Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 24 maja 2025 22:31
  • Data zakończenia: 24 maja 2025 23:15

Egzamin zdany!

Wynik: 36/40 punktów (90,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie ciśnienie powinno być zastosowane do przeprowadzenia testu szczelności systemu hydraulicznego?

A. Ciśnieniu testowemu 6 bar
B. Większym o 10% od ciśnienia roboczego
C. Maksymalnym ciśnieniu, które występuje w trakcie pracy
D. Mniejszym od maksymalnego ciśnienia, które występuje w trakcie pracy o 50%
Wybór ciśnienia próbnego na poziomie 6 bar jest niewłaściwy, ponieważ nie uwzględnia specyfiki konkretnego układu hydraulicznego. Takie podejście może prowadzić do błędnych wniosków dotyczących szczelności, zwłaszcza w aplikacjach, gdzie standardowe ciśnienie robocze przekracza tę wartość. Bezwzględne poleganie na wartości ciśnienia próbnego, które nie jest oparte na maksymalnym ciśnieniu roboczym, może prowadzić do zjawiska, w którym układ wydaje się sprawny, mimo że nie jest w stanie wytrzymać rzeczywistych warunków pracy. Odpowiedź sugerująca zwiększenie ciśnienia o 10% może wydawać się logiczna, jednak nie zapewnia żadnej gwarancji, że układ będzie w stanie poradzić sobie z maksymalnym ciśnieniem, które występuje w czasie eksploatacji. Ponadto, maksymalne ciśnienie robocze ma kluczowe znaczenie dla oceny integralności układów hydraulicznych, co jest zgodne z najlepszymi praktykami w branży. Ustalanie próbnej wartości ciśnienia mniejszej o 50% od maksymalnego ciśnienia roboczego jest również błędne, ponieważ nie daje pełnego obrazu potencjalnych problemów z nieszczelnościami, które mogą wystąpić w rzeczywistych warunkach pracy. W związku z tym, niewłaściwe dobranie ciśnienia próbnego może prowadzić do niezgodności z normami bezpieczeństwa oraz niebezpiecznych sytuacji w trakcie użytkowania układów hydraulicznych.

Pytanie 2

Jakiego typu wyjście powinien mieć sterownik PLC, aby w systemie sterowania wykorzystującym ten sterownik możliwa była modulacja szerokości impulsu – PWM?

A. Analogowe prądowe
B. Binarne przekaźnikowe
C. Binarne tranzystorowe
D. Analogowe napięciowe
Sterownik PLC z wyjściami binarnymi tranzystorowymi jest kluczowym elementem w systemach automatyki, szczególnie w zastosowaniach wymagających modulacji szerokości impulsu (PWM). Wyjścia te umożliwiają bardzo precyzyjne sterowanie czasem trwania impulsu, co jest niezbędne do regulacji mocy dostarczanej do urządzeń, takich jak silniki czy podgrzewacze. Przykładem zastosowania PWM w praktyce jest kontrola prędkości obrotowej silnika, gdzie zmiana czasu włączenia i wyłączenia impulsu pozwala na osiągnięcie płynnej regulacji prędkości. Dodatkowo, wyjścia tranzystorowe charakteryzują się szybkim czasem przełączania oraz minimalnymi stratami mocy, co czyni je idealnymi do zastosowań w systemach, gdzie efektywność energetyczna ma kluczowe znaczenie. W branżowych standardach, takich jak IEC 61131-3, podkreśla się znaczenie wyjść binarnych tranzystorowych w kontekście nowoczesnych aplikacji automatyki, co czyni je praktycznym wyborem dla inżynierów projektujących nowoczesne układy sterowania.

Pytanie 3

Podczas diagnostyki systemu mechatronicznego, co jest kluczowym parametrem do zmierzenia?

A. Materiał obudowy
B. Napięcie zasilania
C. Waga komponentów
D. Kolor przewodów
Napięcie zasilania jest kluczowym parametrem do zmierzenia podczas diagnostyki systemu mechatronicznego, ponieważ od jego poprawności zależy prawidłowe funkcjonowanie całego układu. W mechatronice urządzenia często opierają się na precyzyjnym zasilaniu poszczególnych komponentów, takich jak silniki, siłowniki czy czujniki. Niewłaściwe napięcie może prowadzić do nieprawidłowego działania lub nawet uszkodzenia tych elementów. Dlatego sprawdzenie napięcia jest jednym z pierwszych kroków diagnostycznych. Dodatkowo, zgodnie z dobrą praktyką inżynierską, systemy mechatroniczne są projektowane z określonymi zakresami napięcia roboczego, które muszą być dokładnie utrzymywane. W praktyce, pomiar napięcia zasilania może pomóc zidentyfikować problemy związane z zasilaniem, takie jak spadki napięcia, które są częstą przyczyną problemów w systemach mechatronicznych. Regularne monitorowanie tego parametru pozwala na wczesne wykrycie potencjalnych awarii i zapewnia niezawodność całego systemu.

Pytanie 4

Jaką metodę czyszczenia powinno się zastosować podczas montażu elementów hydraulicznych na końcowym etapie?

A. Przetarcia rozpuszczalnikiem
B. Przedmuchania sprężonym powietrzem
C. Przemycia wodą
D. Osuszenia w wysokiej temperaturze
Wybór metody oczyszczania elementów hydraulicznych jest kluczowy dla zapewnienia ich prawidłowego funkcjonowania, a niektóre podejścia mogą prowadzić do poważnych problemów. Osuszanie w wysokiej temperaturze, choć może wydawać się skuteczne w eliminacji wilgoci, niesie ze sobą ryzyko uszkodzenia delikatnych materiałów użytych w elementach hydraulicznych. Zbyt wysoka temperatura może powodować deformacje lub osłabienie strukturalne, które w dłuższej perspektywie mogą prowadzić do awarii. Przemywanie wodą z kolei, mimo że efektywnie usuwa większe cząstki, często nie jest wystarczające w kontekście usuwania drobnych zanieczyszczeń, takich jak pył czy resztki smarów. Woda może także pozostawiać osady, które po wyschnięciu mogą działać jak dodatkowe zanieczyszczenia. Zastosowanie rozpuszczalników ma swoje ograniczenia, ponieważ niektóre materiały mogą reagować negatywnie na ich działanie, co może prowadzić do uszkodzeń. Wybór niewłaściwej metody może wynikać z błędnego podejścia do procesu oczyszczania, gdzie priorytetem staje się szybkość, a nie jakość. W rezultacie, zarówno zanieczyszczenia, jak i błędne metody oczyszczania mogą prowadzić do skrócenia żywotności elementów hydraulicznych oraz zwiększenia kosztów związanych z ich naprawą i konserwacją.

Pytanie 5

Nieszczelności występujące w systemie smarowania lub w obiegu cieczy chłodzącej, zauważone w trakcie pracy urządzenia hydraulicznego, powinny być usunięte podczas

A. przeglądu technicznego w trakcie przestoju
B. ogólnego remontu maszyny
C. planowych napraw bieżących bez rozkładania całej maszyny
D. planowych napraw średnich realizowanych po demontażu całej maszyny
Wybór przeglądu technicznego w czasie przestoju jako momentu na usunięcie nieszczelności w układzie smarowania lub cieczy chłodzącej jest trafny z wielu powodów. Nieszczelności te mogą prowadzić do poważnych problemów operacyjnych, takich jak przegrzewanie się maszyny czy jej uszkodzenie, co w konsekwencji może skutkować wstrzymaniem produkcji. Przegląd techniczny w czasie przestoju to idealny moment na przeprowadzenie dokładnej inspekcji, ponieważ pozwala na zidentyfikowanie i naprawienie problemów bez ryzyka wpływu na wydajność pracy. W ramach przeglądu można również przeprowadzić dodatkowe czynności, takie jak uzupełnienie płynów eksploatacyjnych czy wymiana zużytych elementów. Dobre praktyki branżowe wskazują na konieczność przeprowadzania takich inspekcji w regularnych odstępach czasowych, co podnosi bezpieczeństwo i efektywność pracy urządzeń hydraulicznych. Dlatego odpowiedź na to pytanie potwierdza świadomość znaczenia regularnych przeglądów w kontekście utrzymania ruchu maszyn.

Pytanie 6

Jakie rodzaje środków ochrony osobistej powinny być używane podczas pracy z tokarką CNC?

A. Kask ochronny
B. Rękawice elektroizolacyjne
C. Ubranie robocze przylegające do ciała
D. Kamizelka odblaskowa
Przylegające do ciała ubranie robocze to kluczowy element ochrony osobistej podczas obsługi tokarki CNC. Tego rodzaju odzież minimalizuje ryzyko wciągnięcia luźnych materiałów w ruchome elementy maszyny, co może prowadzić do poważnych obrażeń. W branży obróbczej, zgodnie z normami BHP, zaleca się stosowanie odzieży roboczej o właściwych właściwościach, która nie tylko zapewnia bezpieczeństwo, ale również komfort. Przykładowo, specjalistyczne ubrania wykonane z materiałów odpornych na działanie olejów i smarów, a także z odpowiednich tkanin, mogą zwiększyć ochronę. Dodatkowo, zastosowanie takiej odzieży wspiera zachowanie ergonomii pracy, co ma kluczowe znaczenie w kontekście długotrwałej obsługi maszyn. Obowiązujące wytyczne dotyczące BHP podkreślają znaczenie świadomości zagrożeń oraz stosowania odpowiednich środków ochrony indywidualnej, co jest fundamentem odpowiedzialnego zachowania w miejscu pracy.

Pytanie 7

Jakiego rodzaju zabieg konserwacyjny należy przeprowadzić, aby chronić płytkę drukowaną przed korozją?

A. Pokryć płytkę warstwą lakieru izolacyjnego
B. Krótkotrwale zanurzyć płytkę w chlorku żelaza
C. Pokryć płytkę warstwą pasty termoprzewodzącej
D. Obwód drukowany pokryć pastą lutowniczą
Pokrycie płytki drukowanej warstwą lakieru izolacyjnego jest kluczowym zabiegiem konserwacyjnym mającym na celu ochronę przed korozją. Lakier izolacyjny tworzy trwałą, wodoodporną powłokę, która zabezpiecza metalowe ścieżki oraz elementy elektroniczne przed działaniem wilgoci oraz substancji chemicznych. W praktyce, zastosowanie lakieru izolacyjnego jest standardową procedurą w produkcji elektroniki, szczególnie w urządzeniach narażonych na wysoką wilgotność, jak na przykład w sprzęcie przemysłowym czy motoryzacyjnym. Stosowanie takiego zabezpieczenia nie tylko wydłuża żywotność komponentów, ale również zmniejsza ryzyko awarii związanych z korozją. Przykłady zastosowania lakierów izolacyjnych obejmują ich wykorzystanie w płytkach PCB stosowanych w elektronice użytkowej oraz w systemach telekomunikacyjnych, gdzie długotrwała niezawodność jest kluczowa. Zgodnie z normami IPC-610, pokrycie warstwą izolacyjną jest zalecane dla wszystkich aplikacji narażonych na korozję.

Pytanie 8

Jakie urządzenie opisuje parametr określany jako liczba stopni swobody?

A. Manipulator
B. Pralka automatyczna
C. Prasa hydrauliczna
D. Kserokopiarka
Manipulator to urządzenie, które charakteryzuje się liczbą stopni swobody, co oznacza, że może poruszać się w wielu kierunkach i na różnych płaszczyznach. Liczba ta wskazuje, ile niezależnych ruchów manipulator może wykonać, co jest kluczowe w kontekście automatyzacji i robotyki. Przykładowo, w robotyce przemysłowej manipulatory stosowane są do precyzyjnego montażu, gdzie wymagana jest zdolność do ruchu w wielu osiach. Manipulatory z sześcioma stopniami swobody potrafią wykonywać ruchy podobne do ruchów ludzkiej ręki, co niezwykle zwiększa ich funkcjonalność. Ważne jest, aby projektowanie robotów uwzględniało standardy ergonomiczne oraz normy bezpieczeństwa, takie jak ISO 10218 dotyczące robotów przemysłowych, aby zapewnić ich efektywność i bezpieczeństwo w użytkowaniu. Wiedza na temat liczby stopni swobody jest kluczowa dla inżynierów i specjalistów zajmujących się automatyzacją, ponieważ pozwala na optymalne dobieranie i programowanie manipulatorów do konkretnych zadań produkcyjnych.

Pytanie 9

Gdzie nie mogą być umieszczone przewody sieci komunikacyjnych?

A. W pomieszczeniach o niskich temperaturach
B. W pomieszczeniach z dużym zakurzeniem
C. Na zewnątrz obiektów
D. W pobliżu przewodów silnoprądowych
Odpowiedź, że przewody sieci komunikacyjnych nie powinny znajdować się blisko przewodów silnoprądowych, jest prawidłowa z kilku istotnych względów. Przede wszystkim, są to dwa różne typy przewodów, które z definicji pełnią różne funkcje: przewody silnoprądowe dostarczają energię elektryczną, podczas gdy przewody komunikacyjne przesyłają sygnały danych. Umieszczanie ich w bliskiej odległości może prowadzić do zakłóceń elektromagnetycznych, co negatywnie wpływa na jakość przesyłanych danych. Dodatkowo, w przypadku uszkodzenia przewodów silnoprądowych, istnieje ryzyko powstania zwarcia, co może zagrażać bezpieczeństwu nie tylko kabli komunikacyjnych, ale i całej instalacji. W praktyce, zgodnie z normami branżowymi, np. PN-EN 50174-2, zaleca się utrzymanie odpowiednich odległości między tymi przewodami oraz stosowanie odpowiednich osłon i ochrony kablowej. Dzięki przestrzeganiu tych zasad, można zminimalizować ryzyko zakłóceń oraz zapewnić bezpieczeństwo i niezawodność obu systemów.

Pytanie 10

Podczas pracy z siłownikiem hydraulicznym dostrzeżono drobne zadrapania na tłoczysku. Jak należy zlikwidować te rysy?

A. chromowanie
B. spawanie
C. polerowanie
D. lutowanie
Polerowanie jest najodpowiedniejszą metodą usuwania niewielkich rys na tłoczysku siłownika hydraulicznego. W procesie polerowania następuje delikatne usunięcie wierzchniej warstwy materiału, co pozwala na przywrócenie gładkości powierzchni bez naruszania jej właściwości mechanicznych. Praktyka ta jest zgodna z ogólnymi zasadami utrzymania sprzętu hydraulicznego, które podkreślają znaczenie dbania o integralność elementów narażonych na wysokie ciśnienie. Polerowanie można wykonać przy użyciu różnych narzędzi, takich jak szlifierki czy tarcze polerskie, co umożliwia precyzyjne dopasowanie do specyfiki rys. Dobrą praktyką jest także ocena stanu tłoczyska przed podjęciem działań, aby upewnić się, że proces polerowania będzie wystarczający do usunięcia uszkodzeń. Warto pamiętać, że regularne przeglądy i konserwacja elementów siłowników hydraulicznych mogą znacząco wydłużyć ich żywotność.

Pytanie 11

Jakie są różnice między blokiem funkcyjnym przerzutnika RS a blokiem przerzutnika SR w PLC?

A. Przewagą sygnałów Set i Reset
B. Ilością stanów pośrednich
C. Odwróceniem sygnałów Set i Reset
D. Czasem reakcji
Zauważ, że wybrałeś poprawną odpowiedź, bo jest istotna różnica między przerzutnikiem RS a SR. W przerzutniku RS sygnał Set zawsze ma pierwszeństwo. To znaczy, że jak go aktywujesz, to wyjście idzie w stan wysoki. Dopiero gdy Set nie działa, możemy mówić o sygnale Reset. Ta zasada jest naprawdę ważna, zwłaszcza w automatyce. Na przykład, w różnych systemach sterowania, chcemy, żeby urządzenie znowu zaczęło działać po wyłączeniu. Dzięki przerzutnikowi RS to jest całkiem proste i bezpieczne. No i wiesz, standardy jak IEC 61131-3 mówią o tym, jak powinny działać programy do PLC, więc dobrze znać te różnice, żeby nie popełnić błędów przy projektowaniu systemów. Moim zdaniem, im lepiej rozumiesz te kwestie, tym lepiej zaprojektujesz swoje układy.

Pytanie 12

Wskaż, jaka czynność powinna zostać zrealizowana przed przystąpieniem do konserwacji instalacji sprężonego powietrza, zaraz po wyłączeniu i odpowietrzeniu sprężarki oraz opróżnieniu zbiorników powietrza?

A. Wymienić uszkodzone elementy instalacji oraz wszystkie uszczelki
B. Otworzyć zawory odwadniaczy spustowych i upewnić się o braku ciśnienia w instalacji
C. Zakryć części i otwory czystą szmatką lub taśmą klejącą
D. Oczyścić części odpowiednimi środkami chemicznymi
Otwieranie zaworów odwadniaczy przed każdymi pracami konserwacyjnymi to mega ważna sprawa. Dzięki temu usuwamy wilgoć, która może się zbierać w zbiornikach i przewodach. A to jest kluczowe, żeby system działał sprawnie i dłużej. Jak woda lub jakieś zanieczyszczenia dostaną się do instalacji, to mogą spowodować korozję, co w efekcie może prowadzić do awarii, a nawet niebezpiecznych sytuacji, jak wybuchy. Musimy też pamiętać, że upewnienie się, że ciśnienie w instalacji jest na zero, to podstawa bezpieczeństwa. Jeśli zaczniemy działać pod ciśnieniem, to naprawdę może być bardzo niebezpiecznie dla osób obsługujących system. Standardy BHP w przemyśle mówią głośno o tym, jak ważne jest przestrzeganie procedur bezpieczeństwa, czyli regularne usuwanie wilgoci i kontrolowanie ciśnienia. Dobrze też wiedzieć, że odpowiednie zarządzanie instalacją sprężonego powietrza poprawia nie tylko bezpieczeństwo, ale też efektywność całego systemu.

Pytanie 13

Podczas wymiany uszkodzonego kondensatora, można użyć zamiennika o

A. niższej wartości pojemności
B. wyższej wartości napięcia nominalnego
C. niższej wartości napięcia nominalnego
D. wyższej wartości pojemności
Zastosowanie kondensatora o większej wartości napięcia nominalnego jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności układów elektronicznych. Wyższa wartość napięcia nominalnego oznacza, że kondensator będzie w stanie wytrzymać większe napięcia bez ryzyka uszkodzenia. Przykładem może być kondensator stosowany w zasilaczach impulsowych, gdzie napięcia mogą być znacznie wyższe niż nominalne. W takim przypadku, zastosowanie kondensatora o odpowiednio wysokim napięciu nominalnym zabezpiecza go przed awarią. Dobrą praktyką jest, aby wartość napięcia nominalnego kondensatora była co najmniej 20-30% wyższa od maksymalnego napięcia roboczego w układzie, co znacząco zwiększa niezawodność. Warto również pamiętać, że kondensatory są klasyfikowane zgodnie z normami, takimi jak IEC 60384, które definiują ich parametry i zastosowania. Wybierając zamiennik, warto zwrócić uwagę na te standardy, co pozwala na efektywne i bezpieczne projektowanie obwodów.

Pytanie 14

Jakie kluczowe cechy funkcjonalne powinien mieć system sterowania układem nawrotnym dla silnika elektrycznego?

A. Sygnalizację kierunków obrotu silnika
B. Ograniczenie czasowe dla pracy silnika z napędem
C. Podtrzymanie kierunku obrotów silnika z napędem
D. Blokadę uniemożliwiającą jednoczesne włączenie w obu kierunkach
Wybór odpowiedzi "Blokadę przed jednoczesnym załączeniem w obu kierunkach." jest poprawny, ponieważ stanowi kluczowy element systemów sterowania silnikami elektrycznymi, który ma na celu zapewnienie bezpieczeństwa oraz ochrony zarówno urządzenia, jak i użytkownika. W praktyce, w przypadku jednoczesnego załączenia silnika w dwóch przeciwnych kierunkach, mogłoby dojść do poważnych uszkodzeń mechanicznych, a także do zagrożenia dla ludzi znajdujących się w pobliżu. Blokada ta jest standardowym rozwiązaniem w branży automatyki, stosowanym w wielu aplikacjach, od prostych silników jednofazowych po złożone systemy napędowe w przemyśle. Przykładowo, w systemach z wykorzystaniem falowników, implementacja takiej blokady jest nie tylko zalecana, ale wręcz wymagana przez normy bezpieczeństwa. Dobre praktyki inżynieryjne sugerują wprowadzenie dodatkowych czujników, które monitorują aktywność silnika, co pozwala na automatyczne zatrzymanie pracy w przypadku wykrycia nieprawidłowości. Oprócz tego, zapewnia to również większą niezawodność i dłuższą żywotność komponentów systemu, co jest kluczowe w kontekście kosztów eksploatacji.

Pytanie 15

Radiator, który ma zanieczyszczenia z pasty termoprzewodzącej, powinien być oczyszczony przy użyciu

A. sprężonego powietrza
B. alkoholu izopropylowego
C. gazu technicznego
D. wody destylowanej
Alkohol izopropylowy jest idealnym środkiem do czyszczenia radiatorów z pasty termoprzewodzącej. Jego właściwości rozpuszczające pozwalają skutecznie usunąć zanieczyszczenia, nie uszkadzając przy tym delikatnych powierzchni radiatora. W praktyce, stosowanie alkoholu izopropylowego jest powszechną metodą w branży elektroniki, gdzie czystość komponentów jest kluczowa dla ich prawidłowego działania. Przygotowując radiator do ponownego montażu, należy upewnić się, że wszelkie resztki pasty termoprzewodzącej zostały całkowicie usunięte, aby zapewnić efektywne przewodnictwo cieplne. Alkohol izopropylowy, ze względu na swoją szybkość odparowywania, minimalizuje ryzyko pozostawienia wilgoci na czyszczonej powierzchni. Warto również zaznaczyć, że stosowanie alkoholu izopropylowego jest zgodne z najlepszymi praktykami w zakresie konserwacji sprzętu elektronicznego, co potwierdzają liczne standardy branżowe, takie jak IPC-7711/7721 dotyczące naprawy i konserwacji elektronicznych obwodów drukowanych.

Pytanie 16

Jakie materiały eksploatacyjne, które muszą być okresowo wymieniane w urządzeniu mechatronicznym, powinny być dobierane?

A. z dokumentacją techniczno-ruchową urządzenia
B. z tabliczki znamionowej urządzenia
C. z kartą gwarancyjną
D. z protokołem przekazania urządzenia do eksploatacji
Materiały eksploatacyjne w urządzeniach mechatronicznych są kluczowe dla zapewnienia ich prawidłowego funkcjonowania oraz przedłużenia żywotności. Właściwy dobór tych materiałów powinien opierać się na dokumentacji techniczno-ruchowej (DTR) urządzenia, która dostarcza szczegółowych informacji na temat wymiany komponentów, ich specyfikacji oraz interwałów serwisowych. DTR określa również zalecane typy materiałów eksploatacyjnych, co pozwala uniknąć użycia niewłaściwych komponentów, które mogą prowadzić do uszkodzeń lub obniżenia wydajności urządzenia. Przykładowo, w przypadku maszyn przemysłowych, które wymagają regularnej wymiany filtrów czy olejów, DTR zawiera konkretne informacje, które pozwalają na efektywne planowanie konserwacji. Zastosowanie się do zaleceń zawartych w DTR jest zgodne z najlepszymi praktykami branżowymi, co przekłada się na zwiększenie niezawodności i bezpieczeństwa urządzeń w eksploatacji.

Pytanie 17

W podręczniku obsługi silnika zasilanego napięciem 400 V i kontrolowanego przez PLC powinna być zawarta informacja: Przed rozpoczęciem prac konserwacyjnych należy odłączyć wszystkie obwody zasilające.

A. zabezpieczyć je przed uruchomieniem oraz zewrzeć obudowę silnika z uziemieniem
B. uziemić silnik oraz uziemić sterownik przy użyciu urządzenia do uziemiania
C. sprawdzić, czy nie ma napięcia i zewrzeć złącza silnika
D. zabezpieczyć je przed uruchomieniem i sprawdzić, czy nie ma napięcia
Wybór odpowiedzi, które sugerują zabezpieczenie obwodów w sposób niezgodny z normami, może prowadzić do poważnych konsekwencji. Odpowiedzi takie jak "uziemić silnik" czy "zewrzeć zaciski silnika" wprowadzają niepoprawne i potencjalnie niebezpieczne praktyki. Uziemienie silnika jest techniką, która powinna być stosowana tylko w określonych sytuacjach, gdyż niewłaściwe jej zastosowanie może prowadzić do porażenia prądem lub uszkodzenia urządzenia. Procedura zewrzenia zacisków silnika również nie jest standardowym wymaganiem i może prowadzić do uszkodzeń, jeśli nie jest przeprowadzana przez wykwalifikowany personel. Ponadto, wiele osób może błędnie interpretować potrzebę uziemienia jako wystarczające zabezpieczenie, co jest nieprawidłowe. Z kolei sprawdzanie braku napięcia powinno być zawsze obligatoryjne, jednak nie może być jedynym środkiem ostrożności. Ignorowanie tych zasad prowadzi do typowych błędów myślowych, takich jak niedocenianie ryzyka przy pracy z urządzeniami elektrycznymi, co może mieć tragiczne skutki. Właściwe zrozumienie i stosowanie zasad bezpieczeństwa jest kluczowe, aby uniknąć wypadków i zapewnić bezpieczeństwo własne oraz innych pracowników w środowisku przemysłowym.

Pytanie 18

Jaką rolę odgrywa zawór przelewowy w hydraulicznej prasie?

A. Zrzuca olej z siłownika do zbiornika.
B. Umożliwia regulację wartości siły wytwarzanej przez prasę.
C. Filtruje zanieczyszczenia z oleju.
D. Chroni przed powrotem oleju z rozdzielacza do pompy.
Zawór przelewowy odgrywa kluczową rolę w systemach hydraulicznych, w tym prasie hydraulicznej, umożliwiając regulację maksymalnej wartości siły generowanej przez urządzenie. Jego głównym zadaniem jest odprowadzanie nadmiaru ciśnienia, co pozwala uniknąć uszkodzeń komponentów hydraulicznych, a także optymalizować efektywność pracy prasy. Przykładowo, w sytuacji, gdy ciśnienie wzrasta powyżej ustalonego poziomu, zawór przelewowy otwiera się, kierując nadmiar oleju z powrotem do zbiornika, co chroni system przed nadmiernym obciążeniem. Taka regulacja jest niezwykle istotna w kontekście bezpieczeństwa i długowieczności urządzeń hydraulicznych. W praktyce, regulacje zaworu przelewowego powinny być dostosowywane zgodnie z wymaganiami konkretnego procesu, aby zapewnić optymalne parametry pracy. Zastosowanie wysokiej jakości zaworów przelewowych, zgodnych z normami branżowymi, jest kluczowe dla zapewnienia niezawodności i efektywności systemu hydraulicznego.

Pytanie 19

Z jakiego systemu zasilania powinno korzystać urządzenie mechatroniczne, jeśli na schemacie sieci energetycznej zaznaczono symbol 400 V ~ 3/N/PE?

A. TT
B. TN - C
C. TI
D. TN - S
Odpowiedź TN-S jest poprawna, ponieważ układ sieciowy TN-S charakteryzuje się oddzielnym przewodem ochronnym (PE) oraz oddzielnym przewodem neutralnym (N). Oznaczenie 400 V ~ 3/N/PE w pytaniu wskazuje na istnienie trzech faz oraz oddzielny przewód neutralny i ochronny, co jest zgodne z normami bezpieczeństwa i stabilności zasilania dla urządzeń mechatronicznych. W praktyce, zasilanie w układzie TN-S jest rekomendowane dla urządzeń wymagających wysokiego poziomu bezpieczeństwa, takich jak maszyny przemysłowe, gdzie niezawodność zasilania jest kluczowa. Układ ten minimalizuje ryzyko wystąpienia prądów błądzących, co jest istotne w kontekście ochrony ludzi i sprzętu. Dodatkowo, zgodność z normami IEC 60364 oraz różnymi krajowymi regulacjami w zakresie instalacji elektrycznych potwierdza, że TN-S jest preferowanym rozwiązaniem dla nowoczesnych aplikacji mechatronicznych.

Pytanie 20

Podczas szacowania czasu potrzebnego na realizację zadania, na początku uwzględnia się

A. normy czasochłonności wykonania zadania
B. ponadnormatywne przerwy w pracy
C. innowacyjność metod pracy
D. warunki przydzielania urlopu wypoczynkowego
Normy czasochłonności wykonania zadania są kluczowym elementem w procesie szacowania czasu realizacji zadań w projektach. W pierwszej kolejności uwzględnia się te normy, ponieważ zapewniają one obiektywne dane oparte na wcześniejszych doświadczeniach i analizach. Przykładowo, w branży produkcyjnej normy te mogą obejmować czas potrzebny na wykonanie konkretnej operacji, co pozwala na efektywne planowanie produkcji oraz alokację zasobów. W praktyce, korzystanie z norm czasochłonności umożliwia menedżerom projektów dokładniejsze prognozowanie terminów i lepsze zarządzanie ryzykiem. Warto również zaznaczyć, że normy te są zazwyczaj standaryzowane w danej branży, co pozwala na porównywanie wydajności między różnymi projektami i organizacjami, a tym samym na ciągłe doskonalenie procesów. Przykłady dobrych praktyk obejmują stosowanie norm czasochłonności w harmonogramowaniu zadań w metodzie Agile, gdzie szybkie i efektywne szacowanie czasu jest kluczowe dla sukcesu projektu.

Pytanie 21

Która z podanych kategorii regulatorów powinna być brana pod uwagę w projekcie systemu mechatronicznego o nieciągłej regulacji temperatury?

A. Różniczkujący
B. Całkujący
C. Dwustawny
D. Proporcjonalny
Odpowiedź "dwustawny" jest prawidłowa, ponieważ regulator dwustawny jest idealnym rozwiązaniem w systemach mechatronicznych, które wymagają nieciągłej regulacji temperatury. Tego typu regulator działa na zasadzie włączania i wyłączania elementu wykonawczego, takiego jak grzałka, w zależności od aktualnej temperatury w stosunku do zadanej wartości. Przykładowo, w systemach ogrzewania, gdy temperatura spada poniżej progu, regulator włącza grzałkę, a gdy temperatura osiąga wartość docelową, grzałka jest wyłączana. Taka strategia regulacji jest nie tylko energooszczędna, ale także prosta w implementacji. Zastosowanie regulatora dwustawnego jest zgodne z dobrymi praktykami w projektowaniu systemów automatyki, gdzie kluczowe jest zapewnienie stabilności i efektywności energetycznej. Standardy takie jak IEC 61131 w kontekście programowania sterowników PLC również podkreślają użycie regulatorów, które najlepiej pasują do charakterystyki danego procesu, co potwierdza wybór regulatora dwustawnego w tym przypadku.

Pytanie 22

Do zakresu przeglądu technicznego łopatkowych kompresorów powietrza nie należy

A. obserwacja poziomu hałasu lub drgań stopnia sprężającego
B. wymiana wkładki sprzęgła bezpośredniego napędu stopnia sprężającego w ustalonym czasie
C. pomiar poboru energii elektrycznej przez silnik
D. wymiana manometru w każdym przypadku
Wybór odpowiedzi dotyczącej każdorazowej wymiany manometru jako elementu, który nie wchodzi w zakres przeglądu technicznego łopatkowych kompresorów powietrza, jest uzasadniony. Manometr, jako instrument pomiarowy, jest poddawany kalibracji i wymianie w zależności od jego stanu, lecz nie jest to standardowa procedura przeglądowa. Przeglądy techniczne koncentrują się przede wszystkim na monitorowaniu parametrów operacyjnych, takich jak głośność, wibracje oraz pobór prądu przez silnik, co jest kluczowe dla oceny efektywności i bezpieczeństwa pracy urządzenia. W praktyce, regularne sprawdzanie stanu technicznego kompresora powinno obejmować analizę wyników pomiarów, co pozwala na wczesne wykrycie ewentualnych usterek. Standardy branżowe, takie jak normy ISO dotyczące zarządzania jakością, zalecają systematyczne przeglądy wszystkich istotnych komponentów maszyny, aby zapewnić ich długotrwałą funkcjonalność i minimalizować ryzyko awarii. W związku z tym, odpowiedź dotycząca manometru jest poprawna, gdyż jego wymiana nie jest regularnie uwzględniana w standardowych przeglądach technicznych.

Pytanie 23

W jakim trybie powinny być przedstawiane na schematach układów sterowania zestyki elementów stycznych?

A. Wzbudzonym
B. Niewzbudzonym
C. Przewodzenia
D. Nieprzewodzenia
Odpowiedź "Niewzbudzonym" jest prawidłowa, ponieważ na schematach układów sterowania stany zestyki elementów stykowych powinny być przedstawiane w stanie niewzbudzonym. Taki stan oznacza, że elementy układu nie są aktywowane przez żadne sygnały zewnętrzne, co jest kluczowe dla analizy i projektowania układów automatyki. Dzięki przedstawieniu zestyki w stanie niewzbudzonym, inżynierowie mogą łatwiej ocenić, jak układ będzie działał w warunkach początkowych przed jego uruchomieniem. Ta praktyka jest zgodna z normami branżowymi, które promują jasność i jednoznaczność w dokumentacji technicznej. W przypadku projektowania systemów automatyki przemysłowej, przedstawianie stanu niewzbudzonego umożliwia lepsze zrozumienie działania systemu i pozwala na skuteczniejsze identyfikowanie potencjalnych problemów na etapie projektowania. W praktyce, stosowanie takiej konwencji przyczynia się do zwiększenia efektywności pracy zespołów inżynieryjnych oraz minimalizuje ryzyko błędów w realizacji projektów.

Pytanie 24

Jaką czynność należy zrealizować w pierwszej kolejności przy wymianie filtru ssawnego w instalacji hydraulicznej?

A. Napełnić zbiornik czystym olejem oraz odpowietrzyć system
B. Usunąć zanieczyszczenia z wnętrza zbiornika zasilacza hydraulicznego
C. Spuścić olej do właściwego naczynia przez korek spustowy
D. Wyciągnąć wkład filtra oleju i powietrza
Spuszczenie oleju do odpowiedniego naczynia przez korek spustowy to naprawdę ważny krok, gdy wymieniasz filtr ssawny w urządzeniu hydraulicznym. Dzięki temu unikniesz zanieczyszczenia nowego filtra oleju, co jest kluczowe dla prawidłowego działania. W praktyce, warto pamiętać, żeby spuścić olej w kontrolowany sposób, bo rozlanie go może narobić sporo problemów. Poza tym, olej, który już był używany, może zawierać niebezpieczne substancje, więc trzeba być ostrożnym. Zanim zrobisz coś więcej, jak czyszczenie zbiornika czy montaż nowego filtra, upewnij się, że zbiornik nie jest brudny. Takie podejście do wymiany filtra to nie tylko dobra praktyka, ale także dbałość o dłuższą żywotność sprzętu i lepszą wydajność hydrauliki.

Pytanie 25

Dane techniczne zamieszczone w tabeli dotyczą

Rodzaj cieczy hydraulicznejolej mineralny
Zakres temperatury pracy-25°C do +80°C
Standardowa filtracja cieczy hydraulicznej90 μm
Zakres lepkości cieczy hydraulicznej16 mm²/s do 200 mm²/s
Poziom głośności65 dB (A)
Napięcie zasilania silnika230 V 50 Hz, 3x400 V 50 Hz
Napięcie zasilania rozdzielaczy24 V DC, 230 V 50 Hz
Pojemność nominalna zbiornika7 dm³20 dm³

A. sprężarki powietrza.
B. rozdzielacza pneumatycznego.
C. zasilacza hydraulicznego.
D. rozdzielacza hydraulicznego.
Zasilacz hydrauliczny jest kluczowym elementem systemów hydraulicznych, który odpowiada za dostarczanie odpowiedniego ciśnienia i przepływu cieczy roboczej, co jest niezbędne do prawidłowego działania maszyn hydraulicznych. W tabeli zamieszczono dane dotyczące cieczy hydraulicznej, co jest charakterystyczne dla zasilaczy hydraulicznych, które operują na oleju mineralnym. Przykładowo, w różnych aplikacjach przemysłowych - takich jak prasy hydrauliczne czy systemy podnoszenia - zasilacze hydrauliczne muszą spełniać określone normy jakościowe, w tym normy dotyczące filtrowania cieczy hydraulicznej, aby zapewnić ich niezawodność oraz wydajność. Zastosowanie standardów, takich jak ISO 4406, pozwala na monitorowanie stopnia zanieczyszczenia oleju, co jest kluczowe dla utrzymania optymalnej pracy zasilacza. Dodatkowo, zasilacze hydrauliczne powinny być zaprojektowane z uwzględnieniem zakresów temperatur pracy, co wpływa na ich efektywność i żywotność. Właściwe parametry techniczne, takie jak pojemność zbiornika, również odgrywają istotną rolę w zapewnieniu ciągłości operacji w zastosowaniach przemysłowych.

Pytanie 26

Wskaż wynik minimalizacji funkcji logicznej dla układu sterowania zapisanej w tablicy Karnaugha dokonanej dla wartości logicznych "1".

x \ yz00011110
01001
11001

A. f = x
B. f = z̅
C. f = xy̅z̅
D. f = y̅z
Gratulacje! Twoja odpowiedź jest poprawna. Wynik minimalizacji funkcji logicznej f = z̅ oznacza, że dla każdej kombinacji wartości zmiennych x i y, wyjście funkcji będzie równe 0, gdy z = 1, a 1, gdy z = 0. W kontekście zastosowania w układach cyfrowych, taka funkcja jest niezwykle użyteczna w układach sterowania, gdzie wymagana jest prostota i niezawodność. Minimalizacja funkcji logicznych przy użyciu tablic Karnaugha to technika, która pomaga w osiągnięciu efektywności w projektowaniu układów cyfrowych, zmniejszając liczbę wymaganych bramek logicznych. Poprawna postać funkcji ułatwia implementację w rzeczywistych układach, takich jak programowalne układy logiczne (FPGA) czy mikroprocesory, gdzie oszczędność na zasobach jest kluczowa. Zastosowanie tak zminimalizowanej funkcji umożliwia również szybsze i bardziej efektywne przetwarzanie sygnałów, co jest istotne w systemach czasu rzeczywistego.

Pytanie 27

Aby uzyskać możliwość regulacji prędkości posuwu napędu wałków, który jest zasilany silnikiem bocznikowym prądu stałego, należy zastosować

A. falownik.
B. sterowany prostownik tyrystorowy.
C. prostownik diodowy.
D. cyklokonwerter.
Sterowany prostownik tyrystorowy jest kluczowym elementem w regulacji prędkości posuwu silników bocznikowych prądu stałego. Umożliwia on precyzyjne zarządzanie napięciem i prądem dostarczanym do silnika, co prowadzi do efektywnej regulacji jego prędkości. W praktyce, zastosowanie tyrystorów pozwala na uzyskanie szerokiego zakresu regulacji prędkości, co jest niezwykle istotne w zastosowaniach przemysłowych, gdzie precyzyjne dostosowanie parametrów pracy maszyny może wpływać na jakość produkcji oraz efektywność energetyczną. Na przykład, w systemach transportu materiałów, gdzie wymagane są różne prędkości zapotrzebowania, możliwość szybkiej regulacji silnika za pomocą sterowanego prostownika tyrystorowego stanowi standard branżowy, zapewniając jednocześnie optymalne zużycie energii i minimalizację strat. Warto również zaznaczyć, że takie rozwiązania są zgodne z normami dotyczącymi efektywności energetycznej, co czyni je nie tylko praktycznymi, ale i ekologicznymi.

Pytanie 28

Które z wymienionych komend spowoduje przeniesienie programu z PLC do pamięci komputera?

A. Upload
B. Download
C. Write
D. Erase Memory
Odpowiedź "Upload" jest prawidłowa, ponieważ termin ten odnosi się do procesu przesyłania danych z urządzenia, takiego jak sterownik PLC, do systemu komputerowego. W kontekście programowania i automatyzacji, uploadowanie programu z PLC do komputera jest kluczowym krokiem w procesie zarządzania i monitorowania systemów automatyki. Dzięki temu inżynierowie mogą łatwo zaktualizować, analizować i archiwizować programy sterujące. Praktycznym zastosowaniem uploadu jest możliwość przechowywania kopii zapasowych programów, co jest zgodne z najlepszymi praktykami w zakresie zarządzania danymi, zapewniając bezpieczeństwo i łatwy dostęp do wersji roboczych. Warto zauważyć, że w procesach przemysłowych uploadowanie danych do komputera umożliwia także diagnostykę i optymalizację istniejących programów oraz szybsze wprowadzanie zmian, co znacznie zwiększa efektywność operacyjną. Standardy, takie jak IEC 61131-3, podkreślają znaczenie łatwego dostępu do programów i ich modyfikacji, co czyni upload kluczowym procesem w pracy z PLC.

Pytanie 29

W specyfikacji silnika można znaleźć oznaczenie S2 40. Pracując z układem wykorzystującym ten silnik, trzeba mieć na uwadze, aby

A. wilgotność otoczenia w trakcie pracy nie była wyższa niż 40%
B. czas działania nie przekraczał 40 min., a czas postoju był do momentu, gdy silnik się schłodzi.
C. temperatura otoczenia w trakcie pracy nie była wyższa niż 40°C
D. silnik pracował z obciążeniem nie mniejszym niż 40% mocy znamionowej
Odpowiedź wskazująca na czas pracy silnika wynoszący maksymalnie 40 minut oraz wymagany czas postoju do momentu ostygnięcia jest zgodna z zasadami eksploatacji silników oznaczonych jako S2. W tego rodzaju silnikach, okres pracy krótkotrwałej, jak i czas odpoczynku, są kluczowe dla ich efektywności oraz żywotności. Oznaczenie S2 40 informuje, że silnik może działać przez 40 minut z pełnym obciążeniem, po czym konieczne jest, aby miał czas na schłodzenie. Przykładem zastosowania tych zasad jest praca silnika w aplikacjach, gdzie wymagana jest jego cykliczna praca, jak w przenośnych narzędziach elektrycznych. Zgodnie z normami IEC 60034, stosowanie się do tych zasad pozwala na uniknięcie przegrzewania, co zwiększa niezawodność urządzenia oraz zmniejsza ryzyko awarii. Warto również zauważyć, że odpowiednie szacowanie cyklów pracy i odpoczynku stanowi element dobrej praktyki inżynieryjnej, co przekłada się na oszczędności w kosztach utrzymania i wydłużenie czasu eksploatacji. Dbanie o te wartości jest nie tylko wymagane, ale i korzystne z perspektywy użytkownika.

Pytanie 30

W przypadku, gdy w obwodzie wymagany jest kondensator o pojemności rzędu kilku tysięcy µF, należy wybrać kondensator

A. elektrolityczny
B. ceramiczny
C. powietrzny
D. foliowy
Kondensator elektrolityczny to komponent, który wyróżnia się wysoką pojemnością, co czyni go idealnym rozwiązaniem w układach wymagających wartości rzędu kilku tysięcy µF. W odróżnieniu od innych typów kondensatorów, takich jak kondensatory ceramiczne czy foliowe, kondensatory elektrolityczne są zdolne do przechowywania dużych ładunków elektrycznych w stosunkowo niewielkiej objętości. Dzięki temu są szeroko stosowane w zasilaczach impulsowych, filtrach dławikowych oraz w aplikacjach związanych z stabilizacją napięcia. Warto również zwrócić uwagę na ich niską wartość oporu szeregowego, co sprawia, że minimalizują straty energii w układzie, co jest kluczowe przy dużych prądach. Zgodność z normami, takimi jak IEC 60384, gwarantuje, że kondensatory elektrolityczne spełniają odpowiednie wymagania jakościowe i bezpieczeństwa w zastosowaniach przemysłowych.

Pytanie 31

W sprężarce pneumatycznej nie ma możliwości regulacji ciśnienia powietrza. Jakie jest najbardziej prawdopodobne źródło awarii?

A. Uszkodzenie uszczelki w zaworze zwrotnym łączącym zbiornik z rurą tłoczącą.
B. Przerwanie obwodu elektrycznego, który zasila silnik sprężarki.
C. Zabrudzenie zaworu zasysającego powietrze
D. Uszkodzenie membrany w reduktorze sprężarki.
Uszkodzenie membrany w reduktorze sprężarki jest jedną z najczęstszych przyczyn problemów z regulowaniem ciśnienia powietrza. Membrana pełni istotną rolę w kontrolowaniu przepływu powietrza oraz jego ciśnienia w systemie pneumatycznym. W przypadku jej uszkodzenia może dojść do nieprawidłowego działania reduktora, co prowadzi do braku możliwości regulacji ciśnienia. W praktyce, jeśli membrana jest nieszczelna lub pęknięta, powietrze może uciekać, a użytkownik nie będzie w stanie osiągnąć wymaganych parametrów roboczych. W branży pneumatycznej standardem jest regularne sprawdzanie oraz konserwacja elementów reduktora, aby zapobiec takim awariom. Warto także pamiętać, że nieprawidłowe ciśnienie może prowadzić do uszkodzeń innych komponentów systemu, takich jak narzędzia pneumatyczne, co może generować dodatkowe koszty eksploatacyjne.

Pytanie 32

Jakie czynności należy wykonać tuż przed przesłaniem programu sterującego z komputera do pamięci sterownika PLC?

A. Przełączyć sterownik w tryb RUN
B. Odłączyć kabel zasilający
C. Odłączyć kabel komunikacyjny
D. Ustawić sterownik w trybie STOP
Ustawienie sterownika PLC w trybie STOP przed przesłaniem programu sterowniczego jest kluczowym krokiem, który należy podjąć dla zapewnienia bezpieczeństwa operacji. Tryb STOP pozwala na wgranie nowego programu bez ryzyka, że bieżące operacje będą kontynuowane, co mogłoby prowadzić do nieprzewidzianych sytuacji, jak np. uszkodzenie sprzętu czy naruszenie zasad bezpieczeństwa. W praktyce, w trybie STOP użytkownik ma pełną kontrolę nad procesem programowania, co jest zgodne z najlepszymi praktykami w dziedzinie automatyki przemysłowej, gdzie bezpieczeństwo i integralność systemów są priorytetem. Zgodnie z normami, takimi jak IEC 61131-3, przed każdą modyfikacją programu, zaleca się, aby systemy były w trybie, który nie pozwala na ich aktywne działanie, co znacznie redukuje ryzyko błędów. Po pomyślnym przesłaniu programu, można przełączyć sterownik z powrotem w tryb RUN, co pozwala na uruchomienie nowych funkcji programu.

Pytanie 33

Jakie parametry mierzy prądnica tachometryczna?

A. prędkości obrotowych
B. naprężeń liniowych
C. odkształceń
D. wydłużeń
Prądnica tachometryczna jest kluczowym urządzeniem w systemach automatyki przemysłowej, a jej główną funkcją jest pomiar prędkości obrotowych silników i innych elementów mechanicznych. Działa na zasadzie zjawiska elektromagnetycznego, gdzie obracająca się wirnik generuje pole magnetyczne, które przekształca się w sygnał elektryczny proporcjonalny do prędkości obrotowej. Taki sygnał można następnie używać do monitorowania parametrów pracy maszyn, co pozwala na optymalizację ich wydajności i zapobieganie awariom. Przykładowo, w systemach napędowych, monitorowanie prędkości obrotowej jest kluczowe dla synchronizacji ruchu i zapewnienia bezpieczeństwa. Normy takie jak ISO 9001 często wymagają dokładnych pomiarów parametrów pracy urządzeń, co czyni prądnice tachometryczne niezastąpionym narzędziem w wielu gałęziach przemysłu. Zrozumienie zasad działania prądnic tachometrycznych jest niezbędne dla inżynierów zajmujących się automatyką i kontrolą procesów.

Pytanie 34

Kontrola instalacji hydraulicznej obejmuje

A. ocenę stanu przewodów
B. wymianę filtra oleju w systemie
C. pomiar natężenia prądu zasilającego pompę
D. zmianę rozdzielacza
Odpowiedź "sprawdzenie stanu przewodów" jest poprawna, ponieważ w ramach oględzin instalacji hydraulicznej kluczowe jest ocenienie stanu technicznego systemu. Oględziny powinny obejmować kontrolę szczelności przewodów, co jest niezwykle ważne dla zapobiegania wyciekom oraz zapewnienia efektywności całego układu. Ponadto, sprawdzając przewody, należy ocenić ich stan izolacji, co ma na celu uniknięcie potencjalnych uszkodzeń mechanicznych, które mogą być spowodowane różnymi czynnikami, takimi jak korozja czy działanie wysokiego ciśnienia. Dobre praktyki branżowe zalecają regularne przeprowadzanie takich oględzin, aby spełniały one normy bezpieczeństwa i efektywności, a także przedłużały żywotność systemu hydraulicznego. Przykładem zastosowania tej wiedzy może być rutynowa inspekcja w zakładach przemysłowych, gdzie niewłaściwy stan przewodów może prowadzić do poważnych awarii oraz wysokich kosztów naprawy.

Pytanie 35

Dwuwejściowa bramka NOR, w której wejścia zostały połączone, jest tożsame z bramką

A. NOT
B. NAND
C. OR
D. AND
Bramka logiczna NOR, będąca połączeniem bramki NOT i OR, działa w sposób, który może być zrozumiany przez analizę jej tabeli prawdy. Gdy oba wejścia są fałszywe, bramka NOR zwraca wynik prawdziwy. W momencie, gdy jedno lub oba wejścia są prawdziwe, wynik wynosi fałsz. Kiedy połączymy dwa wejścia bramki NOR w sposób, w jaki zdefiniowano w pytaniu, uzyskujemy sytuację, w której wynik będzie zawsze fałszywy, chyba że oba wejścia będą fałszywe. W takim przypadku bramka ta działa jak bramka NOT, ponieważ odwraca logiczny stan jednego sygnału. Przykładowo, w zastosowaniach cyfrowych, bramki NOR są często używane w projektowaniu układów, które wymagają negacji sygnałów. W projektowaniu systemów cyfrowych, zastosowanie bramek NOR w układach oszczędzających energię oraz w implementacji pamięci FLASH jest standardem. Takie podejście do projektowania układów logicznych opiera się na praktycznych aspektach działania komponentów oraz ich właściwościach w kontekście minimalizacji zużycia energii oraz przestrzeni na chipie.

Pytanie 36

Modulacja PWM (Pulse-Width Modulation), wykorzystywana w elektrycznych impulsowych systemach sterowania i regulacji, polega na modyfikacji

A. fazy sygnału.
B. szerokości sygnału.
C. częstotliwości sygnału.
D. amplitudy sygnału.
Modulacja PWM, czyli modulacja szerokości impulsu, jest techniką, która pozwala na kontrolowanie średniej mocy dostarczanej do obciążenia poprzez zmianę szerokości impulsów w trakcie cyklu pracy. W praktyce oznacza to, że stosując PWM, możemy efektywnie regulować jasność diod LED, prędkość silników elektrycznych, a także temperaturę w układach grzewczych. Technika ta jest szeroko stosowana w systemach automatyki oraz w elektronice użytkowej, ponieważ pozwala na oszczędność energii oraz lepszą kontrolę nad działaniem urządzeń. Zrozumienie, jak działa modulacja PWM, jest kluczowe dla inżynierów elektryków, którzy projektują nowoczesne urządzenia. W standardach branżowych, takich jak IEC 61131, modulacja PWM jest opisane jako jedna z metod sterowania, co podkreśla jej znaczenie w automatyce przemysłowej.

Pytanie 37

Jakie pomiary są przeprowadzane w celu oceny jakości połączeń elektrycznych?

A. Rezystancji połączeń
B. Mocy biernej generowanej na połączeniach
C. Natężenia prądów przepływających przez połączenia
D. Mocy czynnej generowanej na połączeniach
Pomiar rezystancji w połączeniach elektrycznych to naprawdę ważna sprawa. Jak mamy niską rezystancję, to prąd płynie dobrze i nie mamy strat energii. W praktyce, można to łatwo zmierzyć używając omomierza czy miernika rezystancji. Jest to mega istotne, szczególnie w budynkach, bo wysoka rezystancja może prowadzić do przegrzewania się połączeń, a to może skończyć się pożarem. W elektryce zaleca się, żeby takie pomiary robić podczas odbioru technicznego, a potem regularnie w trakcie użytkowania. Na przykład, w energetyce są normy IEEE 43, które mówią o pomiarach izolacji i podkreślają, jak ważne jest sprawdzanie rezystancji, żeby systemy elektroenergetyczne były niezawodne. Dzięki tym pomiarom można na czas zauważyć problemy, jak korozja styków czy luźne połączenia, co może wydłużyć życie instalacji i zwiększyć bezpieczeństwo.

Pytanie 38

Którą funkcję logiczną realizuje program napisany w języku listy instrukcji?

LD%I0.1
AND%I0.2
STN%Q0.1

A. NOR
B. NAND
C. OR
D. XOR
Program napisany w języku listy instrukcji realizuje funkcję NAND, co oznacza, że najpierw łączy dwa sygnały wejściowe za pomocą bramki AND, a następnie neguje wynik tej operacji. Funkcja NAND jest jedną z podstawowych funkcji logicznych, która jest niezwykle użyteczna w projektowaniu systemów cyfrowych. Przykładem zastosowania funkcji NAND jest implementacja układów pamięci oraz różnych rodzajów flip-flopów, które są kluczowe w architekturze komputerów. W praktyce, zarówno w projektowaniu sprzętu, jak i w programowaniu, znajomość funkcji logicznych, w tym NAND, jest niezbędna do efektywnego tworzenia algorytmów i struktur danych. Użycie NAND umożliwia implementację wszystkich innych funkcji logicznych, co czyni ją uniwersalnym narzędziem w inżynierii cyfrowej. Warto również zauważyć, że w kontekście standardów branżowych, takich jak IEEE, projektanci układów cyfrowych często korzystają z funkcji NAND, aby uprościć skomplikowane logiki, co jest zgodne z najlepszymi praktykami w tej dziedzinie.

Pytanie 39

W systemie regulacji dwustanowej zauważono zbyt częste wahania wokół wartości docelowej. W celu redukcji częstotliwości tych wahań, konieczne jest w regulatorze cyfrowym

A. zwiększyć wartość sygnału regulacyjnego
B. zmniejszyć zakres histerezy
C. zwiększyć zakres histerezy
D. zmniejszyć wartość sygnału zadawania
Zwiększenie szerokości histerezy w regulatorze dwustanowym to naprawdę ważna rzecz, która pomaga ograniczyć częstotliwość oscylacji wokół wartości zadanej. Histereza to jakby strefa, w której regulator nie reaguje na drobne zmiany. To jest dość istotne, zwłaszcza w systemach, gdzie mogą występować małe fluktuacje. Na przykład, w regulacji temperatury pieców przemysłowych to oznacza, że nie będziemy mieć niepotrzebnych reakcji na niewielkie wahania temperatury. Dzięki temu piec nie włącza się i wyłącza ciągle, co jest super dla stabilizacji systemu i poprawy efektywności energetycznej. Z tego, co wiem, według dobrych praktyk inżynieryjnych, większa histereza daje większy komfort i stabilność w działaniu, co idealnie wpisuje się w zasady projektowania regulatorów oraz standardy automatyki przemysłowej.

Pytanie 40

Jakie musi być ciśnienie powietrza, aby siłownik o przekroju cylindra 312,5 mm2 i efektywności 80% wytworzył siłę nacisku równą 100 N?

A. 5 bar
B. 4 bar
C. 6 bar
D. 3 bar
Wybór niewłaściwego ciśnienia powietrza może wynikać z nieporozumienia dotyczącego relacji między siłą, polem przekroju cylindra i sprawnością siłownika. Na przykład, wybór 3 bar i 5 bar może sugerować, że siła nacisku jest odwrótnie proporcjonalna do ciśnienia, co jest błędnym założeniem. W rzeczywistości, przy stałym polu przekroju, wyższe ciśnienie prowadzi do większej siły nacisku. Wartości 6 bar i 3 bar również nie są zgodne z wymaganiami, ponieważ nie uwzględniają efektywności siłownika. W praktyce, brak uwzględnienia sprawności (η = 0,8) w obliczeniach może prowadzić do niepoprawnych wyników, co jest częstym błędem w analizach technicznych. Prawidłowe obliczenia powinny zawsze brać pod uwagę efektywność siłownika, ponieważ wpływa ona na rzeczywistą siłę, jaką można uzyskać. W kontekście siłowników pneumatycznych, niewłaściwe ciśnienie może prowadzić do nieefektywności i zwiększonego zużycia energii, co jest sprzeczne z zasadami optymalizacji procesów przemysłowych. Aby uniknąć takich błędów, ważne jest zrozumienie podstawowych zasad działania siłowników oraz stosowanie wzorów i standardów branżowych w codziennej praktyce inżynierskiej.