Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 22 maja 2025 09:49
  • Data zakończenia: 22 maja 2025 10:06

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W normalnych warunkach działania wyłącznika różnicowoprądowego wektorowa suma natężeń prądów sinusoidalnych przepływających w przewodach fazowych oraz neutralnym wynosi

A. 1 A
B. 0 A
C. 2 A
D. 3 A
W przypadku wyłącznika różnicowoprądowego, jego podstawowym zadaniem jest monitorowanie różnicy natężeń prądu między przewodami fazowymi a przewodem neutralnym. W warunkach normalnej pracy, gdy urządzenie działa prawidłowo, suma wektorowa natężeń prądów płynących przez przewody powinna wynosić 0 A. Oznacza to, że prąd wpływający do obwodu przez przewód fazowy jest równy prądowi wypływającemu przez przewód neutralny. Przykładowo, jeśli w obwodzie mamy trzy przewody fazowe, każdy z określonym natężeniem prądu, to ich suma wektorowa, uwzględniająca odpowiednie fazy, powinna wskazywać na zerowe natężenie w przewodzie neutralnym. Zgodnie z normą PN-IEC 61008, wyłączniki różnicowoprądowe są projektowane w taki sposób, aby skutecznie wykrywać różnice prądów oraz zapewniać bezpieczeństwo użytkowników poprzez automatyczne odłączenie obwodu w przypadku wykrycia upływu prądu. Taka funkcjonalność jest kluczowa w instalacjach elektrycznych, gdzie bezpieczeństwo i ochrona przed porażeniem prądem są priorytetami.

Pytanie 2

Jakie urządzenie można zastosować do pomiaru siły nacisku generowanej przez prasę pneumatyczną?

A. pirometr
B. szczelinomierz
C. tensometr
D. hallotron
Tensometr to urządzenie służące do pomiaru deformacji materiałów, co czyni go idealnym narzędziem do pomiaru siły nacisku wytwarzanej przez prasę pneumatyczną. Działa na zasadzie pomiaru zmiany oporu elektrycznego, który jest proporcjonalny do deformacji ciała stałego. W praktyce, tensometry są często stosowane w przemyśle do monitorowania obciążeń w różnych maszynach, w tym prasach hydraulicznych i pneumatycznych. Dzięki zastosowaniu tensometrów można na bieżąco kontrolować siłę nacisku, co jest niezwykle ważne dla zapewnienia bezpieczeństwa oraz efektywności procesów produkcyjnych. W standardach branżowych, takich jak ISO, zaleca się regularne stosowanie tensometrów w aplikacjach związanych z kontrolą jakości i monitorowaniem wydajności maszyn. Dodatkowo, zrozumienie działania tensometrów pozwala inżynierom na efektywniejsze projektowanie i optymalizację systemów mechanicznych.

Pytanie 3

Montaż realizowany według zasady całkowitej zamienności polega na

A. tym, że wymagana precyzja wymiaru montażowego osiągana jest przez dopasowanie jednego z elementów składowych poprzez obróbkę jej powierzchni w trakcie montażu
B. tym, że pewien odsetek elementów składowych ma wyższe tolerancje wymiarowe, co obniża koszty produkcji części
C. montażu elementów składowych wykonanych z dużą precyzją, czyli o bardzo małych tolerancjach wymiarowych
D. podziale obrobionych komponentów tworzących zespół według ich rzeczywistych wymiarów
Zrozumienie zasady całkowitej zamienności w montażu jest fundamentalne dla uzyskania wysokiej jakości produktów. Wiele osób błędnie interpretuje, że montaż może opierać się na tolerancjach wymiarowych, które są zbyt szerokie, co jest odzwierciedlone w jednym z podejść, które sugeruje, że pewien procent części składowych może mieć większe tolerancje, co prowadzi do obniżenia kosztów wykonania. W rzeczywistości, taka strategia może skutkować problemami z kompatybilnością i wymiennością elementów, co narusza zasadę całkowitej zamienności. Niewłaściwe podejście do podziału obrobionych części według ich rzeczywistych wymiarów, jak sugeruje inna odpowiedź, również nie jest zgodne z najlepszymi praktykami w obszarze montażu. Każda część powinna być projektowana z myślą o tym, aby pasować do innych w zespole bez dodatkowej obróbki. Zasada ta zakłada, że części muszą być produkowane zgodnie z określonymi normami tolerancyjnymi, co zapewnia ich wymienność. Kolejna niepoprawna koncepcja dotyczy uzyskiwania wymagań dotyczących wymiarów montażowych poprzez dopasowanie jednej z części w czasie montażu. Takie podejście jest niewłaściwe, ponieważ wprowadza niepotrzebny czas i koszty oraz ryzyko błędów montażowych. Kluczowym elementem skutecznego montażu jest standaryzacja wymiarów, co pozwala na uniknięcie sytuacji wymagających dostosowań. Zrozumienie wymagań stawianych przez zasady całkowitej zamienności oraz ich zastosowanie w praktyce to krok ku zwiększeniu efektywności produkcji oraz jakości finalnych wyrobów.

Pytanie 4

Jakiego koloru powinna być izolacja przewodu PE?

A. Zielony.
B. Żółto-zielony.
C. Niebieski.
D. Brązowy.
Przewód PE, czyli Protective Earth, powinien być w kolorze żółto-zielonym. To jest standard, który obowiązuje w normie IEC 60446 i w innych przepisach dotyczących instalacji elektrycznych. Przewód PE jest naprawdę ważny, bo chroni nas przed porażeniem prądem. Dlatego jasne oznaczenie tego przewodu jest kluczowe dla bezpieczeństwa ludzi i urządzeń. Dzięki żółto-zielonemu kolorowi elektrycy od razu wiedzą, jaka jest jego funkcja, co ułatwia pracę i sprawia, że wszystko jest zgodne z międzynarodowymi standardami. Kiedy coś się dzieje i awaria występuje, ten przewód powinien odprowadzać nadmiar prądu do ziemi, zmniejszając ryzyko porażenia lub uszkodzenia sprzętu. Oznaczenie w odpowiednim kolorze pozwala na szybkie zidentyfikowanie przewodów, co jest niezbędne podczas montażu czy serwisu. Właściwe oznaczenie to też kwestia ważna, bo prawo wymaga, żeby projektanci i wykonawcy przestrzegali tych norm.

Pytanie 5

Z wymienionych materiałów wybierz ten, który jest najczęściej używany w produkcji łożysk ślizgowych?

A. Epoksyt
B. Żeliwo białe
C. Teflon
D. Polistyren
Epoksyt, teflon, polistyren oraz żeliwo białe reprezentują różne materiały, które mogą być używane w różnych kontekstach inżynieryjnych, lecz nie wszystkie z nich są optymalne w produkcji łożysk ślizgowych. Epoksyt to materiał kompozytowy, który charakteryzuje się wysoką wytrzymałością mechaniczną oraz odpornością na chemikalia, ale nie ma właściwości samosmarujących, co jest kluczowe dla łożysk, które wymagają minimalizacji tarcia i zwiększonej trwałości. Polistyren, z drugiej strony, jest materiałem o niskiej wytrzymałości mechanicznej i wysokiej podatności na działanie wysokich temperatur, co czyni go nieodpowiednim w zastosowaniach wymagających dużej odporności. Żeliwo białe, chociaż jest materiałem o dobrej trwałości, nie nadaje się na łożyska ślizgowe, ze względu na swoją sztywność i dużą masę, które mogą prowadzić do zwiększenia oporów tarcia. Często błędem jest utożsamianie materiałów z wysoką wytrzymałością z ich zastosowaniem w łożyskach; w rzeczywistości kluczowe znaczenie mają także ich właściwości tribologiczne, które w przypadku niektórych z wymienionych materiałów są niewystarczające. Zrozumienie różnic w zastosowaniach tych materiałów i ich właściwości jest kluczowe w procesie projektowania komponentów mechanicznych.

Pytanie 6

Urządzenia elektroniczne, które gwarantują stabilność napięcia prądu elektrycznego na wyjściu, niezależnie od obciążeń oraz zmian w napięciu w sieci, określamy mianem

A. generatorów
B. prostowników
C. stabilizatorów
D. zasilaczy
Stabilizatory to urządzenia elektroniczne, które zapewniają stałe napięcie na wyjściu, niezależnie od zmian napięcia zasilania oraz obciążenia podłączonego do nich układu. Ich kluczową funkcją jest ochrona urządzeń elektronicznych przed niekorzystnymi skutkami wahań napięcia, co jest szczególnie istotne w zastosowaniach wymagających wysokiej niezawodności, jak w urządzeniach medycznych, systemach komputerowych czy automatyce przemysłowej. Stabilizatory można podzielić na liniowe i impulsowe, z których każdy typ ma swoje unikalne zalety i zastosowania. Stabilizatory liniowe są proste w konstrukcji i oferują niewielkie zniekształcenia, ale ich wydajność energetyczna jest niższa, co sprawia, że w zastosowaniach wymagających dużych prądów lepiej sprawdzają się stabilizatory impulsowe. W standardach branżowych, takich jak IEC 61000, uwzględnia się wymagania dotyczące stabilności napięcia w kontekście kompatybilności elektromagnetycznej, co czyni stabilizatory niezbędnym elementem w projektowaniu nowoczesnych systemów elektronicznych.

Pytanie 7

Ciągłe sensory oraz wzmacniacze operacyjne stanowią standardowe komponenty systemu sterowania?

A. analogowego
B. cyfrowego
C. programowalnego
D. binarnego
Wybór odpowiedzi związanej z układami cyfrowymi nie jest najlepszy. Układy cyfrowe działają na dyskretnych wartościach, a nie na ciągłych sygnałach. Sensory i wzmacniacze analogowe muszą być najpierw odpowiednio przetworzone, na przykład przez konwersję analogowo-cyfrową, zanim będą mogły współpracować z systemami cyfrowymi. Odpowiedzi związane z układami programowalnymi czy binarnymi również nie mają sensu, bo nie odnoszą się do kluczowych cech analogowych sygnałów. Układy programowalne, jak PLC, łączą zarówno analogowe, jak i cyfrowe komponenty, ale same działają na zupełnie innych zasadach. Trzeba zrozumieć, że układy binarne nie mogą współpracować bezpośrednio z elementami działającymi w trybie ciągłym, ponieważ wymaga to zastosowania konwerterów. Kluczowe jest, żeby znać podstawy przetwarzania sygnałów, co pomoże lepiej zrozumieć różnice między tymi układami.

Pytanie 8

Nie można zrealizować regulacji prędkości obrotowej silników indukcyjnych poprzez zmianę

A. wartości częstotliwości napięcia zasilającego
B. kolejności faz
C. liczby par biegunów
D. wartości skutecznej napięcia zasilania stojana
Kolejność faz w silnikach indukcyjnych nie wpływa na prędkość obrotową, a jedynie na kierunek obrotów. Dostosowanie prędkości obrotowej silnika indukcyjnego można osiągnąć poprzez zmianę częstotliwości napięcia zasilającego, co jest zgodne z zasadą, że prędkość obrotowa silnika jest proporcjonalna do częstotliwości napięcia. Również zmianę liczby par biegunów, co wymaga zmiany konstrukcji silnika. Przykłady zastosowania tej wiedzy obejmują systemy napędowe, gdzie kontrola prędkości jest kluczowa, takie jak pompy czy wentylatory, gdzie za pomocą falowników przekształca się częstotliwość zasilania. Standardy jak IEC 60034-1 regulują takie aspekty, zapewniając wydajność i bezpieczeństwo operacyjne. Zrozumienie, że kolejność faz nie wpływa na prędkość, jest kluczowe w prawidłowym projektowaniu i eksploatacji systemów elektrycznych.

Pytanie 9

Co oznaczają kolory przewodów w trójprzewodowych czujnikach zbliżeniowych prądu stałego?

A. brązowy (czerwony) - plus zasilania; czarny - przewód sygnałowy; niebieski - minus zasilania
B. brązowy (czerwony) - przewód sygnałowy; czarny - minus zasilania; niebieski - plus zasilania
C. brązowy (czerwony) - minus zasilania; czarny - plus zasilania
D. niebieski - przewód sygnałowy; brązowy (czerwony) - przewód sygnałowy; czarny - minus zasilania; niebieski - plus zasilania
Odpowiedź, w której brązowy (czerwony) przewód oznacza plus zasilania, czarny przewód to przewód impulsowy, a niebieski przewód to minus zasilania, jest prawidłowa i zgodna z powszechnie przyjętymi standardami branżowymi. W systemach zbliżeniowych prądu stałego kolorystyka przewodów ma kluczowe znaczenie dla zapewnienia prawidłowego działania urządzeń. Użycie brązowego lub czerwonego przewodu jako przewodu dodatniego (plus) jest normą w wielu krajach, a czarny przewód jest standardowo używany jako przewód sygnałowy lub impulsowy. Niebieski przewód w tym kontekście pełni funkcję przewodu ujemnego (minus). W praktyce, stosowanie się do tych oznaczeń ma kluczowe znaczenie dla prawidłowego podłączenia urządzeń, co zapobiega zwarciom oraz uszkodzeniom komponentów. W przypadku błędnego podłączenia, na przykład zamieniając przewody plus i minus, może dojść do uszkodzenia czujnika lub nieprawidłowego działania systemu. Przykładem zastosowania tej wiedzy może być instalacja systemów automatyki budynkowej, gdzie prawidłowe podłączenie czujników zbliżeniowych jest kluczowe dla ich efektywności.

Pytanie 10

Przed przystąpieniem do wymiany zaworu elektropneumatycznego, sterowanego przez PLC, co należy zrobić?

A. zatrzymać zasilanie pneumatyczne, odłączyć przewody od cewki elektrozaworu oraz przewody pneumatyczne
B. wyłączyć dopływ sprężonego powietrza, odłączyć siłownik oraz PLC
C. odłączyć przewody zasilające do sterownika oraz przewody pneumatyczne od elektrozaworu
D. wprowadzić sterownik PLC w stan STOP, a następnie wyłączyć zasilanie elektryczne i pneumatyczne układu
Wprowadzenie sterownika PLC w tryb STOP oraz wyłączenie zasilania elektrycznego i pneumatycznego układu to kluczowe kroki przed rozpoczęciem wymiany zaworu elektropneumatycznego. Takie podejście minimalizuje ryzyko błędów oraz zapewnia bezpieczeństwo podczas prac serwisowych. W trybie STOP sterownik nie wykonuje żadnych operacji, co zapobiega niekontrolowanemu działaniu urządzeń. Wyłączenie zasilania elektrycznego oraz pneumatycznego jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa pracy z systemami pneumatycznymi i automatyki. Przykładowo, w przemyśle automatycznym często stosuje się blokady mechaniczne i elektryczne, aby upewnić się, że urządzenia są całkowicie unieruchomione. Dobrym standardem jest również przeprowadzenie analizy ryzyka przed rozpoczęciem takich prac oraz oznaczenie strefy roboczej, aby zminimalizować ryzyko wypadków. W ten sposób, poprzez zastosowanie odpowiednich procedur, można uniknąć niebezpiecznych sytuacji i zapewnić bezpieczne warunki pracy.

Pytanie 11

Które z poniższych urządzeń nie należy do kategorii mechatronicznych?

A. chłodziarko-zamrażarka z cyfrowym sterowaniem
B. odtwarzacz płyt CD oraz DVD
C. drukarka laserowa
D. silnik indukcyjny klatkowy
Wybór odpowiedzi, które wskazują na urządzenia mechatroniczne, raczej wynika z tego, że nie do końca rozumiesz, co to takiego. Przykłady jak drukarka laserowa, odtwarzacz płyt CD i DVD czy sterowana cyfrowo chłodziarko-zamrażarka to rzeczywiście łączą w sobie mechanikę, elektronikę i informatykę, przez co mogą być uznane za mechatroniczne. Przykładowo, drukarka laserowa to zaawansowane urządzenie, które łączy różne technologie – optykę, elektronikę i mechanikę – żeby drukować z dużą precyzją. Odtwarzacze płyt również wykorzystują mechanizmy do ładowania płyt i mają systemy laserowe do odczytu danych oraz elektroniki do przetwarzania dźwięku i obrazu. A te chłodziarko-zamrażarki, które są sterowane cyfrowo, to złożone systemy z czujnikami temperatury i mechaniką, które pomagają zarządzać temperaturą i oszczędzać energię. Warto, żebyś przy wyborze odpowiedzi pamiętał, że mechatronika to głównie systemy, gdzie mechanika spotyka elektronikę. Często popełniane błędy to takie, że zawężasz definicję mechatroniki tylko do mechaniki, przez co pomijasz ważne elektroniczne i cyfrowe elementy, które są kluczowe dla działania tych systemów.

Pytanie 12

Z informacji o parametrach wynika, że cewka elektrozaworu jest przeznaczona do pracy z napięciem przemiennym o wartości 230 V. Jaką wartość ona reprezentuje?

A. średnia napięcia wyznaczona dla okresu
B. średnia napięcia wyznaczona dla półokresu
C. maksymalna napięcia podzielona przez √3
D. maksymalna napięcia podzielona przez √2
Odpowiedź wskazująca, że napięcie 230 V jest maksymalnym napięciem podzielonym przez √2 jest prawidłowa, ponieważ w przypadku napięcia przemiennego, wartość skuteczna (RMS) jest kluczowym parametrem. Wartość skuteczna napięcia przemiennego jest definiowana jako wartość napięcia, która dostarcza taką samą moc średnią jak napięcie stałe. W przypadku sygnału sinusoidalnego, wartość skuteczna jest uzyskiwana poprzez podział maksymalnego napięcia przez pierwiastek kwadratowy z dwóch (√2). W praktyce, w instalacjach elektrycznych, napięcie 230 V odnosi się do wartości skutecznej, co jest standardem w Europie. Dlatego cewki elektrozaworów zaprojektowane do pracy przy napięciu 230 V są przystosowane do napięcia o maksymalnej wartości 325 V (230 V × √2). Zastosowanie tego parametru jest istotne w kontekście projektowania systemów zasilania, gdzie należy uwzględnić zarówno wartości skuteczne, jak i maksymalne, aby zapewnić prawidłowe działanie urządzeń i uniknąć uszkodzeń. Warto zwrócić uwagę, że przestrzeganie tych norm jest kluczowe dla bezpieczeństwa i niezawodności instalacji elektrycznych.

Pytanie 13

Który z poniższych języków programowania dla sterowników PLC jest językiem tekstowym?

A. ST (Structured Text) - tekst strukturalny
B. FBD (Function Block Diagram) - schemat bloków funkcyjnych
C. IL (Instruction List) - lista instrukcji - lista instrukcji
D. SFC (SeΩuential Function Chart) - schemat sekwencji funkcji
SFC, FBD i ST to też języki programowania, które wykorzystuje się w PLC, ale tu jest mały szkopuł – nie są one tekstowe. SFC, czyli Sequential Function Chart, to bardziej graficzny sposób przedstawienia działania systemu. Pokazuje, jak przebiegają operacje w formie diagramu, co jest fajne dla wizualizacji, ale nie przypomina zwykłego kodu. FBD, czyli Function Block Diagram, działa na podobnej zasadzie – tworzy się tam bloki funkcyjne i łączy je jako rysunki. To ułatwia modelowanie systemów, ale znowu, to nie tekst. ST, czyli Structured Text, jest bardziej skomplikowanym językiem tekstowym, bliskim tym wysokiego poziomu jak Pascal czy C. Chociaż ST jest tekstowy, to w tym przypadku odpowiedzią nie jest, bo IL to najprostszy z tekstowych języków do PLC. Wiele osób myli języki graficzne z tekstowymi, co często prowadzi do takich błędów. Takie zrozumienie poziomów abstrakcji jest kluczowe, zwłaszcza przy nauce programowania w automatyce.

Pytanie 14

Po wykonaniu otworów w płaskowniku, które są potrzebne do zrealizowania połączenia śrubowego, należy pozbyć się metalowych zadziorów. Jak się nazywa ta czynność?

A. Powiercanie
B. Szlifowanie
C. Gratowanie
D. Wygładzanie
Gratowanie to proces, który ma na celu usunięcie ostrych krawędzi oraz resztek metalu powstałych podczas wiercenia otworów. Jest to kluczowy etap obróbki, który zapewnia dalsze bezpieczeństwo oraz precyzję w wykonaniu połączeń śrubowych. Proces ten polega na mechanicznej obróbce krawędzi otworów, co pozwala na wygładzenie powierzchni oraz eliminację wszelkich zadziorów, które mogą negatywnie wpływać na jakość połączenia. Gratowanie jest nie tylko zalecane, ale w wielu przypadkach wymagane przez normy branżowe, takie jak ISO 2768, które określają tolerancje i wymagania dotyczące obróbki mechanicznej. Przykładem zastosowania gratowania jest przemysł motoryzacyjny, gdzie połączenia śrubowe muszą być nie tylko mocne, ale także estetyczne i bezpieczne dla użytkowników. Poprawne gratowanie zmniejsza ryzyko uszkodzeń śrub oraz podzespołów, co przekłada się na dłuższą żywotność całej konstrukcji. Warto zatem stosować odpowiednie narzędzia, takie jak gratowniki ręczne lub automatyczne, które zapewniają efektywność i powtarzalność procesu.

Pytanie 15

Jakie elementy znajdują się w zespole przygotowania powietrza?

A. sprężarka, filtr, zawór redukcyjny, manometr
B. filtr, zawór redukcyjny, manometr, smarownica
C. sprężarka, filtr, manometr, smarownica
D. filtr, zawór dławiący, manometr, smarownica
Nieprawidłowe odpowiedzi dotyczą elementów, które nie są standardowo częścią zespołu przygotowania powietrza. Odpowiedzi takie jak sprężarka i zawór dławiący wskazują na pewne nieporozumienia. Sprężarka jest urządzeniem odpowiedzialnym za wytwarzanie sprężonego powietrza, ale nie jest elementem przygotowania powietrza; jest to zatem pierwszy krok w procesie, a nie jego część. W kontekście branżowym, elementy te powinny być rozróżniane, aby uniknąć błędów w projektowaniu systemów pneumatycznych. Zawór dławiący jest zazwyczaj używany do regulacji przepływu, ale nie spełnia funkcji zaworu redukcyjnego, który jest kluczowy do utrzymania stabilnego ciśnienia. Zawory dławiące mogą prowadzić do niestabilności w systemie, gdyż nie kontrolują ciśnienia, tylko jego przepływ. W przypadku zrozumienia układów pneumatycznych, istotne jest, by mieć na uwadze, że właściwe przygotowanie powietrza jest kluczowe dla efektywności całego systemu. Niewłaściwy dobór komponentów może prowadzić do zwiększonego zużycia energii, uszkodzeń urządzeń oraz obniżenia wydajności, co jest zgodne z najlepszymi praktykami branżowymi, które podkreślają znaczenie precyzyjnej konstrukcji i konserwacji systemów pneumatycznych. Dlatego kluczowe jest nie tylko posiadanie odpowiednich elementów, ale także ich integralne zrozumienie i zastosowanie w praktyce.

Pytanie 16

Podczas funkcjonowania urządzenia zaobserwowano nasilenie hałasu, spowodowane przez łożysko toczne. Odpowiednią metodą naprawy maszyny może być

A. wymiana osłony łożyska
B. wymiana całego łożyska
C. zmniejszenie luzów łożyska
D. zmniejszenie nadmiaru smaru w łożysku
Wymiana całego łożyska jest odpowiednim rozwiązaniem w przypadku stwierdzenia zwiększonego hałasu, gdyż najczęściej oznacza to, że łożysko uległo uszkodzeniu lub zużyciu. W praktyce, łożyska toczne są zaprojektowane do pracy z minimalnym luzem i w odpowiednio smarowanych warunkach. Gdy zauważamy hałas, to zazwyczaj jest skutkiem odkształceń materiałowych lub uszkodzenia elementów tocznych, co może prowadzić do dalszych uszkodzeń mechanicznych w obrębie układu napędowego. W takim przypadku wymiana całego łożyska eliminuje ryzyko wystąpienia kolejnych awarii w przyszłości. Dobrą praktyką w branży jest również przeprowadzanie analizy przyczyn źródłowych usterki, co pozwala na zrozumienie, dlaczego łożysko uległo uszkodzeniu, co może być związane z niewłaściwym smarowaniem, luzami, czy też eksploatacją w warunkach przekraczających specyfikacje producenta. Wymiana łożyska powinna być przeprowadzana zgodnie z obowiązującymi standardami, takimi jak ISO 281, które określają metodologię doboru i oceny łożysk, co zwiększa niezawodność całego urządzenia.

Pytanie 17

Pralka automatyczna nie reaguje po naciśnięciu przycisku zasilania. Co może być przyczyną takiej sytuacji?

A. brakiem zasilania elektrycznego
B. brakiem dopływu wody do urządzenia
C. niewłaściwym zerowaniem obudowy silnika pralki
D. usterką silnika pralki
Brak zasilania napięciem elektrycznym jest najczęstszą przyczyną, dla której pralka automatyczna nie reaguje po wciśnięciu przycisku zasilania. W praktyce, przed rozpoczęciem jakiejkolwiek diagnostyki, warto upewnić się, że urządzenie jest prawidłowo podłączone do gniazdka i że gniazdko jest sprawne. Testowanie gniazdka za pomocą innego urządzenia, np. lampki, może potwierdzić obecność napięcia. W sytuacji, gdy zasilanie jest prawidłowe, dalsza kontrola powinna obejmować przewody zasilające i wtyczki, które mogą ulec uszkodzeniu. W standardzie instalacji elektrycznych, aby zapewnić bezpieczeństwo urządzeń, należy stosować odpowiednie zabezpieczenia, takie jak bezpieczniki czy wyłączniki różnicowoprądowe. Ponadto, regularne przeglądy instalacji elektrycznej są zalecane, aby unikać problemów związanych z zasilaniem, co jest zgodne z dobrymi praktykami w dziedzinie bezpieczeństwa urządzeń AGD.

Pytanie 18

Jakie napięcie wyjściowe dostarcza przetwornik ciśnienia, jeśli jego zakres napięcia wynosi od 0 V do 10 V dla ciśnienia w przedziale 0 kPa ... 600 kPa, a ciśnienie wynosi 450 kPa, przy założeniu liniowej charakterystyki przetwornika?

A. 10,0 V
B. 4,5 V
C. 3,0 V
D. 7,5 V
Odpowiedź 7,5 V jest prawidłowa, ponieważ przetwornik ciśnienia ma liniową charakterystykę wyjścia w zakresie od 0 V do 10 V dla ciśnienia od 0 kPa do 600 kPa. Aby obliczyć napięcie wyjściowe dla ciśnienia 450 kPa, należy zastosować proporcję. Wzór na obliczenie napięcia wyjściowego (V_out) w zależności od ciśnienia (P) jest następujący: V_out = (P / 600 kPa) * 10 V. Podstawiając wartość ciśnienia 450 kPa, otrzymujemy V_out = (450 / 600) * 10 V = 7,5 V. Tego typu przetworniki są powszechnie stosowane w systemach automatyki przemysłowej, gdzie ważne jest monitorowanie ciśnienia, na przykład w układach hydraulicznych czy pneumatycznych. W praktyce, wiedza ta jest niezbędna do prawidłowej konfiguracji systemów pomiarowych i zapewnienia ich właściwego działania. Przestrzeganie standardów branżowych, takich jak ISO 9001, podkreśla znaczenie precyzyjnych pomiarów ciśnienia w celu zapewnienia jakości i bezpieczeństwa procesów przemysłowych.

Pytanie 19

Siłownik, zasilany sprężonym powietrzem o ciśnieniu roboczym 8 bar, ma maksymalną liczbę cykli nmax = 50/min oraz zużywa 1,4 litra powietrza w trakcie jednego cyklu. Jakie parametry powinna mieć sprężarka tłokowa do zasilania tego siłownika?

A. wydajność 3,6 m3/h, ciśnienie maksymalne 0,7 MPa
B. wydajność 5,3 m3/h, ciśnienie maksymalne 0,7 MPa
C. wydajność 3,6 m3/h, ciśnienie maksymalne 1,0 MPa
D. wydajność 5,3 m3/h, ciśnienie maksymalne 1,0 MPa
Wybrana odpowiedź jest poprawna, ponieważ wymagana wydajność sprężarki tłokowej wynosi co najmniej 5,3 m3/h, aby sprostać zapotrzebowaniu siłownika. Siłownik wykonuje 50 cykli na minutę, zużywając 1,4 litra powietrza na cykl. Łączne zużycie powietrza wynosi 50 cykli/min x 1,4 litra/cykl = 70 litrów/minutę, co przelicza się na 4,2 m3/h. Wybór sprężarki o wydajności 5,3 m3/h zapewnia odpowiedni zapas, co jest zgodne z praktykami inżynieryjnymi, które zalecają uwzględnienie marginesu zapasu wydajności dla osiągnięcia stabilnej pracy. Dodatkowo, maksymalne ciśnienie 1,0 MPa (10 bar) spełnia wymagania robocze siłownika, który działa przy ciśnieniu 8 bar. Użycie sprężarki z wyższym ciśnieniem pozwoli również na ewentualne straty ciśnienia w systemie oraz wzmożone zapotrzebowanie w przypadku intensywnej pracy siłownika, co jest istotne w aplikacjach przemysłowych, takich jak automatyzacja produkcji oraz systemy transportu pneumatycznego.

Pytanie 20

Która z poniższych metod nie jest wykorzystywana do trwałego łączenia elementów z tworzyw sztucznych?

A. Zaginania
B. Zgrzewania
C. Klejenia
D. Spawania
Spawanie, zgrzewanie i klejenie to techniki, które są powszechnie stosowane do trwałego łączenia elementów wykonanych z tworzyw sztucznych, co czyni je nieodpowiednimi odpowiedziami na zadane pytanie. Spawanie polega na stosowaniu wysokiej temperatury w celu stopienia krawędzi dwóch elementów, co stoi w sprzeczności z celem pytania, ponieważ łączy je na trwałe. Zgrzewanie natomiast wykorzystuje ciepło i ciśnienie do połączenia materiałów, co jest typowe dla cienkowarstwowych tworzyw sztucznych, takich jak polietylen czy polipropylen. Te metody są szczególnie cenione w przemyśle, ponieważ pozwalają na uzyskanie mocnych i odpornych na czynniki zewnętrzne połączeń. Klejenie, z użyciem odpowiednich adhezyjnych substancji chemicznych, również umożliwia trwałe łączenie elementów z tworzyw sztucznych, a współczesne technologie oferują szeroki wachlarz klejów, które zapewniają różne właściwości, takie jak elastyczność czy odporność na wysokie temperatury. Typowe błędy myślowe prowadzące do wyboru tych odpowiedzi mogą wynikać z mylenia procesów formowania z procesami łączenia. Ważne jest zrozumienie, że każdy z tych procesów ma swoje specyficzne zastosowania i nie każdy z nich jest odpowiedni do trwałego łączenia elementów wykonanych z tworzyw sztucznych.

Pytanie 21

Funkcją czujnika hallotronowego w urządzeniach do monitorowania i pomiarów jest detekcja

A. zmian wartości parametrów pola magnetycznego
B. oporu przepływu płynów
C. zmian wartości momentów skręcających
D. wewnętrznych naprężeń
Czujniki hallotronowe są specyficznymi urządzeniami wykrywającymi pola magnetyczne, a nie zmiany oporów cieczy, naprężeń wewnętrznych czy sił skręcających. W przypadku oporów przepływu cieczy, używane są zazwyczaj czujniki oparte na pomiarach hydraulicznych lub elektrycznych, które analizują zmiany w oporze elektrycznym w zależności od przepływu cieczy. To podejście jest całkowicie odmienne od zasad działania czujników hallotronowych, które nie mogą bezpośrednio mierzyć takich parametrów. Z kolei naprężenia wewnętrzne w materiałach są zazwyczaj badane przy użyciu tensometrów, które działają na zasadzie pomiaru deformacji materiału pod wpływem obciążenia. Zastosowanie czujników hallotronowych do tego celu jest nieadekwatne, ponieważ ich konstrukcja nie umożliwia pomiaru mechanicznych właściwości materiałów. Zmiany wartości sił skręcających również nie są wykrywane przez czujniki hallotronowe. W tym przypadku konieczne jest zastosowanie specjalistycznych urządzeń, takich jak czujniki momentu obrotowego, które są zaprojektowane do pomiaru skręcania. Zrozumienie różnic pomiędzy tymi technologiami jest kluczowe dla efektywnego projektowania systemów pomiarowych oraz doboru odpowiednich czujników do konkretnej aplikacji, aby uniknąć błędów w interpretacji danych oraz zapewnić wiarygodne wyniki pomiarów.

Pytanie 22

Olej mineralny wzbogacony składnikami, które poprawiają właściwości antykorozyjne oraz odporność na starzenie, a także z dodatkami zwiększającymi smarność, oznaczany jest jakim symbolem?

A. HLP
B. HVLP
C. H
D. HL
Wybór złych symboli olejów może sporo namieszać w ich właściwościach względem potrzeb. Na przykład, symbol HVLP mówi o olejach hydraulicznych, które mają dobre właściwości smarujące, ale brakuje im tych dodatków antykorozyjnych. Również symbol HL informuje o olejach, które nie mają dodatków przeciwutleniających ani poprawiających smarność, co ogranicza ich użycie w trudniejszych warunkach. Znowu, oznaczenie H dotyczy olejów hydraulicznych, które nie mówią nic więcej o ich specyficznych właściwościach. Często myli się te symbole i ich zastosowanie, co może prowadzić do poważnych problemów w hydraulikach, jak przegrzewanie czy korozja. Dlatego tak ważne jest, aby znać różnice między tymi oznaczeniami i wiedzieć, jak je stosować w praktyce w przemyśle.

Pytanie 23

Jaką metodę łączenia materiałów należy wybrać do połączenia stali nierdzewnej z mosiądzem?

A. Klejenia
B. Lutowania miękkiego
C. Lutowania twardego
D. Zgrzewania
Lutowanie twarde jest techniką łączenia, która polega na wykorzystaniu stopu o wyższej temperaturze topnienia niż w przypadku lutowania miękkiego. Jest to proces, który zapewnia silne i trwałe połączenia, co czyni go idealnym do łączenia metali o różnych właściwościach, takich jak stal nierdzewna i mosiądz. W przypadku tych dwóch materiałów, lutowanie twarde umożliwia osiągnięcie wysokiej wytrzymałości na rozciąganie oraz odporności na korozję, co jest kluczowe w aplikacjach przemysłowych. W praktyce lutowanie twarde wymaga zastosowania odpowiednich lutów, które mają podobne właściwości fizyczne i chemiczne do łączonych materiałów. Dobrą praktyką jest również precyzyjne przygotowanie powierzchni, aby zapewnić skuteczną adhezję. Lutowanie twarde jest szeroko stosowane w branży motoryzacyjnej, elektronicznej oraz w produkcji sprzętu medycznego, gdzie niezawodność połączeń jest kluczowa.

Pytanie 24

Jakie narzędzie jest konieczne do wykonania gwintu zewnętrznego?

A. Gwintownik
B. Tłocznik
C. Skrobak
D. Narzynka
Dla nacinania gwintu zewnętrznego nie można zastosować gwintownika, ponieważ jest to narzędzie przeznaczone do wykonywania gwintów wewnętrznych. Gwintowniki są zaprojektowane tak, aby pasowały do otworów, w których gwint ma być wycinany, a ich konstrukcja oraz geometria skrawająca są dostosowane do tego celu. Użycie gwintownika do gwintu zewnętrznego prowadziłoby do nieprawidłowego kształtu gwintu oraz potencjalnych uszkodzeń elementów złącznych. Skrobak, z kolei, jest narzędziem stosowanym głównie do wygładzania powierzchni oraz usuwania nadmiaru materiału, nie ma jednak zastosowania w procesie nacinania gwintów. Tłoczniki są używane w procesach tłoczenia blach, a ich zastosowanie w gwintowaniu jest również nieadekwatne. Przykłady błędnych wniosków mogą wynikać z mylenia funkcji narzędzi skrawających. Niezrozumienie różnych typów gwintów oraz ich zastosowania w konkretnych operacjach może prowadzić do nieefektywności produkcji, a w skrajnych przypadkach do uszkodzenia maszyn. Dlatego istotne jest, aby każdy operator obrabiarek znał podstawy funkcjonalności narzędzi skrawających oraz ich poprawne zastosowanie w zależności od rodzaju gwintu, który zamierzają wykonać.

Pytanie 25

Środek gaśniczy, który może być zastosowany do likwidacji wszystkich kategorii pożarów i nie powoduje znacznych, nieodwracalnych uszkodzeń, na przykład w przypadku gaszenia sprzętu komputerowego, to

A. piana gaśnicza
B. proszek gaśniczy
C. woda
D. dwutlenek węgla
Proszek gaśniczy to uniwersalny środek gaśniczy, który jest skuteczny w gaszeniu pożarów różnych grup, w tym grup A (materiały stałe), B (cieczy palnych) i C (gazy palne). Jego działanie polega na obniżeniu temperatury oraz odcięciu dopływu tlenu do ognia. Proszki gaśnicze, takie jak proszek ABC, są szczególnie polecane w miejscach, gdzie występuje ryzyko pożaru sprzętu elektronicznego, jak komputery czy serwery, ponieważ ich użycie nie powoduje uszkodzenia sprzętu przez wodę. Dodatkowo, proszki są wybierane w obiektach przemysłowych i magazynach, gdzie występuje wiele materiałów łatwopalnych. Warto zaznaczyć, że stosowanie proszków gaśniczych powinno odbywać się zgodnie z odpowiednimi normami, takimi jak PN-EN 2 dotycząca gaśnic przenośnych. Przykładem praktycznego zastosowania proszku gaśniczego może być akcja gaśnicza w serwerowni, gdzie zastosowanie wody mogłoby prowadzić do poważnych uszkodzeń sprzętu. Dlatego proszek gaśniczy jest rekomendowany jako najbezpieczniejsza opcja w takich sytuacjach.

Pytanie 26

Jakie jest przeznaczenie przyłącza oznaczonego literą T na zaworze hydraulicznym 4/2, które ma oznaczenia A, B, P oraz T?

A. Siłownika jednostronnego działania
B. Siłownika dwustronnego działania
C. Zbiornika oleju hydraulicznego
D. Zbiornika sprężonego powietrza
Podłączenie przyłącza oznaczonego literą T do zbiornika oleju hydraulicznego jest kluczowe dla prawidłowego funkcjonowania systemu hydraulicznego. Przyłącze T, znane również jako przyłącze powrotne, służy do odprowadzania oleju hydraulicznego po jego przejściu przez układ. W standardowych zaworach hydraulicznych 4/2, przyłącze T łączy się z zbiornikiem, umożliwiając powrót oleju do obiegu, co zapobiega nadciśnieniu i pozwala na efektywne zarządzanie ciśnieniem w systemie. W praktyce, gdy ciśnienie w systemie wzrasta, olej jest kierowany do zbiornika, gdzie może być schłodzony i ponownie wykorzystywany. Zgodnie z dobrymi praktykami, ważne jest, aby przyłącze T było właściwie zabezpieczone i miało odpowiednią średnicę, aby uniknąć zatorów, co mogłoby prowadzić do uszkodzeń systemu hydraulicznego. Wiele aplikacji przemysłowych, takich jak maszyny budowlane czy linie produkcyjne, korzysta z tego rozwiązania, co potwierdza jego znaczenie w hydraulice.

Pytanie 27

Jaką metodę należy wykorzystać do połączenia szkła z metalem?

A. Klejenie
B. Spawanie
C. Nitowanie
D. Zgrzewanie
Klejenie to najskuteczniejsza metoda łączenia szkła z metalem ze względu na różnice w ich właściwościach fizycznych i chemicznych. Szkło jest materiałem kruchym, a metal - plastycznym, co sprawia, że tradycyjne metody, takie jak zgrzewanie czy spawanie, mogą prowadzić do uszkodzenia szkła. Klejenie wykorzystuje specjalistyczne kleje, które tworzą mocne, elastyczne połączenie, a także mogą dostosować się do różnic w rozszerzalności cieplnej obu materiałów. W praktyce, odpowiednie kleje epoksydowe lub akrylowe są często stosowane do takich aplikacji, umożliwiając trwałe i estetyczne łączenie. W branży budowlanej i w przemyśle, klejenie szkła do metalowych elementów jest powszechnie stosowane w oknach strukturalnych, elewacjach oraz w produkcji mebli. Dobrą praktyką jest również stosowanie gruntów, które poprawiają adhezję kleju do powierzchni, co zwiększa trwałość i odporność połączenia na różne czynniki zewnętrzne. Takie podejście jest zgodne z normami ISO dotyczących klejenia i pozwala na uzyskanie wysokiej jakości połączeń.

Pytanie 28

Jakie urządzenie jest używane do mierzenia prędkości obrotowej wału silnika?

A. czujnik termoelektryczny
B. mostek tensometryczny
C. prądnica tachometryczna
D. potencjometr obrotowy
Prądnica tachometryczna jest urządzeniem wykorzystywanym do pomiaru prędkości obrotowej wału silnika, które działa na zasadzie indukcji elektromagnetycznej. Jej działanie opiera się na generacji napięcia proporcjonalnego do prędkości obrotowej, co czyni ją niezwykle przydatną w monitorowaniu pracy maszyn. Prądnice tachometryczne znajdują zastosowanie w różnych dziedzinach, takich jak automatyka przemysłowa, kontrola procesów technologicznych oraz systemy napędowe. Dzięki nim można dokładnie kontrolować prędkość obrotową silników, co jest kluczowe dla utrzymania stabilności pracy urządzeń oraz minimalizacji zużycia energii. Współczesne prądnice tachometryczne są często zintegrowane z systemami sterowania, co pozwala na automatyzację procesów i zwiększenie efektywności produkcji. Używane są także w aplikacjach wymagających precyzyjnego pomiaru, takich jak robotyka czy systemy CNC, gdzie dokładność i niezawodność pomiarów są krytyczne.

Pytanie 29

Jakie czynności nie są wykonywane w trakcie dopasowywania komponentów podczas montażu systemów mechatronicznych?

A. Rozwiercanie
B. Docieranie
C. Skrobanie
D. Spawanie
Ważne jest, aby zrozumieć, że procesy takie jak skrobanie, rozwiercanie i docieranie są istotnymi operacjami w zakresie dopasowywania elementów w montażu urządzeń mechatronicznych. Skrobanie jest techniką, która polega na ręcznym lub mechanicznym usuwaniu materiału z powierzchni elementów w celu uzyskania precyzyjnego dopasowania. Często stosowane jest w przypadku, gdy tolerancje montażowe są krytyczne, a standardowe procesy obróbcze nie zapewniają wymaganej dokładności. Rozwiercanie z kolei polega na powiększaniu średnicy otworów, co również umożliwia lepsze dopasowanie elementów, zwłaszcza w przypadku osadzania tulei czy łożysk. Docieranie to proces, który ma na celu wygładzenie powierzchni i osiągnięcie wysokiej precyzji wymiarowej, co jest szczególnie istotne w kontekście współpracy ruchomych elementów w maszynach. Nieprawidłowe zrozumienie tych procesów może prowadzić do błędnych wniosków. Na przykład, można błędnie założyć, że spawanie, jako proces łączenia, także wpływa na dopasowanie, jednak w rzeczywistości jest to operacja, która skutkuje zmianą stanu materiałów i ich lokalizacją, co może wprowadzać błędy w precyzyjnym montażu. Wiedza o tym, jakie operacje są wykorzystywane do dopasowywania w mechatronice, jest kluczowa dla projektowania niezawodnych i funkcjonalnych systemów.

Pytanie 30

Na podstawie przedstawionej noty katalogowej termostatu HONEYWELL 3455RC określ temperaturę otwarcia oraz amplitudę.

Typ czujnikatermostat
Konfiguracja wyjściaNC
Temperatura otwarcia18°C
Temperatura zamknięcia-1°C
Prąd pracy maks.10A
Napięcie pracy maks.240V AC
Przyłączekonektory
6,4mm

A. Temperatura otwarcia 18°C, amplituda 19°C
B. Temperatura otwarcia -1°C, amplituda 18°C
C. Temperatura otwarcia 18°C, amplituda 17°C
D. Temperatura otwarcia 18°C, amplituda -1°C
Odpowiedź jest poprawna! Temperaturę otwarcia ustawiono na 18°C, a amplituda wynosi 19°C. Z tego wynika, że termostat HONEYWELL 3455RC zaczyna działać, gdy temperatura osiągnie 18°C. Amplituda wskazuje, że różnica między temperaturą otwarcia a zamknięcia to 19°C. W takim razie, temperatura zamknięcia powinna wynosić -1°C. Te parametry mają duże znaczenie w projektowaniu systemów HVAC, bo precyzyjne zarządzanie temperaturą jest ważne, żeby użytkownicy czuli się komfortowo i żeby oszczędzać energię. Na przykład, w systemach grzewczych dobrze skalibrowany termostat pomaga uniknąć niepotrzebnego zużycia energii i poprawia efektywność grzewczą. A odpowiednio dobrane parametry termostatów wpływają na to, jak działają systemy klimatyzacyjne i grzewcze, co jest istotne w naszej branży.

Pytanie 31

Osoba pracująca przy monitorze komputerowym ma prawo do

A. skrócenia o 5 minut czasu pracy za każdą godzinę pracy
B. zmniejszenia o 10 minut czasu pracy za każdą godzinę pracy
C. 10-minutowej przerwy po każdej godzinie pracy, wliczanej do czasu pracy
D. 5-minutowej przerwy po każdej godzinie pracy, wliczanej do czasu pracy
Dobra robota! Wskazanie, że powinna być 5-minutowa przerwa po każdej godzinie pracy, to zgodne z tym, co mówią przepisy. Takie przerwy są ważne, bo pomagają zadbać o zdrowie, zwłaszcza kiedy się spędza tyle czasu przed komputerem. Regularne oderwanie wzroku od ekranu to dobry pomysł, bo to może zmniejszyć zmęczenie oczu i poprawić krążenie. Z mojego doświadczenia takie przerwy naprawdę pomagają w pracy, bo pozwalają się zrelaksować i lepiej się skupić. Wiele firm zauważa korzyści płynące z promowania zdrowych nawyków, więc organizują szkolenia na temat ergonomii i przypominają pracownikom o przerwach. Warto to mieć na uwadze, bo to może się przełożyć na lepsze samopoczucie i satysfakcję z pracy.

Pytanie 32

Trójfazowy silnik elektryczny o podanych parametrach zasilany jest z sieci.
Silnik elektryczny: moc P = 4 kW i cosφ = 0,75
Zasilany z sieci: 400 V; 3/PE ~, 50 Hz.
Prąd pobierany przez silnik z sieci jest równy

A. 13,33 A
B. 5,77 A
C. 10,00 A
D. 7,70 A
Błędne odpowiedzi w tym pytaniu wskazują na typowe nieporozumienia dotyczące obliczeń prądu pobieranego przez silnik trójfazowy. Wiele osób może skupić się na niewłaściwych założeniach, takich jak zaniedbanie wpływu współczynnika mocy na całkowitą moc silnika. Na przykład, odpowiedzi takie jak 5,77 A czy 10,00 A mogą sugerować, że obliczenia zostały wykonane bez uwzględnienia istotnych parametrów, takich jak napięcie zasilania czy współczynnik mocy. Często błędne odpowiedzi wynikają z uproszczenia wzoru na moc lub przyjęcia niewłaściwych wartości. Kluczowe jest zrozumienie, że moc czynna, napięcie oraz prąd są ze sobą silnie powiązane i każda zmiana jednego z parametrów wpływa na pozostałe. W praktyce, jeżeli silnik ma niższy współczynnik mocy, to prąd pobierany z sieci będzie wyższy, co nie zostało uwzględnione w niepoprawnych odpowiedziach. Warto pamiętać, że w przypadku obliczeń związanych z energią elektryczną należy zawsze korzystać z odpowiednich wzorów oraz uwzględniać wszelkie istotne zmienne, aby uniknąć błędów, które mogą prowadzić do nieprawidłowego doboru sprzętu czy nieefektywnego działania instalacji elektrycznych. Dlatego tak ważne jest, aby dokładnie analizować wszystkie parametry przed dokonaniem obliczeń.

Pytanie 33

Jaką metodę łączenia materiałów powinno się wybrać do skrzyżowania elementów ze stali nierdzewnej i mosiądzu?

A. Sklejanie
B. Lutowanie miękkie
C. Zgrzewanie
D. Lutowanie twarde
Lutowanie twarde jest optymalną techniką łączenia stali nierdzewnej i mosiądzu ze względu na różnice w temperaturze topnienia tych materiałów oraz ich właściwościach mechanicznych. Lutowanie twarde polega na stosowaniu lutów o temperaturze topnienia powyżej 450 °C, co pozwala na skuteczne tworzenie połączeń o wysokiej wytrzymałości. W przypadku stali nierdzewnej i mosiądzu lutowanie twarde jest szczególnie ważne, ponieważ oba materiały różnią się nie tylko składem chemicznym, ale również współczynnikiem rozszerzalności cieplnej. Lutowanie twarde zapewnia dobre wypełnienie szczelin oraz pozwala na uzyskanie mocnych połączeń, które są odporne na korozję, co ma kluczowe znaczenie w zastosowaniach inżynieryjnych i przemysłowych. Przykłady zastosowania lutowania twardego to produkcja sprzętu medycznego, elementów hydraulicznych oraz instalacji przemysłowych, gdzie wymagana jest trwałość i odporność na wysokie temperatury. Zastosowanie tej techniki w zgodzie z odpowiednimi normami, takimi jak PN-EN 1045, zapewnia jakość oraz niezawodność wykonanych połączeń.

Pytanie 34

Osoba obsługująca urządzenie generujące drgania, takie jak młot pneumatyczny, powinna być przede wszystkim wyposażona

A. w odzież ochronną
B. w hełm ochronny
C. w gogle ochronne
D. w rękawice antywibracyjne
Rękawice antywibracyjne to naprawdę ważna rzecz dla ludzi, którzy pracują z maszynami, które drżą, jak na przykład młot pneumatyczny. Te drgania mogą prowadzić do poważnych problemów zdrowotnych, na przykład do zespołu wibracyjnego, który uszkadza nerwy i stawy. Dlatego właśnie te rękawice są zaprojektowane tak, żeby pochłaniać te drgania, co bardzo pomaga w zmniejszeniu ich wpływu na dłonie i ramiona. Z własnego doświadczenia powiem, że dzięki nim praca staje się znacznie bardziej komfortowa, a czas, kiedy można bezpiecznie używać sprzętu, naprawdę się wydłuża. Widzisz to często w budownictwie, gdzie pracownicy używają młotów wyburzeniowych. Normy ISO 5349 mówią, że takie rękawice to dobry sposób na to, żeby zminimalizować ryzyko zdrowotne związane z długotrwałym narażeniem na drgania.

Pytanie 35

W systemie mechatronicznym znajduje się 18 czujników cyfrowych, 4 przetworniki analogowe oraz 11 elementów wykonawczych działających w trybie dwustanowym. Jaką konfigurację modułowego sterownika PLC należy zastosować do zarządzania tym układem?

A. DI32/DO8 oraz AI2
B. DI16/DO16 oraz AI2
C. DI32/DO16 oraz AI4
D. DI16/DO8 oraz AI4
Modułowy sterownik PLC z konfiguracją DI32/DO16 oraz AI4 to naprawdę dobry wybór. W układzie mechatronicznym masz aż 18 czujników binarnych, 4 przetworniki analogowe i 11 elementów, które działają w trybie dwustanowym. Dzięki DI32 masz więcej niż dość wejść cyfrowych, żeby połączyć wszystkie czujniki, a nawet zostaje ci trochę zapasu na przyszłość. Z kolei 16 wyjść cyfrowych (DO16) spokojnie obsłuży te 11 elementów wykonawczych, co daje ci możliwość rozszerzenia systemu, jeśli zajdzie taka potrzeba. No i te 4 wejścia analogowe (AI4) są akurat na przetworniki, co pozwala ci na monitorowanie i analizowanie sygnałów, a to jest kluczowe w mechatronice. Przykład? Chociażby automatyka przemysłowa, gdzie trzeba mieć na oku zarówno analogowe sygnały, jak i różne urządzenia wykonawcze.

Pytanie 36

Watomierz jest urządzeniem do pomiaru mocy

A. chwilowej
B. czynnej
C. pozornej
D. biernej
Watomierz, jako urządzenie pomiarowe, jest kluczowym narzędziem w dziedzinie elektroenergetyki, służącym do pomiaru mocy czynnej. Moc czynna, wyrażana w watach (W), to ta część mocy, która jest rzeczywiście wykorzystywana do wykonywania pracy, na przykład zasilania urządzeń elektrycznych. Watomierze znajdują zastosowanie zarówno w przemyśle, jak i w domowych instalacjach elektrycznych, umożliwiając monitorowanie zużycia energii i optymalizację procesów. Dzięki kilku typom watomierzy, w tym analogowym i cyfrowym, możemy dokładnie określić, ile energii zostaje przekształcone w pracę użyteczną, co jest kluczowe dla oceny efektywności energetycznej systemów elektrycznych. W praktyce, pomiar mocy czynnej pozwala na oszacowanie kosztów zużycia energii oraz wykrywanie niesprawności w urządzeniach, co jest zgodne z najlepszymi praktykami w zarządzaniu energią, w tym normami ISO 50001.

Pytanie 37

Na podstawie tabeli z kodami paskowymi rezystorów określ rezystancję rezystora oznaczonego paskami w kolejności: pomarańczowy, niebieski, czarny.

kolor1. cyfra2. cyframnożnik
czarny00100
brązowy11101
czerwony22102
pomarańczowy33103
żółty44104
zielony55105
niebieski66106
fioletowy77107
szary88108
biały99109

A. 36 Ω
B. 36 000 Ω
C. 360 Ω
D. 3600 Ω
Wyniki, które wskazują na wartości takie jak 3600 Ω, 360 Ω czy 36 000 Ω, opierają się na błędnej interpretacji kodów kolorów rezystora. Kluczowym błędem jest zrozumienie, że każdy kolor na rezystorze ma przypisaną konkretną cyfrę, a także, że ostatni pasek odnosi się do mnożnika. Odpowiedzi wskazujące na 3600 Ω oraz 36 000 Ω sugerują, że za wartość rezystancji przyjęto niepoprawne wartości cyfr. W przypadku 3600 Ω, można zauważyć, że ktoś mógł pomylić kolor pomarańczowy z kolorem czerwonym, który oznaczałby 2 jako cyfrę, w efekcie uzyskując błędną wartość. Z kolei 360 Ω to wynik, który mógłby być mylnie obliczany, gdyby założono, że czarny pasek oznacza mnożnik 1. W rzeczywistości jednak czarny pasek wskazuje, że nie ma mnożnika, co obniża wartość do 36 Ω. W praktyce, zrozumienie tego systemu kodów jest niezmiernie ważne, ponieważ niewłaściwa wartość rezystora może prowadzić do nieprawidłowego działania obwodów, a w konsekwencji do uszkodzenia komponentów. Dlatego kluczowe jest dokładne zapoznanie się z normami i wytycznymi, które regulują oznaczanie wartości rezystorów, aby uniknąć takich pomyłek w przyszłości.

Pytanie 38

Jakim przyrządem mierzy się czas trwania skoku siłownika elektrycznego?

A. miliwoltomierzem
B. stoperem
C. czujnikiem zegarowym
D. mikrometrem
Mikrometr, miliwoltomierz i czujnik zegarowy to narzędzia pomiarowe, które służą do różnych celów i nie są odpowiednie do bezpośredniego mierzenia czasu wykonania skoku siłownika elektrycznego. Mikrometr jest narzędziem do precyzyjnego pomiaru wymiarów liniowych, a jego zastosowanie w kontekście pomiaru czasu jest błędne, ponieważ nie ma on zdolności do rejestrowania upływu czasu ani do analizy dynamiki ruchu. Miliwoltomierz służy do pomiaru napięcia elektrycznego, co również nie ma związku z pomiarem czasu. Użycie miliwoltomierza do określenia wydajności siłownika mogłoby prowadzić do niepoprawnych wniosków, ponieważ nie dostarcza informacji o czasach reakcji. Czujnik zegarowy, chociaż może mierzyć czas, w kontekście skoków siłowników elektrycznych nie jest optymalnym rozwiązaniem ze względu na jego specyfikę stosowania. Czujniki te często wymagają manualnej obsługi i mogą nie być wystarczająco szybkie oraz dokładne w przypadku dynamicznych ruchów. W praktyce, aby uzyskać precyzyjne pomiary czasu reakcji siłowników elektrycznych, zaleca się użycie stopera, który oferuje automatyzację i większą dokładność, co jest istotne w kontekście wydajności i niezawodności systemów automatyzacji przemysłowej. Typowe błędy myślowe, które mogą prowadzić do wyboru niewłaściwego narzędzia, obejmują mylenie pomiarów fizycznych z czasem reakcji oraz brak zrozumienia specyfiki narzędzi pomiarowych.

Pytanie 39

Do czynności przygotowawczych, które pozwalają na późniejszy poprawny montaż nowego paska klinowego w przekładni pasowej, nie należy

A. oceny stopnia zużycia
B. kontroli czystości paska
C. sprawdzenia poziomu naprężenia
D. weryfikacji wymiarów
Weryfikacja wymiarów, ocena stopnia zużycia oraz kontrola czystości paska są kluczowymi etapami przygotowań do montażu nowego paska klinowego i powinny być wykonywane, aby zapewnić prawidłowe funkcjonowanie przekładni pasowej. Weryfikacja wymiarów polega na sprawdzeniu, czy nowe komponenty są zgodne z wymiarami wymaganymi przez producenta, co jest istotne dla prawidłowego działania układu. Jeśli wymiary są niewłaściwe, może to prowadzić do niewłaściwego dopasowania, co wpływa na efektywność całego systemu. Ocena stopnia zużycia jest również niezwykle istotna; zużyte elementy mogą nie tylko wpływać na sprawność paska, ale również na jego żywotność. W praktyce oznacza to, że mechanicy powinni regularnie monitorować stan przekładni pasowej, aby zminimalizować ryzyko awarii. Kontrola czystości paska jest szczególnie ważna, ponieważ zanieczyszczenia mogą powodować uszkodzenie zarówno paska, jak i kół pasowych. Zanieczyszczenia mogą prowadzić do nadmiernego tarcia, co zwiększa ryzyko przegrzania i uszkodzenia. Dlatego ważne jest, aby każdy z tych kroków był integralną częścią procesu montażu, gdyż pomijanie ich może prowadzić do poważnych problemów eksploatacyjnych i zwiększonej awaryjności urządzeń.

Pytanie 40

Interfejs komunikacyjny umożliwia połączenie

A. modułu rozszerzającego z grupą siłowników
B. siłownika z programatorem
C. pompy hydraulicznej z silnikiem
D. sterownika z programatorem
Interfejs komunikacyjny jest kluczowym elementem systemów automatyki, który umożliwia wymianę danych pomiędzy sterownikami a programatorami. W kontekście automatyki przemysłowej, sterownik (np. PLC) zarządza procesami, a programator służy do jego programowania oraz monitorowania. Interfejsy komunikacyjne, takie jak Ethernet, Modbus, Profibus czy CAN, pozwalają na efektywne przesyłanie sygnałów i danych, co jest niezbędne do optymalizacji pracy systemów. Przykładowo, w nowoczesnych zakładach produkcyjnych, sprawna komunikacja pomiędzy sterownikami a programatorami jest kluczowa dla zdalnego monitorowania stanu maszyn oraz szybkiego reagowania na ewentualne awarie. Dobre praktyki w zakresie projektowania interfejsów komunikacyjnych obejmują zapewnienie odpowiedniej przepustowości, niezawodności oraz bezpieczeństwa przesyłu danych. Właściwe zrozumienie funkcji i zastosowania interfejsów komunikacyjnych jest niezbędne dla inżynierów zajmujących się automatyką, by tworzyć wydajne i bezpieczne systemy sterowania.