieumyślnie narazić całą konstrukcję na ryzyko usterek, co jest niezgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Po wyczyszczeniu filtra używanego do wstępnego oczyszczania powietrza, kondensat należy

A. oczyścić z resztek oleju
B. osuszyć z nadmiaru wody
C. przefiltrować przy użyciu węgla aktywnego
D. odprowadzić bezpośrednio do ścieków
Odpowiedzi sugerujące odprowadzenie kondensatu bezpośrednio do kanalizacji, osuszenie z wody lub przefiltrowanie za pomocą węgla aktywnego są niewłaściwe z kilku powodów. Przede wszystkim, bezpośrednie wprowadzenie kondensatu do kanalizacji jest ryzykowne, ponieważ może on zawierać substancje ropopochodne, które są zabronione w wielu systemach kanalizacyjnych. Takie działania mogą prowadzić do zanieczyszczenia wód gruntowych i naruszenia przepisów dotyczących ochrony środowiska. Osuszanie kondensatu z wody nie ma sensu, ponieważ najważniejszym problemem są zanieczyszczenia olejowe, a nie stała obecność wody. Węgiel aktywny jest skuteczny w usuwaniu niektórych zanieczyszczeń chemicznych, jednak nie jest optymalnym rozwiązaniem w przypadku kondensatu, który zawiera cząstki olejowe. Proces filtracji węgla aktywnego wymaga odpowiedniej konfiguracji i często jest kosztowny w zastosowaniu. Typowe błędy myślowe, prowadzące do takich niepoprawnych wniosków, polegają na nieuwzględnieniu specyfiki zanieczyszczeń oraz nieznajomości regulacji prawnych związanych z gospodarowaniem odpadami. Właściwe podejście do zarządzania kondensatami wymaga dokładnej analizy składników zanieczyszczenia oraz zastosowania odpowiednich technologii oczyszczania zgodnych z normami branżowymi.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Aby maksymalnie zwiększyć zasięg przesyłania danych oraz ograniczyć wpływ zakłóceń elektromagnetycznych na transmisję w systemie mechatronicznym przy realizacji sterowania sieciowego, jaki kabel należy wykorzystać?

A. symetryczny nieekranowany (tzw. skrętka nieekranowana)
B. światłowodowy
C. symetryczny ekranowany (tzw. skrętka ekranowana)
D. koncentryczny
Wybór innych typów kabli, jak kable symetryczne ekranowane czy koncentryczne, to nie najlepsze rozwiązanie, jeśli chodzi o przesył danych na długie dystansy i ochronę przed zakłóceniami. Kable symetryczne ekranowane mogą bronić sygnał przed zakłóceniami, ale nie są tak dobre jak światłowody na dłuższych trasach. Wynika to z tego, że w kablach miedzianych przesył opiera się na sygnałach elektrycznych, które są łatwo zakłócane. Kable koncentryczne, chociaż używa się ich w różnych aplikacjach, mają ograniczenia długości przesyłu i są bardziej narażone na zakłócenia. Z kolei kable symetryczne nieekranowane mogą działać lepiej w sprzyjających warunkach, ale w zgiełku elektromagnetycznym ich efektywność spada. Wybór złego kabla może prowadzić do problemów z komunikacją, większych opóźnień, a czasem nawet do całkowitej utraty sygnału. Zrozumienie tych różnic to kluczowa sprawa dla inżynierów, którzy tworzą systemy mechatroniczne, żeby wszystko działało jak należy.

Pytanie 39

Który z zaworów pozwala na przepływ czynnika roboczego tylko w jednym kierunku?

A. Zwrotny
B. Przelotowy
C. Odcinający
D. Rozdzielający
Zawór zwrotny jest kluczowym elementem w systemach hydraulicznych i pneumatycznych, który umożliwia przepływ czynnika roboczego tylko w jednym, określonym kierunku. Działa on na zasadzie automatycznego zamykania, gdy ciśnienie w przeciwnym kierunku przekracza określony poziom. Dzięki temu zapobiega to cofaniu się płynów, co jest szczególnie ważne w układach, gdzie nieprzerwany przepływ w jednym kierunku jest krytyczny dla działania systemu. Przykładem zastosowania zaworu zwrotnego mogą być systemy hydrauliczne w maszynach budowlanych, gdzie konieczne jest, aby olej hydrauliczny nie wracał do zbiornika, gdy siłownik jest pod obciążeniem. Zawory zwrotne są również stosowane w instalacjach wodociągowych, aby zapobiegać cofaniu się wody, co mogłoby prowadzić do zanieczyszczenia systemu. W praktyce, dobór odpowiedniego zaworu zwrotnego powinien być zgodny z normą PN-EN ISO 4414, która definiuje zasady użytkowania urządzeń pneumatycznych, oraz z normą PN-EN 982, dotyczącą systemów hydraulicznych. Zrozumienie działania zaworów zwrotnych i ich zastosowania jest kluczowe dla inżynierów i techników pracujących w dziedzinach hydrauliki i pneumatyki.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.