Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 23 marca 2025 20:54
  • Data zakończenia: 23 marca 2025 21:08

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Analiza technicznego kwasu solnego dała następujące wyniki: 30% HCl, 0,008% H2SO4, 0,04% Fe.
Korzystając z zamieszczonej tabeli wymagań, określ gatunek kwasu, pamiętając, że decyduje o nim najgorszy wskaźnik.

Wymagania chemiczne dotyczące kwasu siarkowego
WymaganiaGatunki
IIIIIIIV
Chlorowodór, %> 33> 29> 28> 27
Kwas siarkowy(VI) w przel. na SO42-, %< 0,009< 0,5< 1,6< 1,8
Żelazo (Fe3+), %< 0,005< 0,03< 0,03< 0,05

A. I
B. II
C. IV
D. III
Odpowiedź IV jest prawidłowa, ponieważ w analizie kwasu solnego kluczowym wskaźnikiem jest zawartość żelaza (Fe3+), która wynosi 0,04%. W kontekście klasyfikacji kwasów, gatunki są określane na podstawie najgorszego wskaźnika, co w tym przypadku oznacza, że zawartość Fe3+ decyduje o ostatecznym gatunku kwasu. Zgodnie z obowiązującymi normami, gatunek IV dopuszcza zawartość żelaza do 0,05%, co czyni tę odpowiedź poprawną. W praktyce oznacza to, że kwasy klasyfikowane jako IV mogą być stosowane w procesach przemysłowych, gdzie wymagana jest większa tolerancja na zanieczyszczenia metaliczne, takie jak żelazo. W branży chemicznej zrozumienie klasyfikacji kwasów jest istotne dla zapewnienia odpowiedniego doboru materiałów, co wpływa na bezpieczeństwo i efektywność procesów chemicznych.

Pytanie 2

Na podstawie danych w tabeli określ, dla oznaczania którego parametru zalecaną metodą jest chromatografia jonowa.

ParametrMetoda podstawowa
pHmetoda potencjometryczna, kalibracja przy zastosowaniu minimum dwóch wzorców o pH zależnym od wartości oczekiwanych w próbkach wody
azotany(V)chromatografia jonowa
fosforany(V)spektrofotometria
Na, K, Ca, MgAAS (spektrometria absorpcji atomowej)
zasadowośćmiareczkowanie wobec fenoloftaleiny oraz oranżu metylowego
tlen rozpuszczony, BZT₅metoda potencjometryczna

A. NO3-
B. PO43-
C. pH
D. BZT5
Zgodnie z wynikami przedstawionymi w tabeli, chromatografia jonowa jest metodą analityczną szczególnie efektywną dla oznaczania azotanów(V), takich jak NO3-. Ta technika pozwala na wysoce selektywne i dokładne rozdzielenie anionów w roztworach, co jest niezbędne w analizach chemicznych dotyczących jakości wody i gleby. Chromatografia jonowa jest szczególnie polecana w standardach analitycznych, takich jak EPA 300.0, które dotyczą oznaczania anionów w wodach gruntowych i powierzchniowych. Dzięki tej metodzie można uzyskać bardzo niskie limity wykrywalności, co jest istotne w kontekście przepisów dotyczących ochrony środowiska. W praktyce, dzięki chromatografii jonowej, można szybko i efektywnie ocenić stężenia NO3- w próbkach, co ma kluczowe znaczenie dla monitorowania zanieczyszczeń i zarządzania jakością wód.

Pytanie 3

Jakie jest stężenie procentowe roztworu HCl (M=36,46 g/mol) o gęstości 1,19 g/cm3 oraz stężeniu molowym 12 mol/dm3?

A. 36,8%
B. 78,3%
C. 39,2%
D. 19,6%
W przypadku stężeń procentowych, zrozumienie roli gęstości oraz stężenia molowego jest kluczowe dla prawidłowego oszacowania wartości procentowych. Odpowiedzi wskazujące na błędne wartości stężenia często wynikają z pomyłek w obliczeniach lub nieodpowiedniego zastosowania definicji stężenia. Niezrozumienie, że stężenie procentowe odnosi się do masy substancji w stosunku do masy całego roztworu, może prowadzić do błędnych wyników. Na przykład, niektóre odpowiedzi mogły powstać poprzez pomieszanie jednostek, takich jak gęstość i stężenie molowe, co jest powszechnym błędem w obliczeniach chemicznych. Ponadto, pomijanie przeliczeń masy do stężenia procentowego nie tylko prowadzi do błędnych wniosków, ale także może wpływać na całkowity wynik eksperymentu. W praktyce laboratoryjnej niezbędne jest zrozumienie, że błędne założenia dotyczące masy roztworu lub objętości mogą znacznie zafałszować wyniki. Dlatego kluczowe jest przestrzeganie dobrych praktyk przy obliczaniu stężeń, w tym dokładne ważenie substancji oraz stosowanie odpowiednich wzorów do obliczeń, aby uniknąć pomyłek i uzyskać wiarygodne dane eksperymentalne.

Pytanie 4

Pierwotna próbka jest zbierana

A. z próbki ogólnej w sposób bezpośredni
B. w jednym punkcie partii materiału
C. z opakowania pierwotnego
D. z próbki przeznaczonej do badań
Pobieranie próbki pierwotnej bezpośrednio z próbki ogólnej może prowadzić do znacznych rozbieżności w wynikach analizy. Ta koncepcja ignoruje fakt, że próbka ogólna jest zbiorczym przedstawieniem materiału, a nie reprezentatywnym źródłem do pobierania próbek. W rzeczywistości, gdy próbka jest brana z ogólnej puli, istnieje ryzyko, że nie uwzględni ona różnic w składzie, co może prowadzić do zafałszowanych wyników. Ponadto, pobieranie próbek z opakowania pierwotnego jest również niewłaściwe, ponieważ może nie oddać prawdziwego stanu całej partii materiału – opakowanie może zawierać zanieczyszczenia lub niejednorodności, które nie występują w samej partii. Z kolei sugerowanie, że próbki do badań są miejscem pobierania próbki pierwotnej, jest mylące, jako że próbki do badań powinny być wynikiem odpowiednich procedur pobierania, a nie źródłem do ich pobierania. Kluczowym elementem efektywnego procesu pobierania próbek jest przestrzeganie standardów ISO oraz wytycznych odpowiednich branż, które podkreślają znaczenie reprezentatywności próbek i odpowiednich metod ich pobierania, aby uniknąć błędów analitycznych i zapewnić rzetelność wyników. Właściwe podejście do pobierania zapewnia, że wyniki analizy będą stanowiły wiarygodną podstawę do decyzji o jakości i zgodności materiału.

Pytanie 5

W jakiej standardowej temperaturze są kalibrowane szklane naczynia pomiarowe?

A. 21°C
B. 20°C
C. 25°C
D. 19°C
Szklane naczynia miarowe, takie jak pipety, kolby czy cylinder miarowy, są kalibrowane w standardowej temperaturze 20°C. Kalibracja w tej temperaturze jest uznawana za normę, ponieważ zmiany temperatury mogą wpływać na objętość cieczy oraz na precyzję pomiarów. Przykładowo, w laboratoriach chemicznych, gdzie dokładność pomiarów jest kluczowa, naczynia miarowe są używane przy tej temperaturze, aby zapewnić wiarygodność wyników eksperymentów. W praktyce oznacza to, że przy pomiarach z użyciem tych naczyń, operatorzy powinni dążyć do utrzymania temperatury 20°C, aby uniknąć błędów wynikających z rozszerzalności cieczy oraz materiałów, z których wykonane są naczynia. Ponadto, zgodnie z międzynarodowymi standardami ISO i zaleceniami PTB (Physikalisch-Technische Bundesanstalt), kalibracja powinna być przeprowadzana w 20°C dla wszystkich podstawowych pomiarów objętości, co wzmacnia znaczenie tej wartości w praktyce laboratoryjnej.

Pytanie 6

Najwyżej czyste odczynniki chemiczne to odczynniki

A. chemicznie czyste.
B. czyste.
C. spektralnie czyste.
D. czyste do analizy.
Odpowiedź 'spektralnie czyste' jest jak najbardziej na miejscu. Chodzi tutaj o odczynniki chemiczne, które są na najwyższym poziomie czystości – to naprawdę ważne w analizach spektralnych i spektroskopowych. Gdy mamy do czynienia z takimi odczynnikami, musimy pamiętać, że wszelkie zanieczyszczenia mogą zepsuć nasze wyniki. Na przykład w laboratoriach chemicznych, gdzie badamy różne substancje, jakiekolwiek zanieczyszczenia mogą wprowadzić nas w błąd. Najlepsze praktyki w laboratoriach mówią, że powinniśmy używać odczynników spektralnie czystych, zwłaszcza gdy potrzebujemy dużej precyzji, jak w pomiarach absorbancji w spektroskopii UV-Vis. Dlatego stosowanie odczynników o wysokiej czystości jest kluczowe, bo to zapewnia, że wyniki są wiarygodne i dają się powtórzyć. Podobne normy, jak ISO 17025, pokazują, jak istotne jest używanie odczynników o potwierdzonej czystości.

Pytanie 7

Wskaź sprzęt laboratoryjny, który znajduje się w zestawie do filtracji pod obniżonym ciśnieniem?

A. Kolba stożkowa, lejek z sitkiem, bagietka
B. Kolba ssawkowa, lejek szklany, urządzenie do pompowania wody
C. Kolba miarowa, lejek szklany, bagietka
D. Kolba ssawkowa, lejek z sitkiem, urządzenie do pompowania wody
Wybór sprzętu laboratoryjnego, który nie obejmuje kolby ssawkowej, lejka z sitowym dnem oraz pompki wodnej, świadczy o niepełnym zrozumieniu procesu sączenia pod zmniejszonym ciśnieniem. Odpowiedzi takie jak kolba miarowa, lejek szklany lub bagietka, choć przydatne w różnych kontekstach laboratoryjnych, nie są właściwe w tej sytuacji. Kolba miarowa służy głównie do dokładnego pomiaru objętości cieczy, co jest kluczowe w procesach chemicznych, ale nie ma zastosowania w kontekście sączenia. Lejek szklany, mimo że może być używany do filtracji, nie zapewnia odpowiedniego wsparcia w uzyskiwaniu podciśnienia, które jest istotne dla efektywności procesu. Bagietka, używana do przenoszenia cieczy, nie jest narzędziem odpowiednim do tworzenia warunków próżniowych. Zrozumienie zasad działania sprzętu i ich zastosowania jest kluczowe w laboratoriach, gdzie błędne podejście do doboru narzędzi może prowadzić do nieefektywności lub wręcz zanieczyszczenia próbek. Dlatego istotne jest, aby nie tylko znać funkcję poszczególnych elementów, ale także umieć je odpowiednio zestawić w kontekście danego procesu technologicznego.

Pytanie 8

Kalibracja pH-metru nie jest potrzebna po

A. każdym pomiarze w danej serii.
B. długotrwałym używaniu tej samej elektrody.
C. wymianie elektrody.
D. dłuższej przerwie w pomiarach.
Kalibracja pH-metru po każdym pomiarze w serii nie jest aż taka konieczna, bo te urządzenia są zaprojektowane z myślą o stabilności pomiarów w krótkich odstępach. Jeśli pH-metr był już wcześniej skalibrowany, a warunki się nie zmieniły, to można spokojnie kontynuować pomiary bez nowej kalibracji. Na przykład w laboratoriach, gdzie robi się dużo pomiarów pH tego samego roztworu, często kalibruje się pH-metr przed rozpoczęciem całej serii pomiarów, a potem korzysta z tej samej kalibracji. Tylko pamiętaj, że jeśli robisz dłuższą przerwę w pomiarach lub zmienia się temperatura, to lepiej znów skalibrować, żeby mieć pewność, że wyniki są dokładne. Takie zasady są podkreślane w standardach ISO i ASTM, więc warto je znać, bo nieprzestrzeganie ich może prowadzić do złych wyników i utraty zaufania do analiz.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Przykładem piany stałej jest

faza rozproszonafaza rozpraszająca
gazcieczciało stałe
gaz-pianapiana stała
cieczaerozol ciekłyemulsjaemulsja stała
ciało stałeaerozol stałyzolzol stały

A. pumeks.
B. bite białko.
C. mgła.
D. masło.
Pumeks jest doskonałym przykładem piany stałej, co wynika z jego unikalnej struktury porowatej. W tej strukturze pęcherze gazu są uwięzione w ciele stałym, co tworzy materiał o niskiej gęstości i wysokiej wytrzymałości. Pumeks, jako skała wulkaniczna, powstaje w wyniku szybkiego schłodzenia lawy, co prowadzi do powstawania licznych pęcherzyków gazu. Zastosowanie pumeksu jest szerokie. W budownictwie wykorzystuje się go jako materiał izolacyjny oraz lekki agregat do betonu. Dodatkowo, pumeks jest stosowany w kosmetykach jako naturalny środek peelingujący oraz w przemyśle rekreacyjnym, w produkcji akcesoriów do pielęgnacji stóp. Zrozumienie właściwości pumeksu jako piany stałej pozwala na lepsze dobieranie materiałów do odpowiednich zastosowań, co jest zgodne z najlepszymi praktykami inżynieryjnymi. W kontekście naukowym, klasyfikacja materiałów na podstawie ich struktury i właściwości jest kluczowa, co potwierdzają standardy dotyczące materiałoznawstwa.

Pytanie 12

Wybór lokalizacji do poboru próbek wody z rzeki nie jest uzależniony od

A. usytuowania źródeł zanieczyszczeń
B. rodzaju pojemników do ich przechowywania
C. usytuowania dopływów
D. celu oraz zakresu badań
Wybór miejsca pobierania próbek wody z rzeki jest procesem, który musi uwzględniać wiele czynników, aby uzyskane wyniki były wiarygodne i reprezentatywne. Analiza celu i zakresu badań jest pierwszym krokiem, który pozwala na określenie, jakie parametry będą monitorowane. Na przykład, w sytuacji, gdy celem jest ocena wpływu zanieczyszczeń na ekosystem rzeki, kluczowe będzie wybranie miejsc w pobliżu źródeł zanieczyszczenia, aby uchwycić ich oddziaływanie. W kontekście rozmieszczenia dopływów, warto zauważyć, że miejsca ich zrzutu mogą znacząco zmieniać jakość wody w rzece, a tym samym wpływać na wyniki badań. Ignorowanie tych aspektów przy wyborze lokalizacji może prowadzić do błędnych wniosków dotyczących stanu wód. Nie można zatem lekceważyć wpływu rozmieszczenia źródeł zanieczyszczenia oraz dopływów, gdyż są to czynniki bezpośrednio związane z jakością próbek. Często popełnianym błędem jest przekonanie, że najmniej istotnym elementem są naczynia do przechowywania próbek, co jest mylnym założeniem. Choć rodzaj naczyń jest istotny dla zapewnienia integralności próbki, nie powinien wpływać na wybór miejsca ich pobierania, które powinno wynikać z badań i norm jakościowych.

Pytanie 13

Aby przeprowadzić analizę jakościową, próbkę mosiądzu należy roztworzyć w stężonym kwasie

A. siarkowym(VI)
B. bromowodorowym
C. azotowym(V)
D. chlorowodorowym
Stosowanie kwasu siarkowego(VI) do roztwarzania mosiądzu nie jest optymalnym rozwiązaniem, ponieważ mimo że kwas siarkowy jest silnym kwasem, nie jest efektywny w przypadku stopów miedzi, takich jak mosiądz. Kwas siarkowy reaguje z miedzią, ale proces ten jest wolniejszy i mniej skuteczny w porównaniu do kwasu azotowego. Użycie kwasu chlorowodorowego może również prowadzić do niepełnych reakcji, ponieważ nie jest on wystarczająco silnym utleniaczem, a jego stosowanie w kontekście metali nieżelaznych, takich jak miedź, może prowadzić do ich nierozpuszczenia. Kwas bromowodorowy, mimo że jest kwasem, również nie wykazuje właściwości utleniających, które są kluczowe w procesie analizy jakościowej. W przypadku błędnego wyboru kwasu, można napotkać problemy związane z niepełnym rozpuszczeniem próbki, co prowadzi do błędnych wyników analizy. Typowym błędem jest założenie, że każdy silny kwas może zastąpić inny w reakcjach chemicznych, co jest mylne. Efektywność rozpuszczania stopów metalowych wymaga zastosowania odpowiednich reakcji chemicznych, które nie tylko rozpuszczają próbki, ale również prowadzą do ich pełnej analizy składu chemicznego. W rezultacie, niewłaściwy wybór kwasu może skutkować nieprawidłowymi wynikami, co w praktyce laboratoryjnej jest nieakceptowalne i może prowadzić do dalszych problemów związanych z jakością i bezpieczeństwem produktów końcowych.

Pytanie 14

Do rozpuszczania próbek wykorzystuje się wodę królewską, która stanowi mieszaninę stężonych kwasów

A. H2SO4 i HCl w proporcji objętościowej 3:1
B. HCl i HNO3 w proporcji objętościowej 3:1
C. H2SO4 i HCl w proporcji objętościowej 1:3
D. HNO3 i HCl w proporcji objętościowej 3:1
Wybór odpowiedzi, która wskazuje na stosunek HNO3 i HCl w proporcji 3:1, jest mylący. Choć kwasy te rzeczywiście stanowią składniki wody królewskiej, to ich stosunek objętościowy jest kluczowy dla skuteczności tej mieszanki. Stosunek 3:1, z HCl jako głównym składnikiem, zapewnia, że reakcja chemiczna między tymi kwasami przebiega efektywnie, co jest istotne przy rozpuszczaniu metali szlachetnych. Z kolei propozycja użycia H2SO4 w połączeniu z HCl w różnych proporcjach, takich jak 1:3 czy 3:1, jest nieprawidłowa, ponieważ kwas siarkowy (H2SO4) nie jest składnikiem wody królewskiej. W rzeczywistości, H2SO4 ma inne właściwości chemiczne i nie działa synergicznie z HCl w kontekście rozpuszczania metali szlachetnych. Powszechnym błędem jest mylenie tych kwasów, co może prowadzić do niewłaściwego użycia i, co ważniejsze, do niebezpiecznych sytuacji w laboratoriach. Warto zauważyć, że skuteczność wody królewskiej, jako rozpuszczalnika dla metali, wynika z odpowiednich proporcji, które stymulują reakcję chemiczną. Dlatego ważne jest, aby mieć pełne zrozumienie właściwych stosunków oraz zastosowań tych substancji w praktyce laboratoryjnej.

Pytanie 15

Który sposób przechowywania próbek żywności jest niezgodny z Rozporządzeniem Ministra Zdrowia?

Fragment Rozporządzenia Ministra Zdrowia w sprawie pobierania i przechowywania próbek żywności przez zakłady żywienia zbiorowego typu zamkniętego
(...)
Zakład przechowuje próbki, przez co najmniej 3 dni, licząc od chwili, kiedy cała partia została spożyta w miejscu wyłącznym właściwym do tego celu oraz w warunkach zapewniających utrzymanie temperatury +4°C lub niższej, w zależności od przechowywanego produktu.
Miejsce przechowywania próbek musi być tak zabezpieczone, aby dostęp do niego posiadał tylko kierujący zakładem lub osoba przez niego upoważniona.

A. Przechowywanie w temperaturze maksymalnej +4°C.
B. Przechowywanie w specjalnie do tego celu wyznaczonym miejscu, do którego dostęp posiada kierownik zakładu lub osoba przez niego upoważniona.
C. Przechowywanie przez maksymalnie 3 dni od czasu pobrania próbek.
D. Przechowywanie przez co najmniej 3 dni od czasu spożycia całej partii żywności.
Odpowiedź wskazująca na przechowywanie próbek przez maksymalnie 3 dni od czasu ich pobrania jest poprawna, ponieważ jest sprzeczna z przepisami zawartymi w Rozporządzeniu Ministra Zdrowia. Zgodnie z tymi regulacjami, zakład ma obowiązek przechowywać próbki przez co najmniej 3 dni, liczonych od momentu spożycia całej partii żywności. Ta zasada jest istotna, aby zapewnić odpowiednią kontrolę jakości i bezpieczeństwa żywności. W praktyce oznacza to, że próbki żywności muszą być dostępne do analizy przez określony czas, co jest kluczowe w przypadku wykrycia problemów zdrowotnych związanych z danym produktem. Zastosowanie tej regulacji wspiera przejrzystość procesu zarządzania jakością oraz umożliwia przeprowadzenie niezbędnych badań, co jest zgodne z dobrymi praktykami w branży spożywczej, takimi jak HACCP (Analiza Zagrożeń i Krytyczne Punkty Kontroli). Przechowywanie w odpowiednich warunkach i przez określony czas jest niezbędne dla zachowania integralności próbek i ich przydatności do analizy.

Pytanie 16

Jaką substancję należy koniecznie oddać do utylizacji?

A. Gliceryna
B. Glukoza
C. Sodu chlorek
D. Chromian(VI) potasu
Wybór substancji, które nie wymagają szczególnego traktowania w kontekście utylizacji, może prowadzić do poważnych konsekwencji zdrowotnych i środowiskowych. Na przykład, chlorek sodu, będący związkiem chemicznym, jest powszechnie stosowany w przemyśle oraz w kuchni, a jego nadmiar w środowisku nie stanowi zagrożenia, ponieważ jest to substancja nietoksyczna, a dodatkowo dobrze rozpuszczalna w wodzie. Gliceryna, będąca produktami ubocznymi procesów przemysłowych, jest bezpieczna w utylizacji, ponieważ jest biodegradowalna i nie stwarza zagrożenia dla zdrowia ludzi ani dla środowiska. Glukoza, natomiast, jest naturalnym cukrem, który również nie wymaga specjalnego traktowania w kontekście utylizacji, gdyż jest substancją organiczną, która nie wywołuje negatywnych skutków w naturalnym środowisku. Wybierając niewłaściwe podejście do utylizacji, można nie tylko narazić się na konsekwencje prawne, ale również wyrządzić krzywdę otaczającemu nas środowisku. Zrozumienie różnicy między związkami niebezpiecznymi a tymi, które są bezpieczne dla utylizacji, jest kluczowe w praktyce zarządzania odpadami. Dlatego ważne jest, aby przed podjęciem decyzji dotyczącej utylizacji substancji chemicznych, dokładnie zapoznać się z ich właściwościami oraz obowiązującymi normami prawnymi dotyczącymi ochrony zdrowia i środowiska.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Jakie zestawienie sprzętu laboratoryjnego wykorzystuje się do filtracji osadów?

A. Zlewka, waga, tryskawka, bagietka
B. Zlewka, lejek, trójnóg, tygiel
C. Zlewka, lejek, statyw, bagietka
D. Zlewka, lejek, waga, bagietka
Wybór zestawu sprzętu laboratoryjnego do sączenia osadów jest kluczowy dla efektywności procesu filtracji. W przypadku poprawnej odpowiedzi, czyli zestawu składającego się ze zlewki, lejka, statywu i bagietki, każdy z tych elementów odgrywa istotną rolę. Zlewka służy do przechowywania cieczy, która ma być filtrowana, natomiast lejek ułatwia skierowanie tej cieczy do naczynia filtracyjnego, co zwiększa wydajność procesu. Statyw zapewnia stabilność i bezpieczeństwo podczas pracy z lejkiem, co jest niezwykle ważne, aby uniknąć rozlania cieczy. Bagietka natomiast umożliwia precyzyjne dozowanie cieczy, co jest istotne w przypadku pracy z substancjami chemicznymi. Przykładem zastosowania tego zestawu może być filtracja roztworów w chemii analitycznej, gdzie osady muszą być oddzielone od cieczy w celu dalszej analizy. W kontekście standardów laboratoryjnych, korzystanie z tego zestawu jest zgodne z dobrymi praktykami, które podkreślają znaczenie precyzyjnych i bezpiecznych metod pracy.

Pytanie 19

Aby odcedzić galaretowaty osad, konieczne jest użycie sączka

A. sztywny
B. miękki
C. średni
D. utwardzony
Odpowiedzi takie jak 'twardy', 'utwardzony' oraz 'średni' nie są właściwe w kontekście filtracji galaretowatego osadu. Twarde i utwardzone sączki są zaprojektowane do pracy z bardziej szorstkimi lub stałymi materiałami, gdzie ich odporność na mechaniczne uszkodzenia jest istotna. W przypadku filtracji galaretowatych substancji, twarde materiały mogą nie tylko ograniczać efektywność procesu, ale również prowadzić do zatykania się porów, co zwiększa opór i wydłuża czas filtracji. Użycie sączka twardego może także spowodować uszkodzenie struktury galaretowatego osadu, co wpływa na jakość uzyskanego filtratu. Odpowiedź 'średni' sugeruje, że powinno się stosować coś pomiędzy, co nie ma sensu w kontekście filtracji galaretowatych osadów. W praktyce, zastosowanie średnich materiałów filtracyjnych również może skutkować nieefektywnym oddzielaniem cząstek. Kluczowym błędem myślowym jest przekonanie, że tylko twardość lub średnia porowatość materiału wpływa na efekty filtracji, podczas gdy ważniejsze są specyfikacje dotyczące porowatości oraz zdolności absorpcyjnych, które w przypadku galaretowatych osadów są kluczowe.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

W trakcie destylacji cieczy wykorzystuje się tzw. kamienie wrzenne, ponieważ

A. przyspieszają przebieg destylacji
B. umożliwiają równomierne wrzenie cieczy
C. obniżają temperaturę wrzenia cieczy
D. przyspieszają proces wrzenia cieczy
Odpowiedzi, które sugerują, że kamyczki wrzenne przyspieszają proces destylacji, przyspieszają wrzenie cieczy lub obniżają temperaturę wrzenia, opierają się na nieporozumieniach dotyczących mechanizmów zachodzących podczas tego procesu. Kamyczki wrzenne nie mają właściwości, które mogłyby przyspieszyć samego procesu destylacji; ich zadaniem jest raczej stabilizowanie procesu wrzenia. Stosowanie kamyczków wrzennych sprzyja równomiernemu rozkładowi ciepła w cieczy, co zapobiega tworzeniu się dużych bąbelków pary, które mogą prowadzić do niekontrolowanego wrzenia, znanego jako „bum wrzenia”. Ponadto, stwierdzenie, że kamyczki obniżają temperaturę wrzenia cieczy, jest błędne, ponieważ temperatura wrzenia substancji jest określona przez jej właściwości fizykochemiczne, a nie przez obecność kamyczków. Te niepoprawne odpowiedzi mogą prowadzić do mylnych wniosków, szczególnie w kontekście projektowania procesów chemicznych, gdzie precyzyjne zrozumienie dynamiki wrzenia jest kluczowe. W rzeczywistości, stosowanie kamyczków wrzennych ma na celu raczej poprawienie efektywności i bezpieczeństwa procesu destylacji, a nie jego przyspieszanie, co jest ważne w przemysłowych zastosowaniach destylacji, zwłaszcza w sektorze chemicznym i farmaceutycznym.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Wybierz spośród wymienionych właściwości tę, która nie dotyczy naczyń kwarcowych.

A. Odporność na działanie kwasu fluorowodorowego oraz roztworu wodorotlenku potasu
B. Większa kruchość oraz mniejsza odporność na uderzenia niż naczynia wykonane z normalnego szkła
C. Niska wrażliwość na zmiany temperatury
D. Przepuszczalność promieniowania ultrafioletowego
Przepuszczalność promieniowania nadfioletowego, większa kruchość i mniejsza wytrzymałość na uderzenia w porównaniu do zwykłego szkła oraz mała wrażliwość na zmiany temperatury są cechami, które mogą mylnie kojarzyć się z naczyniami kwarcowymi. Naczynia te rzeczywiście przepuszczają promieniowanie UV, co czyni je odpowiednimi do zastosowań w biologii molekularnej i fotonice, jednak ich odporność na różnorodne substancje chemiczne nie jest niezrównana. W rzeczywistości, kruchość naczyń kwarcowych często prowadzi do ich uszkodzeń w wyniku uderzeń, co jest sprzeczne z założeniem, że są one bardziej wytrzymałe od szklanych naczyń zwykłych. Warto również zauważyć, że chociaż naczynia kwarcowe wykazują pewną odporność na zmiany temperatury, nie są one zupełnie odporne na nagłe ich zmiany. Typowe błędy myślowe w analizie tego zagadnienia mogą obejmować uproszczone wnioski o wytrzymałości materiałów na podstawie ich ogólnych właściwości fizycznych, bez uwzględnienia specyficznych reakcji chemicznych, które mogą występować w praktycznych zastosowaniach. Dlatego tak ważne jest, aby dokładnie rozumieć właściwości materiałów i ich zastosowanie w kontekście specyficznych warunków pracy.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Jaką masę chlorku sodu można znaleźć w 150 g roztworu soli o stężeniu 5% (m/m)?

A. 0,75 g
B. 7,50 g
C. 0,05 g
D. 5,00 g
Poprawna odpowiedź wynosi 7,50 g chlorku sodu w 150 g roztworu o stężeniu 5% (m/m). Aby obliczyć masę substancji rozpuszczonej w roztworze, należy zastosować wzór: masa substancji = stężenie (m/m) × masa roztworu. W naszym przypadku stężenie wynosi 5%, co oznacza, że w 100 g roztworu znajduje się 5 g soli. Skoro mamy 150 g roztworu, wykorzystywana proporcja to 5 g/100 g, co można zapisać jako 5 g × 150 g / 100 g = 7,50 g. Tego rodzaju obliczenia są kluczowe w chemii, farmacji oraz branżach zajmujących się produkcją roztworów. Zrozumienie stężenia masowego jest również pomocne w praktycznych zastosowaniach, takich jak przygotowywanie roztworów w laboratoriach, co wymaga precyzyjnych pomiarów. W kontekście standardów branżowych, dobrym przykładem jest stosowanie stężenia m/m w analizie jakościowej substancji chemicznych, co ułatwia porównanie różnych roztworów oraz ich właściwości. Zrozumienie tych obliczeń jest fundamentalne dla każdego chemika, technologa czy farmaceuty.

Pytanie 27

Wskaź zestaw reagentów oraz przyrządów wymaganych do przygotowania 0,5 dm3 roztworu HCl o stężeniu 0,2 mol/dm3?

A. Kolba pomiarowa na 1000 cm3, cylinder pomiarowy na 500 cm3, 4 odważki analityczne HCl 0,1 mol/dm3
B. Kolba pomiarowa na 500 cm3, 1 odważka analityczna HCl 0,1mol/dm3
C. Kolba pomiarowa na 1000 cm3, cylinder pomiarowy na 500 cm3, 1 naważka analityczna HCl
D. Kolba pomiarowa na 500 cm3, 2 odważki analityczne HCl 0,1 mol/dm3
Przy wyborze zestawu odczynników i sprzętu do sporządzenia 0,5 dm³ roztworu HCl o stężeniu 0,2 mol/dm³ ważne jest zrozumienie, dlaczego inne opcje są niewłaściwe. Na przykład, użycie kolby miarowej na 1000 cm³ w połączeniu z cylinder miarowym na 500 cm³ oraz jedną naważką analityczną HCl nie odpowiada wymaganiom tego zadania. Takie podejście może sugerować marnotrawstwo materiałów, gdyż nie jest konieczne posiadanie większej kolby do przygotowania mniejszych objętości roztworu. Ponadto, to może prowadzić do błędów w odmierzeniu HCl, co jest kluczowe w kontekście uzyskania pożądanego stężenia. Niepoprawne mieszanie odczynników może skutkować niewłaściwym przygotowaniem roztworu, co może wpłynąć na dalsze eksperymenty oraz wyniki badań. Użycie czterech odważek analitycznych HCl 0,1 mol/dm³ w innym zestawie również jest zbędne, gdyż konieczne są tylko jedne odważki dla uzyskania żądanej ilości moli. Takie nadmierne wyposażenie w sprzęt oraz reagenty może prowadzić do nieefektywności oraz zwiększenia ryzyka błędów w laboratorium. W kontekście dobrych praktyk laboratoryjnych istotne jest dążenie do minimalizacji użycia materiałów oraz przestrzeganie zasad precyzyjnego pomiaru, co jest kluczowe w chemii analitycznej.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Fragment procedury analitycznej
(...) Przenieś badany roztwór całkowicie do rozdzielacza gruszkowego o pojemności od 50 do 100 cm3, dodaj 5 cm3 roztworu tiocyjanianu potasu oraz 10 cm3 alkoholu izopentylowego, a następnie wstrząsaj zawartością przez 30 sekund.
Po rozdzieleniu faz przenieś roztwór wodny do drugiego rozdzielacza, natomiast fazę organiczną do suchej kolbki miarowej o pojemności 50 cm3(...) Który rodzaj ekstrakcji jest opisany w powyższym fragmencie?

A. Okresowej ciecz – ciecz
B. Okresowej ciało stałe – ciecz
C. Ciągłej ciało stałe – ciecz
D. Ciągłej ciecz – ciecz
Zrozumienie różnicy między ekstrakcją okresową a ciągłą jest kluczowe dla prawidłowego wykonania procedur analitycznych. Ekstrakcja ciągła ciecz – ciecz polega na nieprzerwanym przepływie fazy organicznej, co umożliwia bardziej efektywne wyodrębnienie substancji z roztworu. W przedstawionym fragmencie natomiast opisana została procedura, która polega na jednorazowym przeniesieniu fazy, co sugeruje charakter działania okresowego. Dla typowych błędów myślowych można wskazać dezinformację dotyczącą przepływu faz, gdzie użytkownicy mogą mylnie utożsamiać prostą interakcję substancji z roztworem z procesem ciągłym. Również mylenie ciał stałych z cieczami w kontekście ekstrakcji może prowadzić do nieprawidłowych wniosków, gdyż podstawowym założeniem ekstrakcji ciecz – ciecz jest to, że obie fazy muszą być ciekłe. Niepoprawne odpowiedzi często wynikały z niewłaściwego zrozumienia zasad ekstrakcji oraz ich zastosowania w praktyce laboratoryjnej. Uczenie się tych różnic jest kluczowe dla efektywnego projektowania procesów analitycznych oraz optymalizacji wydobycia substancji chemicznych.

Pytanie 30

Podczas pomiaru masy substancji w naczyniu wagowym na wadze technicznej, dla zrównoważenia ciężaru na szalce umieszczono odważniki: 20 g, 2 g, 500 mg, 200 mg, 20 mg, 10 mg, 10 mg oraz 5 g. Całkowita masa substancji z naczynkiem wyniosła

A. 27,745 g
B. 22,740 g
C. 22,745 g
D. 27,740 g
Obliczenie masy substancji na wadze technicznej to tak naprawdę zrównoważenie masy tego, co ważymy, z masą odważników, które mamy. W tym przypadku mamy odważniki, które razem dają 27,740 g. Wchodzą w to: 20 g, 5 g, 2 g, 500 mg (czyli 0,5 g), 200 mg (czyli 0,2 g), 20 mg (0,02 g), 10 mg (0,01 g) oraz jeszcze raz 10 mg (0,01 g). Jakbyśmy to wszystko zliczyli: 20 g + 5 g + 2 g + 0,5 g + 0,2 g + 0,02 g + 0,01 g + 0,01 g to właśnie daje nam 27,740 g. W laboratoriach ważenie substancji jest mega ważne, żeby mieć pewność, że wyniki są wiarygodne. Wagi techniczne są wykorzystywane w różnych branżach, jak chemia czy farmacja, gdzie dokładność to klucz. Żeby wszystko dobrze wyważyć, trzeba używać odpowiednich odważników i ich dokładnie posumować. To nie tylko zapewnia precyzję, ale i powtarzalność wyników, co jest istotne.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Naczynia miarowe kalibrowane "na wlew" mają oznaczenie w postaci symbolu

A. Ex
B. B
C. In
D. A
Naczynia miarowe kalibrowane "na wlew" oznaczone symbolem "In" są przeznaczone do pomiaru objętości cieczy, które pozostają w naczyniu po ich napełnieniu. Oznaczenie to wskazuje, że naczynie powinno być uzupełnione do wyznaczonego poziomu, a dokładność pomiaru zależy od właściwego zastosowania naczynia. W praktyce, naczynia te są używane w laboratoriach do precyzyjnego odmierzania reagentów, gdzie ważne jest, aby cała objętość została wykorzystana w procesie chemicznym. Warto zauważyć, że zgodnie z normami ISO oraz wymaganiami dotyczącymi jakości w laboratoriach, stosowanie naczyń miarowych kalibrowanych „na wlew” pozwala na uzyskanie wiarygodnych wyników pomiarów. Używając naczyń oznaczonych symbolem „In”, laboranci mogą zminimalizować błędy związane z pozostałością cieczy, co jest istotne w kontekście analizy danych i powtarzalności badań.

Pytanie 34

Którego związku chemicznego, z uwagi na jego silne właściwości higroskopijne, nie powinno się używać w analizie miareczkowej jako substancji podstawowej?

A. Na2CO3
B. Na2C2O4
C. NaOH
D. Na2B4O7·10H2O
Wybierając jedną z pozostałych odpowiedzi, można mylić się co do właściwości poszczególnych reagentów i ich zastosowania w analizie miareczkowej. Na2CO3, czyli węglan sodu, jest często stosowany w titracji węglanową, a jego właściwości stałe i niskie właściwości higroskopijne sprawiają, że jest to odpowiedni wybór. Użycie Na2CO3 w analizach, które wymagają miareczkowania z użyciem kwasów, jest zgodne z praktykami laboratoryjnymi, które zapewniają wiarygodność wyników. W przypadku Na2B4O7·10H2O, znanego również jako boraks, substancja ta również ma zastosowanie w analizach chemicznych, ale jej użycie ogranicza się do innych typów reakcji chemicznych, co czyni ją mniej odpowiednią w kontekście miareczkowania. Na2C2O4, czyli szczawian sodu, jest również używany w niektórych reakcjach miareczkowych, jednak jego zastosowanie wymaga precyzyjnego przygotowania roztworu oraz uwzględnienia jego własności chemicznych. Kluczowym błędem myślowym jest przyjęcie, że każdy z wymienionych reagentów ma takie same właściwości w kontekście higroskopijności, co jest nieprawidłowe. Każdy z wymienionych reagentów ma swoje specyficzne zastosowania i właściwości, które powinny być brane pod uwagę przy projektowaniu eksperymentów analitycznych. Analiza miareczkowa wymaga precyzyjnego doboru odczynników, a ich właściwości higroskopijne są kluczowym czynnikiem wpływającym na wyniki końcowe. Używanie niewłaściwego reagentu z uwagi na jego higroskopijność może prowadzić do poważnych błędów w pomiarach i interpretacji wyników.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

W którym wierszu są zapisane nazwy wyłącznie rozpuszczalników palnych?

Właściwości wybranych rozpuszczalników.
RozpuszczalnikGęstość
[g/cm3]
Temperatura
wrzenia
[°C]
Temperatura
zapłonu
[°C]
Rozpuszczalność
w wodzie
[g/100 cm3]
Eter dietylowy0,7135-457
Heksan0,6660-80-230,01
Aceton0,7957-18
Benzen0,8880-110,07
Chloroform1,4961-0,82
Tetrachlorometan1,5977-0,08
Etanol0,817812
Chlorometan1,3441-2

A. Aceton, etanol, chloroform.
B. Heksan, benzen, tetrachlorometan.
C. Aceton, etanol, benzen.
D. Chloroform, chlorometan, tetrachlorometan.
Analizując pozostałe odpowiedzi, pojawia się kilka kluczowych błędów. Odpowiedzi zawierające chloroform oraz tetrachlorometan wskazują na pomyłkę w ocenie ich właściwości chemicznych. Chloroform ma temperaturę zapłonu wynoszącą 61°C, co czyni go mniej łatwopalnym niż pozostałe wymienione substancje. Ponadto, tetrachlorometan (inaczej znany jako czterochlorek węgla) nie jest substancją łatwopalną, ponieważ jego temperatura zapłonu wynosi 12°C, lecz jego właściwości toksykologiczne oraz potencjalne zagrożenia dla zdrowia są znacznie wyższe. Typowym błędem jest mylenie pojęć „łatwopalny” z „palny”, co prowadzi do błędnych wniosków na temat bezpieczeństwa użycia tych substancji. Użytkownicy często nie zwracają uwagi na klasyfikację substancji chemicznych według systemu GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Substancji Chemicznych), co jest istotne przy ocenie zagrożeń. Dlatego tak ważne jest, aby dokładnie zapoznać się z właściwościami chemicznymi stosowanych substancji oraz ich klasyfikacją w celu zapewnienia maksymalnego bezpieczeństwa w pracy z materiałami chemicznymi.

Pytanie 38

Intensywna reakcja z FeCl3 jest wykorzystywana do identyfikacji

A. amin
B. fenoli
C. alkenów
D. aldehydów
Barwna reakcja z chlorkiem żelaza(III) jest dobrze znanym testem stosowanym do wykrywania fenoli, które wykazują zdolność do tworzenia kompleksów z tym związkiem. Fenole posiadają grupę hydroksylową (-OH) połączoną z pierścieniem aromatycznym, co umożliwia im reagowanie z chlorkiem żelaza(III), prowadząc do powstania charakterystycznego zabarwienia, zazwyczaj fioletowego lub purpurowego. Przykładem zastosowania tej reakcji w laboratoriach chemicznych jest analiza składu substancji organicznych, gdzie obecność fenoli może wskazywać na zanieczyszczenia lub naturalne składniki aktywne. Test ten jest często wykorzystywany w przemyśle kosmetycznym oraz farmaceutycznym, gdzie fenole mogą pełnić rolę konserwantów lub substancji czynnych. Zastosowanie tej metody jest zgodne z normami laboratoryjnymi, które zalecają stosowanie reakcji z chlorkiem żelaza(III) jako jednego z podstawowych sposobów na identyfikację związków fenolowych, co jest uznawane za dobrą praktykę w chemii analitycznej.

Pytanie 39

Co oznacza skrót AKT?

A. kontrolno-techniczną analizę
B. amid kwasu tiooctowego
C. titranta automatyczną kontrolę
D. krzywą titracyjną analityczną
Skrót AKT odnosi się do amidu kwasu tiooctowego, który jest istotnym związkiem chemicznym o szerokim zastosowaniu w różnych dziedzinach, w tym w chemii analitycznej i syntezie organicznej. Amid kwasu tiooctowego jest wykorzystywany jako odczynnik w reakcjach chemicznych, w tym w tworzeniu złożonych cząsteczek organicznych. Jego unikalne właściwości sprawiają, że jest przydatny w procesach, takich jak modyfikacja powierzchni materiałów i nanoszenie warstw ochronnych. Przykładowo, w laboratoriach chemicznych używa się go do syntezy związków, które następnie mogą być badane pod kątem ich właściwości biologicznych lub fizykochemicznych. Ponadto, amid kwasu tiooctowego ma zastosowanie w branży farmaceutycznej, gdzie jest wykorzystywany w produkcji niektórych leków. Zrozumienie roli AKT w chemii pozwala na lepsze projektowanie eksperymentów i analizę wyników, co jest kluczowe dla zapewnienia wysokiej jakości badań i zgodności z najlepszymi praktykami w branży.

Pytanie 40

Aby przeprowadzać ręczną obróbkę szkła w laboratorium, konieczne jest posiadanie okularów ochronnych oraz rękawic.

A. płócienne
B. zapewniające izolację termiczną
C. zwykłe gumowe
D. chroniące przed substancjami chemicznymi
Wybór odpowiednich rękawic do pracy ze szkłem laboratoryjnym to naprawdę ważna sprawa, bo chodzi o bezpieczeństwo. Takie rękawice muszą chronić przed wysokimi temperaturami, co jest kluczowe, gdy na przykład podgrzewamy szkło czy pracujemy z gorącymi elementami. Są zaprojektowane z materiałów, które dobrze znoszą ciepło, więc możesz być spokojny, że Twoje dłonie są chronione przed oparzeniami. W laboratoriach, gdzie obrabia się szkło, takie rękawice są niezbędne, szczególnie podczas odlewania czy formowania. Co więcej, przepisy BHP zalecają używanie specjalistycznych rękawic, które nie tylko chronią przed ciepłem, ale też są odporne na chemikalia. To dodatkowo podnosi poziom bezpieczeństwa. Dlatego warto dobrze przemyśleć, jakie rękawice wybierasz, żeby zadbać o swoje zdrowie i bezpieczeństwo w pracy.