Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 8 maja 2025 12:27
  • Data zakończenia: 8 maja 2025 12:53

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Aby zabezpieczyć pracowników przed podwyższonym promieniowaniem fal elektromagnetycznych, wykorzystuje się

A. kaski ochronne
B. fartuchy ochronne
C. ekrany z uziemieniem
D. chodniki izolacyjne
Zastosowanie fartuchów roboczych, chodników izolacyjnych oraz kasków ochronnych w kontekście ochrony przed falami elektromagnetycznymi jest niewłaściwe, ponieważ te środki nie są zaprojektowane w celu redukcji promieniowania elektromagnetycznego. Fartuchy robocze mają na celu ochronę przed substancjami chemicznymi, ciepłem lub mechanicznymi uszkodzeniami, lecz nie oferują skutecznej ochrony przed falami elektromagnetycznymi. Chodniki izolacyjne, choć mogą być używane do ochrony przed porażeniem elektrycznym, nie działają jako bariera dla promieniowania elektromagnetycznego i nie eliminują jego szkodliwego wpływu. Kaski ochronne z kolei są przystosowane do ochrony głowy przed uderzeniami i nie mają właściwości związanych z osłoną przed promieniowaniem elektromagnetycznym. Typowym błędem myślowym jest zakładanie, że wszystkie środki ochrony osobistej mogą być stosowane w każdym kontekście, co prowadzi do błędnych wniosków. W rzeczywistości, aby skutecznie chronić pracowników przed promieniowaniem elektromagnetycznym, konieczne jest zastosowanie specjalistycznych rozwiązań, takich jak ekrany z uziemieniem, które są dostosowane do specyficznych zagrożeń. Właściwe zrozumienie i zastosowanie odpowiednich środków ochrony jest kluczowe dla zapewnienia bezpieczeństwa w miejscu pracy.

Pytanie 3

Na podstawie przeprowadzonych pomiarów pasma przenoszenia wzmacniacza ustalono dolną częstotliwość graniczną fd = 0,1 Hz oraz górną częstotliwość graniczną fg = 150 Hz. Jaki to typ wzmacniacza?

A. szerokopasmowy
B. selektywny
C. dla górnej części pasma akustycznego
D. dla dolnej części pasma akustycznego
Odpowiedź "dla dolnej części pasma akustycznego" jest prawidłowa, ponieważ wzmacniacz z dolną częstotliwością graniczną fd = 0,1 Hz i górną częstotliwością graniczną fg = 150 Hz jest przystosowany do przetwarzania sygnałów w niskich zakresach częstotliwości. Wzmacniacze tego typu są istotne w zastosowaniach, gdzie wymagane jest wzmocnienie sygnałów o niskiej częstotliwości, takich jak sygnały z mikrofonów, instrumentów muzycznych lub w systemach akustycznych. Przykładowo, w systemach audio wzmacniacze te mogą być używane do obsługi niskich tonów, co jest kluczowe w produkcjach muzycznych oraz w instalacjach dźwiękowych, gdzie reprodukcja basów jest istotna. Wzmacniacze te kategorii są projektowane w sposób umożliwiający efektywne wzmocnienie sygnałów w dolnym zakresie pasma akustycznego, co jest zgodne z normami branżowymi dotyczącymi jakości dźwięku. Dobre praktyki w projektowaniu takich wzmacniaczy obejmują minimalizację zniekształceń i szumów, co przekłada się na lepszą jakość dźwięku oraz większe zadowolenie użytkowników.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Aby połączyć kartę sieciową komputera PC z routerem, należy użyć kabla z wtykami

A. BNC
B. RJ-45
C. DIN
D. JACK
Odpowiedź RJ-45 jest poprawna, ponieważ wtyki RJ-45 są standardowo używane do łączenia komputerów z routerami w sieciach lokalnych (LAN). RJ-45 to złącze, które obsługuje kable Ethernet, co umożliwia przesyłanie danych z dużymi prędkościami, typowo od 10 Mbps do 10 Gbps, w zależności od zastosowanego standardu (np. 10BASE-T, 100BASE-TX, 1000BASE-T). Wtyki te mają osiem styków, co pozwala na przesyłanie danych w formie zbalansowanej, co zwiększa odporność na zakłócenia elektromagnetyczne. Użycie kabla z wtykami RJ-45 jest zgodne z międzynarodowymi standardami, takimi jak ISO/IEC 11801. W praktyce, RJ-45 jest najczęściej spotykanym złączem w domowych i biurowych sieciach komputerowych. Przykładem zastosowania jest podłączenie laptopa do routera, aby uzyskać stabilne połączenie internetowe. Warto również wspomnieć o różnych kategoriach kabli Ethernet, takich jak Cat5e, Cat6, które różnią się prędkościami transferu oraz zakresem częstotliwości, co również wpływa na ich zastosowanie w różnych sieciach.

Pytanie 6

Jakie urządzenie pozwala na podłączenie anteny o impedancji falowej 300 Ω do odbiornika, który ma gniazdo antenowe o impedancji 75 Ω?

A. konwerter
B. symetryzator
C. zwrotnica
D. rozdzielacz
Symetryzator to urządzenie, które umożliwia konwersję impedancji między różnymi poziomami, co w przypadku podłączenia anteny o impedancji falowej 300 Ω do odbiornika z gniazdem antenowym 75 Ω jest kluczowe. Dzięki zastosowaniu symetryzatora, można zminimalizować straty sygnału, które mogłyby wystąpić w wyniku niedopasowania impedancji. W praktyce, symetryzatory są często stosowane w instalacjach antenowych, gdzie różne elementy systemu pracują na różnych poziomach impedancji. Na przykład, w systemach telewizyjnych lub radiowych, symetryzatory są wykorzystywane do podłączenia anteny do odbiornika, aby zapewnić optymalne parametry pracy i jak najlepszą jakość odbioru. Dobrą praktyką jest również stosowanie symetryzatorów w przypadku anten szerokopasmowych, co pozwala na efektywne wykorzystanie zakresu częstotliwości. Warto zaznaczyć, że symetryzatory mogą również pełnić funkcję dzielnika sygnału, co zwiększa ich wszechstronność.

Pytanie 7

Przy wykonywaniu otworów w płytkach PCB konieczne jest użycie

A. rękawiczek z gumy
B. systemu odciągu dymu
C. matu przeciwpoślizgowych
D. okularów ochronnych
Okulary ochronne to naprawdę ważna rzecz, gdy wiercimy w płytkach drukowanych. Chronią nasze oczy przed pyłem i opiłkami, które mogą się uwolnić podczas wiercenia. Na przykład, materiał FR-4, często używany w płytkach PCB, przy wierceniu produkuje małe cząsteczki, które mogą podrażnić oczy, a w skrajnych przypadkach nawet je uszkodzić. Z tego, co pamiętam z zajęć BHP, zawsze trzeba nosić odpowiednie środki ochrony w pracy, zwłaszcza w laboratoriach elektroniki. Wiercenie tam to chleb powszedni, więc każda osoba zajmująca się tym powinna wiedzieć, jak używać okularów ochronnych. Dobrze jest też wybrać okulary z filtrami UV czy te odporne na uderzenia, bo zwiększa to bezpieczeństwo i komfort pracy. To naprawdę ważne, aby dostosować wyposażenie do pracy, a okulary są tu kluczowe.

Pytanie 8

Podaj właściwą sekwencję działań podczas instalacji tranzystora z radiatorem na płytce PCB?

A. Przylutować tranzystor, przykręcić radiator do tranzystora, zamocować radiator na PCB
B. Przykręcić radiator do tranzystora, zamocować radiator na PCB, przylutować tranzystor
C. Zamocować radiator na PCB, przylutować tranzystor, przykręcić radiator do tranzystora
D. Przykręcić radiator do tranzystora, przylutować tranzystor, zamocować radiator na PCB
Błędne odpowiedzi często wynikają z nieporozumienia dotyczącego kolejności montażu, co może prowadzić do problemów z funkcjonowaniem urządzenia. Na przykład, przylutowanie tranzystora przed przymocowaniem radiatora może przyczynić się do nieodpowiedniego przylegania radiatora do tranzystora, co z kolei może skutkować niewystarczającym odprowadzeniem ciepła. Takie podejście może doprowadzić do przegrzania tranzystora, co w dłuższej perspektywie prowadzi do jego uszkodzenia. Przykręcenie radiatora do PCB przed lutowaniem tranzystora również nie jest wskazane, ponieważ stabilność komponentu podczas lutowania jest kluczowa. W przypadku, gdy tranzystor nie jest należycie przymocowany, może on ulec przesunięciu, co zwiększa ryzyko zwarcia na płytce. Dobrym przykładem jest montaż w zasilaczach, gdzie niewłaściwe odprowadzenie ciepła do radiatora może prowadzić do awarii całego modułu. Najlepiej jest stosować się do ustalonych norm i praktyk inżynieryjnych, które zalecają najpierw zapewnić odpowiednie połączenie elementów chłodzących, a następnie przejść do lutowania. Zrozumienie kolejności działań oraz ich wpływu na jakość konstrukcji jest kluczowe dla sukcesu w inżynierii elektronicznej.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Instrukcja CLR P1.7 wskazuje na

A. wczytanie komórki znajdującej się pod adresem 1.7
B. konfigurację linii 7 w porcie P1
C. wymazanie komórki o adresie 1.7
D. zerowanie linii 7 w porcie P1
Rozkaz CLR P1.7 oznacza zerowanie linii 7 w porcie P1, co jest kluczowe w kontekście programowania mikrokontrolerów, szczególnie w architekturze MCS-51. W systemach mikroprocesorowych porty I/O, takie jak P1, są używane do komunikacji z zewnętrznymi urządzeniami. Komenda CLR, czyli 'Clear', jest stosowana do ustawienia konkretnego bitu w rejestrze portu na stan niski (0). Zerowanie linii 7 w porcie P1 może mieć istotne znaczenie w aplikacjach, gdzie ta linia steruje zewnętrznym urządzeniem, takim jak dioda LED, przekaźnik czy inny element elektroniczny. Przykładowo, aby wyłączyć diodę LED podłączoną do linii 7, należy wykonać tę komendę, co rezultuje w uzyskaniu pożądanego efektu w aplikacji. Zrozumienie działania portów I/O oraz umiejętność manipulowania stanami bitów w rejestrach jest fundamentem w inżynierii oprogramowania dla systemów wbudowanych, co jest zgodne z zasadami najlepszych praktyk w branży.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

W urządzeniu elektronicznym narażonym na drgania może dojść do

A. utraty danych w pamięci wewnętrznej
B. spadku efektywności zasilacza
C. zmniejszenia pojemności kondensatorów
D. uszkodzenia obwodów drukowanych
Uszkodzenie obwodów drukowanych w urządzeniach elektronicznych narażonych na wibracje jest rzeczywiście problemem technicznym, który może prowadzić do poważnych awarii sprzętowych. Wibracje mechaniczne mogą wpływać na integralność fizyczną ścieżek prowadzących sygnały w obwodach drukowanych, co w konsekwencji prowadzi do przerwania połączeń lub zwarć. Przykładem mogą być urządzenia stosowane w przemyśle motoryzacyjnym, gdzie komponenty elektroniczne są wystawione na stałe drgania podczas jazdy. Standardy takie jak IPC-A-600 dotyczące akceptacji obwodów drukowanych podkreślają znaczenie projektowania z myślą o takich warunkach, oferując wytyczne dotyczące materiałów i technik montażu, aby zminimalizować ryzyko uszkodzeń. Wysokiej jakości projektowanie obwodów, stosowanie odpowiednich technologii lutowania oraz użycie materiałów odpornych na wibracje są kluczowe w zapewnieniu trwałości urządzeń. Dodatkowo, testy w warunkach ekstremalnych, takie jak testy wibracyjne zgodne z normą MIL-STD-810, mogą pomóc w ocenie odporności urządzeń na drgania, zapewniając ich niezawodność w trudnych warunkach operacyjnych.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Objawem zużycia głowicy laserowej w odtwarzaczu CD będzie

A. wzrost prądu lasera
B. obniżenie prądu lasera
C. wzrost obrotów silnika
D. spadek obrotów silnika
Zwiększenie prądu lasera w odtwarzaczu CD jest symptomem zużycia głowicy laserowej, ponieważ wraz z upływem czasu i eksploatacją, soczewki oraz fotodetektory w głowicy mogą tracić swoje optymalne właściwości. W rezultacie, aby odczytać dane z płyty CD, elektronika odtwarzacza musi zwiększyć prąd dostarczany do lasera, co pozwala na uzyskanie wystarczającej intensywności światła potrzebnej do odczytu. Taki proces może prowadzić do dalszego przyspieszenia zużycia głowicy laserowej, ponieważ wyższy prąd może powodować przegrzewanie i uszkodzenia elementów. W praktyce, kiedy zauważysz, że odtwarzacz CD potrzebuje zwiększonego prądu do poprawnego działania, może to być znak, że wymagana jest konserwacja lub wymiana głowicy. Utrzymywanie urządzeń w dobrym stanie poprzez regularne czyszczenie i unikanie nadmiernego używania może wydłużyć ich żywotność. W branży elektroniki użytkowej, normy jakościowe często zalecają monitorowanie parametrów pracy urządzeń, aby wykrywać takie anomalie jak wzrost prądu lasera.

Pytanie 15

W firmie produkującej radiatory z aluminiowych kształtowników pracuje pięć osób. Każda z nich wytwarza codziennie 30 radiatorów. Na wykonanie 10 radiatorów potrzebny jest jeden kształtownik aluminiowy. Ile wynosi dzienny koszt nabycia materiałów do produkcji, jeśli jeden kształtownik kosztuje 50 zł?

A. 2 500 zł
B. 500 zł
C. 750 zł
D. 150 zł
Aby obliczyć dzienny koszt zakupu materiałów do produkcji radiatorów, należy najpierw ustalić, ile radiatorów produkują wszyscy pracownicy razem. Każdy z pięciu pracowników wykonuje 30 radiatorów dziennie, co daje 5 * 30 = 150 radiatorów. Ponieważ jeden kształtownik aluminiowy wystarcza na wykonanie 10 radiatorów, potrzebujemy 150 / 10 = 15 kształtowników. Koszt jednego kształtownika wynosi 50 zł, zatem całkowity koszt zakupu materiałów wyniesie 15 * 50 zł = 750 zł. W praktyce, znajomość kosztów materiałowych jest kluczowa dla efektywnego zarządzania produkcją w zakładach przemysłowych. Monitorowanie tych kosztów pozwala na optymalizację procesów i zwiększenie rentowności firmy. Zastosowanie odpowiednich standardów dotyczących zarządzania materiałami, takich jak Just-In-Time, może również przyczynić się do redukcji nadmiarów materiałowych oraz kosztów magazynowania.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Aby uzyskać najlepszą precyzję pomiaru napięcia wynoszącego około 110 mV, należy ustawić woltomierz na zakres

A. 300 mV
B. 100 mV
C. 1000 mV
D. 150 mV
Ustawienie zakresu woltomierza na 100 mV może wydawać się logiczne w kontekście pomiaru napięcia wynoszącego 110 mV, jednak w rzeczywistości prowadzi to do znaczących ograniczeń. Przede wszystkim, gdy napięcie przekracza maksymalny zakres pomiarowy, woltomierz może nie tylko nie zarejestrować tego napięcia, ale także uszkodzić swój układ. Z kolei wybór zakresu 300 mV czy 1000 mV może również wprowadzać błędy związane z rozdzielczością. W przypadku zakresu 300 mV, chociaż teoretycznie zmieści się on w pomiarze, nie jest optymalny, ponieważ zmniejsza precyzję na mniejszych wartościach. Z kolei zakres 1000 mV jest zdecydowanie za wysoki, co skutkuje niską rozdzielczością i utratą możliwości dokładnego pomiaru. Taki błąd w zakresie pomiarowym może wynikać z nieprzemyślanej analizy sytuacji, gdzie technik pomiarowy nie uwzględniał optymalnych praktyk dotyczących wyboru zakresu woltomierza. Dobre praktyki w pomiarach elektrycznych sugerują, że zakres powinien być dobierany w taki sposób, aby jego wartość była bliska mierzonym napięciom, co pozwala na maksymalne wykorzystanie rozdzielczości urządzenia, a tym samym minimalizację błędów pomiarowych. Z tego powodu istotne jest, by technicy i inżynierowie stosowali się do tych zasad, aby uniknąć błędów w pomiarach oraz ich negatywnych konsekwencji.

Pytanie 19

Brak uziemienia na nadgarstku pracownika zajmującego się serwisowaniem sprzętu elektronicznego może prowadzić do

A. wpływu pola magnetycznego na organizm ludzki
B. wyładowania elektrostatycznego groźnego dla układów typu MOS
C. porażenia prądem elektrycznym
D. powstania prądów wirowych, wywołanych przez zmienne pole magnetyczne
Brak uziemionej opaski na przegubie pracownika serwisu sprzętu elektronicznego może prowadzić do wyładowania elektrostatycznego, które jest szczególnie groźne dla układów typu MOS (Metal-Oxide-Semiconductor). W przypadku pracy z wrażliwymi komponentami elektronicznymi, statyczne ładunki zgromadzone na ciele pracownika mogą zostać przekazane do układów, co może prowadzić do ich uszkodzenia lub trwałej awarii. Uziemiona opaska działa jako środek ochronny, ładując się do ziemi, co minimalizuje ryzyko zgromadzenia ładunków elektrostatycznych. W praktyce, w laboratoriach i strefach serwisowych, stosowanie odzieży antystatycznej oraz odpowiednich mat uziemiających jest standardem, który powinien być przestrzegany. Zapewnia to nie tylko bezpieczeństwo sprzętu, ale również pozwala na zachowanie ciągłości pracy. Warto także zwrócić uwagę na normy i regulacje, takie jak IPC-A-610, które podkreślają znaczenie ochrony przed elektrostatyką w kontekście produkcji elektroniki.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Podwyższenie dobroci Q filtru RLC w selektywnym wzmacniaczu doprowadzi do

A. spadku częstotliwości środkowej fo
B. wzrostu współczynnika prostokątności
C. wzrostu częstotliwości środkowej fo
D. spadku współczynnika prostokątności
Zwiększenie dobroci Q filtru RLC we wzmacniaczu selektywnym prowadzi do zwiększenia współczynnika prostokątności, co ma kluczowe znaczenie dla charakterystyki częstotliwościowej systemu. Wartość Q określa, jak 'ostro' filtr reaguje na częstotliwości bliskie częstotliwości środkowej f0. Wyższa wartość Q oznacza węższy pasmo przenoszenia, co skutkuje lepszą selektywnością filtru. W praktyce może to być użyteczne w zastosowaniach, gdzie istotne jest precyzyjne wyłapywanie sygnałów o określonych częstotliwościach, na przykład w telekomunikacji czy audiofilskim sprzęcie audio. Wartości Q są często dostosowywane do potrzeb konkretnego zastosowania, aby osiągnąć optymalną jakość sygnału. W branży wykorzystuje się standardy, takie jak IEEE 802.11, które uwzględniają parametry filtrów w kontekście transmisji danych. Zrozumienie tej zasady jest kluczowe w projektowaniu układów elektronicznych, gdzie precyzyjność parametrów filtrów ma fundamentalne znaczenie dla jakości sygnału.

Pytanie 22

Korzystając z tabeli wskaż parametry pracy, przy których kamera nie może być uruchomiona?

Parametr pracy kamery IPWartość
Zasilanie12 VDC ±10%
Wilgotność5÷75%
Temperatura−25÷50°C

A. Temperatura 30°C, wilgotność 45%.
B. Zasilanie 13 V, wilgotność 65%.
C. Temperatura -10°C, wilgotność 40%.
D. Zasilanie 10 V, temperatura 45°C.
W przypadku temperatury 30°C, wilgotności 45%, zasilania 13 V oraz wilgotności 65%, odpowiedzi te mogą wydawać się odpowiednie, ale nie są zgodne z rzeczywistością. W kontekście pierwszej opcji, temperatura 30°C i wilgotność 45% mieszczą się w akceptowalnych zakresach dla większości kamer. Drugie zasilanie 13 V mieści się w standardowym zakresie zasilania (10,8 V - 13,2 V), więc te parametry nie wykluczają uruchomienia kamery. Warto zauważyć, że wilgotność 65% również jest w granicach tolerancji, co oznacza, że ta odpowiedź nie może być uznana za nieprawidłową. W przypadku temperatury -10°C, również jest ona w dopuszczalnym zakresie pracy, ponieważ kamery mogą funkcjonować w temperaturach od -25°C do 50°C. Tylko zasilanie 10 V jest poniżej minimalnych wymagań. Zaniedbanie tych kryteriów może prowadzić do uszkodzenia kamery lub jej nieprawidłowej pracy. Typowe błędy myślowe obejmują ignorowanie specyfikacji technicznych producenta oraz mylenie akceptowalnych wartości z wartościami optymalnymi. Niezrozumienie tych zasad może prowadzić do wniosków, które są nie tylko błędne, ale także mogą negatywnie wpłynąć na praktykę użytkowania sprzętu elektronicznego.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Jakie cechy posiada wzmacniacz kanałowy w złożonych systemach antenowych?

A. Wzmacnia sygnał kanałów wizyjnych o wyższych częstotliwościach
B. Zwiększa sygnał kanałów wizyjnych o niższych częstotliwościach
C. Wzmacnia selektywnie sygnały jednego lub kilku kanałów telewizyjnych
D. Wzmacnia sygnał wszystkich kanałów o takiej samej wartości
Wzmacniacz kanałowy jest kluczowym elementem rozbudowanych instalacji antenowych, który pełni istotną rolę w poprawie jakości sygnału telewizyjnego. Jego fundamentalną właściwością jest selektywne wzmacnianie sygnałów jednego lub kilku określonych kanałów telewizyjnych, co pozwala na eliminację zakłóceń i poprawę odbioru. W praktyce, zastosowanie wzmacniacza kanałowego pozwala na osiągnięcie lepszej jakości obrazu i dźwięku, zwłaszcza w warunkach, gdzie sygnał jest osłabiony przez czynniki zewnętrzne, takie jak odległość od nadajnika czy przeszkody terenowe. Wzmacniacze te są projektowane zgodnie z określonymi standardami, aby zapewnić optymalną wydajność i minimalizację strat sygnału. Na przykład w instalacjach kablowych lub w systemach zbiorowego odbioru telewizyjnego, wzmacniacze kanałowe są często wykorzystywane do selektywnego wzmacniania sygnałów z różnych źródeł, co umożliwia odbiór szerokiego zakresu kanałów bez zakłóceń. Dzięki temu użytkownicy mogą cieszyć się lepszym doświadczeniem telewizyjnym, a instalacje mają większą niezawodność i efektywność.

Pytanie 25

Akumulator o pojemności 5 Ah zapewnia podtrzymanie zasilania jednej kamery przez czas około 10 minut. W instalacji monitoringu należy wykonać układ podtrzymania zasilania awaryjnego dziesięciu kamer przez 10 minut. Która z zapisanych w tabeli propozycji doboru akumulatorów zapewnia najniższe koszty wykonania układu?

Pojemność akumulatora
Ah
Cena jednostkowa
Ilość
szt.
A.55010
B.7657
C.602451
D.301402

A. A.
B. D.
C. B.
D. C.
Odpowiedź C jest poprawna, ponieważ zapewnia odpowiednią pojemność akumulatorów w minimalnym koszcie. W przypadku zasilania dziesięciu kamer przez 10 minut, kluczowe jest obliczenie całkowitego zapotrzebowania na energię. Jeśli jedna kamera wymaga akumulatora o pojemności 5 Ah na 10 minut, to dla dziesięciu kamer potrzebujemy co najmniej 50 Ah. Opcja C oferuje akumulator o pojemności 60 Ah, co nie tylko spełnia wymogi, ale również pozostawia pewien zapas, co jest zalecane w praktyce. Wybór akumulatorów powinien uwzględniać nie tylko koszt, ale również ich żywotność i efektywność. Zgodnie z dobrą praktyką, należy dobierać akumulatory z pewnym naddatkiem pojemności, aby uniknąć zbyt głębokiego rozładowania, co wydłuża ich żywotność. Wybór C, przy koszcie 245 zł, jest więc najbardziej optymalny, zwłaszcza w dłuższym czasie eksploatacji systemu monitoringu.

Pytanie 26

W układzie elektronicznym uległa uszkodzeniu dioda prostownicza o następujących parametrach: Urm=200 V, lfav=1 A. Dobierz z tabeli parametry diody, którą należy zastosować, aby naprawić układ.

Maksymalne
napięcie wsteczne.
URM [V]
Maksymalny
średni prąd przewodzenia.
IFAV [A]
A.10001
B.1000,8
C.1003
D.3000,5

A. A.
B. B.
C. C.
D. D.
Odpowiedź A jest prawidłowa, ponieważ dioda prostownicza, którą wybrano, ma parametry URM=1000 V i IFAV=1 A, co przewyższa wymagania uszkodzonej diody o parametrach URM=200 V i IFAV=1 A. Wybór diody o wyższych parametrach jest zgodny z najlepszymi praktykami w dziedzinie elektroniki, gdzie zawsze należy stosować komponenty z odpowiednim marginesem bezpieczeństwa. W przypadku diod prostowniczych, ważne jest, aby napięcie wsteczne (URM) było wyższe niż maksymalne napięcie, które może wystąpić w obwodzie, aby uniknąć uszkodzenia diody. Ponadto, prąd przewodzenia (IFAV) powinien być co najmniej równy prądowi, który przepływa przez diodę w normalnych warunkach pracy. Wybierając komponenty, warto także zwrócić uwagę na parametry dynamiczne diody, takie jak czas przełączania oraz współczynnik temperatury, co ma znaczenie w aplikacjach, gdzie dioda pracuje w zmiennych warunkach. Selekcja odpowiednich komponentów na podstawie ich specyfikacji jest kluczowa dla niezawodności i trwałości układów elektronicznych.

Pytanie 27

Zwiększenie histerezy w regulatorze dwustawnym w systemie regulacji

A. spowoduje powiększenie amplitudy zmian sygnału kontrolowanego
B. spowoduje zmniejszenie amplitudy zmian sygnału kontrolowanego
C. nie wpłynie na kształt sygnału
D. spowoduje przesunięcie wykresu w górę o wartość pętli histerezy
Zwiększenie pętli histerezy w regulatorze dwustawowym powoduje zwiększenie amplitudy zmian sygnału sterowanego, co ma istotne znaczenie w kontekście stabilności i reakcji systemu regulacji. Histereza to różnica pomiędzy progami włączania i wyłączania, co w praktyce oznacza, że zwiększenie wartości histerezy prowadzi do szerszego zakresu zmian sygnału wyjściowego. Przykładem może być termostat w systemie ogrzewania, gdzie zwiększenie histerezy skutkuje większymi różnicami temperatury przed włączeniem i wyłączeniem grzejnika, co pozwala na uniknięcie częstego włączania i wyłączania urządzenia, zmniejszając zużycie energii oraz wydłużając żywotność sprzętu. Zgodnie z zasadami inżynierii systemów, odpowiednio dobrana histereza umożliwia lepszą kontrolę nad dynamiką układu, co jest kluczowe w zastosowaniach przemysłowych oraz automatyzacji. Dobrze zdefiniowana pętla histerezy jest również istotna w kontekście minimalizacji drgań i oscylacji, co przekłada się na stabilność całego procesu.

Pytanie 28

Krótkoterminowe przerwy w dostawie napięcia do systemu CCTV (na przykład w trakcie silnych burz) mogą skutkować

A. zmianą parametrów działania kamer
B. obniżeniem efektywności rejestratora
C. przegrzaniem rejestratora
D. zawieszeniem pracy systemu
Zrozumienie wpływu krótkotrwałych zanikania napięcia na systemy CCTV wymaga analizy różnych aspektów działania tych urządzeń. Zmniejszenie wydajności rejestratora, jak zasugerowano, jest mylnym podejściem, ponieważ rejestrator nie działa w trybie ograniczonej wydajności w momencie zaniku napięcia. Zazwyczaj takie urządzenia albo działają, albo przestają funkcjonować, a ich wydajność nie jest regulowana przez krótkotrwałe wahania zasilania. Przegrzanie rejestratora również nie jest bezpośrednio związane z zanikiem napięcia; to zjawisko może wystąpić w przypadku długotrwałej pracy bez odpowiedniej wentylacji lub w wyniku zasilania urządzenia nieodpowiednią mocą. Co więcej, zmiana parametrów pracy kamer nie jest efektem zaniku napięcia, ponieważ kamery również przestają działać w przypadku braku zasilania. Należy zrozumieć, że systemy CCTV są projektowane z myślą o stabilności zasilania i w przypadku jego braku mogą nie tylko przestać rejestrować obraz, ale również prowadzić do utraty danych. Ostatecznie, kluczowe w tej kwestii jest zabezpieczenie systemów przed takimi awariami poprzez odpowiednie źródła zasilania awaryjnego, co jest zgodne z najlepszymi praktykami w branży monitoringu wizyjnego.

Pytanie 29

Na którym zakresie pomiarowym należy wykonywać precyzyjny pomiar napięcia po stronie wtórnej transformatora, którego parametry podano w tabeli?

Napięcie pierwotne230 V
Napięcie wtórne12 V
Prąd uzwojenia wtórnego2 A
Moc25 VA

A. 200 V AC
B. 20 V AC
C. 20 V DC
D. 200 V DC
Wybór odpowiedzi, która wskazuje na 20 V DC lub 200 V AC, nie jest właściwy z kilku powodów. Po pierwsze, napięcie wtórne transformatora wynosi 12 V, co oznacza, że pomiary powinny odbywać się w zakresie, który jest najbliższy tej wartości. Wybierając 20 V DC, pomijamy kluczowy aspekt, jakim jest charakterystyka napięcia. Transformator pracuje na prądzie przemiennym (AC), co sprawia, że pomiar napięcia stałego (DC) jest całkowicie nieodpowiedni. Dodatkowo, wybór 200 V AC przekracza nominalne napięcie wtórne, co może prowadzić do nieprecyzyjnych odczytów i w rezultacie do błędnych interpretacji wyników. Taka praktyka może zagrażać bezpieczeństwu użytkownika oraz sprzętu, ponieważ przyrządy pomiarowe mogą nie być przystosowane do takich wartości. Odpowiednie dobieranie zakresów pomiarowych jest kluczowe, gdyż nie tylko wpływa na dokładność wyników, ale również na bezpieczeństwo pracy z urządzeniami elektrycznymi. W inżynierii elektrycznej jakościowe pomiary są podstawą wszelkich analiz i zapewnienia sprawności systemu zasilania. Należy zatem unikać sytuacji, w których standardowe procedury pomiarowe są ignorowane, ponieważ prowadzi to do niepotrzebnych komplikacji oraz potencjalnych uszkodzeń sprzętu. Zrozumienie tych zasad jest kluczowe dla każdego inżyniera oraz technika zajmującego się elektryką.

Pytanie 30

Którego koloru nie powinien mieć przewód fazowy w instalacji zasilającej sprzęt elektroniczny?

A. Brązowego
B. Czarnego
C. Niebieskiego
D. Szarego
Przewód fazowy w instalacji zasilającej urządzenia elektroniczne powinien być oznaczony kolorem innym niż niebieski, ponieważ ten kolor jest zarezerwowany dla przewodu neutralnego zgodnie z normą PN-IEC 60446. W praktyce oznacza to, że przewód fazowy, który może przenosić napięcie, powinien być czarny, brązowy lub szary, co pozwala na jednoznaczną identyfikację przewodów w instalacji oraz na uniknięcie pomyłek podczas prac serwisowych i montażowych. Przykładowo, podczas wykonywania instalacji elektrycznej w budynku mieszkalnym, technicy muszą upewnić się, że stosują właściwe kolory przewodów, aby zapewnić bezpieczeństwo użytkowników oraz zgodność z przepisami. Ponadto, odpowiednie oznaczenie przewodów jest kluczowe w przypadku diagnostyki i konserwacji instalacji, co może zapobiec wypadkom związanym z niewłaściwym podłączeniem przewodów. Wiedza na temat kolorów przewodów jest niezbędna dla elektryków, instalatorów i każdej osoby zajmującej się pracami związanymi z instalacjami elektrycznymi.

Pytanie 31

Przy regulacji głośności w urządzeniach akustycznych charakterystyczne trzaski mogą świadczyć o uszkodzeniu

A. potencjometru
B. wzmacniacza mocy
C. zasilacza
D. głośnika
Potencjometr to kluczowy element urządzeń audio, odpowiadający za regulację głośności. Trzaski, które mogą występować podczas dostosowywania siły głosu, najczęściej są oznaką zużycia lub uszkodzenia potencjometru. W wyniku zużycia mechanizmu lub osadzenia się zanieczyszczeń w jego wnętrzu, może dojść do zakłóceń w przewodzeniu sygnału audio. Zastosowanie wysokiej jakości potencjometrów, takich jak te zgodne ze standardami przemysłowymi, może znacznie zredukować ryzyko wystąpienia takich problemów. W praktyce, regularne czyszczenie potencjometrów oraz ich wymiana po osiągnięciu określonego progu eksploatacyjnego, np. po kilku latach intensywnego użytkowania, jest zalecane, aby zapewnić optymalną jakość dźwięku i minimalizować ryzyko zakłóceń. Utrzymanie sprzętu audio w dobrym stanie technicznym jest kluczowe dla profesjonalnych użytkowników, takich jak muzycy, technicy dźwięku oraz inżynierowie akustyczni, którzy muszą zapewnić najwyższą jakość dźwięku w każdych warunkach.

Pytanie 32

Wskaż, którego urządzenia dotyczą dane przedstawione we fragmencie dokumentacji technicznej.

StandardyIEEE 802.11b/g/n
Technika modulacjiCCK, OFDM
Częstotliwość pracy [GHz]2.4 - 2.4835
Moc wyjściowa [dBm]do 20
Chipset radiowyAtheros
Max. szybkość transmisji11n: 150Mbps
11g: 54Mbps
11b: 11Mbps
Czułość130M: -68dBm@10% PER
108M: -68dBm@10% PER
54M: -68dBm@10% PER
11M: -85dBm@8% PER
6M: -88dBm@10% PER
1M: -90dBm@8% PER
Tryby pracyAP router
WISP router + AP
Serwer DHCPTak
DDNSTak
Wbudowane zabezpieczeniaWPA/WPA2: 64/128/152 BIT WEP;
TKIP/AES

Tablica dostępu / odmowy dostępu
definiowana
po adresach MAC kart klienckich,
Filtrowanie dostępu do Internetu
poprzez filtry adresów IP, MAC
oraz poszczególnych portów protokołu
TCP/IP
Typ antenydipolowa (dipol ćwierćfalowy) o zysku
3dBi,
możliwe jest dołączenie anteny
zewnętrznej
Złącze antenySMA R/P
Porty LANIEEE802.3 (10BASE-T), IEEE802.3u
(100BASE-TX)
Ilość portów LAN1 port WAN (RJ-45)
4 porty LAN 10/100 Mb (RJ-45, UTP/STP)
Kontrolki LEDPower, System, WLAN, WAN, Act/Link (4
x Ethernet)
Temperatura pracy0 °C do 50°C
Wymiary [mm]192 x 130 x 33
Napięcie zasilania230 V AC/9 V DC

A. Kamery IP
B. Routera Wi-Fi
C. Rejestratora NVR
D. Karty Wi-Fi
Wybór odpowiedzi "Routera Wi-Fi" jest naprawdę dobrym wyborem, bo w tym fragmencie dokumentacji widać wyraźnie, że pasuje do cech routerów. Routery Wi-Fi mają super istotną rolę w tym, jak działa sieć, łączą różne urządzenia i dają nam dostęp do internetu, łącząc się z naszym dostawcą. Zresztą, w dokumentacji wymienione są różne tryby pracy, jak AP router czy WISP router + AP, co pokazuje, że routery mogą działać w różnych sytuacjach w sieci. A to, że mają funkcje jak serwer DHCP, który przydziela adresy IP automatycznie, to już standard w nowoczesnych sieciach. Zabezpieczenia sieci, takie jak WPA/WPA2, WEP czy TKIP/AES, są niezwykle ważne, bo chronią nasze dane przesyłane przez sieć, a to bezpieczeństwo staje się coraz bardziej istotne w naszych domach i biurach. Generalnie, routery Wi-Fi pozwalają na korzystanie z internetu na wielu urządzeniach naraz, co jest bardzo wygodne, a przy tym dbają o dobrą ochronę danych.

Pytanie 33

Podczas serwisowania telewizora, technik zauważył brak sygnału wideo, iskry oraz typowy zapach ozonu. Który z wymienionych komponentów uległ uszkodzeniu?

A. Wzmacniacz mocy
B. Zintegrowana głowica w.cz.
C. Powielacz wysokiego napięcia
D. Układ odchylania w pionie
Głowica zintegrowana w.cz. odpowiada za odbiór sygnału telewizyjnego, a jej uszkodzenie zwykle manifestuje się brakiem sygnału lub trudnościami w jego dekodowaniu, co nie prowadziłoby do iskrzenia ani zapachu ozonu. Układ odchylania pionowego ma na celu pionowe skanowanie obrazu, a uszkodzenie tego układu najczęściej skutkuje zniekształceniem obrazu lub jego całkowitym brakiem, ale nie generuje charakterystycznych symptomów związanych z wysokim napięciem. Wzmacniacz mocy odpowiada za wzmacnianie sygnału audio i wideo, a jego awaria objawia się najczęściej brakiem dźwięku lub obrazu, jednak nie wiąże się z występowaniem iskrzenia czy zapachu ozonu. Typowe błędy myślowe prowadzące do błędnych wniosków często wynikają z braku zrozumienia, jak poszczególne elementy odbiornika telewizyjnego współdziałają ze sobą. Wiedza o tym, jak funkcjonuje powielacz wysokiego napięcia oraz jego rola w systemie, jest kluczowa dla właściwej diagnostyki oraz skutecznych napraw, co podkreśla znaczenie edukacji i ciągłego doskonalenia w tej dziedzinie.

Pytanie 34

Jakie substancje stosuje się do wytrawiania płytek PCB?

A. nadsiarczan sodowy
B. pasta lutownicza
C. alkohol izopropylowy
D. topnik
Nadsiarczan sodowy jest substancją chemiczną szeroko stosowaną w procesie wytrawiania płytek PCB (Printed Circuit Board). Jest to silny środek utleniający, który pozwala na efektywne usuwanie miedzi z powierzchni laminatu PCB, pozostawiając jedynie pożądane ścieżki przewodzące. Proces wytrawiania polega na umieszczaniu płytki w roztworze nadsiarczanu sodowego, co prowadzi do reakcji chemicznych, które skutkują usunięciem miedzi. W praktyce, nadsiarczan sodowy jest preferowany ze względu na swoją skuteczność oraz względnie niski koszt, co czyni go popularnym wyborem w przemyśle elektronicznym. Warto zaznaczyć, że podczas pracy z tym związkiem należy przestrzegać odpowiednich norm bezpieczeństwa, takich jak stosowanie rękawic ochronnych i okularów, aby zminimalizować ryzyko kontaktu z substancją. To podejście jest zgodne z najlepszymi praktykami branżowymi, które rekomendują stosowanie odpowiednich materiałów i technologii do uzyskania wysokiej jakości obwodów drukowanych.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Jakie jest przybliżone wartości rezystancji trzech rezystorów połączonych równolegle, jeżeli rezystancja każdego z nich wynosi 30 kΩ?

A. 15 kΩ
B. 10 kΩ
C. 60 kΩ
D. 90 kΩ
Twoje błędne odpowiedzi pokazują, że rozumiesz temat, ale coś poszło nie tak przy interpretacji zasad dotyczących połączeń równoległych. Rezystory, które są połączone równolegle, nie sumują się jak te w połączeniu szeregowy, co może prowadzić do mylnych wniosków. Przykładowo odpowiedzi takie jak 15 kΩ, 60 kΩ czy 90 kΩ sugerują, że mogłeś myśleć, że te wartości dodajemy bezpośrednio, co jest dość typowym błędem. Przy równoległym połączeniu rezystorów całkowita rezystancja się zmniejsza, bo każdy nowy rezystor daje dodatkową drogę dla prądu. Natomiast w połączeniu szeregowym całkowita rezystancja rośnie. Zrozumienie tych podstawowych różnic między połączeniami jest naprawdę ważne dla analizy obwodów elektrycznych. W praktyce, złe obliczenia rezystancji mogą spowodować, że urządzenia będą działać nieprawidłowo, na przykład w zasilaczach, gdzie złe wartości rezystancji mogą prowadzić do przegrzewania się komponentów. Dobrze jest wrócić do zasad obliczania rezystancji w połączeniach równoległych, żeby unikać podobnych pomyłek w przyszłości.

Pytanie 38

Jaką funkcję pełni czasza w antenie satelitarnej?

A. umożliwienie odbioru konkretnych częstotliwości sygnału
B. umożliwienie zamontowania konwertera pod właściwym kątem
C. odbicie fal i skierowanie ich do konwertera
D. skierowanie konwertera w stronę wybranego satelity
Czasza w antenie satelitarnej odgrywa kluczową rolę w procesie odbioru sygnałów satelitarnych. Jej głównym zadaniem jest odbicie fal elektromagnetycznych, które są następnie skierowane do konwertera. Dzięki temu, antena może efektywnie zbierać sygnały o różnych częstotliwościach, co ma szczególne znaczenie w kontekście różnorodności usług satelitarnych, takich jak transmisja telewizyjna, internet satelitarny czy telekomunikacja. Odbicie fal jest możliwe dzięki odpowiedniej geometrii czaszy, która jest najczęściej paraboliczna. Ta geometria pozwala na skupienie fal na konwerterze, co zwiększa efektywność odbioru. Przykładem zastosowania tej zasady są instalacje antenowe w telewizji satelitarnej, gdzie precyzyjne ustawienie czaszy pozwala na odbiór sygnałów z satelitów, które znajdują się na różnych orbitach geostacjonarnych. Zgodnie z najlepszymi praktykami, odpowiednie ustawienie kąta nachylenia oraz azymutu czaszy jest kluczowe dla uzyskania optymalnej jakości sygnału, co podkreśla znaczenie wiedzy na temat zasady działania czaszy w antenach satelitarnych.

Pytanie 39

Podstawowym zadaniem zastosowania optoizolacji pomiędzy obwodami elektronicznymi jest

A. galwaniczne oddzielenie obwodów elektronicznych
B. dopasowanie impedancji obwodów elektronicznych
C. dopasowanie poziomów napięć między obwodami elektronicznymi
D. zwiększenie wydolności wyjściowej obwodu elektronicznego
Optoizolacja w układach elektronicznych nie służy dopasowaniu impedancyjnemu, które jest ważne, gdy mówimy o transferze energii w systemach RF czy audio. Dopasowanie impedancji jest kluczowe, żeby zminimalizować straty energii i refleksje sygnału, ale to nie cel optoizolacji. Jak ktoś mówi, że optoizolacja ma na celu dopasowanie napięć między układami, to też nie do końca tak jest. Owszem, napięcia mogą się różnić w różnych układach, ale optoizolacja nie ma za zadanie ich harmonizować, tylko pozwala na niezależne działanie tych układów, bez ryzyka uszkodzenia z powodu różnic w napięciach. Poza tym, zwiększenie obciążalności wyjściowej układu też nie jest celem optoizolacji, bo optoizolator nie zwiększa tej maksymalnej wartości prądu. Mylenie tych pojęć może prowadzić do słabego projektowania układów, gdzie optoizolacja nie działa jak powinna, a to może zwiększać ryzyko awarii. Dlatego dobrze jest zrozumieć, jak działa optoizolacja, żeby skutecznie projektować układy i zapewnić ich niezawodność.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.