Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 25 maja 2025 06:19
  • Data zakończenia: 25 maja 2025 06:45

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Z 250 g benzenu (M = 78 g/mol) uzyskano 350 g nitrobenzenu (M = 123 g/mol). Jaka jest wydajność reakcji nitrowania?

A. 88,8%
B. 83,5%
C. 77,7%
D. 93,4%
Wydajność reakcji nitrowania obliczamy, porównując masę uzyskanego produktu z maksymalną masą, którą moglibyśmy otrzymać, bazując na ilości reagenta. W przypadku benzenu, z jego masy molowej (M = 78 g/mol) możemy obliczyć, ile moli benzenu mamy w 250 g: 250 g / 78 g/mol = 3,21 mol. Reakcja nitrowania benzenu do nitrobenzenu produkuje jeden mol nitrobenzenu na każdy mol benzenu. Dlatego teoretycznie moglibyśmy otrzymać 3,21 mol nitrobenzenu, co przekłada się na masę: 3,21 mol * 123 g/mol = 394,83 g nitrobenzenu. Jednak w praktyce uzyskaliśmy tylko 350 g. Aby obliczyć wydajność, stosujemy wzór: (masa uzyskana / masa teoretyczna) * 100%. W naszym przypadku wydajność wynosi (350 g / 394,83 g) * 100% = 88,8%. Taka analiza i obliczenia są kluczowe w przemyśle chemicznym, ponieważ pozwalają na ocenę skuteczności procesów oraz optymalizację wykorzystania surowców, co jest zgodne z najlepszymi praktykami w zakresie zarządzania produkcją chemiczną.

Pytanie 2

Preparaty zawierające KOH (tzw. żrący potaż), oznaczone są symbolem S 1/2. Na podstawie informacji zawartych w tabeli, określ zasady przechowywania tych preparatów.

Numer zwrotu SWarunki bezpiecznego stosowaniaNumer zwrotu SWarunki bezpiecznego stosowania
S1Przechowywać pod zamknięciemS12Nie przechowywać pojemnika szczelnie zamkniętego
S2Chronić przed dziećmiS13Nie przechowywać razem z żywnością, napojami i karmą dla zwierząt
S3Przechowywać w chłodnym miejscuS15Przechowywać z dala od źródeł ciepła
S4Nie przechowywać w pomieszczeniach mieszkalnychS16Nie przechowywać w pobliżu źródeł zapłonu – nie palić tytoniu

A. Przechowywać w zamkniętym, chłodnym miejscu.
B. Przechowywać w zamknięciu, z daleka od dzieci.
C. Nie przechowywać w szczelnie zamkniętym pojemniku.
D. Przechowywać z dala od źródeł ciepła i ognia.
Odpowiedź 'Przechowywać w zamknięciu, z daleka od dzieci.' jest zgodna z obowiązującymi normami bezpieczeństwa oraz zasadami przechowywania substancji chemicznych. Preparaty zawierające KOH, klasyfikowane jako substancje niebezpieczne, wymagają szczególnych środków ostrożności. Symbol S1 wskazuje, że powinny być one przechowywane w zamknięciu, co ma na celu minimalizację ryzyka przypadkowego dostępu do nich. Z kolei symbol S2 podkreśla konieczność ochrony przed dziećmi, co jest kluczowe, aby zapobiec nieszczęśliwym wypadkom. W praktyce oznacza to, że substancje te powinny być składowane w miejscach niedostępnych dla osób postronnych, zwłaszcza dzieci, oraz w odpowiednich pojemnikach, które zapobiegają ich przypadkowemu otwarciu. Dobre praktyki w laboratoriach i gospodarstwach domowych sugerują, aby takie preparaty były trzymane w zamkniętych szafkach z dodatkowymi zabezpieczeniami, co dodatkowo zwiększa bezpieczeństwo. Właściwe przechowywanie nie tylko chroni zdrowie, ale również minimalizuje ryzyko zanieczyszczenia środowiska.

Pytanie 3

Symbol "In" znajduje się na

A. pipetach i oznacza sprzęt kalibrowany "na wylew"
B. biuretach i oznacza sprzęt kalibrowany "na wlew"
C. kolbach miarowych i wskazuje na sprzęt kalibrowany "na wlew"
D. kolbach miarowych i wskazuje na sprzęt kalibrowany "na wylew"
Dobra robota! Odpowiedź, którą wybrałeś, jest całkiem trafna. Symbol 'In' rzeczywiście oznacza kolby miarowe, które służą do dokładnego mierzenia objętości cieczy. Kalibracja 'na wlew' jest kluczowa, bo chodzi o to, żeby zmierzyć ciecz do poziomu krawędzi menisku. To ma ogromne znaczenie, zwłaszcza w chemii, gdzie precyzja jest na wagę złota. W laboratoriach często korzysta się z kolb, żeby mieć pewność, że każdy eksperyment jest powtarzalny i wyniki są wiarygodne. Jak napełniasz kolbę do oznaczenia, to wiesz, że używasz całej tej objętości cieczy, co minimalizuje ryzyko błędów. Dlatego warto znać te symbole, bo to podstawa w pracy każdego chemika.

Pytanie 4

Losowo należy pobierać próbki z opakowań

A. z dolnej części opakowania
B. z górnej części opakowania
C. z kilku punktów w obrębie opakowania
D. z krawędzi opakowania
Odpowiedź "z kilku miejsc przekroju opakowania" jest poprawna, ponieważ losowe pobieranie próbek z różnych miejsc w opakowaniu zapewnia reprezentatywność próbki. Jest to kluczowe w wielu dziedzinach, takich jak analiza jakościowa, zapewnienie bezpieczeństwa produktów oraz kontrola procesów technologicznych. W praktyce oznacza to, że próbki należy pobierać z różnych warstw i lokalizacji w obrębie opakowania, aby zminimalizować ryzyko błędnych wniosków wynikających z niejednorodności składu. W odniesieniu do standardów takich jak ISO 2859-1, który określa metody pobierania próbek dla kontroli jakości, ważne jest, aby każda próbka była reprezentatywna dla całej partii. Takie podejście zwiększa wiarygodność wyników analiz laboratoryjnych i umożliwia dostarczenie rzetelnych informacji na temat jakości produktu. Przykładowo, w przemyśle spożywczym, pobieranie próbek z różnych miejsc opakowania pozwala na identyfikację ewentualnych zanieczyszczeń lub niezgodności jakościowych, co jest fundamentem dla zapewnienia bezpieczeństwa konsumentów.

Pytanie 5

Aby uzyskać roztwór AgNO3 (masa molowa AgNO3 to 169,8 g/mol) o stężeniu 0,1 mol/dm3, należy rozpuścić w wodzie destylowanej i dopełnić kolbę wodą destylowaną do zaznaczonej kreski.

A. odważyć 1,698 g AgNO3, przenieść do kolby miarowej o pojemności 1000 cm3, rozpuścić w wodzie destylowanej i dopełnić kolbę wodą destylowaną do zaznaczonej kreski
B. odważyć 169,80 g AgNO3, przenieść do kolby miarowej o pojemności 1000 cm3, rozpuścić
C. odważyć 16,98 g AgNO3, przenieść do kolby miarowej o pojemności 100 cm3, rozpuścić w wodzie destylowanej i dopełnić kolbę wodą destylowaną do zaznaczonej kreski
D. odważyć 1,698 g AgNO3, przenieść do kolby miarowej o pojemności 100 cm3, rozpuścić w wodzie destylowanej i dopełnić kolbę wodą destylowaną do zaznaczonej kreski
Wielu uczniów może popełniać typowe błędy przy obliczaniu masy substancji niezbędnej do przygotowania roztworu o określonym stężeniu. Niektóre odpowiedzi opierają się na błędnym założeniu co do pojemności kolby miarowej lub ilości użytej substancji. Na przykład, odważenie 16,98 g AgNO₃ jest błędne, ponieważ odpowiada to stężeniu 1 mol/dm³, a nie 0,1 mol/dm³, co skutkuje znacznym nadmiarem substancji. Podobnie, przygotowanie roztworu w kolbie o pojemności 1000 cm³ przy użyciu 1,698 g AgNO₃ również prowadzi do niepoprawnego stężenia, ponieważ stężenie byłoby znacznie niższe niż zakładane. Również odważenie 169,80 g AgNO₃ jest niewłaściwe, jako że jest to masa potrzebna do przygotowania 1 mol/dm³ w 1000 cm³, co nie odpowiada wymaganym warunkom pytania. Te błędy znajdują się w nieporozumieniach dotyczących podstawowych zasad obliczeń chemicznych, a także niewłaściwego zrozumienia, jak stężenie jest związane z objętością roztworu. Ważne jest, aby przy wykonywaniu takich obliczeń zwracać uwagę na jednostki oraz upewnić się, że wszystkie dane są prawidłowo zinterpretowane, aby uniknąć błędów, które mogą prowadzić do niepoprawnych wyników eksperymentalnych.

Pytanie 6

Który sposób przechowywania próbek żywności jest niezgodny z Rozporządzeniem Ministra Zdrowia?

Fragment Rozporządzenia Ministra Zdrowia w sprawie pobierania i przechowywania próbek żywności przez zakłady żywienia zbiorowego typu zamkniętego
(...)
Zakład przechowuje próbki, przez co najmniej 3 dni, licząc od chwili, kiedy cała partia została spożyta w miejscu wyłącznym właściwym do tego celu oraz w warunkach zapewniających utrzymanie temperatury +4°C lub niższej, w zależności od przechowywanego produktu.
Miejsce przechowywania próbek musi być tak zabezpieczone, aby dostęp do niego posiadał tylko kierujący zakładem lub osoba przez niego upoważniona.

A. Przechowywanie przez co najmniej 3 dni od czasu spożycia całej partii żywności.
B. Przechowywanie w specjalnie do tego celu wyznaczonym miejscu, do którego dostęp posiada kierownik zakładu lub osoba przez niego upoważniona.
C. Przechowywanie w temperaturze maksymalnej +4°C.
D. Przechowywanie przez maksymalnie 3 dni od czasu pobrania próbek.
Odpowiedź wskazująca na przechowywanie próbek przez maksymalnie 3 dni od czasu ich pobrania jest poprawna, ponieważ jest sprzeczna z przepisami zawartymi w Rozporządzeniu Ministra Zdrowia. Zgodnie z tymi regulacjami, zakład ma obowiązek przechowywać próbki przez co najmniej 3 dni, liczonych od momentu spożycia całej partii żywności. Ta zasada jest istotna, aby zapewnić odpowiednią kontrolę jakości i bezpieczeństwa żywności. W praktyce oznacza to, że próbki żywności muszą być dostępne do analizy przez określony czas, co jest kluczowe w przypadku wykrycia problemów zdrowotnych związanych z danym produktem. Zastosowanie tej regulacji wspiera przejrzystość procesu zarządzania jakością oraz umożliwia przeprowadzenie niezbędnych badań, co jest zgodne z dobrymi praktykami w branży spożywczej, takimi jak HACCP (Analiza Zagrożeń i Krytyczne Punkty Kontroli). Przechowywanie w odpowiednich warunkach i przez określony czas jest niezbędne dla zachowania integralności próbek i ich przydatności do analizy.

Pytanie 7

Próbkę laboratoryjną dzieli się na dwie części, ponieważ

A. jedna część jest skierowana do dostawcy, a druga do odbiorcy produktu
B. przeprowadza się dwie analizy badanego produktu i przyjmuje wartość średnią z wyników
C. analizę produktu zawsze realizuje się dwiema różnymi metodami
D. jedna część jest przeznaczona do potencjalnego przeprowadzenia analizy rozjemczej
Kiedy dzielimy średnią próbkę na dwie części, to chcemy mieć pewność, że wyniki są rzetelne i analizy wiarygodne. Jak jedna z próbek idzie do analizy rozjemczej, to mamy możliwość sprawdzenia wyników, gdy coś jest nie tak. To ważne zwłaszcza, gdy są jakieś spory między dostawcą a odbiorcą. Na przykład, wyobraź sobie sytuację, gdzie obie strony mają inne zdanie na temat jakości produktu. Analiza próbki może wtedy pomóc w rozwiązaniu konfliktu. W zgodzie z normami ISO i dobrymi praktykami w laboratoriach, każda próbka powinna być traktowana z najwyższą starannością. A jak są niezgodności, analiza rozjemcza robi się kluczowa. Taki podział próbek też jest ważny, żeby zachować transparentność w badaniach, bo to buduje zaufanie w relacjach handlowych oraz przy certyfikacji produktów.

Pytanie 8

W tabeli przestawiono dane dotyczące wybranych roztworów wodnych wodorotlenku sodu.
Oblicz masę wodorotlenku sodu, jaką należy rozpuścić w 200,0 cm3 wody, aby otrzymać roztwór o gęstości 1,0428 g/cm3.

d420 [g/cm3]masa NaOH [g/100 cm3]
1,00951,01
1,02072,04
1,04284,17
1,06486,39
1,08698,70
1,108911,09

A. 4,08 g
B. 4,17 g
C. 8,70 g
D. 8,34 g
Odpowiedź 8,34 g jest prawidłowa, ponieważ aby uzyskać roztwór o gęstości 1,0428 g/cm³ w objętości 200 cm³, musimy wziąć pod uwagę masę wodorotlenku sodu (NaOH) niezbędną do osiągnięcia takiej gęstości. Z danych w tabeli wynika, że dla 100 cm³ roztworu potrzebna jest masa NaOH, która po podwojeniu daje nam 8,34 g dla 200 cm³. To podejście jest zgodne z zasadami obliczeń chemicznych, gdzie gęstość, masa i objętość są ze sobą powiązane. W praktyce, takie obliczenia są kluczowe w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów ma ogromne znaczenie dla wyników eksperymentów. Zrozumienie relacji między gęstością a masą przy rozcieńczaniu lub przygotowywaniu roztworów jest istotne nie tylko w chemii, ale również w innych dziedzinach, takich jak farmacja czy biotechnologia, gdzie odpowiednie stężenie substancji czynnej jest kluczowe dla skuteczności terapii.

Pytanie 9

Jakie są zalecenia dotyczące postępowania z odpadowymi roztworami kwasów oraz zasad?

A. Roztwory kwasów i zasad można wylewać do kanalizacji, przepłukując silnym strumieniem wody w celu maksymalnego rozcieńczenia
B. Roztwory kwasów i zasad można umieścić bez neutralizacji w tym samym pojemniku, gdzie będą się wzajemnie neutralizowały
C. Roztwory kwasów i zasad należy mocno zagęścić i zobojętnić stężonymi roztworami NaOH oraz HCl, aby uzyskać odpady w postaci stałych soli
D. Roztwory kwasów i zasad należy rozcieńczyć, zobojętnić zgodnie z procedurą, a następnie umieścić w osobnych pojemnikach
Podawane koncepcje, wskazujące na możliwość mieszania roztworów kwasów i zasad bez neutralizacji, są nieprawidłowe. W rzeczywistości, choć teoretycznie takie mieszanie może prowadzić do ich wzajemnego zobojętnienia, w praktyce niesie ze sobą wiele zagrożeń. Po pierwsze, niekontrolowane łączenie silnych kwasów z mocnymi zasadami może prowadzić do gwałtownych reakcji, wydzielania dużych ilości ciepła oraz potencjalnego rozprysku niebezpiecznych substancji. Mieszanie powinno być przeprowadzane w kontrolowanych warunkach, z odpowiednim sprzętem ochronnym i w pojemnikach przeznaczonych do tego celu. Kolejnym błędem jest sugerowanie, że odpady te można wylewać do kanalizacji, co jest absolutnie niedopuszczalne. Wylanie roztworów chemicznych do kanalizacji może spowodować zanieczyszczenie wód gruntowych oraz systemu wodociągowego, co jest sprzeczne z przepisami ochrony środowiska. Również stwierdzenie, że odpady należy silnie zatężyć i zobojętniać stężonymi roztworami NaOH i HCl jest niebezpieczne. Tego typu praktyki mogą prowadzić do powstawania niebezpiecznych oparów oraz reakcji egzotermicznych, które mogą być trudne do kontrolowania. Aby zapewnić bezpieczeństwo i zgodność z przepisami, najlepiej jest stosować procedury ustalone przez organizacje zajmujące się ochroną zdrowia i środowiska, które przewidują odpowiednie metody neutralizacji i przechowywania odpadów chemicznych.

Pytanie 10

Etykiety chemikaliów zawierają zwroty H, które informują o rodzaju zagrożenia. Cyfra "3" pojawiająca się po literze "H" w oznaczeniu, definiuje rodzaj zagrożenia?

A. dla człowieka
B. chemiczne
C. dla środowiska
D. fizyczne
Odpowiedź "dla człowieka" jest prawidłowa, ponieważ etykiety substancji chemicznych zawierają zwroty H (H-phrases), które odnoszą się do zagrożeń, jakie dany związek chemiczny może stanowić dla zdrowia ludzi. Na przykład, oznaczenie H3 mówi o tym, że substancja może być szkodliwa w przypadku wdychania, połknięcia lub kontaktu ze skórą. W praktyce, znajomość tych oznaczeń jest kluczowa dla pracowników w laboratorach, przemysłach chemicznych oraz w obszarach zajmujących się transportem substancji chemicznych. Dlatego w ramach BHP oraz oceny ryzyka, pracownicy powinni być odpowiednio przeszkoleni w zakresie interpretacji tych etykiet oraz stosowania odpowiednich środków ochrony osobistej. Standardy takie jak GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów) wyznaczają wytyczne dotyczące klasyfikacji zagrożeń, co pozwala na skuteczniejsze zarządzanie bezpieczeństwem w miejscu pracy.

Pytanie 11

Jakie oznaczenie znajduje się na naczyniach szklanych kalibrowanych do wlewu?

A. R
B. W
C. Ex
D. In
Oznaczenie In na naczyniach szklanych kalibrowanych na wlew wskazuje, że naczynie to jest zaprojektowane do precyzyjnego pomiaru objętości cieczy, która ma zostać wlane w jego wnętrze. W praktyce oznaczenie to oznacza, że objętość wskazana na naczyniu jest równa objętości cieczy, gdy jej poziom osiąga oznaczenie kalibracyjne. Naczynia te są szeroko stosowane w laboratoriach chemicznych, biologicznych oraz w przemyśle farmaceutycznym, gdzie dokładność pomiarów jest kluczowa. Przykładem zastosowania może być przygotowywanie roztworów o określonej stężeniu, gdzie precyzyjna objętość reagentów jest niezbędna do uzyskania powtarzalnych wyników analiz. Warto również zwrócić uwagę na standardy ISO oraz normy ASTM, które regulują wymagania dotyczące kalibracji naczyń, co zapewnia wysoką jakość i rzetelność wyników eksperymentalnych.

Pytanie 12

Wybierz spośród wymienionych właściwości tę, która nie dotyczy naczyń kwarcowych.

A. Większa kruchość oraz mniejsza odporność na uderzenia niż naczynia wykonane z normalnego szkła
B. Odporność na działanie kwasu fluorowodorowego oraz roztworu wodorotlenku potasu
C. Przepuszczalność promieniowania ultrafioletowego
D. Niska wrażliwość na zmiany temperatury
Odporność na działanie kwasu fluorowodorowego i roztworu wodorotlenku potasu nie jest cechą naczyń kwarcowych. Naczynia kwarcowe, wykonane ze szkła kwarcowego, charakteryzują się wysoką odpornością chemiczną, ale nie są odporne na działanie kwasu fluorowodorowego, który jest jednym z niewielu kwasów zdolnych do atakowania szkła kwarcowego. W praktyce oznacza to, że naczynia te mogą być używane do przechowywania i reakcji chemicznych z wieloma substancjami, ale należy unikać kontaktu z kwasami fluorowodorowymi. Z drugiej strony, szkło kwarcowe dobrze znosi działanie zasadowych roztworów, takich jak wodorotlenek potasu, dlatego jest często wykorzystywane w laboratoriach chemicznych i przemysłowych do przechowywania odczynników. Ponadto, naczynia kwarcowe wykazują wysoką odporność na wysokie temperatury, co czyni je idealnymi do zastosowania w piecach i innych urządzeniach wymagających zachowania stabilności w ekstremalnych warunkach temperaturowych.

Pytanie 13

Proces usuwania substancji z cieczy lub wydobywania składnika z mieszanin cieczy, oparty na równowadze fazowej ciecz-gaz, nazywa się

A. krystalizacja
B. destylacja
C. filtracja
D. dekantacja
Destylacja to proces separacji składników mieszaniny cieczy oparty na różnicy w ich temperaturach wrzenia. W wyniku tego procesu, ciecz podgrzewana do temperatury wrzenia paruje, a następnie para jest skraplana w chłodnicy, uzyskując czysty składnik. Jest to kluczowa metoda stosowana w przemyśle chemicznym, petrochemicznym oraz w produkcji napojów alkoholowych, gdzie celem jest otrzymanie wysokiej czystości składników. Na przykład, w produkcji whisky lub wina, destylacja pozwala na oddzielenie etanolu od innych substancji, co wpływa na smak i jakość finalnego produktu. W przemyśle chemicznym, destylacja jest wykorzystywana do oczyszczania rozpuszczalników oraz produkcji chemikaliów. Stosowanie destylacji zgodnie z normami, takimi jak ISO 9001, zapewnia wysoką jakość procesów i gotowych produktów, co jest kluczowe dla bezpieczeństwa i efektywności produkcji.

Pytanie 14

W celu wydania świadectwa kontroli jakości odczynnika chemicznego - jodku potasu cz.d.a. przeprowadzono jego analizę. Wymagania oraz wyniki badań zapisano w tabeli:
Z analizy danych zawartych w tabeli wynika, że jodek potasu cz.d.a.

WymaganiaWynik badania
Zawartość KImin. 99,5%99,65%
Wilgoćmax. 0,1%0,075%
Substancje nierozpuszczalne w wodziemax. 0,005%0,002%
pH (5%, H2O)6 ÷ 86,8
Azot ogólny (N)max. 0,001%0,0007%
Chlorki i bromki (j. Cl)max. 0,01%0,004%
Fosforany (PO4)max. 0,001%0,0006%
Jodany (IO3)max. 0,0003%0,0001%
Siarczany (SO4)max. 0,001%0,0004%
Metale ciężkie (j. Pb)max. 0,0005%0,00025%
Arsen (As)max. 0,00001%0,000006%
Magnez (Mg)max. 0,001%0,0004%
Sód (Na)max. 0,05%0,015%
Wapń (Ca)max. 0,001%0,0006%
Żelazo (Fe)max. 0,0003%0,0003%

A. nie spełnia wymagań pod względem zawartości metali ciężkich.
B. nie spełnia wymagań pod względem pH i zawartości jodanów.
C. nie spełnia wymagań pod względem zawartości żelaza.
D. spełnia wymagania i można wydać świadectwo jakości.
Twoja odpowiedź jest na pewno trafna. Jodek potasu cz.d.a. rzeczywiście spełnia normy jakościowe, co jest bardzo ważne, gdy mówimy o wydaniu świadectwa kontroli jakości. W badaniach wyszło, że zawartość jodku potasu wynosi 99,65%, co jest lepsze niż wymagane 99,5%. To świetny wynik! Poza tym inne parametry, takie jak pH, wilgotność czy substancje nierozpuszczalne w wodzie, też są w normie. Z mojego doświadczenia, spełnianie norm to kluczowa sprawa, zwłaszcza w farmacji czy chemii analitycznej. Świadectwo jakości potwierdza, że produkt jest nie tylko zgodny z normami, ale również można go bezpiecznie używać. W laboratoriach warto regularnie sprawdzać i dokumentować wyniki, żeby mieć pewność, że wszystko jest na czasie z obowiązującymi standardami i zasadami bezpieczeństwa.

Pytanie 15

Substancje pomocnicze wykorzystywane do realizacji podstawowych analiz jakościowych i ilościowych, które nie wymagają wysokiej czystości, są oznaczane na opakowaniach symbolem

A. techn.
B. cz.
C. cz.ch.
D. cz.d.a.
Odpowiedź "cz." jest właściwa, ponieważ oznacza substancje pomocnicze, które są stosowane w analizach jakościowych i ilościowych, gdzie nie jest wymagana wysoka czystość chemiczna. Termin ten jest często używany w laboratoriach analitycznych oraz w procesach produkcyjnych, gdzie substancje te mogą służyć jako rozpuszczalniki, czy też reagenty w reakcjach chemicznych, ale nie muszą spełniać rygorystycznych norm czystości. Przykładem może być użycie substancji pomocniczych w analizach spektroskopowych, gdzie ich obecność nie wpływa negatywnie na wyniki analizy. W praktyce, korzystanie z takich substancji pozwala na oszczędności kosztów oraz uproszczenie procedur laboratoryjnych, co jest szczególnie ważne w laboratoriach zajmujących się rutynowymi analizami. Warto również zauważyć, że w kontekście dobrych praktyk laboratoryjnych, stosowanie substancji oznaczonych jako "cz." jest zgodne z wytycznymi dotyczącymi jakości w laboratoriach, które sugerują, aby dobierać materiały w zależności od wymagań jakościowych danej analizy.

Pytanie 16

Butle gazowe (czasy butli) napełnione wodorem są oznaczone kolorem

A. jasnozielonym
B. czerwonym
C. niebieskim
D. żółtym
Zrozumienie systemu oznaczania butli gazowych jest kluczowe dla bezpieczeństwa pracy z substancjami chemicznymi. Kolorystyka oznaczeń butli gazowych jest ściśle określona przez normy. Odpowiedzi sugerujące żółty, jasnozielony lub niebieski kolor są błędne, ponieważ nie odzwierciedlają one aktualnych praktyk w branży. Żółty kolor często kojarzony jest z gazami toksycznymi, a jasnozielony z gazami szlachetnymi, natomiast niebieski stosuje się zazwyczaj do azotu lub innych gazów obojętnych. Wybierając niepoprawne kolory, można narazić się na poważne konsekwencje, takie jak błędna identyfikacja gazu, co prowadzi do niebezpiecznych sytuacji. W przemyśle, gdzie obsługiwane są różne rodzaje gazów, znajomość i przestrzeganie norm dotyczących oznaczania butli gazowych jest niezbędne. Typowe błędy myślowe prowadzące do takich wniosków to ignorowanie standardów branżowych oraz brak świadomości na temat zagrożeń związanych z niewłaściwym oznaczeniem gazów. Warto pamiętać, że bezpieczeństwo w pracy z niebezpiecznymi substancjami chemicznymi opiera się na dokładnym przestrzeganiu procedur oraz systemów oznaczania, co bezpośrednio wpływa na zdrowie i życie pracowników oraz osób postronnych.

Pytanie 17

Aby przygotować miano kwasu solnego, konieczne jest odważenie węglanu sodu o masie wynoszącej około 400 mg. Jaką precyzję powinna mieć waga używana do odważenia węglanu sodu?

A. 0,1 g
B. 0,001 g
C. 0,01 g
D. 1 g
Wybór wagi o dokładności 0,001 g (1 mg) jest uzasadniony, gdyż do przygotowania miany kwasu solnego potrzebna jest odważka węglanu sodu o masie około 400 mg. Wymagana dokładność przy ważeniu substanacji chemicznych jest kluczowa dla uzyskania precyzyjnych wyników analitycznych. W analityce chemicznej, zwłaszcza w titracji, precyzyjne ważenie reagentów jest niezbędne, aby uniknąć błędów pomiarowych, które mogą prowadzić do fałszywych wniosków. Przyjęcie dokładności na poziomie 0,001 g pozwala na dokładniejsze przygotowanie roztworu, co jest istotne w kontekście późniejszych obliczeń i analiz. Stosowanie wag analitycznych jest standardem w laboratoriach chemicznych, ponieważ umożliwiają one kontrolowanie jakości analizowanego materiału i zapewniają zgodność z zasadami dobrej praktyki laboratoryjnej (GLP). Przykładowo, w przypadku przygotowywania roztworów wzorcowych, dokładność ważenia jest kluczowa dla uzyskania odpowiednich stężeń, co jest niezbędne w dalszych etapach analizy.

Pytanie 18

W wyniku rozkładu 100 g węglanu wapnia, otrzymano 25 g tlenku wapnia. Wydajność procentowa reakcji wynosi

MCaCO3 = 100g / molMCaO = 56g / mol

A. 44,6%
B. 56,0%
C. 4,4%
D. 100%
Wydajność procentowa reakcji chemicznych jest kluczowym wskaźnikiem efektywności procesów chemicznych. W omawianym przypadku, mając 100 g węglanu wapnia (CaCO3), teoretyczna masa tlenku wapnia (CaO), który można uzyskać w wyniku rozkładu, wynosi 56 g. Otrzymana masa 25 g tlenku wapnia pozwala na obliczenie wydajności procentowej, stosując wzór: (rzeczywista masa / teoretyczna masa) * 100%. Obliczenia prowadzą do wartości 44,6%, co wskazuje na to, że tylko część teoretycznej ilości produktu została uzyskana w rzeczywistej reakcji. Taka sytuacja może być efektem różnych czynników, w tym niepełnego rozkładu, strat materiałowych podczas procesu, czy też niewłaściwych warunków reakcji. W praktyce, zrozumienie i obliczanie wydajności reakcji chemicznych jest niezbędne w przemyśle chemicznym i farmaceutycznym, gdzie optymalizacja procesów jest kluczowa dla efektywności kosztowej i jakości produktów. Utrzymywanie wysokiej wydajności jest również zgodne z zasadami zrównoważonego rozwoju, co jest istotne w nowoczesnych procesach produkcyjnych.

Pytanie 19

Aby wykonać czynności analityczne wskazane w ramce, należy użyć:

Otrzymaną do badań próbkę badanego roztworu rozcieńczyć wodą destylowaną w kolbie miarowej o pojemności 100 cm3 do kreski i dokładnie wymieszać. Następnie przenieść pipetą 10 cm3 tego roztworu do kolby stożkowej, dodać ok. 50 cm3 wody destylowanej.

A. kolby miarowej, tygla, pipety, naczynka wagowego.
B. kolby stożkowej, moździerza, lejka Shotta, naczynka wagowego.
C. kolby stożkowej, kolby miarowej, pipety, cylindra miarowego.
D. zlewki, kolby ssawkowej, lejka Buchnera, cylindra miarowego.
Odpowiedź wskazująca na użycie kolby stożkowej, kolby miarowej, pipety oraz cylindra miarowego jest poprawna, ponieważ każdy z tych przyrządów odgrywa kluczową rolę w procesie analitycznym. Kolba miarowa jest niezbędna do precyzyjnego rozcieńczania roztworów, co jest istotne w chemii analitycznej, gdzie dokładność stężeń ma fundamentalne znaczenie dla uzyskania wiarygodnych wyników. Pipeta, z kolei, pozwala na precyzyjne odmierzanie małych objętości roztworów, co jest kluczowe przy przygotowywaniu prób do analiz. Kolba stożkowa znajduje zastosowanie w mieszaniu reagentów oraz w prowadzeniu reakcji chemicznych, a cylinder miarowy umożliwia dokładne pomiary większych objętości cieczy. Użycie tych instrumentów jest zgodne z najlepszymi praktykami laboratoryjnymi i standardami dotyczącymi chemii analitycznej, co zapewnia rzetelność przeprowadzanych badań oraz powtarzalność eksperymentów.

Pytanie 20

Temperatura topnienia mocznika wynosi 133 °C. W celu określenia czystości preparatów tej substancji, przeprowadzono badania temperatury ich topnienia, uzyskując wyniki przedstawione w tabeli. Wskaż preparat o najmniejszym stopniu czystości.

PreparatABCD
Zakres temperatury topnienia [°C]132-133130-133125-133128-133

A. B.
B. A.
C. D.
D. C.
Odpowiedź C jest prawidłowa, ponieważ temperatura topnienia czystego mocznika wynosi 133 °C. W przypadku analizy czystości substancji, kluczowym czynnikiem jest ocena temperatury topnienia - im niższa temperatura początkowa oraz szerszy zakres topnienia, tym większa obecność zanieczyszczeń w próbce. Preparat C osiąga temperaturę początkową topnienia na poziomie 125 °C, co wskazuje na obecność zanieczyszczeń obniżających jego punkt topnienia. Dodatkowo, zakres topnienia 125-133 °C również sugeruje, że substancja nie jest w pełni czysta, co jest zgodne z zasadami analizy chemicznej i standardami jakości. W praktyce, takie badania są istotne w przemyśle chemicznym, farmaceutycznym czy spożywczym, gdzie czystość substancji ma kluczowe znaczenie dla jakości końcowego produktu. Ważne jest, aby zapewnić odpowiednią kontrolę jakości, a metody takie jak pomiary temperatury topnienia są standardem w laboratoriach analitycznych, co umożliwia zapewnienie wysokich standardów jakości preparatów.

Pytanie 21

Czułość bezwzględna wagi definiuje się jako

A. najmniejszą masę, która powoduje wyraźne wychylenie wskazówki
B. największą masę, która powoduje wyraźne wychylenie wskazówki
C. najmniejsze dozwolone obciążenie wagi
D. największe dozwolone obciążenie wagi
Czułość bezwzględna wagi odnosi się do minimalnej masy, która jest w stanie wywołać zauważalne wychylenie wskazówki wagi. Oznacza to, że czułość wagi określa jej zdolność do wykrywania małych zmian w masie, co jest kluczowe w wielu zastosowaniach przemysłowych i laboratoryjnych. Przykładowo, w laboratoriach chemicznych, gdzie dokładność pomiarów jest kluczowa, wagi analityczne mają bardzo wysoką czułość. Dzięki temu można precyzyjnie odmierzać małe ilości substancji. Czułość bezwzględna jest również istotna w kontekście kalibracji wag, co jest regulowane przez normy ISO i metodykę pomiarową, aby zapewnić, że wagi są zgodne z określonymi standardami jakości. W praktyce, zrozumienie czułości bezwzględnej pozwala na lepsze dobieranie wag do potrzeb danego pomiaru, co ma bezpośredni wpływ na jakość wyników eksperymentalnych oraz procesów produkcyjnych.

Pytanie 22

Gęstość próbki cieczy wyznacza się przy użyciu

A. biurety
B. spektrofotometru
C. piknometru
D. refraktometru
Prawidłowa odpowiedź to piknometr, który jest instrumentem służącym do pomiaru gęstości cieczy. Działa na zasadzie porównania masy próbki cieczy z jej objętością. Piknometr jest precyzyjnym narzędziem wykorzystywanym w laboratoriach chemicznych do określania gęstości różnych substancji, co jest kluczowe w wielu dziedzinach, takich jak chemia analityczna, petrochemia, a także w przemyśle spożywczym. Na przykład, w przemyśle naftowym, znajomość gęstości olejów jest niezbędna do oceny ich jakości oraz do obliczeń dotyczących transportu. Piknometr jest zgodny z normami ASTM D287 oraz ISO 3507, co zapewnia wiarygodność wyników. Warto również zwrócić uwagę, że pomiar gęstości za pomocą piknometrów jest często preferowany ze względu na jego wysoką dokładność i powtarzalność wyników, w porównaniu do innych metod, takich jak pomiar przy użyciu hydrometru, który może być mniej precyzyjny w przypadku cieczy o złożonej strukturze chemicznej.

Pytanie 23

Sód powinien być przechowywany

A. w szczelnie zamkniętym pojemniku pod warstwą nafty
B. w pojemniku z dowolnym zamknięciem pod warstwą nafty
C. w pojemniku z dowolnym zamknięciem pod warstwą chloroformu
D. w szczelnie zamkniętym pojemniku pod warstwą chloroformu
Przechowywanie sodu pod warstwą chloroformu czy nafty w pojemnikach o dowolnym zamknięciu jest niewłaściwe i może prowadzić do niebezpiecznych sytuacji. Chloroform, jako rozpuszczalnik organiczny, ma zdolność do interakcji z metalami alkalicznymi, co może wywołać niepożądane reakcje chemiczne. W przypadku sodu, kontakt z chloroformem może prowadzić do powstawania niebezpiecznych produktów, co stwarza ryzyko eksplozji lub pożaru. Ponadto, przechowywanie w pojemniku o dowolnym zamknięciu nie zapewnia odpowiedniego zabezpieczenia przed wilgocią czy powietrzem, co jest kluczowe dla reaktywnych metali. Zastosowanie niewłaściwego pojemnika może doprowadzić do uwolnienia substancji niebezpiecznych do otoczenia, co narusza standardy BHP i regulacje dotyczące składowania substancji chemicznych. Warto zauważyć, że dla metali alkalicznych, takich jak sód, stosowanie odpowiednich pojemników w połączeniu z substancjami ochronnymi jest nie tylko wymaganiem prawnym, ale także kluczowym elementem zapewniającym bezpieczeństwo w laboratoriach i przemyśle. Niezrozumienie tych zasad może prowadzić do poważnych konsekwencji zdrowotnych i środowiskowych.

Pytanie 24

W celu przygotowania 100 cm3 roztworu mianowanego, jaką kolbę należy zastosować?

A. miarową o pojemności 10 cm3
B. stożkową o pojemności 100 cm3
C. stożkową o pojemności 0,1 dm3
D. miarową o pojemności 0,1 dm3
Wybór kolby miarowej 0,1 dm³ (czyli 100 cm³) to dobry ruch. Przygotowując roztwór mianowany, ważne jest, żeby robić to w naczyniu, które zapewnia dokładne pomiary objętości. Kolby miarowe są super dokładne i to ma duże znaczenie w chemii. Nawet małe błędy w objętości mogą namieszać wyniki analizy. Na przykład, jeśli przygotowujesz roztwór standardowy do miareczkowania, kolba miarowa będzie niezbędna. Pamiętaj, że każda kolba powinna być używana zgodnie z jej pojemnością, co sprawia, że wyniki są bardziej rzetelne i powtarzalne. W laboratoriach chemicznych dokładność pomiaru to klucz, więc dobrze jest wiedzieć, jaką kolbę wybrać, żeby wszystko wyszło zgodnie z planem.

Pytanie 25

Wybór lokalizacji do poboru próbek wody z rzeki nie jest uzależniony od

A. usytuowania dopływów
B. celu oraz zakresu badań
C. usytuowania źródeł zanieczyszczeń
D. rodzaju pojemników do ich przechowywania
Wybór miejsca pobierania próbek wody z rzeki jest kluczowym elementem badań jakości wody, a rodzaj naczyń do ich przechowywania nie ma wpływu na lokalizację ich pobierania. Istotne jest, aby miejsce poboru było reprezentatywne dla badanego obszaru i odpowiadało celom oraz zakresowi badań. Na przykład, jeśli celem jest ocena wpływu zanieczyszczeń przemysłowych, należy wybierać miejsca w pobliżu źródeł tych zanieczyszczeń. Z kolei lokalizacja dopływów może wskazywać na różne warunki hydrologiczne i chemiczne wody. Zarówno standardy ISO, jak i normy krajowe dotyczące monitorowania jakości wody podkreślają znaczenie odpowiedniego doboru punktów poboru. Przechowywanie próbek w odpowiednich naczyniach, takich jak butelki szklane lub plastikowe, ma z kolei na celu zapewnienie, że próbki nie ulegną zanieczyszczeniu ani degradacji w czasie transportu do laboratorium. Dlatego rodzaj naczyń jest istotny, ale nie wpływa na wybór miejsca ich pobierania.

Pytanie 26

Reagenty o czystości na poziomie 99,999% — 99,9999% to reagenty

A. spektralnie czyste
B. czyste do badań
C. czyste
D. czyste chemicznie
Odczynniki o poziomie czystości 99,999% — 99,9999% są klasyfikowane jako spektralnie czyste, ponieważ ich wysoka czystość zapewnia minimalną ilość zanieczyszczeń, które mogą wpłynąć na wyniki analizy spektroskopowej. Spektralna czystość jest kluczowa w technikach analitycznych, takich jak spektroskopia UV-Vis, IR oraz NMR, gdzie obecność nawet śladowych zanieczyszczeń może prowadzić do zniekształcenia widm analitycznych. Przykładem zastosowania spektralnie czystych odczynników jest ich użycie w badaniach biologicznych, gdzie dokładne pomiary są niezbędne do analizy interakcji między biomolekułami. W przemyśle chemicznym i farmaceutycznym, stosowanie takich odczynników jest ściśle regulowane i zgodne z normami jakości, takimi jak ISO 17025, które wymagają wysokiej jakości i powtarzalności wyników. Zastosowanie spektralnie czystych odczynników nie tylko poprawia wiarygodność analiz, ale także pozwala na uzyskanie wyników o wysokiej precyzji, co jest kluczowe w badaniach naukowych oraz rozwoju nowych produktów.

Pytanie 27

Aby uzyskać Cr2O3, dichromian(VI) amonu został poddany rozkładowi. Po rozpoczęciu, egzotermiczna reakcja rozkładu przebiega samorzutnie.
(NH4)2Cr2O7 → Cr2O3 + 4 H2O + N2 Jak oceniasz zakończenie tej reakcji?

A. Woda, po dodaniu szczypty uzyskanego preparatu, nie zabarwi się na pomarańczowo niewykorzystanym dichromianem (VI)
B. Ocena nie jest potrzebna, ponieważ tego typu reakcja zawsze zachodzi do końca
C. W otrzymanym zielonym proszku Cr2O3 nie powinny być widoczne pomarańczowe kryształy substratu
D. Ocena nie jest potrzebna, ponieważ wytworzone produkty są w stanie gazowym w temperaturze reakcji
Oceny dotyczące zakończenia reakcji nie można podejmować wyłącznie na podstawie obecności gazów, ponieważ niektóre reakcje mogą prowadzić do powstawania produktów w stanie stałym lub cieczy, które nie ulegają dalszym przemianom. Niepoprawne jest twierdzenie, że w przypadku reakcji rozkładu dichromianu (VI) amonu, sama egzotermiczność oznacza, że reakcja zawsze dobiegnie końca bez dalszych ocen. Niezrozumienie tego aspektu może prowadzić do błędnych wniosków, zwłaszcza gdy reakcji towarzyszy wydzielanie gazów. Ponadto, ocena obecności pomarańczowych kryształów może prowadzić do mylnych wniosków, gdyż nie każdy związek chromu prezentuje te same właściwości barwne. Kryształy dichromianu (VI) mają charakterystyczny kolor pomarańczowy, ale po zakończeniu reakcji i uzyskaniu tlenku chromu (III) nie powinny być już widoczne. Dlatego też, w praktyce chemicznej, powinniśmy korzystać z bardziej rzetelnych metod oceny, takich jak analizy spektroskopowe czy chromatograficzne, które pozwalają na dokładną identyfikację produktów reakcji i eliminację ryzyka błędnej interpretacji wyników. Uczenie się na błędach analitycznych oraz stosowanie dobrych praktyk laboratoryjnych to kluczowe elementy, które powinny być zawsze brane pod uwagę podczas oceny końcowego efektu reakcji chemicznych.

Pytanie 28

Aby sporządzić 20 cm3 roztworu HCl (1+1), należy w pierwszej kolejności wlać do zlewki

A. 10 cm3 wody destylowanej, a potem 10 cm3 stężonego kwasu solnego
B. 10 cm3 rozcieńczonego kwasu solnego, a potem 10 cm3 wody destylowanej
C. 10 cm3 stężonego kwasu solnego, a potem 10 cm3 wody destylowanej
D. 10 cm3 wody destylowanej, a następnie 10 cm3 rozcieńczonego kwasu solnego
Odpowiedź, w której na początku dodajemy 10 cm3 wody destylowanej, a następnie 10 cm3 stężonego kwasu solnego, jest prawidłowa z kilku powodów. Po pierwsze, rozcieńczanie kwasu solnego powinno zawsze rozpocząć się od dodania wody do kwasu, a nie odwrotnie. Dodanie stężonego kwasu do wody zmniejsza ryzyko reakcji egzotermicznej, która może prowadzić do niebezpiecznego rozprysku kwasu. W praktyce, woda powinna być dodawana do kwasu w kontrolowany sposób, aby uniknąć gwałtownego wrzenia. Te zasady są zgodne z najlepszymi praktykami w laboratoriach chemicznych, które podkreślają znaczenie bezpieczeństwa podczas pracy z substancjami żrącymi. Dodatkowo, stężony kwas solny ma gęstość większą niż woda, co oznacza, że jego dodanie do wody powoduje szybkie i silne mieszanie, co ułatwia osiągnięcie pożądanej koncentracji roztworu. W kontekście praktycznym, taka procedura jest niezbędna w laboratoriach analitycznych czy edukacyjnych, gdzie przygotowywanie roztworów o określonych stężeniach jest codziennością.

Pytanie 29

W wyniku reakcji 100 g azotanu(V) ołowiu(II) z jodkiem potasu otrzymano 120 g jodku ołowiu(II). Wydajność reakcji wyniosła

Pb(NO3)2 + 2KI → PbI2 + 2KNO3
(MPb(NO3)2 = 331 g/mol, MKI = 166 g/mol, MPbI2 = 461 g/mol, MKNO3 = 101 g/mol)

A. 98%
B. 42%
C. 86%
D. 25%
To pytanie dotyczące wydajności reakcji pokazuje, że wykonałeś dobre obliczenia. Wynik 86% to naprawdę fajny wynik, bo wiesz, że to oznacza, iż dobrze oszacowałeś masy reagentów i produktów. Jeśli weźmiemy pod uwagę azotan(V) ołowiu(II) i obliczymy maksymalną masę jodku ołowiu(II), to powinno wyjść jakieś 139,22 g. W Twoim eksperymencie uzyskałeś 120 g jodku ołowiu(II), więc to daje nam ładną wydajność. Te obliczenia są mega ważne w chemii, bo pomagają ocenić, jak dobrze działa reakcja. Wiedza o tym, jak to policzyć, jest przydatna nie tylko w chemii, ale też w farmacja czy w przemyśle materiałowym. Takie umiejętności mogą naprawdę pomóc w tworzeniu nowych rzeczy i rozwijaniu technologii w różnych dziedzinach.

Pytanie 30

Jakie proporcje objętościowe powinny być zastosowane do zmieszania roztworu etanolu o stężeniu 30% (V/V) z roztworem o stężeniu 70% (V/V), aby uzyskać roztwór o stężeniu 50% (V/V)?

A. 3:7
B. 1:1
C. 2:1
D. 1:2
Aby zrobić roztwór o stężeniu 50% (V/V), trzeba połączyć roztwór etanolu 30% (V/V) z roztworem 70% (V/V) w równych częściach. Czyli, jeśli masz jednostkę objętości 30%, to dodajesz dokładnie taką samą jednostkę objętości 70%. W ten sposób końcowe stężenie etanolu wychodzi idealnie 50%, bo dobrze zbalansowaliśmy ilość etanolu z obu roztworów. Można to też zapisać matematycznie: (0.3V1 + 0.7V2) / (V1 + V2) = 0.5, gdzie V1 to objętość 30%, a V2 to objętość 70%. Takie obliczenia są na porządku dziennym w laboratoriach chemicznych i wszędzie tam, gdzie trzeba dokładnie wymieszać substancje. Na pewno widziałeś to w produkcji alkoholu, bo różne stężenia etanolu są tam używane, żeby uzyskać różne smaki. Zrozumienie tych zasad jest też ważne z perspektywy przepisów dotyczących sprzedaży alkoholu, które często opierają się na konkretnych stężeniach substancji aktywnych.

Pytanie 31

Związki chromu(VI) oddziałują negatywnie na środowisko, ponieważ

A. stanowią główną przyczynę korozji urządzeń technicznych w wodzie
B. wykazują toksyczne działanie na organizmy żywe
C. prowadzą do zakwaszenia wód
D. powodują nadmierny wzrost roślinności w zbiornikach wodnych
Związki chromu(VI), takie jak chromiany i dichromiany, są znane z ich wysokiej toksyczności dla organizmów żywych. Działają one na poziomie komórkowym, wpływając na różne procesy biochemiczne oraz powodując uszkodzenia DNA, co może prowadzić do nowotworów. Chrom(VI) jest szczególnie niebezpieczny, ponieważ ma zdolność do przenikania przez błony komórkowe i wywoływania reakcje oksydacyjne, które mogą prowadzić do stresu oksydacyjnego w komórkach. Z tego powodu substancje te są klasyfikowane jako substancje niebezpieczne i wymagają szczególnej ostrożności podczas transportu oraz przechowywania. W praktyce, w zakładach przemysłowych, gdzie stosuje się związki chromu(VI), należy wdrażać odpowiednie środki ochrony, takie jak systemy wentylacyjne, osobiste zabezpieczenia dla pracowników oraz ścisłe kontrole emisji do środowiska. Przykładem standardów, które regulują te kwestie, są normy ISO 14001 dotyczące zarządzania środowiskowego oraz dyrektywy unijne dotyczące substancji niebezpiecznych. Dzięki tym praktykom można minimalizować ryzyko związane z wykorzystaniem tych toksycznych substancji.

Pytanie 32

Mianowanie roztworu o stężeniu przybliżonym można wykonać poprzez

A. miareczkowanie innym roztworem, który nie jest mianowany.
B. zmierzenie gęstości tego roztworu.
C. miareczkowanie tym samym roztworem mianowanym o ściśle określonym stężeniu.
D. miareczkowanie innym roztworem mianowanym o ściśle określonym stężeniu.
Mianowanie roztworu o stężeniu przybliżonym można skutecznie przeprowadzić poprzez miareczkowanie innym roztworem mianowanym o ściśle określonym stężeniu, ponieważ pozwala to na precyzyjne określenie ilości molesów substancji czynnej w analizowanym roztworze. W praktyce, podczas miareczkowania wykorzystuje się znany roztwór o dokładnie zmierzonym stężeniu, co pozwala na dokładne obliczenia i analizę wyników. Na przykład, w laboratoriach chemicznych często wykorzystuje się miareczkowanie kwasu solnego roztworem wodorotlenku sodu o znanym stężeniu, co umożliwia precyzyjne określenie stężenia kwasu. Zgodnie z normami branżowymi, takimi jak ISO 8655, precyzyjne miareczkowanie jest kluczowe dla uzyskania wiarygodnych wyników analitycznych. Dodatkowo, stosowanie roztworów mianowanych eliminuje wiele zmiennych, które mogłyby wpłynąć na wynik, takich jak niejednorodność roztworów niemianowanych, co czyni je bardziej niezawodnymi w kontekście stosowania w analizach laboratoryjnych.

Pytanie 33

Próbki wody, które mają być badane pod kątem zawartości krzemu, powinny być przechowywane w pojemnikach

A. ze szkła borowo-krzemowego
B. z tworzywa sztucznego
C. z kwarcu
D. ze szkła sodowego
Najlepszym wyborem do przechowywania próbek wody do badania krzemu są naczynia z tworzyw sztucznych. Oprócz tego, że są neutralne chemicznie, to nie wprowadzają zanieczyszczeń, które mogłyby zepsuć nasze analizy. Materiały jak PET czy polipropylen są nisko reaktywne, więc świetnie nadają się do tego rodzaju badań. W praktyce, używając takich pojemników, możemy trzymać próbki dłużej, bo nie ma ryzyka, że coś się w nich zmieni przez reakcje chemiczne. W dodatku, wiele norm, w tym te od ISO, sugeruje, aby korzystać z tworzyw sztucznych, zwłaszcza jeśli próbki mają być transportowane lub przechowywane przez dłuższy czas. Takie podejście wpisuje się w najlepsze praktyki laboratoryjne, co znaczy, że nasze wyniki będą bardziej wiarygodne.

Pytanie 34

Podczas przewozu próbek wody, które mają być badane pod kątem właściwości fizykochemicznych, zaleca się, aby te próbki były

A. ogrzane do temperatury 25°C
B. ogrzane do temperatury 15°C
C. schłodzone do temperatury 6-10°C
D. schłodzone do temperatury 2-5°C
Właściwe schłodzenie próbek wody do temperatury 2-5°C podczas transportu jest kluczowe dla zachowania ich jakości i integralności chemicznej. Niska temperatura spowalnia procesy biologiczne oraz chemiczne, które mogą prowadzić do zmiany składu chemicznego próbek, co z kolei może skutkować błędnymi wynikami analizy. Przykładem jest analiza zawartości substancji odżywczych, w których degradacja może nastąpić w wyniku działania mikroorganizmów. Zgodnie z zaleceniami takich organizacji jak EPA (Environmental Protection Agency) oraz ISO (Międzynarodowa Organizacja Normalizacyjna), transport próbek wody powinien odbywać się z zastosowaniem odpowiednich środków chłodzących. Praktyczne zastosowanie tych standardów można zauważyć w laboratoriach zajmujących się monitoringiem jakości wody, gdzie stosuje się lodowe akumulatory lub specjalne torby chłodzące. Zachowanie odpowiedniej temperatury transportu jest więc nie tylko kwestią zgodności z przepisami, ale również kluczowym elementem zapewniającym rzetelność wyników badań.

Pytanie 35

Na podstawie danych w tabeli próbkę, w której będzie oznaczany BZT, należy przechowywać

Oznaczany parametrRodzaj naczynia do przechowywaniaSposób utrwalaniaDopuszczalny czas przechowywania
barwaszklane lub polietylenowe- schłodzenie do temperatury 2-5°C24 h
fosforany ogólneszklane lub polietylenowe- zakwaszenie kwasem siarkowym(VI)
- schłodzenie do temperatury 2-5°C
4 h
48 h
BZTszklane- schłodzenie do temperatury 2-5°C
- przechowywanie w ciemności
24 h
azot azotanowy(V)szklane lub polietylenowe- schłodzenie do temperatury 2-5°C
- dodanie 2 cm3 chloroformu do 1 dm3 próbki
24 h
48 h

A. w szklanej butelce.
B. w polietylenowej butelce.
C. w metalowym naczyniu.
D. w butelce z ciemnego szkła.
Wybór niewłaściwego materiału do przechowywania próbek do oznaczania BZT może prowadzić do zafałszowania wyników analizy, co jest istotnym problemem w praktykach laboratoryjnych. Przechowywanie próbek w polietylenowej butelce nie jest odpowiednie, ponieważ polietylen może wchodzić w reakcje chemiczne z substancjami obecnymi w próbce, co z kolei może prowadzić do zmiany ich właściwości fizykochemicznych i nieadekwatnych wyników. Metalowe naczynia również nie są zalecane, ponieważ mogą reagować z niektórymi związkami chemicznymi, a ich powierzchnia może prowadzić do adsorpcji substancji, co zniekształca analizowane wartości. Wybór szklanej butelki nie wystarczy, jeśli nie jest to szkło ciemne; przezroczyste szkło nie zapewnia ochrony przed promieniowaniem UV, co prowadzi do degradacji składników próbki. Takie podejście jest sprzeczne z zaleceniami międzynarodowych standardów dotyczących przechowywania próbek w laboratoriach analitycznych, które jasno określają, że próbki wymagają konkretnego typu opakowania, aby uniknąć wpływu światła na ich integralność. Dlatego ważne jest, aby w procesie przechowywania próbek kierować się nie tylko dostępnością materiałów, ale przede wszystkim ich właściwościami chemicznymi i fizycznymi, aby zachować jakość analizy.

Pytanie 36

Podczas pobierania próby wody do oznaczania metali ciężkich zaleca się stosowanie butelek wykonanych z:

A. aluminium
B. szkła sodowego
C. polietylenu wysokiej gęstości (HDPE)
D. ceramiki
Polietylen wysokiej gęstości (HDPE) to materiał, który najczęściej wykorzystuje się do pobierania i przechowywania próbek wody przeznaczonych do analizy zawartości metali ciężkich. Przede wszystkim HDPE jest tworzywem chemicznie obojętnym wobec większości metali. To ogromna zaleta, bo nie wchodzi w reakcje z badanymi jonami, nie adsorbuje ich na swojej powierzchni i nie emituje zanieczyszczeń, które mogłyby zaburzyć wyniki. W praktyce laboratoria stosują butelki HDPE zarówno w analizach środowiskowych, jak i przemysłowych. Bardzo ważne jest też to, że HDPE jest wytrzymały mechanicznie, odporny na pęknięcia i łatwy do mycia oraz dekontaminacji przed kolejnym użyciem. Takie pojemniki są rekomendowane przez międzynarodowe normy, np. ISO 5667 dotyczące pobierania próbek wody. Z mojego doświadczenia wynika, że HDPE to pewność, że próbka nie zostanie zanieczyszczona metalami z materiału opakowania ani nie dojdzie do strat analitu przez związanie z powierzchnią. To naprawdę kluczowe, żeby nie zafałszować wyników, szczególnie przy bardzo niskich stężeniach metali ciężkich.

Pytanie 37

Oddzielanie płynnej mieszanki poprzez jej odparowanie, a potem skroplenie poszczególnych składników to

A. destylacja
B. ekstrakcja w systemie ciecz - ciecz
C. chromatografia cieczowa
D. adsorpcja
Ekstrakcja w układzie ciecz-ciecz to technika polegająca na wydobywaniu substancji rozpuszczonej w jednej cieczy do innej cieczy, co jest zupełnie innym procesem niż destylacja. W ekstrakcji kluczowym elementem jest różnica w rozpuszczalności substancji w dwóch różnych rozpuszczalnikach, co powoduje transfer substancji z jednej fazy do drugiej. Przykładem może być wydobycie olejków eterycznych z roślin za pomocą rozpuszczalników organicznych. Chromatografia cieczowa natomiast opiera się na różnicach w powinowactwie substancji do fazy stacjonarnej i ruchomej. W tej technice składniki mieszaniny są rozdzielane w kolumnie wypełnionej materiałem adsorbującym, co również różni się od destylacji. W chromatografii cieczowej, proces jest bardziej złożony i wymaga precyzyjnego doboru warunków, takich jak temperatura, ciśnienie oraz rodzaj używanej fazy stacjonarnej. Adsorpcja odnosi się do zjawiska przylegania cząsteczek do powierzchni ciała stałego, co jest wykorzystywane w wielu procesach separacyjnych, ale nie obejmuje one rozdzielania cieczy poprzez odparowanie i skraplanie. Typowym błędem myślowym prowadzącym do pomyłek jest mylenie metod separacji, które mają różne mechanizmy działania. Zrozumienie tych różnic jest kluczowe dla prawidłowego stosowania odpowiedniej techniki w laboratoriach oraz przemyśle.

Pytanie 38

Do pojemników na odpady stałe, które są przeznaczone do utylizacji, nie można wprowadzać bezpośrednio cyjanków oraz związków kompleksowych zawierających jony cyjankowe z powodu

A. powolnego rozkładu związków
B. produkcji toksycznych par lub gazów
C. uwalniania związków o drażniącym zapachu
D. zajścia nagłej, egzotermicznej reakcji
Cyjanki i związki kompleksowe zawierające jony cyjankowe są substancjami niezwykle niebezpiecznymi, ponieważ ich rozkład może prowadzić do wytwarzania toksycznych par i gazów, które mają szkodliwy wpływ na zdrowie ludzi oraz środowisko. W procesie utylizacji, gdy te substancje są narażone na działanie wysokich temperatur, mogą wydzielać cyjanowodór, który jest silnie trującym gazem. Zgodnie z wytycznymi dotyczącymi gospodarki odpadami niebezpiecznymi, należy unikać mieszania cyjanków z innymi odpadami, aby zminimalizować ryzyko ich reakcji chemicznych. Przykładem zastosowania tych zasad mogą być zakłady utylizacyjne, które stosują systemy segregacji odpadów niebezpiecznych oraz specjalistyczne procedury ich przetwarzania, aby zapewnić bezpieczeństwo pracy i ochronę środowiska. Dobre praktyki obejmują także regularne szkolenia personelu oraz stosowanie odpowiednich środków ochrony osobistej, aby uniknąć narażenia na toksyczne substancje. W związku z tym, wprowadzenie cyjanków do pojemników na odpady stałe jest surowo zabronione.

Pytanie 39

Na podstawie danych w tabeli określ, jaką masę próbki należy pobrać, jeżeli wielkość ziarna wynosi 1·10-5 m.

Wielkość ziaren lub kawałków [mm]Poniżej 11-1011-50Ponad 50
Pierwotna próbka (minimum) [g]10020010002500

A. 1000 g
B. 2500 g
C. 100 g
D. 200 g
Wybór innych mas próbki, takich jak 200 g, 2500 g czy 1000 g, może wynikać z nieporozumienia dotyczącego związku między wielkością próbki a jej reprezentatywnością. Większość użytkowników może sądzić, że większa masa próbki przyczyni się do lepszej dokładności analizy. Jednak w kontekście wielkości ziarna poniżej 1 mm, stosowanie większej masy może prowadzić do problemów z homogenizacją próbki oraz zwiększać ryzyko zanieczyszczenia. Zgodnie z dobrymi praktykami, przy małych ziarnach kluczowe jest, aby masa próbki była odpowiednia do ich właściwości fizycznych. W rzeczywistości, większa masa niekoniecznie poprawia jakość analizy, a może nawet wprowadzić dodatkowe błędy. W wielu przypadkach, aby uniknąć tzw. efektu selektywnego, zaleca się stosowanie minimalnych mas próbki określonych w standardach, które zapewniają odpowiednią reprezentatywność. Na przykład, w badaniach materiałów sypkich, zwłaszcza w kontekście przemysłu chemicznego, zbyt duża masa próbki może generować dodatkowe wydatki i komplikacje w przygotowaniu, co może prowadzić do nieefektywności w procesie analitycznym. Z tego powodu, kluczowe jest, aby przestrzegać wskazanych norm dotyczących masy próbki, aby uzyskać wiarygodne i powtarzalne wyniki analizy.

Pytanie 40

Jakie środki stosuje się do czyszczenia szkła miarowego, które zostało zanieczyszczone substancjami tłustymi?

A. gorącą wodę
B. słaby kwas
C. słabą zasadę
D. mieszaninę chromową
Słaby kwas nie jest skutecznym środkiem do usuwania tłuszczów, ponieważ nie wykazuje wystarczającej siły w reakcji z grubsza zbudowanymi cząsteczkami organicznymi, jakie występują w tłuszczach. Tego typu substancje chemiczne, jak na przykład kwas octowy czy kwas cytrynowy, mogą jedynie częściowo rozkładać niektóre zanieczyszczenia, ale nie są wystarczająco efektywne w przypadku tłuszczów. Również słaba zasada, chociaż może działać w niektórych przypadkach, nie jest optymalnym rozwiązaniem, ponieważ wiele tłuszczów jest hydrofobowych i nie reaguje z zasadowymi roztworami. Gorąca woda, mimo że potrafi rozpuścić pewne zanieczyszczenia, jest niewystarczająca w przypadku substancji tłustych, które wymagają zastosowania silniejszych reagentów. Mieszanina chromowa oferuje unikalną zdolność do utleniania i rozkładu tłuszczów, co czyni ją niezbędnym środkiem w laboratoriach chemicznych. Niezrozumienie potrzeby stosowania odpowiednich reagentów może prowadzić do niedostatecznego oczyszczenia sprzętu, co w efekcie wpływa na dokładność pomiarów, a tym samym na wyniki eksperymentów. W praktyce laboratoryjnej kluczowe jest stosowanie się do standardów czyszczenia, aby zapewnić rzetelność wyników i bezpieczeństwo w pracy z chemikaliami.