Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 17 maja 2025 15:41
  • Data zakończenia: 17 maja 2025 15:56

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

50 cm3 alkoholu etylowego zmieszano w kolbie miarowej z 50 cm3 wody. W wyniku zjawiska kontrakcji objętość otrzymanego roztworu wyniosła 97,5 cm3. Ile wynosi stężenie procentowe (v/v) roztworu alkoholu w wodzie po zmieszaniu i stężenie procentowe roztworu alkoholu (v/v) po uzupełnieniu kolby wodą do 100 cm3?

Stężenie procentowe (v/v) roztworu alkoholu w wodzie po zmieszaniuStężenie procentowe (v/v) roztworu alkoholu po uzupełnieniu kolby wodą do 100 cm3
A.49,2%48,0%
B.50,0%49,7%
C.51,3%,50,0%
D.53,3%50,2%

A. B.
B. C.
C. D.
D. A.
Wybór innej odpowiedzi niż C może świadczyć o niepełnym zrozumieniu zagadnienia dotyczącego stężenia procentowego roztworu. Często popełnianym błędem jest nieprawidłowe obliczenie objętości końcowej roztworu. W przypadku, gdy 50 cm³ alkoholu etylowego zmieszano z 50 cm³ wody, oczekiwanie, że objętość roztworu wyniesie 100 cm³, jest błędne. W rzeczywistości zjawisko kontrakcji sprawia, że objętość końcowa wynosi 97,5 cm³. Niezrozumienie tego zjawiska może prowadzić do fałszywych założeń, jakoby stężenie alkoholu w roztworze wynosiło 50%, co jest wynikiem mylnego przeliczenia. Ponadto, błędna interpretacja pojęcia stężenia procentowego (v/v) może skutkować pomyleniem tego wskaźnika z innymi rodzajami stężeń, takimi jak stężenie masowe. Kluczowym elementem w obliczeniach chemicznych jest uwzględnienie rzeczywistych objętości roztworów, które mogą się różnić od sumy objętości składników z powodu interakcji międzycząsteczkowych. Dlatego ważne jest, aby przed przystąpieniem do obliczeń zawsze uwzględniać zjawiska fizykochemiczne, które mogą wpływać na wyniki. Zrozumienie tych podstawowych zasad jest istotne w praktyce laboratoryjnej, by uniknąć błędów w przygotowywaniu roztworów do analiz chemicznych.

Pytanie 2

Połączono równe ilości cynku i bromu, a następnie poddano je reakcji Zn + Br2 → ZnBr2. W tych warunkach stopień reakcji cynku wynosi (masy atomowe: Zn – 65u, Br – 80u)?

A. 0,4
B. 0,8
C. 0,6
D. 1,0
Wybór odpowiedzi, który nie uwzględnia właściwych proporcji reagentów w reakcji, prowadzi do błędnych wniosków. W przypadku reakcji Zn + Br2 → ZnBr2 należy zaznaczyć, że reakcja zachodzi w idealnych warunkach stechiometrycznych, w których reagenty są w równych ilościach molowych. Osoby, które odpowiedziały inaczej, często popełniają błąd w obliczeniach molowych lub mylą się w ocenie, który reagent jest ograniczający. Warto zwrócić uwagę, że jeśli reagent jest w nadmiarze, to nie wpływa na stopień przereagowania reagentu ograniczającego. Dlatego też, niezależnie od ilości bromu, cynk w tej reakcji ogranicza, co oznacza, że tylko część bromu zareaguje. Obliczenia powinny bazować na masach atomowych oraz na przeliczeniu ich na mole, co jest kluczowym elementem analizy chemicznej. Zazwyczaj błędy te wynikają z zbyt ogólnego podejścia do kwestii stechiometrii, a także braku zrozumienia, jak molowość reagentów wpływa na wynik reakcji. Aby zminimalizować takie błędy, ważne jest praktykowanie obliczeń stechiometrycznych oraz znajomość zasad dotyczących ilości molowych reagentów i ich wpływu na reakcję. Wiedza ta jest fundamentalna, ponieważ w przemyśle chemicznym należy precyzyjnie kontrolować proporcje reagentów, aby zapewnić efektywność procesów chemicznych.

Pytanie 3

Który z wskaźników nie jest używany w alkacymetrii?

A. Błękit tymolowy
B. Skrobia
C. Fenoloftaleina
D. Oranż metylowy
Skrobia jest polisacharydem, który nie pełni funkcji wskaźnika pH w reakcjach alkacymetrycznych. W alkacymetrii, kluczowe jest monitorowanie zmian pH roztworu, co pozwala na określenie punktu równoważności. W tym kontekście, wskaźniki takie jak oranż metylowy, fenoloftaleina oraz błękit tymolowy są stosowane ze względu na ich zdolność do zmiany koloru w określonym zakresie pH. Oranż metylowy zmienia kolor w pH od 3,1 do 4,4, co czyni go użytecznym w reakcjach kwasowo-zasadowych w środowisku kwasowym. Fenoloftaleina natomiast zmienia kolor z bezbarwnego na różowy w pH od 8,2 do 10,0, co jest istotne w alkacymetrii zasadowej. Błękit tymolowy działa w zakresie pH 6,0 - 7,6, co pozwala na wykrywanie przejścia z kwasowego do obojętnego. W przeciwieństwie do tych wskaźników, skrobia nie jest używana w alkacymetrii, a jej zastosowanie koncentruje się głównie w analizie jakościowej, jako reagent do wykrywania jodu.

Pytanie 4

Temperatura wrzenia aniliny przy normalnym ciśnieniu wynosi 457,13 K. W trakcie jej oczyszczania metodą destylacji prostej pod ciśnieniem atmosferycznym należy zebrać frakcję wrzącą w przedziale temperatur

A. 175 °C - 179 °C
B. 181 °C - 185 °C
C. 178 °C - 182 °C
D. 185 °C - 190 °C
Wybór zakresów temperatur innych niż 181 °C - 185 °C wynika z kilku nieporozumień związanych z podstawowymi zasadami destylacji. Często zdarza się, że osoby mające do czynienia z destylacją nie uwzględniają dokładnie wartości wrzenia substancji, co prowadzi do błędnych interpretacji. Na przykład, odpowiedzi sugerujące zakresy 185 °C - 190 °C lub 178 °C - 182 °C bazują na niewłaściwych założeniach dotyczących temperatury wrzenia aniliny. W rzeczywistości, jeżeli temperatura wrzenia wynosi 184 °C, wówczas frakcje przed i po tej wartości będą zawierały znaczny procent zanieczyszczeń, co może prowadzić do obniżenia jakości uzyskiwanego destylatu. Innym typowym błędem myślowym jest zakładanie, że temperatura wrzenia jest jedynym czynnikiem decydującym o zakresie zbierania frakcji podczas destylacji. W praktyce, inne czynniki, takie jak ciśnienie atmosferyczne, mogą wpływać na pomiar temperatur. Właściwe dobieranie zakresów zbierania frakcji jest kluczowe, aby uniknąć strat substancji czynnej i zapewnić ich czystość. Kluczowe jest również zrozumienie, że w przypadku substancji chemicznych, takich jak anilina, istotne jest przestrzeganie standardów laboratoryjnych oraz dobrych praktyk w celu uzyskania optymalnych wyników destylacji.

Pytanie 5

Jakie czynniki wpływają na zmiany jakościowe w składzie próbki?

A. lokalizacji pobrania.
B. składu biologicznego próbki.
C. wiedzy i umiejętności próbobiorcy.
D. przeprowadzonych analiz.
Wybór zleconych badań jako czynnika determinującego zmiany jakościowe w składzie próbki jest mylący, ponieważ zlecenia odnoszą się do procedur badawczych, a nie do samej próbki. Zlecenia definiują cele badań i metodykę, ale nie wpływają bezpośrednio na jakość czy skład próbki. Podobnie, miejsce poboru próbki może mieć znaczenie w kontekście kontaminacji lub zmienności środowiskowej, jednak nie jest kluczowym czynnikiem wpływającym na zmiany jakościowe w składzie próbki, które są przede wszystkim rezultatem procesów zachodzących wewnątrz próbki. Z kolei wiedza i umiejętności próbobiorcy są istotne dla zapewnienia rzetelności i powtarzalności wyników badań, ale same w sobie nie determinują zmian jakościowych. Kluczowe jest zrozumienie, że zmiany jakościowe wynikają z interakcji składników biologicznych, które są podstawą składu próbki. Takie myślenie pozwala uniknąć typowych błędów, takich jak skupienie się na aspektach proceduralnych zamiast na naturze samej próbki. Zrozumienie biologicznych i chemicznych właściwości składników próbek jest niezbędne do prawidłowej analizy i interpretacji wyników, dlatego należy kierować się w badaniach głębszymi podstawami naukowymi, a nie jedynie wytycznymi czy formalnymi zleceniami.

Pytanie 6

Masa molowa kwasu azotowego(V) wynosi 63,0 g/mol. Jakie jest stężenie molowe 20% roztworu tego kwasu o gęstości 1,1 g/cm3?

A. 3,60 mol/dm3
B. 3,49 mol/dm3
C. 6,30 mol/dm3
D. 5,30 mol/dm3
Aby obliczyć stężenie molowe kwasu azotowego(V) w 20% roztworze, należy zastosować wzór na stężenie molowe, który określa ilość moli substancji chemicznej w jednostce objętości roztworu. W pierwszej kolejności obliczamy masę kwasu azotowego w 100 g roztworu: 20% oznacza, że w 100 g roztworu znajduje się 20 g kwasu azotowego. Następnie przeliczymy tę masę na mole, korzystając z masy molowej kwasu azotowego(V), która wynosi 63,0 g/mol. Dzieląc masę kwasu przez jego masę molową, uzyskujemy liczbę moli: 20 g / 63,0 g/mol = 0,317 mol. Teraz musimy obliczyć objętość roztworu. Gęstość roztworu wynosi 1,1 g/cm³, co oznacza, że 100 g roztworu ma objętość 100 g / 1,1 g/cm³ = 90,91 cm³, czyli 0,09091 dm³. Wreszcie, stężenie molowe obliczamy dzieląc liczbę moli przez objętość roztworu: 0,317 mol / 0,09091 dm³ ≈ 3,49 mol/dm³. Takie obliczenia są istotne w chemii analitycznej i laboratoryjnej, gdzie precyzyjne przygotowanie roztworów ma kluczowe znaczenie dla uzyskania wiarygodnych wyników analiz chemicznych.

Pytanie 7

Jeżeli partia towaru składa się z 10 dużych opakowań, wtedy z jednego opakowania pobiera się kilka próbek, które następnie łączy, uzyskując próbkę

A. średnią
B. pierwotną
C. laboratoryjną
D. jednostkową
Odpowiedzi "pierwotną", "średnią" oraz "laboratoryjną" nie są poprawne, ponieważ dotyczą one różnych koncepcji związanych z pobieraniem próbek, które nie pasują do opisanego kontekstu. Próbka pierwotna zazwyczaj odnosi się do materiału, który nie został jeszcze poddany analizie ani obróbce w laboratorium; tymczasem w naszym przypadku próbka została już pobrana z opakowania. Z kolei pojęcie próbki średniej sugeruje, że próbki z różnych jednostek są łączone w celu uzyskania jednej reprezentatywnej próbki. Chociaż takie podejście może być stosowane w niektórych analizach statystycznych, w sytuacji opisanej w pytaniu, bardziej adekwatne byłoby mówienie o próbkach jednostkowych. Odpowiedź "laboratoryjną" jest myląca, ponieważ odnosi się do próbki, która została już poddana działaniu w laboratorium, co nie odpowiada definicji próbki pobieranej z opakowania. Typowym błędem myślowym jest utożsamienie próbki średniej z jednostkową, gdyż mogą one pełnić różne funkcje w procesie analizy jakości. Właściwe zrozumienie różnicy między tymi terminami ma kluczowe znaczenie w kontekście zapewnienia jakości w różnych branżach.

Pytanie 8

Do wykonania preparatu według zamieszczonej procedury należy przygotować wagę, łyżeczkę, palnik gazowy, trójnóg, bagietkę, szczypce metalowe oraz

Procedura otrzymywania tlenku magnezu przez prażenie węglanu magnezu.
Odważoną ilość węglanu magnezu ubić dokładnie w tyglu (wcześniej zważonym) i przykryć pokrywką.
Początkowo ogrzewać niewielkim kopcącym płomieniem, a następnie gdy tygiel ogrzeje się, ogrzewać
silniej w temperaturze czerwonego żaru przez około 20 minut. Po zakończeniu prażenia tygiel odstawić
do ostudzenia chroniąc przed wilgocią. Zważyć tygiel z preparatem i obliczyć wydajność.

A. tygiel z pokrywką, siatkę grzewczą, zlewkę z zimną wodą.
B. tygiel, trójkąt ceramiczny, krystalizator.
C. tygiel, siatkę grzewczą, eksykator.
D. tygiel z pokrywką, trójkąt ceramiczny, eksykator.
Wybór niepoprawnych odpowiedzi może wynikać z niepełnego zrozumienia ról poszczególnych narzędzi w procesie prażenia węglanu magnezu. Na przykład, tygiel, trójkąt ceramiczny oraz eksykator pełnią kluczowe funkcje w tej procedurze, a ich brak lub zamiana na inne narzędzia mogą prowadzić do nieefektywności lub nawet zagrożeń podczas przeprowadzania doświadczeń. Niektóre odpowiedzi, które zawierają krystalizator czy zlewkę z zimną wodą, wskazują na nieporozumienie dotyczące celu, w jakim te narzędzia są używane. Krystalizator jest stosowany w procesach krystalizacji, a zlewka z zimną wodą nie ma zastosowania w prażeniu, gdyż może prowadzić do niespodziewanych zmian temperatury, co jest niepożądane w reakcjach chemicznych zachodzących w wysokotemperaturowych warunkach. Typowe błędy myślowe polegają na przypisywaniu narzędziom ról, które nie odpowiadają ich rzeczywistym funkcjom w laboratorium. Kluczowe jest zrozumienie, że każde narzędzie w pracy laboratoryjnej ma swoje specyficzne zastosowanie, które musi być zgodne z procedurą eksperymentalną, w przeciwnym razie wyniki mogą być nieprzewidywalne lub niepoprawne.

Pytanie 9

Pierwotna próbka jest zbierana

A. z próbki ogólnej w sposób bezpośredni
B. w jednym punkcie partii materiału
C. z próbki przeznaczonej do badań
D. z opakowania pierwotnego
Pobieranie próbki pierwotnej bezpośrednio z próbki ogólnej może prowadzić do znacznych rozbieżności w wynikach analizy. Ta koncepcja ignoruje fakt, że próbka ogólna jest zbiorczym przedstawieniem materiału, a nie reprezentatywnym źródłem do pobierania próbek. W rzeczywistości, gdy próbka jest brana z ogólnej puli, istnieje ryzyko, że nie uwzględni ona różnic w składzie, co może prowadzić do zafałszowanych wyników. Ponadto, pobieranie próbek z opakowania pierwotnego jest również niewłaściwe, ponieważ może nie oddać prawdziwego stanu całej partii materiału – opakowanie może zawierać zanieczyszczenia lub niejednorodności, które nie występują w samej partii. Z kolei sugerowanie, że próbki do badań są miejscem pobierania próbki pierwotnej, jest mylące, jako że próbki do badań powinny być wynikiem odpowiednich procedur pobierania, a nie źródłem do ich pobierania. Kluczowym elementem efektywnego procesu pobierania próbek jest przestrzeganie standardów ISO oraz wytycznych odpowiednich branż, które podkreślają znaczenie reprezentatywności próbek i odpowiednich metod ich pobierania, aby uniknąć błędów analitycznych i zapewnić rzetelność wyników. Właściwe podejście do pobierania zapewnia, że wyniki analizy będą stanowiły wiarygodną podstawę do decyzji o jakości i zgodności materiału.

Pytanie 10

Ustalanie miana roztworu polega na

A. zważeniu substancji i rozpuszczeniu jej w wodzie
B. określaniu przybliżonego stężenia roztworu
C. miareczkowaniu przy użyciu roztworu o precyzyjnie znanym stężeniu roztworu oznaczanej próbki
D. miareczkowaniu próbki roztworu o dokładnie znanym stężeniu przy pomocy roztworu nastawianego
Wszystkie niepoprawne odpowiedzi bazują na niepełnych lub błędnych zrozumieniach procesu nastawiania miana roztworu. Odpowiedzi, które sugerują jedynie odważenie substancji i rozpuszczenie jej w wodzie, pomijają kluczowy aspekt miareczkowania, który jest istotny dla uzyskania precyzyjnych wyników analitycznych. Odważenie substancji jest rzeczywiście pierwszym krokiem w przygotowywaniu roztworu, ale sama procedura nastawiania miana opiera się na bardziej zaawansowanej metodzie analitycznej, która wymaga znajomości reakcji chemicznej i umiejętności rozpoznawania punktów końcowych miareczkowania. Kolejna niepoprawna koncepcja dotyczy określania przybliżonego stężenia roztworu. Proces ten nie powinien być mylony z miareczkowaniem, które ma na celu uzyskanie dokładnych wartości stężenia. Ostatecznie, miareczkowanie roztworem o znanym stężeniu substancji oznaczanej jest procedurą, która nie ma zastosowania w kontekście nastawiania miana, ponieważ cała zasada opiera się na wykorzystaniu roztworu wzorcowego do analizy próbki. W praktyce, błędne podejścia do miareczkowania mogą prowadzić do znaczących pomyłek w wynikach, co podkreśla wagę stosowania odpowiednich metod i procedur analitycznych w laboratoriach chemicznych.

Pytanie 11

Na podstawie danych zawartych w tabeli wskaż, który dodatek należy zastosować, w celu konserwacji próbek wody przeznaczonych do oznaczania jej twardości.

Tabela. Techniki konserwacji próbek wody
Stosowany dodatek
lub technika
Rodzaje próbek, do których dodatek lub technika jest stosowana
Kwas siarkowy(VI)zawierające węgiel organiczny, oleje lub tłuszcze, przeznaczone do oznaczania ChZT, zawierające aminy lub amoniak
Kwas azotowy(V)zawierające związki metali
Wodorotlenek soduzawierające lotne kwasy organiczne lub cyjanki
Chlorek rtęci(II)zawierające biodegradowalne związki organiczne oraz różne formy azotu i fosforu
Chłodzenie w
temperaturze 4°C
zawierające mikroorganizmy, barwę, zapach, organiczne formy węgla, azotu i fosforu, przeznaczone do określenia kwasowości, zasadowości oraz BZT

A. Wodorotlenek sodu.
B. Kwas azotowy(V).
C. Chlorek rtęci(II).
D. Kwas siarkowy(VI).
Kwas azotowy(V) jest powszechnie stosowany w laboratoriach do konserwacji próbek wody, zwłaszcza gdy istnieje potrzeba oznaczania twardości wody. Twardość wody jest głównie spowodowana obecnością kationów wapnia i magnezu, które mogą reagować z zanieczyszczeniami. Kwas azotowy(V) działa jako środek konserwujący, stabilizując próbki i zapobiegając ich degradacji przy jednoczesnym zachowaniu właściwości chemicznych. W praktyce, dodatek tego kwasu pozwala na dłuższe przechowywanie próbek przed analizą, co jest kluczowe dla dokładnych wyników. W standardach laboratoriach analitycznych, takich jak ISO 5667 dotyczący pobierania próbek wody, zaleca się stosowanie odpowiednich środków konserwujących, w tym kwasu azotowego(V), w celu uzyskania rzetelnych wyników analitycznych. Stosowanie tego kwasu w praktyce zapewnia, że próbki zachowują swoją integralność chemiczną, co jest niezbędne do precyzyjnego określenia twardości wody.

Pytanie 12

Odpady z rozpuszczalników organicznych, takich jak benzen czy aceton, zawierające co najmniej 80% danego rozpuszczalnika, należy

A. połączyć z ziemią okrzemkową i przekazać do utylizacji.
B. poddać recyklingowi w celu odzyskania rozpuszczalnika.
C. odprowadzać bezpośrednio do kanalizacji.
D. zniszczyć poprzez zastosowanie odpowiednich procesów.
Odpady z rozpuszczalników organicznych, takich jak benzen czy aceton, które mają przynajmniej 80% tego rozpuszczalnika, powinny być poddawane recyklingowi. To naprawdę zgodne z zasadami zrównoważonego rozwoju i tego, jak powinniśmy zarządzać odpadami. Recykling pozwala nam na ich ponowne wykorzystanie w przemysłowych procesach, dzięki czemu zmniejszamy ilość śmieci i ograniczamy potrzebę pozyskiwania nowych surowców. W praktyce chodzi o różne metody, jak destylacja, które pomagają odzyskać czysty rozpuszczalnik. Na przykład w przemyśle lakierniczym często korzysta się z takich procesów, co jest korzystne, bo zmniejsza koszty i wpływ na środowisko. Pamiętaj, że zgodnie z prawem, te odpady są klasyfikowane jako niebezpieczne, więc dobre zarządzanie nimi i ich recykling są naprawdę kluczowe dla zdrowia ludzi i ochrony naszej planety.

Pytanie 13

Jaką masę siarczanu(VI) miedzi(II)-woda(1/5) należy poddać suszeniu, aby otrzymać 300 g soli bezwodnej?

CuSO4 · 5H2O → CuSO4 + 5H2O
(MCuSO4·5H2O = 249,5 g/mol, MCuSO4 = 159,5 g/mol, MH2O = 18,0 g/mol)

A. 210,0 g
B. 584,1 g
C. 469,3 g
D. 390,5 g
Odpowiedź 469,3 g jest prawidłowa, ponieważ obliczenia opierają się na stosunku mas molowych soli bezwodnej i uwodnionej. Siarczan(VI) miedzi(II) w postaci uwodnionej (CuSO4·5H2O) zawiera cząsteczki wody, które muszą zostać usunięte podczas procesu suszenia, aby uzyskać sól bezwodną (CuSO4). Masy molowe: CuSO4 wynoszą około 159,61 g/mol, a CuSO4·5H2O to 249,68 g/mol. Stosując proporcje, można ustalić, że masa siarczanu(VI) miedzi(II)-woda, potrzebna do uzyskania 300 g soli bezwodnej, wynosi około 469,3 g. Praktyczne zastosowanie tej wiedzy jest istotne w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów i soli jest kluczowe dla uzyskania wiarygodnych wyników badań. Dobre praktyki laboratoryjne sugerują, aby zawsze przeprowadzać obliczenia masy przed rozpoczęciem doświadczenia, co pozwala uniknąć błędów i strat materiałowych.

Pytanie 14

Czysty odczynnik (skrót: cz.) charakteryzuje się poziomem czystości wynoszącym

A. 99-99,9%
B. 99,99-99,999%
C. 99,9-99,99%
D. 90-99%
Odpowiedzi, które wskazują na inne zakresy czystości, mylą się w interpretacji standardów jakości substancji chemicznych. Na przykład, zakres 90-99% nie jest wystarczający dla substancji wymagających wysokiej czystości, co może prowadzić do błędnych wyników w eksperymentach czy produkcji farmaceutycznej. Tego rodzaju substancje mogą zawierać istotne zanieczyszczenia, co jest nieakceptowalne w kontekście wielu zastosowań, takich jak preparaty medyczne. Odpowiedź wskazująca na zakres 99,9-99,99% oraz 99,99-99,999% również wprowadza w błąd, gdyż są to wyższe klasy czystości, które nie odpowiadają definicji odczynnika czystego. W praktyce, substancje o czystości 99,9% mogą być uznawane za 'czyste', ale w kontekście czystości klasyfikowane są jako 'high-purity' lub 'ultra-purity'. To prowadzi do nieporozumień, gdyż w laboratoriach często stosuje się inne standardy do oceny czystości, takie jak HPLC lub GC, które mogą wskazywać na różne poziomy kontaminacji. Ponadto, myślenie, że każdy odczynnik musi mieć najwyższą możliwą czystość, jest błędne, ponieważ w wielu przypadkach czystość 99-99,9% jest wystarczająca do przeprowadzenia analiz czy syntez, zachowując równocześnie rentowność i dostępność materiałów. W związku z tym, zrozumienie różnicy pomiędzy różnymi poziomami czystości i ich praktycznym zastosowaniem jest kluczowe dla zapewnienia jakości w pracy laboratoryjnej.

Pytanie 15

Czy odpady laboratoryjne zawierające jony metali ciężkich powinny zostać poddane obróbce przed umieszczeniem ich w odpowiednio oznaczonej pojemności?

A. przeprowadzić w trudnorozpuszczalne związki i odsączyć
B. rozcieńczyć wodą destylowaną
C. zasypać wodorowęglanem sodu
D. zneutralizować kwasem solnym lub zasadą sodową
Odpady laboratoryjne zawierające jony metali ciężkich powinny być przekształcane w trudnorozpuszczalne związki, a następnie odsączane, aby zminimalizować ich toksyczność i ułatwić dalsze postępowanie z nimi. Proces ten zakłada dodawanie reagentów, które reagują z metalami ciężkimi, tworząc osady, które są łatwiejsze do usunięcia. Przykładem może być dodawanie siarczanu sodu, co prowadzi do wytrącenia osadów siarczkowych. Odsączanie pozwala na oddzielenie osadu od cieczy, co jest kluczowe w zarządzaniu odpadami. Praktyki takie są zgodne z normami ochrony środowiska, które nakładają obowiązek zapewnienia, że odpady nie zanieczyszczają wód gruntowych ani innych zasobów wodnych. Z tego powodu laboratoria powinny dysponować odpowiednimi urządzeniami filtracyjnymi oraz zapewniać szkolenia dla personelu w zakresie odpowiedniego postępowania z takimi odpadami. Warto również pamiętać, że metale ciężkie, jak ołów czy kadm, mogą być szkodliwe dla zdrowia ludzkiego, dlatego tak ważne jest ich właściwe zarządzanie.

Pytanie 16

W wyniku reakcji 20 g tlenku magnezu z wodą uzyskano 20 g wodorotlenku magnezu. Oblicz efektywność reakcji.
MMg = 24 g/mol, MO = 16 g/mol, MH = 1 g/mol?

A. 68,9%
B. 20%
C. 79,2%
D. 48,2%
Analizując błędne odpowiedzi, można zauważyć kilka typowych nieporozumień dotyczących obliczania wydajności reakcji chemicznych. Wydajność reakcji definiuje się jako stosunek masy uzyskanego produktu do masy teoretycznej, co oznacza, że kluczowe jest dokładne zrozumienie przebiegu reakcji oraz obliczeń molowych. Wiele osób może błędnie zakładać, że 20 g uzyskane po reakcji to całkowita masa reagentów, co jest nieprawidłowe, ponieważ musimy uwzględnić teoretyczną ilość produktu. Ponadto, niektórzy mogą niepoprawnie przeliczać masy molowe, co prowadzi do błędnych wyników. Kluczowe jest również zrozumienie, że wydajność reakcji nie jest jedynie wynikiem stołu z danymi, ale jest złożonym wynikiem wielu czynników, takich jak czystość reagentów, warunki reakcji oraz efektywność procesu. W praktyce chemicznej stosuje się określone standardy, aby ocenić efektywność i wydajność produkcji, i takie błędy mogą prowadzić do nieodpowiednich wniosków. Znajomość teoretycznych podstaw chemii, takich jak zasady zachowania masy i bilans reakcji, jest kluczowa dla prawidłowego obliczania wydajności. Dlatego konieczne jest dokładne zrozumienie tych koncepcji, aby uniknąć pułapek w logicznym myśleniu i uzyskać wiarygodne wyniki.

Pytanie 17

Roztwór amoniaku o stężeniu 25% nie powinien być trzymany

A. w butelce z ciemnego szkła.
B. w pobliżu otwartego ognia.
C. pod sprawnie działającym wyciągiem.
D. z dala od źródeł ciepła i promieni słonecznych.
Roztwór amoniaku o stężeniu 25% jest substancją chemiczną, która może być niebezpieczna, zwłaszcza w przypadku kontaktu z wysoką temperaturą lub otwartym ogniem. Amoniak ma niską temperaturę zapłonu i może łatwo ulegać zapłonowi w obecności źródeł ciepła, co prowadzi do ryzyka pożaru czy nawet wybuchu. Dlatego przechowywanie go w pobliżu otwartego ognia jest wysoce niewłaściwe i niezgodne z zasadami BHP. W laboratoriach, w których stosuje się substancje chemiczne, istotne jest przestrzeganie norm bezpieczeństwa, takich jak OSHA (Occupational Safety and Health Administration) czy EU REACH, które podkreślają konieczność przechowywania substancji chemicznych w odpowiednich warunkach, z dala od niebezpiecznych źródeł. Przykładowo, amoniak powinien być przechowywany w chłodnym, dobrze wentylowanym pomieszczeniu, w szczelnych pojemnikach, a nie w miejscach, gdzie mogą występować źródła zapłonu. Zrozumienie i przestrzeganie tych zasad nie tylko zwiększa bezpieczeństwo w laboratorium, ale także przyczynia się do ochrony zdrowia pracowników oraz środowiska.

Pytanie 18

Ogrzewanie organicznych substancji w atmosferze powietrza w otwartym naczyniu, mające na celu przemianę tych substancji w związki nieorganiczne, określa się jako mineralizacja?

A. UV
B. mikrofalową
C. na mokro
D. na sucho
Odpowiedź "na sucho" jest prawidłowa, ponieważ mineralizacja substancji organicznej w atmosferze powietrza polega na utlenianiu tych substancji w warunkach braku wody. Proces ten jest stosowany w różnych dziedzinach, takich jak przemysł biopaliwowy, gdzie organiczne odpady są przekształcane w użyteczne substancje, jak biometan. Mineralizacja ma kluczowe znaczenie w cyklu nutrientów w ekosystemach, gdzie przyczynia się do uwalniania składników odżywczych do gleby, co jest istotne dla wzrostu roślin. Dobrze zorganizowany proces mineralizacji pozwala na efektywne zarządzanie odpadami organicznymi, zmniejszając ich wpływ na środowisko. W kontekście standardów branżowych, uwzględnienie metod mineralizacji w zarządzaniu odpadami organicznymi jest częścią dobrych praktyk, które podkreślają znaczenie recyklingu i ponownego wykorzystania zasobów.

Pytanie 19

Z przedstawionego opisu wynika, że kluczową właściwością próbki analitycznej jest jej

Próbka analityczna to fragment materiału stworzony z myślą o przeprowadzeniu badania lub obserwacji. Powinna odzwierciedlać przeciętny skład i cechy materiału, który jest badany.

A. jednorodność
B. rozpuszczalność
C. reprezentatywność
D. roztwarzalność
Odpowiedź "reprezentatywność" jest kluczowa w kontekście próbki analitycznej, gdyż oznacza, że próbka powinna odzwierciedlać charakterystyki całego materiału badanego. W praktyce oznacza to, że próbka musi być pobrana w sposób, który gwarantuje, że jej skład i właściwości są zgodne z właściwościami całej partii materiału. Przykładem zastosowania reprezentatywności może być proces pobierania próbek w analizie jakościowej gleby, gdzie ważne jest, aby próbki były pobierane z różnych miejsc w polu, aby uzyskać dokładny obraz stanu całej gleby. Standardy takie jak ISO 5667 dostarczają wytycznych na temat pobierania próbek w różnych środowiskach, co podkreśla znaczenie reprezentatywności. Bez zapewnienia, że próbka jest reprezentatywna, wyniki badania mogą być mylące, co może prowadzić do błędnych decyzji w procesach przemysłowych czy badaniach naukowych.

Pytanie 20

Aby uzyskać roztwór 25 gramów CuSO4 w 50 gramach wody, konieczne jest podgrzanie mieszanki do temperatury w przybliżeniu

A. 30°C
B. 340 K
C. 20°C
D. 313 K
Odpowiedzi 30°C, 313 K i 20°C są nieprawidłowe, ponieważ nie zapewniają odpowiednich warunków do skutecznego rozpuszczenia 25 g CuSO4 w 50 g wody. Przy 30°C, która odpowiada 303 K, rozpuszczalność siarczanu miedzi jest znacznie niższa niż przy 340 K. Zmniejszenie temperatury prowadzi do obniżenia energii kinetycznej cząsteczek, co spowalnia proces rozpuszczania. W przypadku 313 K, co odpowiada 40°C, chociaż temperatura ta jest wyższa, może być niewystarczająca do uzyskania pełnej rozpuszczalności dla podanej ilości soli. Natomiast 20°C, czyli 293 K, to zbyt niska temperatura, aby skutecznie rozpuścić taką ilość siarczanu miedzi. Często w takich sytuacjach pojawia się mylne przekonanie, że niższe temperatury mogą sprzyjać lepszemu rozpuszczaniu, co jest nieprawidłowe. Kluczowym elementem jest zrozumienie, że rozpuszczalność substancji w cieczy, jaką jest woda, rośnie wraz z temperaturą w przypadku wielu soli. Ignorowanie tego aspektu prowadzi do typowych błędów myślowych, takich jak zakładanie, że wszystkie substancje zachowują się jednakowo w różnych warunkach termicznych. Dlatego w praktyce laboratoryjnej i przemysłowej zawsze należy stosować odpowiednie temperatury zgodnie z danymi dotyczącymi rozpuszczalności dla danej substancji.

Pytanie 21

Jakie urządzenie jest wykorzystywane do procesu ekstrakcji?

A. aparat Soxhleta
B. kolba ssawkowa
C. aparat Kippa
D. pompa próżniowa
Kolba ssawkowa jest narzędziem stosowanym w chemii, ale jej głównym przeznaczeniem jest inna funkcja niż proces ekstrakcji. Kolba ta jest używana przede wszystkim do przechowywania, podgrzewania i mieszania cieczy. Jej konstrukcja umożliwia wygodne mieszanie substancji, jednakże nie zapewnia efektywności wymaganej do przeprowadzenia ekstrakcji, ponieważ nie jest zaprojektowana do ciągłego obiegu rozpuszczalnika i nie pozwala na kontrolę temperatury i ciśnienia, które są kluczowe w procesie ekstrakcji. Pompa próżniowa, z drugiej strony, jest urządzeniem stosowanym do usuwania powietrza z systemu, co może być użyteczne w niektórych procesach, ale nie jest dedykowana do ekstrakcji substancji. Wreszcie, aparat Kippa jest zupełnie innym narzędziem, służącym do wytwarzania gazów w reakcjach chemicznych, co również nie ma zastosowania w procesie ekstrakcji. Często pomyłki dotyczące wyboru odpowiednich narzędzi wynikają z błędnego zrozumienia ich funkcji i zastosowania. Kluczowe jest rozróżnienie między urządzeniami przeznaczonymi do różnych zadań w laboratoriach, co jest niezbędne dla uzyskania rzetelnych i powtarzalnych wyników w badaniach chemicznych.

Pytanie 22

W jakiej standardowej temperaturze są kalibrowane szklane naczynia pomiarowe?

A. 25°C
B. 21°C
C. 20°C
D. 19°C
Szklane naczynia miarowe, takie jak pipety, kolby czy cylinder miarowy, są kalibrowane w standardowej temperaturze 20°C. Kalibracja w tej temperaturze jest uznawana za normę, ponieważ zmiany temperatury mogą wpływać na objętość cieczy oraz na precyzję pomiarów. Przykładowo, w laboratoriach chemicznych, gdzie dokładność pomiarów jest kluczowa, naczynia miarowe są używane przy tej temperaturze, aby zapewnić wiarygodność wyników eksperymentów. W praktyce oznacza to, że przy pomiarach z użyciem tych naczyń, operatorzy powinni dążyć do utrzymania temperatury 20°C, aby uniknąć błędów wynikających z rozszerzalności cieczy oraz materiałów, z których wykonane są naczynia. Ponadto, zgodnie z międzynarodowymi standardami ISO i zaleceniami PTB (Physikalisch-Technische Bundesanstalt), kalibracja powinna być przeprowadzana w 20°C dla wszystkich podstawowych pomiarów objętości, co wzmacnia znaczenie tej wartości w praktyce laboratoryjnej.

Pytanie 23

Do kolby destylacyjnej wprowadzono 200 cm3 zanieczyszczonego acetonu o gęstości d = 0,9604 g/cm3 oraz czystości 90% masowych. W celu oczyszczenia przeprowadzono proces destylacji, w wyniku czego uzyskano 113,74 g czystego acetonu. Jakie były straty acetonu podczas destylacji?

A. 65,80%
B. 81,77%
C. 34,20%
D. 18,33%
Wybierając inne odpowiedzi, można napotkać kilka typowych pułapek myślowych. Często zdarza się, że studenci mylnie zakładają, iż straty acetonu można obliczyć jako prostą różnicę między masą początkową a masą końcową bez uwzględnienia rzeczywistej zawartości czystego acetonu. W takich przypadkach dochodzi do nieprawidłowego założenia co do ilości czystego acetonu w początkowej próbce. Ponadto, niektóre osoby mogą błędnie oszacować straty, nie uwzględniając gęstości substancji oraz jej czystości, co prowadzi do znacznych odchyleń w obliczeniach. Straty mogą być również źle interpretowane jako różnica objętości, co nie jest adekwatne, gdyż konieczne jest przejście na jednostki masy dla porównania. Aby uniknąć tych błędów, ważne jest, by przy każdej analizie chemicznej szczegółowo zrozumieć, jakie dane są potrzebne do prawidłowego obliczenia. Rekomenduje się także stosowanie standardowych procedur analitycznych oraz dokumentację każdego kroku procesu, co zwiększa transparentność i umożliwia identyfikację potencjalnych błędów. Dobre praktyki w laboratoriach chemicznych zakładają również regularne szkolenie personelu oraz dbałość o dokładność pomiarów, co może znacząco wpłynąć na jakość uzyskiwanych wyników.

Pytanie 24

Jakim kolorem zazwyczaj oznacza się przewody w instalacji gazowej w laboratorium?

A. szarym
B. żółtym
C. niebieskim
D. zielonym
Przewody instalacji gazowej w laboratoriach oznaczone są kolorem żółtym, co jest zgodne z ogólnymi zasadami i normami dotyczącymi oznakowania instalacji gazowych. Kolor żółty symbolizuje substancje niebezpieczne, w tym gazy palne oraz toksyczne, co jest kluczowe dla bezpieczeństwa pracy w laboratoriach. Oznakowanie to ma na celu szybką identyfikację potencjalnych zagrożeń oraz minimalizację ryzyka w przypadku awarii. Przykładem zastosowania tej zasady jest sytuacja, w której technik laboratoryjny musi szybko zlokalizować przewody gazowe, aby przeprowadzić konserwację lub w przypadku awarii. Zgodnie z normami branżowymi (np. PN-EN ISO 7010), oznakowanie instalacji gazowych powinno być wyraźne i czytelne, a także regularnie kontrolowane, aby zapewnić jego aktualność i stan techniczny. Należy także pamiętać, że przestrzeganie zasad dotyczących oznakowania przewodów gazowych nie tylko zwiększa bezpieczeństwo, ale także ułatwia pracownikom szybkie podejmowanie decyzji w sytuacjach kryzysowych.

Pytanie 25

Podczas pomiaru masy substancji w naczyniu wagowym na wadze technicznej, dla zrównoważenia ciężaru na szalce umieszczono odważniki: 20 g, 2 g, 500 mg, 200 mg, 20 mg, 10 mg, 10 mg oraz 5 g. Całkowita masa substancji z naczynkiem wyniosła

A. 22,740 g
B. 27,740 g
C. 27,745 g
D. 22,745 g
Jak się pomylisz, to warto zwrócić uwagę na typowe błędy przy obliczaniu masy. Na przykład odpowiedzi 22,745 g i 22,740 g mogą wskazywać na błędy przy sumowaniu masy odważników albo problem z przeliczaniem jednostek. Często niektórzy zapominają, żeby uwzględnić wszystkie jednostki, co potem prowadzi do tego, że masa wyjdzie za mała. Przykładowo, jak 500 mg to 0,5 g, to trzeba to doliczyć do całości. Zrozumienie, jak przeliczać jednostki, jest naprawdę ważne w laboratoriach. Inny częsty błąd to pominięcie sumy odważników, przez co wynik jest niższy niż powinien być. W praktyce widzę, że każdy detal ma znaczenie, a jak popełnisz błąd w jednym kroku, to cały proces może się skomplikować. Dokładność i staranność to kluczowe sprawy, bo ich brak może prowadzić do złych wyników w badaniach czy kontrolach jakości w przemyśle.

Pytanie 26

Wskaż metodę rozdzielenia układu, w którym fazą rozproszoną jest ciało stałe, a fazą rozpraszającą gaz.

faza rozproszonafaza rozpraszająca
gazcieczciało stałe
gaz-pianapiana stała
cieczaerozol ciekłyemulsjaemulsja stała
ciało stałeaerozol stałyzolzol stały

A. Sedymentacja.
B. Dekantacja.
C. Destylacja.
D. Filtracja.
Sedymentacja, destylacja i dekantacja to techniki rozdzielania, które nie są odpowiednie dla układów, w których fazą rozproszoną jest ciało stałe, a fazą rozpraszającą gaz. Sedymentacja polega na opadaniu cząstek stałych na dno cieczy pod wpływem siły grawitacji, co sprawia, że jest efektywna w przypadku układów stały-ciecz, ale nie sprawdza się w sytuacjach, gdy jedna z faz jest gazem. Destylacja, z kolei, jest procesem polegającym na odparowaniu cieczy i jej skropleniu, co jest efektywną metodą rozdzielania cieczy na podstawie różnicy temperatur wrzenia, jednak nie ma zastosowania w układach stały-gaz. Dekantacja to technika, która polega na oddzielaniu cieczy od osadu, ale również odnosi się głównie do układów ciecz-ciecz lub ciecz-stała. Przy wyborze metody rozdzielania, ważne jest zrozumienie, że każda technika ma swoje specyficzne zastosowania i ograniczenia. Typowe błędy myślowe mogą prowadzić do nieprawidłowych wniosków, takie jak błędne założenie, że każda technika rozdzielania jest uniwersalna i stosowana w każdej sytuacji. Kluczowe jest, aby dostosować metodę do charakterystyki faz, które są rozdzielane, co ma istotne znaczenie w praktykach laboratoryjnych i przemysłowych.

Pytanie 27

Wagi laboratoryjne można klasyfikować według nośności oraz precyzji na

A. analityczne i szalkowe
B. dźwigniowe i elektroniczne
C. periodyczne i aperiodyczne
D. techniczne i analityczne
Wagi laboratoryjne można podzielić na dwie główne grupy: techniczne i analityczne. Wagi techniczne używamy w różnych sytuacjach, gdzie nie potrzebujemy aż tak precyzyjnych pomiarów. Przykłady to przemysł czy laboratoria ogólne. Z kolei wagi analityczne są znacznie dokładniejsze, co czyni je niezbędnymi w badaniach chemicznych. Tam każdy gram, a nawet mikrogram, ma znaczenie. W laboratoriach farmaceutycznych, na przykład, dokładne ważenie składników aktywnych jest kluczowe dla skuteczności leków. Spełniają one określone normy ISO, więc mamy pewność, że wyniki są wiarygodne. To naprawdę ważne, bo chodzi o bezpieczeństwo pacjentów i jakość terapii.

Pytanie 28

W wyniku reakcji 100 g azotanu(V) ołowiu(II) z jodkiem potasu otrzymano 120 g jodku ołowiu(II). Wydajność reakcji wyniosła

Pb(NO3)2 + 2KI → PbI2 + 2KNO3
(MPb(NO3)2 = 331 g/mol, MKI = 166 g/mol, MPbI2 = 461 g/mol, MKNO3 = 101 g/mol)

A. 42%
B. 98%
C. 86%
D. 25%
To pytanie dotyczące wydajności reakcji pokazuje, że wykonałeś dobre obliczenia. Wynik 86% to naprawdę fajny wynik, bo wiesz, że to oznacza, iż dobrze oszacowałeś masy reagentów i produktów. Jeśli weźmiemy pod uwagę azotan(V) ołowiu(II) i obliczymy maksymalną masę jodku ołowiu(II), to powinno wyjść jakieś 139,22 g. W Twoim eksperymencie uzyskałeś 120 g jodku ołowiu(II), więc to daje nam ładną wydajność. Te obliczenia są mega ważne w chemii, bo pomagają ocenić, jak dobrze działa reakcja. Wiedza o tym, jak to policzyć, jest przydatna nie tylko w chemii, ale też w farmacja czy w przemyśle materiałowym. Takie umiejętności mogą naprawdę pomóc w tworzeniu nowych rzeczy i rozwijaniu technologii w różnych dziedzinach.

Pytanie 29

Roztwór, który jest dodawany z biurety w formie kropli do roztworu substancji, którą analizujemy, określamy mianem

A. titrantem
B. analitem
C. substratem
D. produktem
Termin 'titant' odnosi się do substancji, która jest dodawana z biurety do roztworu analizowanej substancji, czyli analitu, w trakcie procesu titracji. Titracja jest kluczową techniką analityczną wykorzystywaną w chemii do określenia stężenia substancji w roztworze poprzez stopniowe dodawanie titranta do analitu aż do osiągnięcia punktu końcowego, który zwykle jest sygnalizowany poprzez zmianę koloru lub inny wskaźnik. Przykładem może być titracja kwasu solnego (HCl) w celu określenia jego stężenia poprzez dodawanie roztworu wodorotlenku sodu (NaOH) jako titranta. W praktyce, zgodnie z zaleceniami norm ISO oraz metodami opisanymi w dokumentach takich jak ASTM, ważne jest, aby dokładnie znać stężenie titranta oraz stosować odpowiednie wskaźniki, co zapewnia uzyskanie dokładnych i powtarzalnych wyników. Znajomość tego pojęcia jest niezbędna dla chemików zajmujących się analizą chemiczną, co podkreśla jego praktyczne zastosowanie w laboratoriach analitycznych.

Pytanie 30

Jaką objętość powinna mieć kolba miarowa, aby przygotować mianowany roztwór NaOH o stężeniu 0,050 M z analitycznej odważki, która zawiera 0,1 mola NaOH?

A. 100 cm3
B. 200 cm3
C. 1 dm3
D. 2 dm3
Aby przygotować mianowany roztwór NaOH o stężeniu 0,050 M z odważki analitycznej, musimy obliczyć odpowiednią objętość roztworu. Stężenie molowe (M) wyraża liczbę moli substancji w litrze roztworu. W tym przypadku, aby uzyskać roztwór o stężeniu 0,050 M, musimy użyć 0,050 mola NaOH w 1 litrze roztworu. Mając 0,1 mola NaOH, możemy przygotować 0,1 / 0,050 = 2 litry roztworu. W związku z tym, kolba miarowa powinna mieć pojemność 2 dm3, aby pomieścić przygotowany roztwór. Tego rodzaju obliczenia są kluczowe w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów ma istotne znaczenie dla uzyskania wiarygodnych wyników eksperymentalnych. Przestrzeganie standardów przygotowania roztworów zapewnia ich jednorodność i dokładność, co jest niezbędne w badaniach analitycznych, a także w różnorodnych aplikacjach przemysłowych.

Pytanie 31

Które z wymienionych reakcji chemicznych stanowi reakcję redoks?

A. 2 NaOH + CuSO4 → Cu(OH)2 + Na2SO4
B. CaCO3 → CaO + CO2
C. 2 KMnO4 → K2MnO4 + MnO2 + O2
D. 3 Ca(OH)2 + 2 H3PO4 → Ca3(PO4)2 + 6 H2O
Reakcja 2 KMnO4 → K2MnO4 + MnO2 + O2 to klasyczny przykład reakcji redoks, w której dochodzi do zmiany stopni utlenienia atomów. W tej reakcji mangan (Mn) w KMnO4 przechodzi z najwyższego stopnia utlenienia +7 do stopnia +6 w K2MnO4 oraz +4 w MnO2, a także wydziela się tlen (O2). Reakcje redoks są fundamentalnym procesem w chemii, wykorzystywanym w wielu zastosowaniach, od produkcji energii w ogniwach paliwowych po procesy elektrochemiczne w akumulatorach. Zrozumienie tych reakcji ma zastosowanie w praktyce, na przykład w analizie chemicznej, gdzie stosuje się reakcje redoks do oznaczania stężenia różnych substancji. Kluczowe w praktyce jest umiejętne rozpoznawanie reakcji utleniania i redukcji, co jest istotne w wielu gałęziach przemysłu, w tym w przemyśle farmaceutycznym i materiałowym, gdzie kontrola procesów redoks ma kluczowe znaczenie dla jakości produktów.

Pytanie 32

Oddzielanie płynnej mieszaniny wieloskładnikowej poprzez odparowanie, a następnie skraplanie jej komponentów, to proces

A. filtracji
B. destylacji
C. krystalizacji
D. koagulacji
Krystalizacja to proces, który polega na wydzielaniu substancji w postaci kryształów z roztworu, co nie ma związku z odparowaniem i skraplaniem cieczy. Przy krystalizacji substancja przechodzi ze stanu ciekłego do stałego, co zupełnie różni się od procesu destylacji, w którym substancje pozostają w stanie ciekłym i są odparowywane. Filtracja to technika separacji, w której mieszanina jest przepuszczana przez filtr, pozwalając na oddzielenie cząstek stałych od cieczy, co również nie ma miejsca w procesie destylacji. Koagulacja to proces, w którym cząstki zawieszone w cieczy łączą się w większe aglomeraty, co nie jest stosowane do rozdzielania składników cieczy. Typowym błędem myślowym jest mylenie procesów przeprowadzania separacji w chemii, ponieważ każdy z nich ma swoje specyficzne zastosowania oraz mechanizm działania. Zrozumienie różnic między tymi procesami jest kluczowe dla skutecznego podejścia do problemów związanych z separacją składników chemicznych oraz ich dalszymi zastosowaniami w przemyśle.

Pytanie 33

Aby podnieść stężenie mikroelementów w roztworze, próbkę należy poddać

A. liofilizacji
B. rozcieńczaniu
C. roztwarzaniu
D. zagęszczaniu
Zagęszczanie jest procesem, który polega na usunięciu części rozpuszczalnika z roztworu, co prowadzi do zwiększenia stężenia składników rozpuszczonych w tym roztworze. Proces ten jest szczególnie istotny w chemii analitycznej, gdzie precyzyjne przygotowanie próbek jest kluczowe dla uzyskania wiarygodnych wyników analiz. Przykładami zastosowania zagęszczania mogą być przygotowanie próbek do spektroskopii lub chromatografii, gdzie wymagane jest osiągnięcie odpowiedniego stężenia analitu. Dodatkowo, w przemyśle farmaceutycznym zagęszczanie jest stosowane w produkcji leków, gdzie stężenie substancji czynnej musi być dokładnie kontrolowane. Standardy branżowe, takie jak GMP (Good Manufacturing Practices), kładą duży nacisk na precyzyjne przygotowanie roztworów, co czyni zagęszczanie kluczowym krokiem w wielu procesach produkcyjnych i analitycznych.

Pytanie 34

Przeprowadzono reakcję 13 g cynku z kwasem solnym zgodnie z równaniem: Zn + 2 HCl → ZnCl2 + H2↑. Otrzymano 1,12 dm3 wodoru (w warunkach normalnych). Masy molowe to: MZn = 65 g/mol, MH = 1g/mol, MCl = 35,5g/mol. Jaka jest wydajność tego procesu?

A. 50%
B. 25%
C. 75%
D. 60%
W przypadku nieprawidłowych odpowiedzi można zauważyć kilka powszechnych błędów myślowych. Na przykład, niektóre odpowiedzi mogą wynikać z pomyłki w obliczeniach moli wodoru, co prowadzi do błędnego oszacowania wydajności reakcji. Jeśli ktoś przyjąłby, że 1,12 dm³ wodoru to 50% wydajności, to musiałby założyć, że teoretycznie wyprodukowano 2,24 dm³ wodoru. To z kolei sugerowałoby, że 0,1 mola cynku mogłoby wyprodukować taką ilość, co jest niezgodne z obliczeniami opartymi na masach molowych. Możliwe, że inna odpowiedź, np. 60% lub 75%, wynika z błędnego założenia co do ilości cynku lub zastosowania niewłaściwego przelicznika, co jest typowe w analizach chemicznych. W przemyśle chemicznym zrozumienie procesu produkcji i jej wydajności jest kluczowe, ponieważ wpływa na ekonomiczność operacji. Wydajność może być również analizowana w kontekście optymalizacji procesów, gdzie dokładne kalkulacje i analiza stanu wyjściowego są konieczne do doskonalenia procesów produkcyjnych. Kluczowe jest, aby wziąć pod uwagę zarówno czynniki teoretyczne, jak i praktyczne, aby móc skutecznie zarządzać procesami i osiągać oczekiwane wyniki.

Pytanie 35

Który z procesów jest endotermiczny?

A. rozpuszczanie azotanu(V) amonu w wodzie
B. roztwarzanie magnezu w kwasie solnym
C. rozpuszczanie wodorotlenku sodu w wodzie
D. rozcieńczanie stężonego kwasu siarkowego(VI)
Rozpuszczanie azotanu(V) amonu w wodzie jest procesem endotermicznym, co oznacza, że podczas tego procesu energia jest absorbowana z otoczenia, prowadząc do spadku temperatury roztworu. Zjawisko to można zaobserwować, gdy dotykamy pojemnika z roztworem – będzie on chłodniejszy niż otoczenie. Endotermiczne charakterystyki tego procesu są kluczowe w wielu zastosowaniach, takich jak chłodzenie w reakcjach chemicznych, w laboratoriach analitycznych oraz w zastosowaniach przemysłowych. Azotan(V) amonu jest wykorzystywany w nawozach, gdzie jego zdolność do absorbowania ciepła jest wykorzystywana do stabilizacji temperatury gleby, co sprzyja wzrostowi roślin. W kontekście standardów branżowych, zrozumienie procesów endotermicznych pomaga w opracowywaniu bardziej efektywnych metod chłodzenia oraz w projektowaniu systemów, które wykorzystują zmiany temperatury do poprawy wydajności energetycznej.

Pytanie 36

Związki chromu(VI) oddziałują negatywnie na środowisko, ponieważ

A. stanowią główną przyczynę korozji urządzeń technicznych w wodzie
B. prowadzą do zakwaszenia wód
C. powodują nadmierny wzrost roślinności w zbiornikach wodnych
D. wykazują toksyczne działanie na organizmy żywe
Wydaje się, że odpowiedzi odnoszące się do nadmiernego zarastania zbiorników wodnych oraz zakwaszenia wody nie uwzględniają bezpośredniego wpływu chromu(VI) na ekosystemy. Nadmierne zarastanie zazwyczaj wynika z eutrofizacji, spowodowanej nadmiarem substancji odżywczych, takich jak azotany i fosforany, a nie ze związku chromu. Z kolei zakwaszenie wody jest zazwyczaj efektem emisji dwutlenku siarki oraz tlenków azotu do atmosfery, co prowadzi do opadów kwasowych, a nie jest bezpośrednio związane z chromem(VI). Ponadto, korozja wodnych urządzeń technicznych, mimo że może być wpływana przez różne substancje chemiczne, nie jest głównym problemem związanym z obecnością chromu(VI). To podejście nie uwzględnia, że głównym zagrożeniem związanym z chromem(VI) są jego właściwości toksyczne, a nie wpływ na właściwości fizyczne wody. W związku z tym, pomijanie kluczowych aspektów toksyczności chromu(VI) w kontekście zagrożeń dla organizmów żywych prowadzi do nieprecyzyjnych wniosków. Właściwe zrozumienie tych procesów jest kluczowe, szczególnie w kontekście ochrony środowiska oraz zdrowia publicznego, ponieważ ignorowanie toksyczności tych substancji może prowadzić do poważnych konsekwencji zdrowotnych oraz ekologicznych.

Pytanie 37

Ile gramów cukru trzeba dodać do 200 gramów wody o temperaturze 20°C, aby uzyskać roztwór nasycony?

A. 200 g
B. 400 g
C. 100 g
D. 50 g
Odpowiedzi 200 g, 100 g i 50 g są błędne, ponieważ opierają się na nieporozumieniu związanym z pojęciem nasycenia roztworu. W praktyce, mniej niż 400 g cukru w 200 g wody nie wystarczy do osiągnięcia stanu nasycenia. W przypadku 200 g cukru, można uznać, że roztwór byłby raczej rozcieńczony, co z kolei prowadzi do błędnych wniosków o możliwościach rozpuszczania substancji. Podobnie, 100 g cukru to niewielka ilość w porównaniu do potencjalnej rozpuszczalności, co również nie zaspokoiłoby wymogów nasycenia. Odpowiedź z 50 g jest jeszcze bardziej myląca, ponieważ sugeruje, że można uzyskać roztwór nasycony przy tak niskiej ilości cukru, co jest biologicznie i chemicznie nieuzasadnione. Typowy błąd myślowy polega na porównywaniu rozpuszczalności różnych substancji bez zrozumienia ich właściwości fizykochemicznych. Roztwory nasycone mają swoje zastosowanie w wielu dziedzinach, a ich prawidłowe przygotowanie i zrozumienie jest kluczowe dla osiągnięcia oczekiwanych rezultatów w laboratoriach badawczych oraz w przemyśle chemicznym.

Pytanie 38

Czułość bezwzględna wagi definiuje się jako

A. najmniejszą masę, która powoduje wyraźne wychylenie wskazówki
B. największe dozwolone obciążenie wagi
C. największą masę, która powoduje wyraźne wychylenie wskazówki
D. najmniejsze dozwolone obciążenie wagi
Czułość bezwzględna wagi odnosi się do minimalnej masy, która jest w stanie wywołać zauważalne wychylenie wskazówki wagi. Oznacza to, że czułość wagi określa jej zdolność do wykrywania małych zmian w masie, co jest kluczowe w wielu zastosowaniach przemysłowych i laboratoryjnych. Przykładowo, w laboratoriach chemicznych, gdzie dokładność pomiarów jest kluczowa, wagi analityczne mają bardzo wysoką czułość. Dzięki temu można precyzyjnie odmierzać małe ilości substancji. Czułość bezwzględna jest również istotna w kontekście kalibracji wag, co jest regulowane przez normy ISO i metodykę pomiarową, aby zapewnić, że wagi są zgodne z określonymi standardami jakości. W praktyce, zrozumienie czułości bezwzględnej pozwala na lepsze dobieranie wag do potrzeb danego pomiaru, co ma bezpośredni wpływ na jakość wyników eksperymentalnych oraz procesów produkcyjnych.

Pytanie 39

Wskaź zestaw reagentów oraz przyrządów wymaganych do przygotowania 0,5 dm3 roztworu HCl o stężeniu 0,2 mol/dm3?

A. Kolba pomiarowa na 500 cm3, 2 odważki analityczne HCl 0,1 mol/dm3
B. Kolba pomiarowa na 1000 cm3, cylinder pomiarowy na 500 cm3, 4 odważki analityczne HCl 0,1 mol/dm3
C. Kolba pomiarowa na 1000 cm3, cylinder pomiarowy na 500 cm3, 1 naważka analityczna HCl
D. Kolba pomiarowa na 500 cm3, 1 odważka analityczna HCl 0,1mol/dm3
Przy wyborze zestawu odczynników i sprzętu do sporządzenia 0,5 dm³ roztworu HCl o stężeniu 0,2 mol/dm³ ważne jest zrozumienie, dlaczego inne opcje są niewłaściwe. Na przykład, użycie kolby miarowej na 1000 cm³ w połączeniu z cylinder miarowym na 500 cm³ oraz jedną naważką analityczną HCl nie odpowiada wymaganiom tego zadania. Takie podejście może sugerować marnotrawstwo materiałów, gdyż nie jest konieczne posiadanie większej kolby do przygotowania mniejszych objętości roztworu. Ponadto, to może prowadzić do błędów w odmierzeniu HCl, co jest kluczowe w kontekście uzyskania pożądanego stężenia. Niepoprawne mieszanie odczynników może skutkować niewłaściwym przygotowaniem roztworu, co może wpłynąć na dalsze eksperymenty oraz wyniki badań. Użycie czterech odważek analitycznych HCl 0,1 mol/dm³ w innym zestawie również jest zbędne, gdyż konieczne są tylko jedne odważki dla uzyskania żądanej ilości moli. Takie nadmierne wyposażenie w sprzęt oraz reagenty może prowadzić do nieefektywności oraz zwiększenia ryzyka błędów w laboratorium. W kontekście dobrych praktyk laboratoryjnych istotne jest dążenie do minimalizacji użycia materiałów oraz przestrzeganie zasad precyzyjnego pomiaru, co jest kluczowe w chemii analitycznej.

Pytanie 40

W przypadku zanieczyszczeń szklanych naczyń osadami o charakterze nieorganicznym, takimi jak wodorotlenki, tlenki oraz węglany, do ich oczyszczania używa się

A. roztworu KMnO4 z dodatkiem kwasu solnego
B. kwasu solnego
C. wody destylowanej
D. płynu do zmywania naczyń
Woda destylowana, mimo że wydaje się czysta, to nie ma tych właściwości chemicznych, które mogłyby skutecznie poradzić sobie z osadami nieorganicznymi. Zazwyczaj używamy jej do rozcieńczania, a nie jako aktywnego środka czyszczącego. Płyn do mycia naczyń także nie jest najlepszym rozwiązaniem, bo on zajmuje się głównie usuwaniem tłuszczu i zanieczyszczeń organicznych, a nie mineralnych, jak tlenki czy węglany. Roztwór KMnO4 z kwasem solnym brzmi ciekawie, ale też nie jest praktycznym sposobem na czyszczenie naczyń szklanych z tych osadów, bo mogą się pojawić niepożądane reakcje i produkty uboczne. W laboratoriach trzeba mieć na uwadze ryzyko niewłaściwego używania kwasów i substancji utleniających, bo to może prowadzić do dość poważnych wypadków. Używanie nieodpowiednich metod czyszczenia to dość powszechny błąd, przez który można zniszczyć drogie narzędzia i popsuć wyniki eksperymentów, więc warto znać odpowiednie techniki i chemikalia do różnych rodzajów zanieczyszczeń.