Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 21 maja 2025 23:55
  • Data zakończenia: 22 maja 2025 00:19

Egzamin niezdany

Wynik: 10/40 punktów (25,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Który z podanych łączników instalacyjnych dysponuje dwoma klawiszami i trzema zaciskami przyłączeniowymi?

A. Łącznik krzyżowy
B. Łącznik schodowy podwójny
C. Łącznik schodowy pojedynczy
D. Łącznik świecznikowy
Łącznik świecznikowy to element instalacji elektrycznej, który rzeczywiście ma dwa klawisze i trzy zaciski przyłączeniowe. Jest to kluczowy komponent w systemach oświetleniowych, który umożliwia włączenie i wyłączenie oświetlenia z jednego miejsca. Dzięki posiadaniu dwóch klawiszy, użytkownik może kontrolować dwa różne źródła światła z jednego łącznika, co jest szczególnie przydatne w pomieszczeniach, gdzie zastosowane są różne rodzaje oświetlenia. W praktyce, łącznik świecznikowy często stosuje się w salonach, gdzie można regulować intensywność światła przy użyciu dwóch różnych żarówek lub opraw. Dodatkowo, zgodnie z normami IEC, instalacje elektryczne powinny być projektowane w sposób umożliwiający ich późniejsze rozszerzanie lub modyfikacje. Użycie łącznika świecznikowego w połączeniu z innymi typami łączników, takimi jak schodowe czy krzyżowe, pozwala na stworzenie bardziej elastycznego systemu oświetleniowego, dostosowanego do indywidualnych potrzeb użytkowników.

Pytanie 2

Jakie narzędzia są konieczne do wytyczenia trasy instalacji przewodów elektrycznych montowanych na powierzchni?

A. Ołówek traserski, poziomnica, przymiar taśmowy
B. Ołówek traserski, przymiar kreskowy, rysik
C. Kątownik, młotek, punktak
D. Kątownik, ołówek traserski, sznurek traserski
Ołówek traserski, poziomnica i przymiar taśmowy to świetny wybór! Te narzędzia naprawdę są niezbędne, gdy chodzi o trasowanie drogi do układania przewodów natynkowych. Ołówek traserski pozwala na dokładne oznaczanie punktów i linii, co jest podstawą do dalszej roboty. Poziomnica zaś to must-have, żeby upewnić się, że wszystko jest równo i w odpowiednich nachyleniach. To ważne, bo estetyka i funkcjonalność idą w parze. Przymiar taśmowy z kolei umożliwia precyzyjne mierzenie, co też jest kluczowe, żeby dobrze rozmieścić przewody na ścianach. W branży mamy różne standardy, jak normy PN-IEC, które podkreślają, jak ważna jest dokładność i planowanie przy instalacjach elektrycznych. Używanie właściwych narzędzi zwiększa wydajność, a także zmniejsza ryzyko błędów, które mogą skończyć się problemami, jak zwarcia czy uszkodzenia sprzętu. Na przykład, korzystając z poziomnicy przy układaniu przewodów, mamy pewność, że będą one prosto, co będzie miało znaczenie przy montażu osprzętu elektrycznego.

Pytanie 3

Jakie mogą być przyczyny nadmiernego przegrzewania się wyłącznika nadmiarowo-prądowego podczas długotrwałego zasilania sprawnego odbiornika?

A. Zbyt niski prąd znamionowy wyłącznika
B. Słabo dokręcone złącza wyłącznika
C. Niewłaściwe napięcie zasilania
D. Zbyt wysoka moc zasilanego odbiornika
Nieodpowiednie napięcie zasilające, za mały prąd znamionowy wyłącznika oraz zbyt duża moc zasilanego odbiornika mogą wydawać się logicznymi przyczynami nadmiernego nagrzewania się wyłącznika nadmiarowo-prądowego, jednak nie są one bezpośrednio związane z tym zjawiskiem w kontekście długotrwałego zasilania sprawnego odbiornika. Niewłaściwe napięcie zasilające może prowadzić do problemów z wydajnością urządzeń, jednak niekoniecznie skutkuje to nadmiernym nagrzewaniem się samego wyłącznika. Prąd znamionowy wyłącznika jest zaprojektowany tak, aby tolerować określone wartości prądu, a jego nadmierne obciążenie może rzeczywiście prowadzić do przegrzewania, lecz w przypadku sprawnego odbiornika działającego w granicach norm, nie powinno to być problemem. Z kolei zbyt duża moc zasilanego odbiornika może sprawić, że wyłącznik zareaguje i zadziała, co ochroni obwód, a nie spowoduje jego przegrzania. W praktyce, najczęściej występującym problemem jest właśnie niewłaściwe dokręcenie zacisków, co podkreśla rolę odpowiedniego montażu i konserwacji w zapewnieniu bezpieczeństwa i efektywności systemów elektrycznych.

Pytanie 4

W jaki sposób można zweryfikować funkcjonowanie wyłącznika różnicowoprądowego?

A. Tworząc zwarcie w obwodzie zabezpieczonym
B. Naciskając przycisk "TEST"
C. Sprawdzając napięcie oraz prąd wyłącznika
D. Zmieniając ustawienie dźwigni "ON-OFF"
Wyłącznik różnicowoprądowy (RCD) jest kluczowym elementem systemów zabezpieczeń elektrycznych, który chroni przed porażeniem prądem elektrycznym oraz pożarami spowodowanymi prądami upływowymi. Aby sprawdzić jego działanie, należy wcisnąć przycisk 'TEST', co symuluje warunki, w których RCD powinien zareagować na różnicę między prądem wpływającym a wypływającym. Działanie tego przycisku uruchamia mechanizm w RCD, który odłącza zasilanie, jeżeli wykryje jakiekolwiek nieprawidłowości. Zgodnie z normą PN-EN 61008-1, regularne testowanie RCD jest zalecane, co najmniej raz na miesiąc, aby zapewnić ich prawidłowe funkcjonowanie. Przykładem zastosowania takiego testowania może być mieszkanie, w którym w przypadku uszkodzenia izolacji w przewodzie, RCD powinien wyłączyć obwód, zanim doprowadzi to do porażenia prądem. Regularne testowanie RCD, poprzez naciśnięcie przycisku 'TEST', upewnia użytkowników, że ich systemy zabezpieczeń są w pełni sprawne i gotowe do ochrony przed zagrożeniami.

Pytanie 5

Wkładka topikowa bezpiecznika oznaczona symbolem gL służy do ochrony

A. urządzeń półprzewodnikowych przed zwarciami
B. silników przed przeciążeniami oraz zwarciami
C. urządzeń półprzewodnikowych przed przeciążeniami
D. przewodów przed przeciążeniami oraz zwarciami
Przy wyborze wkładki topikowej bezpiecznika ważne jest zrozumienie ich specyfikacji oraz przeznaczenia. Odpowiedzi sugerujące, że wkładka gL zabezpiecza silniki przed przeciążeniem i zwarciami, są mylące, ponieważ silniki wymagają specjalnych wkładek, które mogą radzić sobie z chwilowymi prądami rozruchowymi. Odpowiedzi dotyczące zabezpieczenia urządzeń półprzewodnikowych również są nietrafne. Urządzenia te wymagają wkładek o specyficznych charakterystykach, takich jak gG, które są lepiej dostosowane do ochrony przed impulsywnymi prądami zwarciowymi typowymi dla takich urządzeń. W przypadku przewodów wkładki gL oferują niezawodne zabezpieczenie, jednak proponowanie ich użycia w kontekście silników czy półprzewodników dowodzi braku zrozumienia różnorodności typów bezpieczników oraz ich specyficznych zastosowań. Niezrozumienie tych różnic może prowadzić do zastosowania niewłaściwych zabezpieczeń, co z kolei może skutkować poważnymi uszkodzeniami instalacji elektrycznej oraz zagrażać bezpieczeństwu użytkowników. W przemyśle i instalacjach elektrycznych ważne jest stosowanie odpowiednich elementów zabezpieczających zgodnie z zaleceniami producentów oraz normami, co w praktyce oznacza właściwy dobór bezpieczników do specyfiki chronionych obwodów.

Pytanie 6

Których aparatów montowanych na szynie TH 35 dotyczą przedstawione w tabeli parametry techniczne?

Parametry techniczne
Prąd znamionowy
In w A
Szerokość
w modułach
o wymiarach
17,5 mm
Charakterystyka
61B
101B
161B
201B
251B
321B
401B
501B
631B

A. Styczników.
B. Wyłączników nadprądowych.
C. Wyłączników różnicowoprądowych.
D. Transformatorów.
Wyłączniki nadprądowe to naprawdę ważne elementy w systemach elektrycznych, bo chronią nas przed przeciążeniami i zwarciami. Patrząc na parametry w tabeli, takie jak prąd znamionowy (In) czy szerokość 17,5 mm, to są one typowe dla takich urządzeń, które zakłada się na szynę TH 35. Ciekawostką jest, że wyłączniki z charakterystyką B są idealne do obwodów, gdzie mogą występować krótkotrwałe skoki prądu, co często zdarza się w instalacjach oświetleniowych czy gniazdkowych. Dzięki nim, jak prąd przekroczy ustalony poziom, to automatycznie odłączają zasilanie, co zapobiega uszkodzeniu sprzętu i zmniejsza ryzyko pożaru. Warto pamiętać, że zgodnie z normą PN-EN 60898, musi się je regularnie testować, żeby wszystko działało jak należy. Dlatego ważne jest, żeby dobrze dobierać i instalować te wyłączniki, bo mają ogromne znaczenie dla bezpieczeństwa i niezawodności naszych instalacji elektrycznych.

Pytanie 7

Jaka jest minimalna wartość rezystancji izolacji przewodu, gdy mierzymy induktorem w sieci o napięciu znamionowym badanego obwodu U < 500 V?

A. < 0,25 MΩ
B. ≥ 0,25 MΩ
C. ≥ 0,5 MΩ
D. < 0,5 MΩ
Odpowiedź z wartością ≥ 0,5 MΩ jest całkiem w porządku. Zgodnie z normami, jak PN-EN 61557-1, dla przewodów w sieciach do 500 V, ta minimalna wartość rezystancji izolacji wynosi właśnie 0,5 MΩ. To ważne, bo pomaga utrzymać bezpieczeństwo i zmniejsza ryzyko porażenia prądem czy zwarć w instalacjach elektrycznych. W praktyce, zanim technicy zaczną pracować przy instalacjach, zawsze wykonują pomiary rezystancji, żeby sprawdzić, czy wszystko jest w porządku. Jakby okazało się, że wartość jest niższa niż 0,5 MΩ, to trzeba działać, na przykład wymienić uszkodzone przewody lub poprawić izolację. Regularne sprawdzanie rezystancji izolacji to też dobry sposób na konserwację, co jest całkiem zgodne z najlepszymi praktykami w branży.

Pytanie 8

Ogranicznik przepięć klasy D, który można zainstalować w systemie elektrycznym o maksymalnym napięciu 1000 V, instaluje się w

A. gniazdach elektrycznych, puszkach w instalacji oraz bezpośrednio w urządzeniach.
B. rozgałęzieniach systemu elektrycznego w budynku oraz w rozdzielnicach dla mieszkań.
C. niskonapięciowych liniach elektroenergetycznych.
D. złączach oraz miejscach, gdzie instalacja wchodzi do budynku z systemem piorunochronnym, zasilanego z linii napowietrznej.
Ograniczniki przepięć klasy D są zaprojektowane do montażu w miejscach, gdzie mogą wystąpić nagłe wzrosty napięcia, na przykład w gniazdach wtyczkowych, puszkach instalacyjnych oraz w bezpośrednich aplikacjach w urządzeniach. Ich głównym zadaniem jest ochrona wrażliwych komponentów elektronicznych przed skutkami przepięć, które mogą pojawić się w wyniku wyładowań atmosferycznych, włączania i wyłączania obciążeń czy zakłóceń w sieci elektrycznej. W praktyce oznacza to, że ich instalacja w gniazdach jest kluczowa, gdyż tam najczęściej podłączane są urządzenia wymagające ochrony, takie jak komputery, telewizory czy sprzęt audio. Aby zapewnić skuteczność działania ograniczników, należy je montować jak najbliżej miejsc, w których są używane urządzenia, co minimalizuje długość połączeń i potencjalne straty związane z przewodnictwem. Zgodność z normami PN-IEC 61643-11 oraz PN-EN 60950-1 podkreśla znaczenie ich stosowania w instalacjach niskiego napięcia.

Pytanie 9

Do którego rodzaju ochrony przeciwporażeniowej zaliczane są środki ochrony opisane w ramce?

1.Urządzenia ochronne różnicowoprądowe o znamionowym prądzie różnicowym nieprzekraczającym 30 mA.
2.Dodatkowe połączenia wyrównawcze ochronne.

A. Ochrony przez zastosowanie bardzo niskiego napięcia.
B. Ochrony uzupełniającej.
C. Ochrony podstawowej.
D. Ochrony przy uszkodzeniu (dodatkowej).
Odpowiedź wskazująca na ochronę uzupełniającą jest poprawna, ponieważ środki ochrony opisane w ramce, takie jak urządzenia różnicowoprądowe i dodatkowe połączenia wyrównawcze, pełnią kluczową rolę w zapewnieniu bezpieczeństwa użytkowników instalacji elektrycznych. Urządzenia różnicowoprądowe działają na zasadzie wykrywania różnicy w prądzie płynącym przez przewody fazowy i neutralny. W przypadku wykrycia nieprawidłowości, urządzenie natychmiast odłącza zasilanie, co zapobiega porażeniom prądem. Dodatkowe połączenia wyrównawcze są stosowane, aby zminimalizować potencjalne różnice napięcia między różnymi elementami instalacji. W sytuacji uszkodzenia izolacji dodatkowa ścieżka dla prądu zapewnia, że nie wystąpi niebezpieczne napięcie, co zwiększa ogólny poziom bezpieczeństwa. Zgodnie z normą PN-IEC 60364, te metody ochrony są klasyfikowane jako uzupełniające i są rekomendowane w instalacjach narażonych na wysokie ryzyko porażenia prądem. W praktyce, ich zastosowanie w budynkach mieszkalnych oraz obiektach użyteczności publicznej jest standardem, co potwierdza ich niezawodność i efektywność.

Pytanie 10

Korzystając z podanego wzoru i tabeli wyznacz wartość rezystancji izolacji uzwojeń silnika w temperaturze 20 °C, jeżeli rezystancja izolacji uzwojeń tego silnika zmierzona w temperaturze 17 °C wyniosła 7,3 MΩ.

Współczynniki przeliczeniowe K20 dla rezystancji izolacji uzwojeń silników
R20 = K20·Rt
Temperatura w °C01114172023262932
Współczynnik przeliczeniowy K200,670,730,810,901,001,101,211,341,48

A. 8,20 MΩ
B. 8,11 MΩ
C. 6,57 MΩ
D. 6,40 MΩ
Odpowiedzi, które sugerują wartości rezystancji izolacji silnika inne niż 6,57 MΩ, mogą wynikać z mylnych obliczeń oraz błędnego zrozumienia procesu przeliczania rezystancji w różnych temperaturach. Na przykład, jeśli ktoś oblicza rezystancję na podstawie nieodpowiednich współczynników temperatury, może dojść do fałszywego wyniku. Wartości 8,11 MΩ oraz 8,20 MΩ są wynikiem pomylenia współczynników lub niepoprawnego zastosowania wzoru. Często występującym błędem jest ignorowanie faktu, że rezystancja izolacji maleje wraz ze wzrostem temperatury, co jest odwrotnością niektórych parametrów elektrycznych, które mogą wzrastać w takich warunkach. Zrozumienie, jak temperatura wpływa na właściwości materiałów izolacyjnych, jest kluczowe w inżynierii elektrycznej. Dlatego ważne jest, aby nie tylko znać wzory, ale także rozumieć fizyczne zjawiska zachodzące w izolacji. W praktyce, błędne przeliczenie wartości oparte na niewłaściwych danych może prowadzić do poważnych usterek lub uszkodzenia urządzeń, co podkreśla znaczenie dokładności obliczeń i znajomości standardów branżowych, takich jak IEC 60034-1, które promują odpowiednie procedury konserwacyjne i diagnostyczne w obszarze elektrotechniki.

Pytanie 11

Określ typ usterki, która blokuje załączenie prawidłowego wyłącznika różnicowoprądowego zainstalowanego w systemie elektrycznym?

A. Uszkodzenie izolacji przewodu ochronnego
B. Przerwa w przewodzie neutralnym
C. Przerwa w przewodzie ochronnym
D. Zwarcie doziemne przewodu neutralnego
Zwarcie doziemne przewodu neutralnego to sytuacja, w której przewód neutralny styka się z ziemią lub innym przewodem, co prowadzi do nieprawidłowego działania instalacji elektrycznej. Taki stan może uniemożliwić prawidłowe funkcjonowanie wyłącznika różnicowoprądowego (RCD). RCD działa na zasadzie wykrywania różnic w prądach przepływających przez przewody fazowy i neutralny. W przypadku zwarcia doziemnego, prąd może niepoprawnie wracać przez ziemię, co powoduje, że RCD nie wykrywa różnicy, przez co nie może się załączyć. W praktyce, aby uniknąć takich sytuacji, ważne jest regularne kontrolowanie stanu instalacji oraz przestrzeganie norm zawartych w PN-IEC 60364, które dotyczą projektowania i wykonania instalacji elektrycznych. Dodatkowo, stosowanie odpowiednich zabezpieczeń, takich jak odpowiednio dobrane wyłączniki różnicowoprądowe, jest kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz właściwego działania systemu. Zwracanie uwagi na te aspekty może pomóc w zapobieganiu poważnym zagrożeniom.

Pytanie 12

Która z poniższych działań jest zaliczana do czynności konserwacyjnych instalacji elektrycznych w domach i obiektach użyteczności publicznej?

A. Przesunięcie miejsc montażu opraw oświetleniowych
B. Zamiana zużytych urządzeń na nowe
C. Wymiana uszkodzonych gniazd wtyczkowych
D. Instalacja nowych punktów świetlnych
Zmiana miejsc zamontowania opraw oświetleniowych, montaż nowych wypustów oświetleniowych oraz wymiana odbiorników energii elektrycznej na nowe to czynności, które nie należą do prac konserwacyjnych, lecz do prac instalacyjnych i modernizacyjnych. Prace konserwacyjne koncentrują się na utrzymaniu istniejącej instalacji w dobrym stanie, co obejmuje m.in. naprawy, wymianę uszkodzonych elementów czy przeglądy techniczne. Zmiana lokalizacji opraw oświetleniowych czy montaż nowych wypustów wiąże się z modyfikacją struktury instalacji, co wymaga zupełnie innego podejścia i często jest związane z koniecznością uzyskania odpowiednich zezwoleń oraz wykonania projektu technicznego. Podobnie, wymiana odbiorników energii elektrycznej na nowe wiąże się z ich odpowiednim doborem oraz z zapewnieniem, że instalacja elektryczna jest przystosowana do nowych wymagań. Często mylnie przyjmuje się, że każda czynność związana z elektrycznością należy do prac konserwacyjnych, jednakże zgodnie z najlepszymi praktykami branżowymi należy dbać o wyraźne rozgraniczenie tych dwóch rodzajów aktywności, aby zapewnić bezpieczeństwo oraz prawidłowe funkcjonowanie systemów elektrycznych.

Pytanie 13

Przedstawiona na ilustracji wstawka kalibrowa bezpiecznika przeznaczona jest do instalacji o napięciu znamionowym

Ilustracja do pytania
A. nie wyższym niż 500 V i wkładek topikowych o prądzie znamionowym co najmniej 63 A
B. co najmniej 500 V i wkładek topikowych o prądzie znamionowym nie przekraczającym 63 A
C. co najmniej 500 V i wkładek topikowych o prądzie znamionowym co najmniej 63 A
D. nie wyższym niż 500 V i wkładek topikowych o prądzie znamionowym nie przekraczającym 63 A
Analizując błędne odpowiedzi, należy skupić się na kilku kluczowych koncepcjach, które mogą prowadzić do mylnych wniosków. W wielu przypadkach odpowiedzi sugerujące, że wstawka kalibrowa może obsługiwać napięcie co najmniej 500 V, są nieprawdziwe. Oznaczenie "500 V" jednoznacznie wskazuje maksymalną wartość, a nie minimalną. W kontekście bezpieczeństwa elektrycznego, przekroczenie tego napięcia może skutkować poważnymi konsekwencjami, w tym ryzykiem pożaru czy porażenia prądem. Ponadto, odpowiedzi sugerujące wyższe wartości prądu znamionowego, takie jak "co najmniej 63 A", również są nieprawidłowe. Tego typu błędne rozumienie wynika najczęściej z niedostatecznej wiedzy na temat parametrów technicznych bezpieczników oraz ich zastosowania. Ważnym aspektem jest również zrozumienie, że każdy rodzaj zabezpieczenia musi być odpowiednio dobrany do specyfikacji instalacji, aby zapewnić maksymalną efektywność i bezpieczeństwo. W praktyce, stosowanie wzorców i standardów, jak PN-EN 60269, jest kluczowe dla prawidłowego doboru elementów zabezpieczających. Ignorowanie tych zasad może prowadzić do poważnych awarii oraz zagrożeń dla osób obsługujących instalacje elektryczne.

Pytanie 14

W jakim z podanych typów źródeł światła wykorzystuje się zapłonnik?

A. Żarówka halogenowa
B. Świetlówka tradycyjna
C. Lampa sodowa
D. Lampa rtęciowa
Wybór świetlówki tradycyjnej jako źródła światła, w którym stosuje się zapłonnik, jest poprawny z kilku powodów. Świetlówki, jako rodzaj lampy fluorescencyjnej, wymagają zapłonnika, aby uruchomić proces świecenia. Zapłonnik działa na zasadzie wytwarzania iskry, która inicjuje przepływ prądu przez gaz wewnątrz lampy, co jest niezbędne do emisji światła. W praktyce, zastosowanie świetlówek tradycyjnych jest szczególnie powszechne w biurach, szkołach oraz przestrzeniach komercyjnych, gdzie efektywność energetyczna jest kluczowa. Świetlówki zużywają znacznie mniej energii niż tradycyjne żarówki, a ich żywotność jest znacznie dłuższa, co czyni je bardziej ekologicznym oraz ekonomicznym rozwiązaniem. W branży oświetleniowej powszechnie uznaje się, że stosowanie odpowiednich zapłonników w świetlówkach jest standardem, co pozwala na optymalne działanie lamp oraz minimalizuje ryzyko awarii. Warto również zauważyć, że zapłonniki mogą być różne – od elektromagnetycznych po elektroniczne, co wpływa na wydajność i czas rozruchu lampy.

Pytanie 15

Wyznacz minimalny przekrój żył miedzianych przewodu, kierując się kryterium obciążalności długotrwałej, przy maksymalnej dopuszczalnej gęstości prądu wynoszącej 8 A/mm2, dla odbiornika o prądzie znamionowym 15,5 A.

A. 1,5 mm2
B. 6 mm2
C. 2,5 mm2
D. 4 mm2
Odpowiedź 2,5 mm² jest poprawna, ponieważ obciążalność długotrwała przewodów miedzianych powinna być dobrana na podstawie maksymalnej gęstości prądu, która wynosi 8 A/mm². Aby obliczyć minimalny wymagany przekrój żyły dla prądu znamionowego 15,5 A, należy podzielić ten prąd przez maksymalną gęstość prądu: 15,5 A / 8 A/mm² = 1,9375 mm². W praktyce zaokrąglamy wynik do najbliższego standardowego rozmiaru, co daje 2,5 mm². Zgodnie z normami, dobór odpowiedniego przekroju żyły jest kluczowy dla zapewnienia bezpieczeństwa i efektywności w instalacjach elektrycznych. Zbyt mały przekrój może prowadzić do przegrzewania się przewodów, co zwiększa ryzyko pożaru oraz uszkodzeń sprzętu. W zastosowaniach praktycznych, takich jak zasilanie urządzeń przemysłowych czy domowych, wybór właściwego przekroju żył jest niezbędny dla długotrwałej niezawodności systemu zasilania. Przykładem może być instalacja elektryczna w budynkach mieszkalnych, gdzie przewody muszą być odpowiednio dobrane do obciążenia, aby zapewnić komfort i bezpieczeństwo użytkowników.

Pytanie 16

W systemie sieciowym typu TT wyłączenie zasilania przeprowadzane jest przy pomocy urządzenia ochronnego różnicowoprądowego. Aby ochrona była skuteczna, konieczne jest spełnienie następującej zależności

A. RA ∙ IΔn < UL
B. RA ∙ IΔn ≥ UL
C. RA ∙ IΔn > UL
D. RA ∙ IΔn ≤ UL
Każda z pozostałych odpowiedzi opiera się na błędnych założeniach dotyczących działania urządzeń ochronnych oraz zasadności stosowania zależności związanych z bezpieczeństwem elektrycznym. Odpowiedzi sugerujące, że RA ∙ IΔn > UL, RA ∙ IΔn < UL czy RA ∙ IΔn ≥ UL są nieprawidłowe, ponieważ nie uwzględniają kluczowego aspektu, jakim jest ochrona przed porażeniem elektrycznym. W przypadku, gdyby stosunek RA ∙ IΔn był większy niż UL, oznaczałoby to, że nie możemy zagwarantować, iż prąd różnicowy wywołany przez uszkodzenie izolacji w sieci nie przekroczy wartości niebezpiecznej dla osoby dotykającej urządzenia elektrycznego. Taka sytuacja prowadzi do dużego ryzyka porażenia prądem, co jest sprzeczne z podstawowymi zasadami ochrony przeciwporażeniowej. Z kolei odpowiedź sugerująca, że RA ∙ IΔn powinno być większe lub równe UL, może prowadzić do sytuacji, w której ochrona nie zadziała w odpowiednim momencie, co z kolei może skutkować uszkodzeniem urządzeń elektrycznych oraz poważnymi obrażeniami ludzi. W kontekście dobrych praktyk w instalacjach elektrycznych, zgodnych z normami, kluczowe jest zapewnienie, że wszystkie urządzenia ochronne są odpowiednio dobrane, a ich parametry muszą być zgodne z wymaganiami dotyczącymi uziemienia i bezpieczeństwa elektrycznego. Przykłady błędnych przekonań obejmują nadmierne zaufanie do technologii bez zrozumienia ich działania oraz ignorowanie istotnych norm, które regulują bezpieczeństwo instalacji elektrycznych.

Pytanie 17

Podłączenie gniazda wtykowego pozbawionego styku ochronnego do urządzenia elektrycznego klasy I ochronności spowoduje

A. uszkodzenie urządzenia elektrycznego
B. zagrożenie porażeniem prądem elektrycznym
C. zwarcie w systemie elektrycznym
D. przeciążenie systemu elektrycznego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zgłoszona odpowiedź, dotycząca zagrożenia porażeniem prądem elektrycznym, jest absolutnie trafna. Gniazdo wtyczkowe bez styku ochronnego nie zapewnia odpowiedniego zabezpieczenia dla urządzeń elektrycznych, szczególnie tych klasy I, które wymagają ochrony przeciwporażeniowej poprzez uziemienie. Urządzenia klasy I korzystają z obudowy przewodzącej, która powinna być podłączona do uziemienia, aby w przypadku uszkodzenia izolacji prąd mógł być odprowadzony do ziemi, a nie przez użytkownika. W sytuacji, gdy takie urządzenie zostanie podłączone do gniazda bez styku ochronnego, istnieje wysokie ryzyko, że w przypadku awarii, prąd będzie mógł przepływać przez obudowę, co może prowadzić do porażenia prądem. Dlatego kluczowe jest przestrzeganie norm, takich jak PN-IEC 60364, które regulują zasady instalacji elektrycznych i określają, że gniazda powinny być projektowane z myślą o bezpieczeństwie użytkowników. W codziennym użytkowaniu, zapewnienie odpowiednich gniazd z uziemieniem jest podstawą bezpieczeństwa w każdym obiekcie.

Pytanie 18

W jakiej jednostce miary określa się moment obrotowy, który należy zastosować przy dokręcaniu śrub w urządzeniach elektrycznych?

A. kgˑm2
B. kg
C. Nˑm
D. Pa

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Moment siły, znany również jako moment obrotowy, jest miarą siły, która powoduje obrót ciała wokół osi. Jednostką momentu siły w międzynarodowym układzie jednostek SI jest niutonometr (N·m). W kontekście dokręcania zacisków śrubowych aparatów elektrycznych, używanie odpowiedniego momentu siły jest kluczowe, aby zapewnić prawidłowe i bezpieczne połączenie elektryczne. Zbyt mały moment może prowadzić do luzów, co z kolei może skutkować przerwaniem kontaktu elektrycznego, a zbyt duży moment może spowodować uszkodzenie śrub lub elementów, które są łączone. W praktyce, producenci sprzętu często podają zalecany moment dokręcania w instrukcjach obsługi, co może być wzorem do naśladowania w codziennym użytkowaniu. Stosowanie momentu siły w N·m jest również zgodne z normami branżowymi, co podkreśla jego znaczenie w zapewnieniu bezpieczeństwa i niezawodności w instalacjach elektrycznych.

Pytanie 19

Wyłącznik różnicowoprądowy o oznaczeniu P304 63-30-AC posiada znamionowy prąd różnicowy wynoszący

A. 0,03 A i znamionowy prąd ciągły 63 A
B. 0,03 mA oraz znamionowy prąd ciągły 63 mA
C. 0,03 mA oraz napięcie znamionowe 63 V
D. 0,03 A oraz napięcie znamionowe 63 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik różnicowoprądowy o oznaczeniu P304 63-30-AC ma znamionowy prąd różnicowy wynoszący 0,03 A oraz znamionowy prąd ciągły 63 A. To oznaczenie wskazuje na zdolność urządzenia do wykrywania prądów różnicowych, co jest kluczowe w zapobieganiu porażeniom prądem oraz pożarom spowodowanym uszkodzeniami izolacji. W praktyce, taki wyłącznik znajduje zastosowanie w instalacjach elektrycznych, gdzie wymagana jest wysoka ochrona przed prądami różnicowymi, na przykład w obiektach użyteczności publicznej, mieszkalnych czy przemysłowych. Zgodnie z normą IEC 61008, wyłączniki różnicowoprądowe są klasyfikowane według ich prądów różnicowych, a ich stosowanie jest zalecane w miejscach, gdzie istnieje ryzyko wystąpienia zwarcia lub uszkodzenia izolacji. Poprawne działanie tego typu urządzenia przyczynia się do zwiększenia bezpieczeństwa użytkowników oraz ochrony mienia, co czyni je nieodłącznym elementem nowoczesnych instalacji elektrycznych.

Pytanie 20

Jakim symbolem oznacza się przewód jednożyłowy z żyłą wykonaną z drutu aluminiowego, w izolacji PCV, o przekroju żyły 2,5 mm2?

A. ADY 2,5 mm2
B. YDY 2,5 mm2
C. ALY 2,5 mm2
D. YLY 2,5 mm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź ADY 2,5 mm² jest poprawna, ponieważ oznaczenie to odnosi się do przewodów jednożyłowych wykonanych z drutu aluminiowego, które są izolowane polwinitą (PVC). Przewody te charakteryzują się odpowiednimi właściwościami elektrycznymi i mechanicznymi, co czyni je odpowiednimi do stosowania w różnorodnych instalacjach elektrycznych, w tym w budownictwie, przemyśle czy instalacjach domowych. Przekrój żyły wynoszący 2,5 mm² jest standardowym rozwiązaniem dla obwodów o niewielkim poborze prądu, takich jak oświetlenie czy gniazdka. Zastosowanie przewodów aluminiowych staje się coraz bardziej popularne ze względu na ich niską masę i korzystne właściwości przewodzące, pod warunkiem, że są odpowiednio dobrane do obciążenia. W przemyśle elektrycznym ważne jest również, aby wszelkie elementy instalacji spełniały normy bezpieczeństwa, co potwierdza odpowiednia certyfikacja. W kontekście zastosowania, przewody ADY często wykorzystuje się w instalacjach, gdzie nie ma dużych przeciążeń, a warunki pracy są umiarkowane.

Pytanie 21

Wiatrołap jest oświetlany dwoma żarówkami. Żarówki w oprawach są włączane przez wyłącznik zmierzchowy. Gdy jedna z żarówek przestała świecić, jakie kroki należy podjąć, aby zidentyfikować i usunąć potencjalne przyczyny tej usterki?

A. Sprawdzić działanie wyłącznika, zweryfikować oprawę i przewody
B. Zweryfikować przewody, sprawdzić działanie wyłącznika, wymienić żarówkę
C. Wymienić żarówkę, która się nie świeci, sprawdzić przewody i oprawę oświetleniową
D. Zamienić żarówkę, która nie świeci, sprawdzić funkcjonowanie wyłącznika oraz oprawy oświetleniowej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź polegająca na wymianie żarówki, która się nie świeci, oraz sprawdzeniu przewodów i oprawy oświetleniowej jest prawidłowa, ponieważ pozwala na kompleksowe zdiagnozowanie problemu. W pierwszej kolejności należy wymienić żarówkę, aby upewnić się, że usterka nie leży po stronie źródła światła. Zgodnie z dobrą praktyką, przed wymianą żarówki warto upewnić się, że źródło zasilania jest wyłączone, co zapewnia bezpieczeństwo podczas pracy. Następnie, sprawdzenie przewodów pozwala na wykrycie ewentualnych uszkodzeń lub przerwań, które mogą powodować brak zasilania. Warto również sprawdzić oprawę oświetleniową pod kątem korozji, zanieczyszczeń czy uszkodzeń mechanicznych, które mogą wpływać na funkcjonowanie układu. Przeprowadzanie tych kroków zgodnie z procedurami przewidzianymi w normach elektrycznych pozwala na skuteczną eliminację przyczyn usterki oraz zapobiega ewentualnym przyszłym problemom z oświetleniem. Długoterminowe utrzymanie systemów oświetleniowych w dobrym stanie technicznym jest kluczowe dla zapewnienia efektywności energetycznej i bezpieczeństwa użytkowników.

Pytanie 22

Który element przedstawiono na ilustracji?

Ilustracja do pytania
A. Bezpiecznik aparatowy.
B. Izolator przepustowy wysokiego napięcia.
C. Izolator wsporczy.
D. Wkładkę topikową bezpiecznika mocy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wkładka topikowa bezpiecznika mocy to kluczowy element zabezpieczający w obwodach elektrycznych, który chroni przed przeciążeniami i zwarciami. Na ilustracji widać charakterystyczne cechy tego komponentu, takie jak metalowe końcówki, które zapewniają dobrą przewodność elektryczną, oraz oznaczenia techniczne, które wskazują na parametry znamionowe wkładki. Wkładki topikowe są stosowane głównie w instalacjach przemysłowych i komercyjnych, gdzie występuje duże ryzyko przeciążeń. Zgodnie z normą IEC 60269, wkładki te powinny być dobierane na podstawie maksymalnego prądu, który może przepływać przez dany obwód, co wymaga precyzyjnego obliczenia. Przykłady zastosowania wkładek topikowych to ochrona silników elektrycznych, transformatorów oraz innych urządzeń, które mogą być narażone na nagłe skoki prądu. Użycie odpowiednich wkładek topikowych jest niezbędne dla zapewnienia bezpieczeństwa i niezawodności systemów elektrycznych.

Pytanie 23

Jakie działania są uwzględnione w procederze oględzin systemu elektrycznego w budynku mieszkalnym?

A. Mierzenie ciągłości przewodów ochronnych i czynnych w obwodach odbiorczych, a także ocena efektywności ochrony w razie uszkodzenia za pomocą automatycznego wyłączenia zasilania
B. Pomiar rezystancji izolacji przewodów, weryfikacja ciągłości przewodów ochronnych
C. Nastawienie sprzętu zabezpieczającego i sygnalizacyjnego, ocena dostępności urządzeń, co umożliwia komfortową obsługę, identyfikację oraz konserwację
D. Kontrola zabezpieczeń z użyciem SELV, PELV, separacji elektrycznej lub nieuziemionych połączeń wyrównawczych lokalnych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca nastawienia urządzeń zabezpieczających i sygnalizacyjnych oraz sprawdzenia dostępności urządzeń jest prawidłowa, ponieważ wchodzą one w zakres oględzin instalacji elektrycznej w budynku mieszkalnym. W procesie oględzin kluczowe jest zapewnienie, że urządzenia zabezpieczające, takie jak wyłączniki różnicowoprądowe (RCD) i zabezpieczenia przeciążeniowe, działają zgodnie z wymaganiami norm, takich jak PN-EN 61010-1. Oprócz tego istotne jest, aby sprawdzić dostępność urządzeń, co pozwala na szybką reakcję w razie awarii. Użytkownik musi mieć możliwość łatwego dostępu do tych urządzeń w celu przeprowadzenia ewentualnych napraw lub konserwacji. Dobre praktyki branżowe sugerują regularne przeglądy tych urządzeń, aby potwierdzić ich funkcjonalność i kompletność, co z kolei zwiększa bezpieczeństwo całej instalacji. Warto również zaznaczyć, że zgodność z odpowiednimi normami i regulacjami prawnymi jest kluczowa dla zapewnienia bezpieczeństwa użytkowników budynków mieszkalnych.

Pytanie 24

Metodą oceny efektywności połączeń wyrównawczych powinien być pomiar napięć

A. dotykowych
B. rażeniowych
C. skutecznych
D. krokowych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar napięć skutecznych jest naprawdę ważny, jeśli chodzi o ocenę, jak dobrze działają połączenia wyrównawcze. Dzięki temu możemy zobaczyć, jak dobrze system radzi sobie z ewentualnymi różnicami napięć w instalacji elektrycznej. Połączenia wyrównawcze mają na celu zminimalizowanie ryzyka porażeń prądem, więc istotne jest, żeby te różnice były na niskim poziomie. Napięcia skuteczne, czyli wartości RMS, pokazują nam, jak system działa w rzeczywistości, co bardzo ułatwia ocenę skuteczności zabezpieczeń. Można to zastosować na przykład w instalacjach przemysłowych, gdzie ochrona ludzi i sprzętu jest kluczowa. Normy, jak PN-IEC 60364, podkreślają, jak ważne są regularne inspekcje i pomiary, żeby mieć pewność, że systemy bezpieczeństwa działają prawidłowo i są w dobrym stanie.

Pytanie 25

Który wyłącznik jest oznaczony symbolem CLS6-B6/2?

A. Dwubiegunowy instalacyjny nadprądowy
B. Dwubiegunowy różnicowoprądowy
C. Dwubiegunowy przepięciowy
D. Dwubiegunowy podnapięciowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik oznaczony symbolem CLS6-B6/2 to instalacyjny nadprądowy wyłącznik dwubiegunowy, który jest kluczowym elementem w systemach elektrycznych. Jego główną funkcją jest ochrona obwodów przed przeciążeniem i zwarciem, co zapobiega uszkodzeniom urządzeń, a także minimalizuje ryzyko pożaru. Instalacyjne wyłączniki nadprądowe są projektowane zgodnie z normą IEC 60898, co zapewnia ich wysoką jakość i niezawodność. Przykładowe zastosowanie to użycie tego typu wyłączników w instalacjach domowych, gdzie chronią obwody oświetleniowe oraz gniazda elektryczne. W zależności od specyfikacji, wyłączniki mogą być skonfigurowane do ochrony obwodów jednofazowych lub trójfazowych, co sprawia, że są wszechstronne. Dodatkowo, ich funkcjonalność może być wzbogacona o elementy takie jak współpraca z urządzeniami różnicowoprądowymi, co zwiększa bezpieczeństwo instalacji. Wybór odpowiedniego wyłącznika jest kluczowy dla efektywności i bezpieczeństwa całego systemu elektrycznego.

Pytanie 26

Jakim kolorem oznaczona jest wkładka topikowa, której wartość prądu znamionowego wynosi 20 A?

A. żółty
B. czerwony
C. szary
D. niebieski

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wkładki topikowe, jako elementy zabezpieczające w obwodach elektrycznych, są klasyfikowane według wartości prądu znamionowego, co znajduje swoje odzwierciedlenie w kolorach obudowy. W przypadku wkładki o prądzie znamionowym 20 A stosuje się kolor niebieski, co jest zgodne z normami określającymi oznaczenia kolorystyczne. W praktyce, znajomość tych norm jest kluczowa dla właściwego doboru zabezpieczeń w instalacjach elektrycznych. Użycie wkładek topikowych o odpowiednich wartościach jest istotne, aby zminimalizować ryzyko przegrzania oraz uszkodzeń instalacji. Przykładowo, w przypadku awarii lub zwarcia, wkładka o odpowiednim prądzie znamionowym zadziała w odpowiednim czasie, co zapewnia bezpieczeństwo użytkowania urządzeń elektrycznych. Warto zaznaczyć, że standardy międzynarodowe, takie jak IEC 60269, precyzują klasyfikację wkładek topikowych, co potwierdza ich istotną rolę w zapewnieniu bezpieczeństwa w obwodach elektrycznych.

Pytanie 27

W systemach sieciowych IT przy podwójnym uziemieniu, z zastosowaniem urządzenia różnicowoprądowego i napięciu izolacji 230/400 V, czas wyłączenia powinien wynosić - dla obwodu bez żyły neutralnej oraz dla obwodu z żyłą neutralną?

A. 0,8 s i 0,4 s
B. 0,2 s i 0,4 s
C. 0,4 s i 0,2 s
D. 0,4 s i 0,8 s

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 0,4 s dla obwodu z przewodem neutralnym oraz 0,8 s dla obwodu bez przewodu neutralnego jest zgodna z normami dotyczącymi bezpieczeństwa w układach sieci typu IT. W przypadku obwodów z przewodem neutralnym, czas wyłączenia wynoszący 0,4 s zapewnia odpowiednią ochronę przed skutkami porażenia prądem, co jest kluczowe w kontekście ochrony ludzi oraz sprzętu. W obwodach bez przewodu neutralnego wydłużony czas wyłączenia do 0,8 s ma na celu zmniejszenie ryzyka niepożądanych skutków w przypadku awarii, co jest zgodne z wymaganiami określonymi w normach IEC 60364. Przykładowo, w sytuacji, gdy wystąpi zwarcie lub ucieczka prądu do ziemi, szybka reakcja urządzenia różnicowoprądowego jest kluczowa dla zminimalizowania ryzyka porażenia oraz ochrony przed pożarami. Dodatkowo, zastosowanie urządzenia różnicowoprądowego w obwodach sieci IT w znaczący sposób zwiększa bezpieczeństwo użytkowników, a przestrzeganie tych czasów wyłączenia jest kluczowe w projektowaniu systemów elektrycznych.

Pytanie 28

Która z poniższych wartości wskazuje na najwyższy poziom precyzji narzędzia pomiarowego?

A. 1
B. 5
C. 0,1
D. 0,5

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 0,1 jest poprawna, ponieważ w kontekście narzędzi pomiarowych oznacza najwyższą klasę dokładności. Klasa dokładności narzędzia pomiarowego wskazuje, jak blisko pomiar może być rzeczywistej wartości mierzonych wielkości. W przypadku narzędzi pomiarowych, im mniejsza wartość podana w jednostce, tym wyższa ich dokładność. W praktyce, narzędzia o dokładności 0,1 stosowane są w sytuacjach wymagających precyzyjnych pomiarów, takich jak laboratoria badawcze, przemysł precyzyjny czy metrologia. Na przykład, w pomiarach długości, takie narzędzia mogą być wykorzystywane do pomiarów w konstrukcji maszyn, gdzie minimalne odchylenie może prowadzić do dużych błędów w finalnym produkcie. Klasyfikacja narzędzi pomiarowych opiera się na standardach ISO, które definiują wymagania dotyczące dokładności i precyzji pomiarów. W praktyce, wybór narzędzia pomiarowego powinien być dostosowany do specyfikacji zadania, aby zapewnić optymalne wyniki pomiarów.

Pytanie 29

Jakie właściwości definiują wyłącznik instalacyjny nadprądowy?

A. Prąd zwarciowy, typ zestyku, napięcie podtrzymania
B. Napięcie dopuszczalne, prąd różnicowy, czas zadziałania
C. Prąd obciążenia, rezystancja zestyku, czas wyłączenia
D. Napięcie znamionowe, prąd znamionowy, rodzaj charakterystyki

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik instalacyjny nadprądowy jest kluczowym elementem zabezpieczeń w instalacjach elektrycznych. Parametry takie jak napięcie znamionowe, prąd znamionowy oraz rodzaj charakterystyki definiują jego właściwości i funkcjonalność. Napięcie znamionowe określa maksymalne napięcie, przy którym wyłącznik może pracować bezawaryjnie, co jest istotne w kontekście doboru urządzeń do konkretnej instalacji. Prąd znamionowy to wartość prądu, przy której wyłącznik powinien funkcjonować poprawnie, ale również powinien zareagować w przypadku przekroczenia tej wartości, co jest kluczowe dla ochrony instalacji przed przeciążeniem. Rodzaj charakterystyki (np. A, B, C, D) wskazuje na czas reakcji oraz sposób działania wyłącznika w obliczu przeciążeń oraz zwarć, co pozwala na optymalne dopasowanie do różnych aplikacji, takich jak domowe instalacje, przemysłowe czy zastosowania specjalistyczne. Przykładowo, charakterystyka typu B jest powszechnie stosowana w instalacjach domowych, gdzie występują małe prądy rozruchowe, natomiast typ C jest odpowiedni dla obciążeń z wyższymi prądami rozruchowymi, np. w urządzeniach elektrycznych. Stosowanie wyłączników zgodnie z tymi parametrami jest zgodne z normami IEC 60898 oraz IEC 60947, co zapewnia bezpieczeństwo i niezawodność instalacji elektrycznych.

Pytanie 30

Który z urządzeń umożliwia bezpośredni pomiar cos 9?

A. Watomierz
B. Waromierz
C. Fazomierz
D. Omomierz

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Fazomierz to przyrząd, który służy do pomiaru kątów fazowych prądu i napięcia w obwodach elektrycznych. W kontekście pomiaru cosinus kąta (cos φ), fazomierz jest nieocenionym narzędziem, ponieważ pozwala na bezpośrednie określenie tego parametru, który jest kluczowy w ocenie charakterystyki obciążenia elektrycznego. W praktyce, pomiar cos φ ma istotne znaczenie w zarządzaniu energią oraz w poprawie efektywności energetycznej systemów elektrycznych. Umożliwia on monitorowanie współczynnika mocy, co jest istotne dla zapobiegania stratom energii oraz redukcji kosztów operacyjnych. Właściwe zarządzanie współczynnikiem mocy jest także zgodne z normami jakości energii, takimi jak PN-EN 50160, które definiują wymagania dotyczące jakości energii w sieciach elektroenergetycznych. Przykładem zastosowania fazomierza może być analiza obciążeń w zakładach przemysłowych, gdzie poprawne dopasowanie obciążeń do parametrów zasilania przekłada się na niższe koszty i większą trwałość urządzeń.

Pytanie 31

Elementem końcowym sieci zasilającej, a także punktem początkowym instalacji elektrycznej budynku jest

A. złącze
B. przyłącze
C. wewnętrzna linia zasilająca
D. rozdzielnica główna

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przyłącze jest końcowym elementem sieci zasilającej, który zapewnia połączenie między siecią elektroenergetyczną a instalacją elektryczną obiektu budowlanego. To właśnie przyłącze dostarcza energię elektryczną do budynku, co czyni je kluczowym elementem całej infrastruktury zasilającej. W ramach przyłącza odbywa się nie tylko wprowadzenie energii, ale także realizacja podstawowych funkcji zabezpieczających, takich jak wyłączniki nadprądowe, które chronią instalację przed przeciążeniem. Przykładowo, w budynkach jednorodzinnych przyłącze zazwyczaj składa się z kabla przyłączeniowego, złącza oraz rozdzielnicy, która odpowiada za dalsze rozdzielenie energii do poszczególnych obwodów. W kontekście przepisów, przyłącze musi spełniać normy określone w dokumentach takich jak PN-IEC 60364, które regulują zasady projektowania i wykonania instalacji elektrycznych. Zrozumienie roli przyłącza jest kluczowe dla inżynierów oraz techników zajmujących się projektowaniem i wykonywaniem instalacji elektrycznych.

Pytanie 32

W instalacjach TN-S wyłączniki różnicowoprądowe są używane jako ochrona przed

A. przeciążeniem
B. przepięciem
C. porażeniem
D. zwarciem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłączniki różnicowoprądowe (RCD) są kluczowymi urządzeniami w systemach elektrycznych, szczególnie w sieciach TN-S, gdzie pełnią funkcję zabezpieczenia przed porażeniem elektrycznym. Ich działanie opiera się na wykrywaniu różnic prądów między przewodami fazowymi a przewodem neutralnym. W przypadku, gdy wystąpi upływ prądu do ziemi (np. wskutek przypadkowego dotknięcia uszkodzonego sprzętu) RCD natychmiast odcina zasilanie, minimalizując ryzyko porażenia. Stosowanie RCD jest zgodne z normami, takimi jak PN-EN 61008, które określają wymogi dotyczące ochrony przed porażeniem elektrycznym. W praktyce, RCD są często instalowane w obwodach zasilających gniazdka w domach oraz w obiektach użyteczności publicznej, gdzie dostęp do energii elektrycznej mają osoby nieprzeszkolone. Dodatkowo, RCD powinny być regularnie testowane, aby zapewnić ich prawidłowe funkcjonowanie, co jest standardową praktyką w utrzymaniu instalacji elektrycznych.

Pytanie 33

Na rysunku przedstawiono schemat układu sterowania oświetleniem oraz diagram działania zastosowanego przekaźnika. Który opis działania układu jest prawidłowy?

A.B.
SekwencjaEfekt działania układuSekwencjaEfekt działania układu
0Zgaszone są obie żarówki0Zgaszone są obie żarówki
1Świeci tylko żarówka R11Świeci tylko żarówka R1
2Świeci tylko żarówka R22Świeci tylko żarówka R2
3Świeci tylko żarówka R13Świeci tylko żarówka R1
4Zgaszone są obie żarówki4Świecą obie żarówki
C.D.
SekwencjaEfekt działania układuSekwencjaEfekt działania układu
0Zgaszone są obie żarówki0Świecą obie żarówki
1Świeci tylko żarówka R11Świeci tylko żarówka R1
2Świeci tylko żarówka R22Świeci tylko żarówka R2
3Świecą obie żarówki3Zgaszone są obie żarówki
4Zgaszone są obie żarówki4Świecą obie żarówki

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź C. jest prawidłowa, ponieważ dokładnie odzwierciedla działanie układu sterowania oświetleniem przedstawionego na rysunku oraz diagramu działania przekaźnika. W sekwencji 0, gdy żadne z styków nie są aktywne, obie żarówki pozostają zgaszone. Następnie w sekwencji 1, aktywacja styku 1-2 powoduje świecenie żarówki R1, co pokazuje zastosowanie przekaźników w prostych układach sterujących. W sekwencji 2, aktywacja styku 3-4 skutkuje załączeniem żarówki R2, co ilustruje możliwość niezależnego sterowania różnymi źródłami światła. W sekwencji 3, w której oba styki są aktywne, zarówno R1, jak i R2 świecą, co pokazuje, jak można zintegrować różne obwody w jednym układzie. Na koniec, w sekwencji 4, układ wraca do stanu początkowego, co jest typowym zachowaniem w układach sterujących, gdzie ważna jest możliwość cyklicznego powracania do stanu zerowego. Takie podejście jest zgodne z najlepszymi praktykami w automatyzacji i sterowaniu, umożliwiając efektywne zarządzanie oświetleniem w różnych aplikacjach.

Pytanie 34

Jakiego wyłącznika nadprądowego powinno się zastosować do ochrony obwodu jednofazowego instalacji elektrycznej z napięciem 230 V, który zasila grzejnik oporowy o mocy 1600 W?

A. C16
B. B10
C. C10
D. B16

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź B10 jest prawidłowa, ponieważ wyłącznik nadprądowy B10 jest odpowiedni dla obwodów z obciążeniem wytrzymującym do 10 A. W przypadku grzejnika oporowego o mocy 1600 W przy napięciu 230 V, prąd wynosi około 6,96 A (P = U × I, więc I = P/U = 1600 W / 230 V). Użycie wyłącznika B10 zapewnia odpowiednie zabezpieczenie przed przeciążeniem, ponieważ jego prąd znamionowy jest dostosowany do obwodów o mniejszych obciążeniach. Dodatkowo, wyłączniki typu B są stosowane w instalacjach domowych z urządzeniami o niewielkich prądach rozruchowych. Przy wyborze odpowiedniego wyłącznika warto kierować się także normami IEC 60898 oraz dobrymi praktykami związanymi z projektowaniem instalacji elektrycznych, które sugerują, że dla grzejników elektrycznych z oporem, wyłącznik powinien chronić przed przeciążeniem i zwarciem, zachowując margines bezpieczeństwa. Przykładem odpowiedniego zastosowania B10 mogą być obwody zasilające niewielkie odbiorniki energii, co pozwala na ich bezpieczne użytkowanie.

Pytanie 35

Który z łączników dysponuje komorami gaszeniowymi i ma zdolność do przerywania prądów zwarciowych?

A. Wyłącznik
B. Rozłącznik
C. Odłącznik
D. Stycznik

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik to urządzenie elektroenergetyczne, które nie tylko przerywa obwód, ale także posiada komory gaszeniowe, co umożliwia mu skuteczne wyłączanie prądów zwarciowych. Komory te są kluczowe, ponieważ odpowiadają za stłumienie łuku elektrycznego, który powstaje podczas rozłączania obwodu w sytuacji zwarcia. Dzięki temu wyłączniki są w stanie szybko i bezpiecznie eliminować niebezpieczne prądy, co chroni urządzenia elektryczne oraz instalacje przed uszkodzeniami. Przykładami zastosowań wyłączników są systemy zabezpieczeń w elektrowniach, stacjach transformacyjnych oraz w instalacjach przemysłowych, gdzie niezawodność i bezpieczeństwo są kluczowe. W kontekście norm, wyłączniki powinny spełniać wymogi określone w normach IEC 60947 i PN-EN 60898, które regulują ich budowę oraz parametry pracy, co zapewnia ich wysoką jakość i efektywność działania.

Pytanie 36

Z informacji dotyczącej pomiaru prądu upływowego w trójfazowej instalacji elektrycznej mieszkania zasilanego z sieci TN-S wynika, że powinno się go przeprowadzić przy użyciu specjalnego miernika cęgowego. W trakcie tego pomiaru, cęgami miernika trzeba objąć

A. wyłącznie przewód neutralny
B. wszystkie przewody czynne
C. tylko przewody fazowe
D. przewody fazowe oraz ochronny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar prądu upływu w trójfazowej instalacji elektrycznej zasilanej z sieci TN-S wymaga objęcia wszystkimi przewodami czynnymi, co oznacza, że należy zmierzyć prąd w przewodach fazowych oraz w przewodzie neutralnym. Praktycznym zastosowaniem tego pomiaru jest ocena skuteczności ochrony przeciwporażeniowej oraz monitorowanie stanu instalacji elektrycznej. Pomiar prądu upływu pozwala zidentyfikować ewentualne prądy upływowe, które mogą wskazywać na nieszczelności izolacji w przewodach. Zgodnie z normą IEC 60364, zaleca się, aby wartość prądu upływu nie przekraczała 30 mA w instalacjach budowlanych, co jest szczególnie istotne w kontekście ochrony zdrowia użytkowników. Regularne pomiary prądu upływu są fundamentalnym elementem utrzymania bezpieczeństwa instalacji i zapewnienia zgodności z przepisami. Ponadto, objęcie wszystkich przewodów czynnych podczas pomiaru pozwala na dokładne określenie sumarycznego prądu upływu, co jest kluczowe dla skutecznej diagnostyki i ewentualnych napraw.

Pytanie 37

Jakie minimalne wymiary powinien mieć przewód ochronny miedziany w przypadku przewodów fazowych miedzianych o przekrojach 25 mm2 i 35 mm2?

A. 12 mm2
B. 16 mm2
C. 20 mm2
D. 10 mm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Minimalny przekrój miedzianego przewodu ochronnego powinien wynosić 16 mm2 przy miedzianych przewodach fazowych o przekrojach 25 mm2 i 35 mm2. Takie wymagania wynikają z obliczeń związanych z bezpieczeństwem elektrycznym oraz ochroną przed porażeniem prądem. W polskich normach dotyczących instalacji elektrycznych, takich jak PN-IEC 60364, podano zasady doboru przewodów ochronnych, które uwzględniają maksymalne prądy zwarciowe oraz czas wyłączenia w przypadku awarii. Odpowiedni przekrój przewodu ochronnego jest kluczowy dla zapewnienia skutecznej ochrony instalacji oraz osób korzystających z urządzeń elektrycznych. W praktyce, dobór właściwego przekroju w instalacjach przemysłowych i budowlanych ma na celu minimalizację ryzyka uszkodzenia instalacji oraz zapewnienie odpowiedniego poziomu bezpieczeństwa. Warto również zwrócić uwagę na to, że stosując przewody o odpowiednim przekroju, zmniejszamy straty energii oraz ryzyko przegrzewania się materiałów, co jest istotne z perspektywy trwałości i niezawodności instalacji.

Pytanie 38

Jakie oznaczenie powinno być umieszczone na puszce instalacyjnej, która ma być użyta do połączenia uszkodzonego przewodu YDYo 5x4 mm2 w obszarze myjni samochodowej?

A. IP54 4x4 mm2
B. IP56 5x4 mm2
C. IP43 5x4 mm2
D. IP45 5x6 mm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa odpowiedź, IP56 5x4 mm2, odnosi się do odpowiednich standardów ochrony przed pyłem i wodą, które są kluczowe w środowisku myjni samochodowych. Oznaczenie IP56 wskazuje na wysoką odporność na kurz oraz możliwość ochrony przed silnymi strumieniami wody, co jest istotne w kontekście pracy w mokrym środowisku. W przypadku połączeń elektrycznych w takich miejscach, szczególnie przy przewodach o przekroju 5x4 mm2, ważne jest, aby wybrać elementy spełniające normy bezpieczeństwa. W praktyce, zastosowanie puszki z oznaczeniem IP56 zapewnia, że instalacja będzie chroniona przed niekorzystnymi warunkami zewnętrznymi, co przekłada się na dłuższą żywotność komponentów oraz mniejsze ryzyko awarii. Standardy takie jak IEC 60529 definiują klasyfikację ochrony, co pozwala na dobór odpowiednich materiałów w zależności od specyfiki danego miejsca. W przypadku myjni, wytrzymałość na działanie wody oraz odporność na pył są niezbędne dla zapewnienia niezawodności i bezpieczeństwa eksploatacji urządzeń elektrycznych.

Pytanie 39

Korzystając z zamieszczonego fragmentu instrukcji obsługi multimetru, wyznacz względny błąd pomiaru napięcia, jeżeli woltomierz wskazał 120 V.

Instrukcja obsługi multimetru (fragment)

Uchyb pomiaru:

0,1% w.m. ±0,05% w.z. (podzakresy 100 mV, 1 V)

0,2% w.m. ±0,05% w.z. (podzakresy 10 V, 100 V, 1000 V)

gdzie w.m. oznacza wartość zmierzoną, a w.z. wartość zakresu.

A. 6,10%
B. 0,62%
C. 0,74%
D. 0,07%

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Względny błąd pomiaru napięcia wynosi 0,62%, co oznacza, że pomiar wykonany za pomocą woltomierza jest dokładny w granicach tego błędu. W celu obliczenia względnego błędu, należy dodać błąd stały urządzenia do błędu procentowego, a następnie podzielić tę sumę przez wartość zmierzoną (w tym przypadku 120 V). Takie podejście jest zgodne z profesjonalnymi standardami pomiarowymi, które wskazują, jak prawidłowo oceniać błędy pomiarowe. W praktyce, stosując woltomierz, bardzo ważne jest, aby zrozumieć i obliczyć te błędy, aby zapewnić dokładność i wiarygodność pomiarów. Na przykład, w zastosowaniach inżynieryjnych, gdzie precyzyjne parametry elektryczne są krytyczne, skuteczne zarządzanie błędami pomiarowymi pozwala na optymalizację procesów produkcyjnych, a także na zapewnienie bezpieczeństwa. W związku z tym, umiejętność obliczania względnych błędów pomiarowych jest kluczowa dla każdego specjalisty w dziedzinie elektrotechniki.

Pytanie 40

Który z łączników elektrycznych stosowanych do zarządzania oświetleniem w instalacjach budowlanych dysponuje czterema oddzielnymi zaciskami przyłączeniowymi oraz jednym klawiszem do sterowania?

A. Schodowy
B. Jednobiegunowy
C. Świecznikowy
D. Krzyżowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Łącznik krzyżowy to całkiem sprytne urządzenie, które używamy w instalacjach elektrycznych do sterowania światłem z różnych miejsc. Ma cztery zaciski, więc można do niego podłączyć dwa łączniki schodowe i klawisz krzyżowy. Dzięki temu można włączać i wyłączać światło aż z trzech miejsc, co jest przydatne w dużych pomieszczeniach czy korytarzach, gdzie czasem ciężko dojść do włącznika. Używanie łączników krzyżowych według norm, takich jak PN-IEC 60669-1, nie tylko sprawia, że wszystko działa jak należy, ale zapewnia też bezpieczeństwo. Lokalne przepisy mówią, żeby stosować takie rozwiązania tam, gdzie potrzebujemy lepszej kontroli nad oświetleniem. Przykładowo, w korytarzu w domu mamy jeden włącznik przy drzwiach, drugi na schodach, a jak potrzeba to można dorzucić jeszcze jeden w innym miejscu, żeby było wygodniej.