Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 3 maja 2025 16:49
  • Data zakończenia: 3 maja 2025 17:32

Egzamin zdany!

Wynik: 36/40 punktów (90,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie jest zadanie krat wlotowych w hydroelektrowni?

A. obniżenie poziomu wody w turbinie
B. kontrola strumienia wody wpływającego do turbiny
C. zabezpieczenie turbiny przed zanieczyszczeniami
D. zatrzymanie przepływu wody do turbiny
Kraty wlotowe w elektrowni wodnej pełnią kluczową rolę w ochronie turbiny przed zanieczyszczeniami, które mogą wpływać na jej wydajność i trwałość. Te urządzenia filtracyjne zatrzymują różnego rodzaju zanieczyszczenia, takie jak piasek, liście czy inne obiekty, które mogłyby uszkodzić wirnik turbiny lub obniżyć jej efektywność. Ochrona turbiny przed zanieczyszczeniami jest zgodna z najlepszymi praktykami w branży hydroenergetycznej, gdzie dbałość o komponenty systemów energetycznych ma kluczowe znaczenie dla ich długowieczności. W praktyce, skuteczna filtracja wlotowa pozwala na minimalizację kosztów konserwacji oraz zwiększenie niezawodności operacyjnej elektrowni. Warto zauważyć, że stosowanie krat wlotowych jest standardem w projektowaniu elektrowni, co jest podkreślone w dokumentach technicznych i normach branżowych, takich jak normy ISO dotyczące efektywności energetycznej oraz ochrony środowiska. Dzięki odpowiednim kratkom wlotowym, elektrownie są w stanie działać z maksymalną wydajnością, co przekłada się na wyższą produkcję energii oraz mniejsze straty eksploatacyjne.

Pytanie 2

W Katalogach Nakładów Rzeczowych (KNR) jednostką miary nakładów pracy sprzętu jest

A. m-g
B. r-g
C. robocizna
D. godzina
Robocizna jako jednostka nakładów pracy odnosi się do pracy ludzkiej, a nie do pracy sprzętu, co czyni ją nieadekwatną odpowiedzią w kontekście KNR. Używanie robocizny zamiast m-g może prowadzić do mylnych obliczeń, ponieważ nie oddaje rzeczywistego czasu pracy sprzętu, który zazwyczaj jest szacowany w jednostkach czasowych, takich jak godziny czy miesiące robocze. R-g, czyli robotogodzina, to również jednostka, która nie jest standardowo stosowana dla sprzętu, a raczej odnosi się do godzin pracy pojedynczego pracownika, co również nie jest zgodne z koncepcją nakładów pracy sprzętu. Godzina, jako jednostka, także nie jest idealna, ponieważ nie uwzględnia dłuższych okresów eksploatacji sprzętu, które są niezbędne do oceny ich wydajności w dłuższym horyzoncie czasowym. Miesięczne analizy wykorzystania sprzętu są kluczowe dla oceny kosztów operacyjnych oraz planowania inwestycji, dlatego stosowanie jednostek takich jak m-g jest zgodne z najlepszymi praktykami w budownictwie i planowaniu projektów. Używanie niewłaściwych jednostek może prowadzić do nieefektywnego zarządzania zasobami, co w dłuższej perspektywie może negatywnie wpłynąć na rentowność projektów budowlanych.

Pytanie 3

Aby zabezpieczyć się przed niepełnym spalaniem w kotłach opalanych biomasą, powinno się zainstalować tzw. sondę lambda

A. w przewodzie kominowym
B. w podajniku paliwa
C. na wentylatorze podmuchu
D. w komorze paleniskowej
Sonda lambda jest kluczowym elementem systemu kontroli spalania w kotłach na biomasę, ponieważ jej zadaniem jest monitorowanie stężenia tlenu w spalinach. Montaż sondy w przewodzie kominowym pozwala na precyzyjne pomiary, które są niezbędne do optymalizacji procesu spalania. Dzięki tym pomiarom system może dostosować ilość powietrza dostarczanego do kotła, co z kolei wpływa na efektywność spalania oraz redukcję emisji szkodliwych substancji. Przykładowo, w przypadku, gdy sonda wykrywa zbyt niskie stężenie tlenu, system automatycznie zwiększa podmuch powietrza, co pozwala na uzyskanie pełniejszego spalania paliwa. W praktyce, zastosowanie sondy lambda w odpowiednim miejscu, jakim jest przewód kominowy, przyczynia się do poprawy efektywności energetycznej całego systemu grzewczego oraz spełnienia norm środowiskowych, co jest zgodne z najlepszymi praktykami branżowymi. Rekomendacje dotyczące instalacji sondy lambda w przewodach kominowych są również zgodne z wytycznymi wielu organizacji zajmujących się ochroną środowiska.

Pytanie 4

Czym jest niskotemperaturowe źródło energii cieplnej?

A. kocioł na paliwo stałe
B. kocioł na gaz ziemny o wysokim metanie
C. kocioł opalany olejem grzewczym
D. pompa ciepła
Pompa ciepła jest uznawana za niskotemperaturowe źródło ciepła, ponieważ wykorzystuje energię z otoczenia, taką jak powietrze, woda czy ziemia, do ogrzewania budynków. W procesie tym pompa ciepła przekształca niskotemperaturową energię w cieplną, co pozwala na obniżenie kosztów eksploatacji w porównaniu do tradycyjnych źródeł ciepła. Przykładem zastosowania pompy ciepła w praktyce może być ogrzewanie domów jednorodzinnych, gdzie pompa ciepła dostarcza ciepło do systemu ogrzewania podłogowego, które działa efektywnie przy niższych temperaturach. Zgodnie z zasadami efektywności energetycznej, pompy ciepła mogą osiągać bardzo wysokie współczynniki wydajności (COP), co czyni je popularnym wyborem zarówno w budynkach nowych, jak i modernizowanych. Warto również zauważyć, że w połączeniu z systemami fotowoltaicznymi stanowią one systemy o niskiej emisji CO2, zgodne z europejskimi normami zrównoważonego rozwoju.

Pytanie 5

W instalacji grzewczej, jaki element kontroluje pracę sterownik solarny?

A. pompy obiegowej centralnego ogrzewania
B. pompy obiegowej ciepłej wody użytkowej
C. pompy solarnej
D. zaworu zabezpieczającego
Sterownik solarny w instalacji grzewczej ma za zadanie zarządzać pracą pompy solarnej, co jest kluczowe dla efektywnego wykorzystywania energii słonecznej. Jego głównym celem jest optymalne wykorzystanie ciepła generowanego przez kolektory słoneczne. Gdy temperatura czynnika grzewczego w kolektorach przekracza określoną wartość, sterownik uruchamia pompę solarną, co pozwala na przesyłanie ciepła do zbiornika buforowego lub do instalacji grzewczej budynku. Przykładem praktycznego zastosowania może być system ogrzewania wody użytkowej, gdzie ciepło ze słońca jest efektywnie wykorzystane do podgrzewania wody, co redukuje koszty energii oraz wpływ na środowisko. Zgodnie z dobrymi praktykami branżowymi, zastosowanie automatyki w instalacjach solarnych znacząco zwiększa ich wydajność, minimalizując straty energii oraz maksymalizując korzyści ekonomiczne i ekologiczne.

Pytanie 6

Podczas instalowania systemu fotowoltaicznego stosuje się złączki, które zapewniają całkowitą hermetyczność oraz zapobiegają niewłaściwemu podłączeniu biegunów paneli słonecznych do akumulatora

A. MC4
B. MPX
C. WAGO
D. HDMI
Złączki MC4 są standardem w instalacjach fotowoltaicznych, służącym do łączenia paneli słonecznych z systemem zasilania. Dzięki swojej konstrukcji, złączki te zapewniają pełną hermetyczność, co jest kluczowe w kontekście ochrony przed wilgocią i zanieczyszczeniami. W praktyce oznacza to, że stosując złączki MC4, minimalizuje się ryzyko wystąpienia korozji oraz uszkodzeń, które mogą prowadzić do obniżenia wydajności systemu. Dodatkowo, złączki te wyposażone są w mechanizm blokujący, który uniemożliwia przypadkowe rozłączenie połączenia, co jest niezwykle istotne oraz zapewnia bezpieczeństwo w eksploatacji. Zgodnie z normami IEC 62109 oraz IEC 61730, przy wyborze komponentów do instalacji fotowoltaicznych, należy kierować się ich niezawodnością i odpornością na ekstremalne warunki atmosferyczne, co złączki MC4 z pewnością spełniają. Dlatego są one powszechnie stosowane zarówno w instalacjach domowych, jak i komercyjnych, co potwierdza ich skuteczność i popularność w branży.

Pytanie 7

Gdzie oraz w jaki sposób należy zainstalować jednostkę zewnętrzną powietrznej pompy ciepła?

A. W odległości co najmniej 0,3 m od ściany budynku, z czerpnią powietrza skierowaną w stronę ściany
B. W odległości co najmniej 0,3 m od ściany budynku, z wyrzutem powietrza skierowanym w stronę ściany
C. Bezpośrednio przy zewnętrznej ścianie budynku, z czerpnią powietrza skierowaną w stronę ściany
D. Bezpośrednio przy zewnętrznej ścianie budynku, z wyrzutem powietrza skierowanym w stronę ściany
Jednostka zewnętrzna powietrznej pompy ciepła powinna być zamontowana w odpowiedniej odległości od ściany budynku, co ma kluczowe znaczenie dla efektywności jej pracy. Umiejscowienie urządzenia w odległości co najmniej 0,3 m od ściany zapewnia odpowiednią cyrkulację powietrza, co jest niezbędne do prawidłowego poboru i wydajności pracy pompy. Takie umiejscowienie minimalizuje również hałas i wibracje, które mogą przenikać do struktury budynku, co jest szczególnie istotne w przypadku budynków mieszkalnych. Skierowanie czerpni powietrza w stronę ściany chroni ją przed bezpośrednim działaniem wiatru i opadów, co pomaga w stabilizowaniu warunków pracy pompy, zwiększając jej wydajność i żywotność. Dodatkowo, przestrzeń pomiędzy jednostką a ścianą ułatwia odprowadzanie skroplin, co zapobiega ich zamarzaniu na elewacji budynku. Takie wytyczne są zgodne z zaleceniami producentów oraz normami branżowymi, co potwierdza ich zasadność.

Pytanie 8

Na placu budowy nie można przenosić kolektorów słonecznych

A. za króćce przyłączeniowe
B. w układzie pionowym
C. w układzie poziomym
D. łapiąc za obudowę kolektora
Odpowiedź "za króćce przyłączeniowe" jest poprawna, ponieważ zapewnia najbezpieczniejszy sposób transportu kolektorów słonecznych, minimalizując ryzyko ich uszkodzenia. Króćce przyłączeniowe to miejsca, w których kolektory są podłączane do systemu hydraulicznego, a ich chwytanie w trakcie przenoszenia pozwala na utrzymanie stabilności oraz uniknięcie nadmiernego obciążenia na delikatne elementy strukturalne. W praktyce, stosując tę metodę, operatorzy mogą uniknąć uszkodzenia paneli słonecznych, które mogą być wrażliwe na nacisk i uderzenia. Dobrą praktyką jest także korzystanie z odpowiednich sprzętów transportowych, takich jak wózki o regulowanej wysokości, które umożliwiają przenoszenie kolektorów w kontrolowanych warunkach. Warto również pamiętać, że podczas przenoszenia kolektorów nie powinno się ich obracać ani przechylać, co mogłoby prowadzić do uszkodzenia wewnętrznych komponentów. Rekomendacje te są zgodne z normami branżowymi, które stawiają na bezpieczeństwo i skuteczność w pracy z urządzeniami solarnymi.

Pytanie 9

Aby skręcić rury o dużych średnicach w trudno dostępnych miejscach, należy zastosować klucz

A. uniwersalny
B. nastawny
C. szwedzki
D. łańcuchowy
Klucz łańcuchowy jest specjalistycznym narzędziem przeznaczonym do skręcania i odkręcania rur dużych średnic, szczególnie w miejscach o ograniczonym dostępie. Jego konstrukcja pozwala na pewne chwytanie rur, dzięki czemu minimalizuje ryzyko ich uszkodzenia. Klucz łańcuchowy działa na zasadzie owinięcia łańcucha wokół rury, co umożliwia jego pewne obracanie i jednocześnie zapewnia dużą siłę chwytu. W praktyce, zastosowanie klucza łańcuchowego jest niezwykle istotne w branżach takich jak hydraulika czy instalacje przemysłowe, gdzie często spotyka się rury o dużych średnicach. W takich przypadkach tradycyjne klucze, takie jak klucze nastawne czy szwedzkie, mogą okazać się nieefektywne lub wręcz niemożliwe do użycia ze względu na ograniczoną przestrzeń roboczą. Użycie klucza łańcuchowego jest zgodne z dobrą praktyką, ponieważ pozwala na zachowanie bezpieczeństwa pracy oraz efektywności wykonywanych działań. Warto pamiętać, że prawidłowe użycie tego narzędzia wymaga również znajomości technik ich stosowania oraz odpowiednich procedur BHP, co dodatkowo zwiększa efektywność całego procesu.

Pytanie 10

Pod jakim kątem powinny być ustawione na stałe kolektory słoneczne, aby zapewnić im optymalne nasłonecznienie przez cały rok?

A. 45 - 50 stopni
B. 75 - 80 stopni
C. 30 - 40 stopni
D. 60 - 70 stopni
Ustawienie kolektorów słonecznych pod kątem 45-50 stopni jest uznawane za optymalne dla ich efektywności w ciągu całego roku. Taki kąt zapewnia najlepszą ekspozycję na promieniowanie słoneczne, zarówno w okresie letnim, gdy słońce jest wyżej na niebie, jak i w zimie, kiedy znajduje się niżej. Poziom naświetlenia kolektorów jest kluczowy dla ich wydajności - odpowiedni kąt pozwala na maksymalne wykorzystanie energii słonecznej, co przekłada się na większą produkcję energii. W praktyce, wiele instalacji systemów solarnych na terenie Polski i innych krajów o podobnym klimacie stosuje właśnie ten kąt, aby zminimalizować straty związane z nieodpowiednim ustawieniem. Ponadto, zalecenia te są zgodne z wytycznymi branżowymi, które uwzględniają różne lokalizacje geograficzne oraz zmiany kątów padania promieni słonecznych w ciągu roku. Dobór odpowiedniego kąta nachylenia jest zatem kluczowym elementem projektowania systemów solarnych, wpływającym na ich efektywność i rentowność.

Pytanie 11

Tworząc harmonogram prac związanych z montażem instalacji do usuwania pyłów z gazów spalinowych, wybrano cyklon, którego rolą jest zatrzymywanie zanieczyszczeń powietrza pod wpływem działania

A. pola elektromagnetycznego
B. siły odśrodkowej
C. grawitacji
D. filtracji
Chociaż pojawiają się różne koncepcje dotyczące mechanizmu działania urządzeń do usuwania zanieczyszczeń, takie jak pola elektromagnetyczne, grawitacja czy filtracja, każda z tych odpowiedzi nie uwzględnia kluczowych zasad, które rządzą cyklonami. Pola elektromagnetyczne nie mają zastosowania w procesie separacji pyłów, ponieważ działanie cyklonów opiera się na mechanice fluidów, gdzie dominującą rolę odgrywa grawitacja i siła odśrodkowa, a nie przyciąganie elektromagnetyczne. Grawitacja wpływa na osadzanie się cząstek, ale sama w sobie nie wyjaśnia procesu separacji, który zachodzi w cyklonie. Filtracja, z kolei, jest procesem, w którym cząstki są zatrzymywane przez medium filtracyjne, a nie poprzez rotację i siły odśrodkowe. W kontekście cyklonów, zrozumienie, że to siła odśrodkowa jest kluczowa dla ich działania, jest fundamentem prawidłowego pojmowania ich funkcji. Wiele osób myli proces separacji z ogólnymi zasadami fizyki, co prowadzi do błędnych wniosków. Kluczowe jest, aby rozpoznać, że skuteczna separacja pyłów występuje w wyniku działania wiru, w którym cięższe cząstki są odrzucane na zewnątrz przez siły odśrodkowe, a nie jakiekolwiek inne mechanizmy, które mogą wydawać się bardziej intuicyjne, ale nie są odpowiednie w kontekście cyklonów.

Pytanie 12

W trakcie instalacji płaskich kolektorów słonecznych w słoneczny dzień należy je osłonić, aby zabezpieczyć

A. monterów przed oparzeniami
B. pokrycie dachu przed odkształceniami termicznymi
C. przezroczyste pokrywy przed zanieczyszczeniem
D. kolektory przed zniszczeniem w wyniku upadku
Podczas montażu płaskich kolektorów słonecznych w słoneczny dzień, istnieje ryzyko, że powierzchnie kolektorów mogą się nagrzewać do wysokich temperatur, co stwarza zagrożenie poparzeniem dla monterów. Odpowiednia ochrona pracowników podczas takich prac jest kluczowa. Przykładowo, przykrycie kolektorów materiałem izolacyjnym lub nieprzezroczystym może znacząco obniżyć ich temperaturę, co przekłada się na bezpieczeństwo. Dbanie o zdrowie i bezpieczeństwo pracowników jest zgodne z wytycznymi BHP oraz standardami pracy w obszarze instalacji systemów odnawialnych źródeł energii. Ważne jest, aby osoby montujące kolektory były świadome potencjalnych zagrożeń związanych z ich pracą w silnym słońcu, co obejmuje nie tylko ryzyko poparzeń, ale również udaru słonecznego. Dlatego stosowanie odpowiednich środków ochrony, takich jak odzież ochronna oraz odpowiednie techniki pracy, jest niezbędne w tego typu instalacjach.

Pytanie 13

Jakie metody powinny być użyte do łączenia rur PEX w instalacji basenowej z wymiennikiem ciepła?

A. zaciskanie
B. lutowanie
C. zgrzewanie
D. klejenie
Zaciskanie rur PEX to naprawdę najlepszy sposób, żeby je ze sobą łączyć. Jest to proste i skuteczne. W tej metodzie używa się specjalnych zacisków, które zakłada się na końce rur, a później się je zaciska narzędziem. Dzięki temu, połączenie jest solidne i wytrzymuje wysokie temperatury oraz ciśnienia, co jest mega ważne, zwłaszcza w instalacjach basenowych, gdzie niezawodność to klucz. Co ważne, nie potrzeba żadnych dodatkowych materiałów, jak kleje czy coś w tym stylu, więc ryzyko błędów podczas montażu jest mniejsze. W praktyce, takie zaciskane połączenia PEX są powszechnie używane w systemach ogrzewania podłogowego oraz instalacjach wodociągowych, co pokazuje, że są naprawdę uniwersalne i zgodne z normami, takimi jak PN-EN 12201. Ogólnie rzecz biorąc, ta technika jest zgodna z zasadami dobrego wykonania instalacji, co pozwala na długotrwałe użytkowanie bez konieczności serwisowania.

Pytanie 14

Łopaty wirnika turbiny wiatrowej o mocy 3,5 MW powinny być wytwarzane

A. z aluminium
B. z włókien szklanych
C. ze stali
D. z miedzi
Łopaty wirników w turbinach wiatrowych z włókien szklanych to naprawdę dobry wybór. Mają świetne właściwości mechaniczne i aerodynamiczne. Włókna szklane są super lekkie, a mimo to bardzo wytrzymałe, co pozwala na zrobienie dużych łopat, które nie ważą zbyt dużo. To ważne, bo dzięki temu turbina mniej się obciąża i działa lepiej. Dodatkowo, te włókna są odporne na różne niekorzystne warunki, jak deszcz czy słońce, co sprawia, że łopaty są trwałe i niezawodne przez długi czas. Wiesz, normy IEC mówią, żeby stosować kompozyty, w tym włókna szklane, by osiągnąć najlepsze wyniki. Przykłady to nowoczesne turbiny, które muszą być zarówno wydajne, jak i bezpieczne w eksploatacji.

Pytanie 15

Które z wymienionych typów ogniw fotowoltaicznych wyróżnia się najwyższą sprawnością?

A. Monokrystaliczne
B. CdTe
C. a-Si
D. Polikrystaliczne
Ogniwa fotowoltaiczne monokrystaliczne rzeczywiście charakteryzują się najwyższą sprawnością w porównaniu do innych typów ogniw. Ich struktura krystaliczna, składająca się z jednego, ciągłego kryształu krzemu, umożliwia lepsze przewodzenie prądu, co bezpośrednio przekłada się na większą efektywność konwersji energii słonecznej na energię elektryczną. Monokrystaliczne ogniwa są w stanie osiągać sprawności rzędu 20-25%, co czyni je najbardziej popularnym wyborem w instalacjach fotowoltaicznych, szczególnie tam, gdzie przestrzeń na panele jest ograniczona. W praktyce, zastosowanie ogniw monokrystalicznych znajduje się w wielu projektach, od domów jednorodzinnych po duże farmy słoneczne, co wskazuje na ich uniwersalność i efektywność. Dodatkowo, z uwagi na ich trwałość, która może wynosić ponad 25 lat, inwestycja w te ogniwa zapewnia długoterminowe korzyści oraz zwrot kosztów. W branży energii odnawialnej monokrystaliczne ogniwa są często rekomendowane jako optymalne rozwiązanie, co potwierdzają standardy jakościowe i certyfikaty produkcyjne.

Pytanie 16

Zbyt wysokie natężenie przepływu medium w instalacji słonecznego ogrzewania

A. spowoduje częstsze uruchamianie zaworu bezpieczeństwa
B. spowoduje zwiększenie oporów przepływu płynu solarnego
C. będzie skutkować szybszym zużywaniem się płynu solarnego
D. spowoduje obniżenie ciśnienia w systemie
Ustalenie, że zbyt duże natężenie przepływu czynnika spowoduje spadek ciśnienia w instalacji, jest błędne i niezgodne z zasadami hydrauliki. W rzeczywistości, zwiększenie natężenia przepływu w zamkniętym systemie nie prowadzi do spadku ciśnienia, a wręcz przeciwnie, może spowodować wzrost ciśnienia w niektórych częściach układu, zwłaszcza w miejscach, gdzie występują opory, takie jak zawory czy zmiany średnicy rur. Wzrost ciśnienia może prowadzić do niepożądanych efektów, takich jak awarie zaworów czy uszkodzenia innych komponentów instalacji. Z kolei twierdzenie, że zbyt duży przepływ spowoduje częste działanie zaworu bezpieczeństwa, również jest mylne. Zawory bezpieczeństwa działają na zasadzie odprowadzania nadmiaru ciśnienia, a ich aktywacja nie jest bezpośrednio związana z natężeniem przepływu, lecz z przekroczeniem określonego ciśnienia w systemie. Ponadto, twierdzenie, że zbyt duży przepływ może prowadzić do szybszego starzenia się płynu solarnego, jest także niepoprawne. W rzeczywistości, to temperatura i chemiczne właściwości płynu mają decydujące znaczenie dla jego trwałości, a nie sam przepływ. Kluczowe jest, aby projektując systemy solarne, uwzględnić odpowiednie parametry przepływu zgodnie z zaleceniami branżowymi, aby uniknąć takich nieporozumień i zapewnić długotrwałe, efektywne działanie instalacji.

Pytanie 17

Którego rodzaju kosztorysu nie tworzy wykonawca prac?

A. Zamiennego
B. Powykonawczego
C. Inwestorskiego
D. Ofertowego
Wiesz, wykonawca nie zajmuje się robieniem kosztorysu inwestorskiego. To inwestor albo jego przedstawiciel powinien tym się zająć. Kosztorys inwestorski to taki dokument, który szacuje, ile będzie kosztować cały projekt budowlany. Przydaje się głównie do planowania finansowego i oceny, czy inwestycja się opłaca. Z mojego doświadczenia, taki kosztorys musi być zrobiony według norm, na przykład PN-ISO 9001, żeby był rzetelny i przejrzysty. Generalnie powinien zawierać szczegółowy opis robót, materiałów i przewidywanych kosztów, co pozwala inwestorowi podjąć świadomą decyzję przy wyborze wykonawcy. Oczywiście w czasie przetargów, wykonawcy też robią kosztorysy ofertowe i powykonawcze, ale i tak za kosztorys inwestorski odpowiada inwestor, co jest zgodne z najlepszymi praktykami w branży budowlanej.

Pytanie 18

Jakie narzędzia są potrzebne do montażu instalacji w systemie PEX skręcanym?

A. obcinak do rur, gratownik oraz zaciskarka
B. kalibrator do rur z fazownikiem, obcinak do rur oraz zaciskarka
C. kalibrator do rur z fazownikiem, obcinak do rur oraz zestaw kluczy płaskich
D. obcinak do rur, gratownik i zestaw kluczy płaskich
No więc, wybierając kalibrator do rur z fazownikiem, obcinak do rur oraz zestaw kluczy płaskich, robisz naprawdę dobry krok w stronę prawidłowego montażu instalacji w systemie PEX. Kalibrator pomoże Ci super dopasować końcówkę rury PVC do złączek, co jest mega ważne, żeby wszystko było szczelne. Obcinak pozwala na precyzyjne cięcie rur PEX, więc nie musisz się martwić, że coś będzie krzywo, co mogłoby wprowadzić jakieś niepożądane zanieczyszczenia do systemu. A klucze płaskie? Bez nich ani rusz, bo dokręcanie połączeń to podstawa, żeby nic nie przeciekało. Jak dobrze to wszystko zrobisz, to unikniesz wycieków i problemów z instalacją, co w sumie jest najważniejsze dla bezpiecznego i sprawnego działania systemów wodno-kanalizacyjnych. Zresztą, dobrze wykonane połączenia na pewno przyczynią się do dłuższej żywotności całej instalacji, co jest zgodne z tym, co mówi się w branży.

Pytanie 19

Podstawą do stworzenia kosztorysu szczegółowego są

A. wytyczne organizacji budowy
B. harmonogramy robót
C. katalogi nakładów rzeczowych
D. katalogi producentów
Katalogi nakładów rzeczowych stanowią fundamentalne źródło informacji w procesie opracowywania kosztorysów szczegółowych, ponieważ zawierają szczegółowe dane dotyczące kosztów materiałów, robocizny oraz innych nakładów związanych z realizacją projektu budowlanego. Dzięki tym katalogom wykonawcy mogą precyzyjnie ocenić, jakie zasoby będą potrzebne do realizacji zadania oraz jakie będą ich koszty. Na przykład, w przypadku budowy budynku mieszkalnego, katalogi te pozwalają na oszacowanie ilości i kosztów materiałów budowlanych, takich jak cegły, cement czy stal. W praktyce, korzystając z obowiązujących standardów kosztorysowania, takich jak KNR (Katalogi Nakładów Rzeczowych), wykonawcy mogą dokonać analizy kosztów na etapie planowania, co jest kluczowe dla efektywnego zarządzania budżetem projektu. Zastosowanie katalogów nakładów rzeczowych poprawia dokładność kosztorysów, co z kolei wpływa na lepsze zarządzanie ryzykiem finansowym związanym z realizacją inwestycji.

Pytanie 20

Przechowując rury preizolowane na otwartej przestrzeni w różnych warunkach pogodowych, nie ma potrzeby chronienia ich przed

A. wiatrem
B. promieniowaniem UV
C. ekstremalnymi temperaturami
D. wilgocią
Wybór opcji 'wiatrem' jako odpowiedzi prawidłowej opiera się na zasadach dotyczących składowania rur preizolowanych. Rury te, ze względu na swoje właściwości izolacyjne oraz konstrukcyjne, nie są wrażliwe na działanie wiatru, ponieważ ich mechaniczne właściwości nie ulegają osłabieniu pod wpływem siły wiatru. W praktyce, rury preizolowane mogą być składowane na zewnątrz w różnych warunkach atmosferycznych, a ich struktura nie wymaga specjalnych zabezpieczeń przed wiatrem. Zgodnie z normą PN-EN 253, która dotyczy rur preizolowanych, kluczowe jest jedynie zabezpieczenie przed czynnikami, które mogą wpływać na ich izolacyjność, jak wilgoć, ekstremalne temperatury oraz promieniowanie UV. W przypadku wilgoci, niewłaściwe składowanie może prowadzić do kondensacji, co z kolei wpływa na właściwości izolacyjne, a ekstremalne temperatury mogą powodować odkształcenia materiałów. Rury powinny być również chronione przed promieniowaniem UV, które może degradacja materiału polimerowego. Dlatego odpowiednie środki zabezpieczające powinny być stosowane w odniesieniu do wilgoci, ekstremalnych temperatur oraz promieniowania UV, a nie w odniesieniu do wiatru.

Pytanie 21

Zalecana objętość zbiornika solarnego wynosi

A. mniejsza niż dzienne zapotrzebowanie na ciepłą wodę użytkową
B. od 1,5 do 2 razy większa niż dzienne zapotrzebowanie na ciepłą wodę użytkową
C. taka sama jak dzienne zapotrzebowanie na ciepłą wodę użytkową
D. od 2 do 2,5 razy większa niż dzienne zapotrzebowanie na ciepłą wodę użytkową
Zalecana pojemność zasobnika solarnego powinna być większa od dziennego zapotrzebowania na ciepłą wodę użytkową, aby umożliwić efektywne wykorzystanie energii słonecznej. W praktyce, pojemność zasobnika od 1,5 do 2 razy większa od zapotrzebowania zapewnia, że woda jest odpowiednio podgrzewana w ciągu dnia, a nadmiar ciepła może być magazynowany na wieczór lub noc. Takie podejście jest zgodne z wytycznymi i normami zawartymi w standardach budowlanych oraz praktykami w zakresie systemów grzewczych. Dla przykładu, jeśli średnie dzienne zapotrzebowanie na ciepłą wodę wynosi 100 litrów, to pojemność zasobnika powinna wynosić od 150 do 200 litrów. Umożliwia to nie tylko zaspokojenie bieżącego zapotrzebowania, ale także buforowanie ciepła, co jest niezbędne w okresach niskiej inszolacji słonecznej. Dodatkowo, zwiększona pojemność zasobnika przyczynia się do lepszej stabilności systemu, minimalizując ryzyko przegrzania i strat ciepła.

Pytanie 22

Jaki kolor izolacji powinien mieć przewód neutralny?

A. niebieskiego
B. żółto - zielonego
C. czarnego lub czerwonego
D. brązowego
Odpowiedź 'niebieskiego' jest poprawna, ponieważ według Polskich Norm (PN) oraz przepisów dotyczących instalacji elektrycznych, przewód neutralny musi być oznaczony kolorem niebieskim. Ta norma ma na celu zapewnienie jednoznaczności w identyfikacji przewodów elektrycznych, co jest niezbędne w celu bezpieczeństwa oraz prawidłowego funkcjonowania instalacji. Użycie koloru niebieskiego dla przewodów neutralnych jest standardem przyjętym w wielu krajach, co ułatwia współpracę i rozumienie projektów elektroutwardzonych na poziomie międzynarodowym. Przykładowo, w instalacjach domowych przewód neutralny prowadzi prąd z powrotem do źródła zasilania, a jego poprawne oznaczenie jest kluczowe, aby uniknąć pomyłek, które mogą prowadzić do niebezpiecznych wypadków elektrycznych. Przewody ochronne, oznaczane kolorem żółto-zielonym, mają zupełnie inną funkcję - mają na celu zabezpieczenie przed porażeniem elektrycznym, co podkreśla znaczenie znajomości tych standardów w praktyce.

Pytanie 23

Głównym składnikiem biogazu jest

A. etan
B. metan
C. butan
D. propan
Metan, jako główny składnik biogazu, jest gazem o wysokim potencjale energetycznym, stanowiącym od 50% do 75% objętości biogazu. Jest produktem fermentacji beztlenowej organicznych materiałów, takich jak odpady rolnicze, resztki kuchenne czy osady ściekowe. Proces ten zachodzi w biogazowniach, które są coraz częściej wykorzystywane do produkcji energii odnawialnej. Metan jest paliwem, które można wykorzystać do wytwarzania ciepła, energii elektrycznej oraz jako paliwo do silników gazowych. Dobre praktyki w zakresie produkcji biogazu obejmują optymalizację warunków fermentacji, takich jak temperatura, pH i stosunek C:N, co pozwala zwiększyć wydajność produkcji metanu. Ponadto, metan jest kluczowym składnikiem w kontekście zrównoważonego rozwoju, ponieważ jego wykorzystanie przyczynia się do redukcji emisji gazów cieplarnianych poprzez ograniczenie uwalniania CO2 z tradycyjnych paliw kopalnych. Zastosowanie biogazu jako odnawialnego źródła energii wspiera również lokalne gospodarki oraz przyczynia się do poprawy jakości środowiska.

Pytanie 24

Najwcześniej po jakim czasie od napełnienia instalacji grzewczej wodą można rozpocząć próbę szczelności?

A. 72 godzinach
B. 30 minutach
C. 24 godzinach
D. 60 minutach
Odpowiedź 24 godzinach jest zgodna z obowiązującymi normami w branży HVAC, które zalecają wykonanie próby szczelności instalacji grzewczych po upływie tego czasu. Jest to istotne, ponieważ podczas napełniania systemu wodą może wystąpić początkowe ciśnienie, które z czasem się stabilizuje. Czekając 24 godziny, dajemy czas na wyrównanie się ciśnienia w całej instalacji, co pozwala na wykrycie ewentualnych nieszczelności. Przykładem zastosowania tej zasady może być instalacja nowego kotła, gdzie kluczowe jest, aby upewnić się, że wszystkie połączenia są szczelne przed uruchomieniem systemu. W praktyce, zbyt krótki czas na stabilizację mógłby prowadzić do fałszywych wyników testów szczelności, co w dłuższej perspektywie może skutkować kosztownymi naprawami i przestojami. Dlatego, stosując się do tej zasady, zwiększamy bezpieczeństwo i efektywność całej instalacji grzewczej.

Pytanie 25

W systemie grzewczym opartym na energii słonecznej, przeznaczonym do podgrzewania wody użytkowej, gdzie powinien być zainstalowany zawór mieszający?

A. między przyłączem wody zimnej a obiegiem cyrkulacyjnym wody ciepłej
B. w między obiegiem solarnym a instalacją wody zimnej
C. między przyłączem wody zimnej a systemem ciepłej wody użytkowej
D. pomiędzy obiegiem solarnym a obiegiem cyrkulacyjnym wody ciepłej
Wybór nieprawidłowej odpowiedzi wynika z niepełnego zrozumienia roli zaworu mieszającego w systemach ogrzewania wody. Nieumiejscowienie zaworu pomiędzy przyłączem wody zimnej a instalacją ciepłej wody użytkowej prowadzi do nieefektywnego zarządzania temperaturą wody, co w efekcie może powodować ryzyko poparzeń. Umiejscowienie zaworu pomiędzy obiegiem solarnym a cyrkulacją wody ciepłej czy innymi kombinacjami, jak obieg solarny z instalacją wody zimnej, nie uwzględnia zasady mieszania wody gorącej z zimną w odpowiednich proporcjach. W takich rozwiązaniach brakuje możliwości precyzyjnego regulowania temperatury na wylocie, co zwiększa ryzyko dostarczania wody o zbyt wysokiej lub zbyt niskiej temperaturze do punktów poboru. Ponadto, nieodpowiednie umiejscowienie zaworu w systemie wpływa na efektywność energetyczną, co może skutkować niepotrzebnym zużyciem energii oraz kosztami eksploatacyjnymi. Zrozumienie roli zaworu mieszającego jako kluczowego elementu systemu grzewczego oraz jego poprawne zamontowanie są podstawą do osiągnięcia optymalnej wydajności oraz bezpieczeństwa użytkowania wody w instalacjach opartych na energii słonecznej.

Pytanie 26

Za montaż urządzeń z zakresu energetyki odnawialnej oraz realizację dostaw zgodnych z projektem odpowiada

A. projektant
B. kierownik budowy
C. inwestor
D. użytkownik
Kierownik budowy odgrywa kluczową rolę w procesie montażu urządzeń energetyki odnawialnej, ponieważ to on odpowiada za koordynację wszystkich działań na placu budowy. Dobrze zorganizowane i zgodne z projektem dostawy są niezbędne do prawidłowego przebiegu robót. Kierownik budowy ma za zadanie nadzorować realizację prac montażowych, zapewniając, że wszelkie urządzenia są instalowane zgodnie z obowiązującymi normami oraz wytycznymi projektowymi. Na przykład, w przypadku instalacji paneli fotowoltaicznych, kierownik budowy musi zadbać o odpowiednie przygotowanie miejsca montażu, sprawdzenie zgodności z projektem oraz zapewnienie, że wszystkie niezbędne materiały i urządzenia dotrą na czas. Przykłady dobrych praktyk obejmują regularne spotkania z zespołem projektowym oraz dostawcami, co pozwala na bieżąco monitorować postęp prac i ewentualnie wprowadzać niezbędne korekty. Dzięki takim działaniom kierownik budowy minimalizuje ryzyko opóźnień oraz błędów, które mogą wpłynąć na efektywność instalacji.

Pytanie 27

W jakim dokumencie powinny być odnotowane wszystkie działania wykonane przez montera pompy ciepła w trakcie realizacji gwarancyjnych prac serwisowych?

A. Na fakturze za wykonaną pracę
B. W instrukcji serwisowej
C. W dokumentacji techniczno-ruchowej
D. W karcie gwarancyjnej
Karta gwarancyjna to naprawdę ważny dokument. Powinna zawierać wszystkie istotne informacje o tym, co robił monter w trakcie serwisu w czasie gwarancji. Zgodnie z branżowymi standardami oraz normami ISO, ta dokumentacja służy jako dowód, że serwis został wykonany, co chroni prawa konsumenta. W karcie gwarancyjnej zapisujemy nie tylko daty serwisu, ale też dokładny opis prac, jakie były wykonane, jak i uwagi o stanie technicznym sprzętu oraz sugestie na przyszłość. Na przykład, jeśli monter zauważył jakieś problemy z pompą ciepła, to powinien to dokładnie opisać w karcie, żeby w razie czego ułatwić przyszłe naprawy. No i w branży HVAC naprawdę ważne jest, żeby wszystkie działania serwisowe były dokładnie udokumentowane. Robi to nie tylko dla ochrony praw konsumentów, ale też podnosi odpowiedzialność wykonawcy.

Pytanie 28

Inwerter to sprzęt instalowany w systemie

A. pompy ciepła
B. biogazowni
C. słonecznej grzewczej
D. fotowoltaicznej
Inwerter jest kluczowym elementem instalacji fotowoltaicznej, służącym do przekształcania prądu stałego (DC) generowanego przez panele słoneczne na prąd zmienny (AC), który może być używany w domowych instalacjach elektrycznych oraz wprowadzany do sieci energetycznej. Jego działanie opiera się na przetwarzaniu energii słonecznej w sposób umożliwiający jej wykorzystanie w codziennym życiu. Przykładowo, w systemach fotowoltaicznych na dachach budynków, inwertery są odpowiedzialne za optymalizację produkcji energii, co przekłada się na niższe rachunki za prąd i zwiększenie efektywności energetycznej. Zgodnie z normami, inwertery powinny spełniać standardy jakości, takie jak IEC 62109, które gwarantują bezpieczeństwo i niezawodność ich działania. Właściwy dobór inwertera, jego moc oraz funkcje, takie jak monitoring wydajności, mają kluczowe znaczenie dla efektywności całego systemu, co podkreśla ich rolę w nowoczesnych instalacjach OZE.

Pytanie 29

Woda w zbiorniku ciepła o objętości 200 dm3 traci ciepło w ciągu nocy o 10o C. Ciepło właściwe wody wynosi 4190 (J/kg*K). Straty energii związane z tym procesem wynoszą

A. 8,38 kWh
B. 8,38 kJ
C. 8380 kWh
D. 8380 kJ
Aby obliczyć straty energii związane z wychładzaniem wody, zastosujemy wzór na ciepło wymienione: Q = m * c * ΔT, gdzie Q to ilość ciepła, m to masa wody, c to ciepło właściwe wody, a ΔT to zmiana temperatury. Woda w zasobniku ma objętość 200 dm³, co odpowiada masie 200 kg (zakładając gęstość wody 1 kg/dm³). Ciepło właściwe wody wynosi 4190 J/kg*K, a zmiana temperatury wynosi 10°C. Podstawiając te wartości do wzoru: Q = 200 kg * 4190 J/kg*K * 10 K = 8380000 J, co po przeliczeniu na kilodżule daje 8380 kJ. Zrozumienie tego zagadnienia ma praktyczne zastosowanie w projektowaniu systemów grzewczych oraz w branży energetycznej, gdzie konieczne jest obliczenie strat ciepła, aby poprawić efektywność energetyczną budynków. Warto również zwrócić uwagę na standardy dotyczące izolacji termicznej, które mogą zmniejszyć takie straty.

Pytanie 30

Ile wynosi współczynnik wydajności pompy ciepła COP, obliczony na podstawie danych technicznych urządzenia zamieszczonych w tabeli, dla temperatury otoczenia 7°C i temperatury wody 50°C?

Dane techniczne
Warunki pomiaruOpisJednostkaWartość
Temp. otoczenia 7°C
Temp. wody 50°C
Moc grzewczakW3,0
Moc elektryczna doprowadzona
do sprężarki
kW1,0
Pobór prąduA4,5
Temp. otoczenia 2°C
Temp. wody 30°C
Moc grzewczakW3,2
Moc elektryczna doprowadzona
do sprężarki
kW0,98
Pobór prąduA4,45
Zasilanie elektryczneV/Hz230/50
Temperatura maksymalna°C60

A. 4,5
B. 3,0
C. 4,0
D. 1,0
Współczynnik wydajności pompy ciepła (COP) jest kluczowym wskaźnikiem efektywności energetycznej tych urządzeń. Odpowiedź 3,0 jest poprawna, ponieważ wskazuje na relację między mocą grzewczą a mocą elektryczną potrzebną do jej wytworzenia. W przypadku podanych wartości, moc grzewcza wynosi 3,0 kW, a moc elektryczna 1,0 kW. Obliczenie COP polega na podzieleniu mocy grzewczej przez moc elektryczną: COP = 3,0 kW / 1,0 kW = 3,0. Taki współczynnik oznacza, że pompa ciepła dostarcza trzy razy więcej energii cieplnej niż zużywa energii elektrycznej, co jest korzystne z perspektywy ekonomicznej oraz ekologicznej. W praktyce, wysoki współczynnik COP wskazuje na lepszą wydajność urządzenia, co jest szczególnie istotne przy obliczaniu kosztów eksploatacji systemów ogrzewania. W branży pomp ciepła zaleca się dążenie do COP na poziomie co najmniej 3,0, aby zapewnić opłacalność inwestycji.

Pytanie 31

Jaką liczbę łopat wirnika należy uznać za optymalną w turbinie wiatrowej?

A. 7
B. 2
C. 3
D. 5
Optymalna liczba łopat wirnika w turbinie wiatrowej wynosi zazwyczaj trzy. Taka konfiguracja zapewnia równowagę pomiędzy efektywnością generowania energii a stabilnością działania. Trzy łopaty pozwalają na optymalne wykorzystanie siły wiatru, co zwiększa wydajność turbiny. Dzięki równomiernemu rozkładowi masy, wirnik z trzema łopatami działa płynniej, co minimalizuje drgania i hałas. Dodatkowo, turbiny z trzema łopatami są bardziej odporne na silne wiatry, co zwiększa ich trwałość i niezawodność. Przykłady zastosowania takich turbin można znaleźć w wielu nowoczesnych farmach wiatrowych, gdzie ich konstrukcja została dostosowana do standardów IEC 61400, które określają wymagania dotyczące projektowania i testowania turbin wiatrowych. Trzy łopaty zapewniają również lepszą możliwość dostosowania do różnych warunków wiatrowych, co jest kluczowe w kontekście zmieniającego się klimatu i lokalnych uwarunkowań geograficznych.

Pytanie 32

Jaką wartość ma maksymalny współczynnik przenikania ciepła (Uc max) dla zewnętrznych ścian nowych obiektów budowlanych od 01.01.2017 roku przy t1 >= 16°C?

A. 0,20 W/m2∙K
B. 0,25 W/m2∙K
C. 0,23 W/m2∙K
D. 0,28 W/m2∙K
Maksymalny współczynnik przenikania ciepła dla ścian zewnętrznych nowych budynków, wynoszący 0,23 W/m2∙K, jest zgodny z obowiązującymi normami budowlanymi, które weszły w życie 1 stycznia 2017 roku. Wartość ta wynika z założeń dotyczących efektywności energetycznej budynków oraz polityki zrównoważonego rozwoju, mającej na celu zmniejszenie zużycia energii oraz ograniczenie emisji CO2. Niska wartość Uc ma kluczowe znaczenie dla zapewnienia komfortu cieplnego wewnątrz budynków, a także dla obniżenia kosztów ogrzewania. Przykładem zastosowania tej normy jest budownictwo pasywne, w którym projektowane budynki muszą spełniać rygorystyczne wymogi dotyczące izolacyjności termicznej. Zastosowanie technologii, takich jak panele izolacyjne o wysokiej wydajności, może znacząco przyczynić się do osiągnięcia wymaganej wartości współczynnika Uc. W praktyce, deweloperzy i architekci powinni zwracać szczególną uwagę na wybór materiałów oraz technologii budowlanych, które pozwolą na spełnienie tych norm, co wpływa na ogólną jakość budynku oraz jego efektywność energetyczną.

Pytanie 33

W systemie grzewczym jednowalentnym występuje

A. pompa ciepła oraz kocioł gazowy
B. pompa ciepła oraz kocioł olejowy
C. wyłącznie pompa ciepła
D. pompa ciepła, kocioł gazowy oraz grzałka elektryczna
W monowalentnym systemie grzewczym zastosowanie ma tylko jedno źródło ciepła, którym w tym przypadku jest pompa ciepła. Pompy ciepła są nowoczesnym rozwiązaniem, które efektywnie przekształca energię z otoczenia, taką jak powietrze, woda czy grunt, na energię cieplną. Użycie tylko pompy ciepła w systemie grzewczym pozwala na uzyskanie wysokiej efektywności energetycznej, co jest zgodne z aktualnymi standardami dotyczącymi ochrony środowiska. Przykładem zastosowania pompy ciepła jako jedynego źródła ciepła mogą być budynki pasywne, które dzięki odpowiedniej izolacji i zastosowaniu technologii OZE (odnawialnych źródeł energii) mogą być efektywnie ogrzewane wyłącznie przy pomocy pompy ciepła. Takie rozwiązania przyczyniają się do obniżenia emisji CO2 oraz kosztów eksploatacyjnych, co jest kluczowe w kontekście zrównoważonego rozwoju. W dobrych praktykach branżowych zaleca się ocenę potencjału zastosowania pomp ciepła w danym budynku oraz dostosowanie systemu grzewczego do specyfikacji budowlanej i potrzeb użytkowników.

Pytanie 34

Pompę solarną należy zainstalować na rurze

A. napełniającym
B. zasilającym
C. powrotnym
D. bezpieczeństwa
Prawidłową odpowiedzią jest montaż pompy solarnej na przewodzie powrotnym, co jest zgodne z zasadami efektywności systemów grzewczych opartych na energii słonecznej. W układach solarnych, przewód powrotny to ten, który transportuje schłodzoną ciecz z wymiennika ciepła z powrotem do kolektorów słonecznych. Montując pompę na tym przewodzie, zapewniamy jej optymalne warunki pracy, co zwiększa efektywność całego systemu. Pompa wspomaga krążenie płynu roboczego, co pozwala na efektywne pobieranie ciepła zgromadzonego w kolektorach. W praktyce, takie rozwiązanie pozwala na szybsze osiągnięcie pożądanej temperatury w układzie i minimalizuje ryzyko przegrzewania się cieczy. Zgodnie z normami branżowymi, takimi jak EN 12975, należy stosować odpowiednie komponenty i techniki montażowe, aby zapewnić długoterminową i niezawodną pracę systemów solarnych, a lokalizacja pompy na przewodzie powrotnym jest jednym z kluczowych elementów tych standardów.

Pytanie 35

Kosztorys, który nie zawiera danych o cenach, nazywamy kosztorysem:

A. wstępnym
B. powykonawczym
C. ślepym
D. ofertowym
Kosztorys ślepy jest specyficznym rodzajem dokumentu, który nie zawiera informacji o cenach jednostkowych, lecz koncentruje się na ilościach materiałów oraz robocizny niezbędnych do realizacji danego projektu. Tego rodzaju kosztorys jest stosowany w sytuacjach, gdy organizacja chce oszacować zapotrzebowanie na zasoby, nie ujawniając przy tym informacji o kosztach. Jest to praktyka, która znajduje zastosowanie w różnych etapach planowania projektu, szczególnie w fazie wstępnej, gdzie istotna jest ocena zasobów bez obciążania decyzji o konkretne ceny. Wiele przedsiębiorstw budowlanych i inżynieryjnych korzysta z kosztorysów ślepych, aby lepiej planować przyszłe prace oraz negocjować warunki współpracy z dostawcami. W branży budowlanej, w której zmienna dynamika cen materiałów i robocizny może wpływać na ostateczny koszt projektu, posiadanie takiego kosztorysu pozwala na elastyczność w podejmowaniu decyzji i zarządzaniu budżetem.

Pytanie 36

Podczas przewozu pompy ciepła należy wziąć pod uwagę szczególną podatność tego urządzenia na

A. działanie promieni słonecznych
B. nachylenia
C. niskie temperatury
D. wilgotność powietrza
Pompy ciepła to dość skomplikowane urządzenia, które niestety są dość wrażliwe na różne przechylenia, zwłaszcza podczas transportu. Wynika to z ich konstrukcji oraz użytych części, jak sprężarki, parowniki czy skraplacze. Jak coś pójdzie nie tak w transporcie, to te elementy mogą się po prostu uszkodzić. Na przykład, jeśli sprężarka będzie w złym kącie, to może być problem z jej smarowaniem, co sprawi, że szybciej się zużyje. W branży trzeba naprawdę uważać na standardy transportu, zwłaszcza te normy ISO 9001, które mówią, jak prawidłowo pakować i przewozić takie wrażliwe sprzęty. Dlatego podczas transportu pomp ciepła warto trzymać się wskazówek producenta, które często mówią o tym, jak bardzo można je nachylać i jakie metody zabezpieczenia stosować, żeby wszystko było w porządku.

Pytanie 37

W konstrukcji systemów solarnych należy wykorzystywać rury

A. polietylenowe
B. polipropylenowe
C. miedziane
D. stalowe
Miedziane rury to naprawdę najlepszy wybór, jeżeli chodzi o instalacje solarne. Ich właściwości przewodzenia ciepła są po prostu świetne, co sprawia, że energia słoneczna jest wykorzystana w 100%. Co więcej, miedź jest bardzo trwała i elastyczna, więc łatwo można ją formować i instalować. W praktyce, miedziane rury są wykorzystywane nie tylko w kolektorach słonecznych, ale także w ogrzewaniu podłogowym. Dzięki nim cały system działa o wiele lepiej. A wiadomo, że miedź spełnia normy, takie jak PN-EN 1057, co też jest sporym plusem, bo to znaczy, że możemy na niej polegać w instalacjach wodociągowych, a to się przekłada na bezpieczeństwo i efektywność systemu solarnych.

Pytanie 38

Czym jest pelet?

A. słomą w pakach
B. osadem pochodzącym z oczyszczania ścieków
C. paliwem wytwarzanym z węgla brunatnego
D. paliwem otrzymywanym z przetworzonego drewna
Pelet to materiał energetyczny w postaci małych, sprasowanych granulek, który powstaje w wyniku przetwarzania surowców drzewnych, takich jak trociny, wióry czy zrębki. Proces produkcji peletów obejmuje ich suszenie, a następnie prasowanie pod wysokim ciśnieniem, co pozwala na uzyskanie zwartej struktury oraz zwiększenie gęstości energetycznej. Pelet jest uznawany za paliwo ekologiczne, ponieważ jego spalanie generuje znacznie mniejsze ilości dwutlenku węgla w porównaniu z paliwami kopalnymi. W praktyce, pelet jest wykorzystywany w piecach na pelet, kotłach i piecach kominkowych, co sprawia, że stanowi alternatywę dla gazu, oleju opałowego czy węgla. Warto również zauważyć, że produkcja peletów musi spełniać określone normy jakościowe, takie jak ENplus lub DINplus, które zapewniają odpowiednią kaloryczność oraz niską zawartość popiołu, co jest kluczowe dla efektywności energetycznej i ochrony środowiska.

Pytanie 39

Gdzie w instalacji solarnej umieszcza się mieszacz wody użytkowej?

A. pomiędzy obiegiem solarnym a obiegiem wody ciepłej
B. pomiędzy centralnym ogrzewaniem a obiegiem wody zimnej
C. pomiędzy obiegiem solarnym a obiegiem wody zimnej
D. pomiędzy wodą zimną a obiegiem wody ciepłej
Mieszacz wody użytkowej w instalacji solarnej jest kluczowym elementem, który zapewnia optymalne wykorzystanie ciepła generowanego przez kolektory słoneczne. Jego prawidłowe umiejscowienie pomiędzy obiegiem wody zimnej a obiegiem wody ciepłej pozwala na efektywne zarządzanie temperaturą wody dostarczanej do odbiorników, takich jak krany czy urządzenia sanitarno-grzewcze. Mieszacz umożliwia regulację proporcji wody zimnej i ciepłej, co jest niezbędne do uzyskania komfortu użytkowania oraz ochrony instalacji przed przegrzewaniem. Przykładowo, w sytuacji, gdy temperatura wody z kolektorów jest zbyt wysoka, mieszacz może wprowadzać zimną wodę, obniżając tym samym temperaturę mieszanki. Zgodnie z dobrymi praktykami branżowymi, takie rozwiązanie minimalizuje ryzyko uszkodzenia urządzeń oraz poprawia ich żywotność. Ponadto, zastosowanie mieszacza przyczynia się do efektywności energetycznej całego systemu solarnego, co jest szczególnie istotne w kontekście zrównoważonego rozwoju i ochrony środowiska.

Pytanie 40

Dla budynku jednorodzinnego zalecana instalacja powinna mieć około 3 kW zainstalowanej mocy (12 paneli fotowoltaicznych o mocy 250 W). Materiały niezbędne do realizacji instalacji PV sieciowej o mocy 1 kW kosztują 8 000 zł. Montaż systemu na dachu wymaga pracy dwóch pracowników przez 12 godzin każdy według stawki 20 zł za 1 roboczogodzinę. Firma wykonawcza dolicza marżę w wysokości 25% kosztów materiałów. Jaki jest całkowity koszt montażu instalacji PV sieciowej?

A. 30 300 zł
B. 30 480 zł
C. 8 240 zł
D. 10 240 zł
No więc, dobra robota z wyborem odpowiedzi! 30 480 zł to całkiem konkretna kwota i dobrze to obliczyłeś. Jak to się ma do kosztów montażu instalacji fotowoltaicznej, to mamy tu sporo szczegółów. Koszt materiałów na 1 kW to 8 000 zł, to takie podstawowe dane. Pamiętaj też, że trzeba doliczyć robociznę - dwóch pracowników, każdy pracuje 12 godzin za 20 zł na godzinę, co daję nam 480 zł. Nie zapomnij, że firma też dorzuca swoją marżę, a tu jest 25% od materiałów, co daje dodatkowe 2 000 zł. Jak to wszystko zsumujesz, to wychodzi właśnie te 30 480 zł. To świetny przykład na to, jak ważna jest wiedza o kosztach przy planowaniu takich projektów. Zrozumienie tego wszystkiego pomaga w lepszej organizacji budżetu. No, a to, że to wszystko uwzględniłeś, to naprawdę dobrze o Tobie świadczy.