Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 16 maja 2025 11:39
  • Data zakończenia: 16 maja 2025 11:49

Egzamin niezdany

Wynik: 2/40 punktów (5,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

W układzie sterowania automatyki przemysłowej został uszkodzony tyrystor BT138-600. Na podstawie parametrów przedstawionych w tabeli dobierz tyrystor zastępczy.

TypUDRMIT(RMS)ITSMIGTUGT
VAAmAV
BT136-500500425351,5
BT138-6006001290351,5
BT138-8008001290351,5
BT138-500F5001290351,5
BTA16-800B80016160501,5

A. BT138-800
B. BT138-500F
C. BT136-500
D. BTA16-800B
Wybór tyrystora zastępczego w układzie automatyki przemysłowej wymaga dokładnej analizy parametrów technicznych, dlatego odpowiedzi takie jak BT138-500F, BT136-500, czy BTA16-800B mogą być mylące. Na przykład, BT138-500F nie tylko ma niższe napięcie UDRM, wynoszące zaledwie 500 V, ale również nie spełnia wymagań dotyczących maksymalnego prądu, co mogłoby prowadzić do uszkodzenia elementu w przypadku przeciążenia. Podobnie, BT136-500 to tyrystor, który jest przystosowany do innych zastosowań i nie posiada tych samych parametrów jak BT138-600, co sprawia, że jego użycie w tym kontekście jest niewłaściwe. Wybór BTA16-800B również wiąże się z problemem, ponieważ jest to tyrystor zaprojektowany do innych aplikacji, co może prowadzić do niewłaściwej charakterystyki pracy w danym układzie. Należy pamiętać, że nieodpowiedni dobór zamienników może skutkować nieprzewidywalnymi skutkami, takimi jak przegrzewanie, uszkodzenie elementów i w konsekwencji całego systemu. W inżynierii elektroniki kluczowe jest przestrzeganie norm oraz dobrych praktyk, jak stosowanie komponentów o parametrach równych lub wyższych w porównaniu do oryginalnych, aby zapewnić ciągłość działania oraz bezpieczeństwo operacyjne.

Pytanie 2

Czas potrzebny na naprawę magnetowidu to 0,5 godziny. Koszt materiałów wynosi 80 zł, a stawka godzinowa technika to 40 zł. Jaki będzie całkowity koszt naprawy, uwzględniając 22% podatek VAT?

A. 100,00 zł
B. 122,00 zł
C. 146,40 zł
D. 117,60 zł
Jak rozwiązywałeś to zadanie, to mogłeś się pogubić w liczeniu całkowitego kosztu usługi. Trzeba zrozumieć, że trzeba zsumować koszty materiałów, pensję pracownika i VAT. Jak coś pominiesz, na przykład wynagrodzenie serwisanta to może być problem. Możliwe, że niektóre odpowiedzi skupiły się na złych wartościach, co mogło prowadzić do błędnych wyników. Niekiedy też można pomylić kwoty, co oczywiście wpływa na zadania z dodawaniem czy obliczeniami procentowymi. W praktyce najważniejsze, żeby dokładnie policzyć wszystkie elementy kosztów. Może warto też korzystać z gotowych szablonów kosztorysów, które pomogą lepiej wszystko zaaranżować. Poza tym, czasami błędne odpowiedzi mogą wynikać z niepełnego ogarnięcia tematu VAT czy innego zrozumienia wartości procentowych. Warto wszystko dokładnie analizować, bo to naprawdę pozwala lepiej ogarniać finanse w każdym serwisie.

Pytanie 3

Na zdjęciu przedstawiono

Ilustracja do pytania
A. tensometry
B. diody
C. termistory
D. tyrystory
Termistory to elementy elektroniczne, które zmieniają swoją rezystancję w odpowiedzi na zmiany temperatury. Wyróżniamy dwa główne typy termistorów: NTC (Negative Temperature Coefficient) i PTC (Positive Temperature Coefficient). W przypadku NTC, rezystancja maleje wraz ze wzrostem temperatury, co sprawia, że są one często wykorzystywane w aplikacjach pomiarowych, takich jak termometry elektroniczne, gdzie umożliwiają precyzyjne monitorowanie temperatury. Z kolei PTC zwiększa swoją rezystancję przy wzroście temperatury, co czyni je skutecznymi zabezpieczeniami przed przegrzaniem w urządzeniach elektrycznych. Przykłady zastosowań obejmują kontrolę temperatury w urządzeniach HVAC oraz w układach zasilania, gdzie termistory służą do ochrony komponentów przed uszkodzeniem. Zrozumienie działania termistorów i ich właściwości jest kluczowe w projektowaniu systemów elektronicznych, spełniającym wymagania dotyczące dokładności pomiarów temperatury oraz bezpieczeństwa urządzeń.

Pytanie 4

Jakie urządzenie służy do ochrony elektroniki przed skutkami wyładowań atmosferycznych?

A. ochronnik przepięciowy
B. wyłącznik różnicowoprądowy
C. ochronnik termiczny
D. wyłącznik nadprądowy
Odpowiedzi, które nie zostały wybrane, wskazują na brak zrozumienia funkcji i zastosowania poszczególnych urządzeń zabezpieczających. Wyłącznik nadprądowy, chociaż istotny w ochronie instalacji, działa głównie w przypadku przeciążeń i zwarć, zabezpieczając przed przepływem prądu większym od nominalnego, co nie jest związane z wyładowaniami atmosferycznymi. Z kolei wyłącznik różnicowoprądowy ma na celu ochronę przed porażeniem prądem elektrycznym poprzez wykrywanie różnicy prądów między przewodami roboczymi, co również nie odnosi się do ochrony przed przepięciami. Ochronnik termiczny, jak sama nazwa wskazuje, jest przeznaczony do zabezpieczania przed przegrzaniem i nie ma zastosowania w ochronie przed wyładowaniami atmosferycznymi. Typowym błędem myślowym jest mylenie różnych funkcji zabezpieczeń i ich zastosowań. Kluczowe jest zrozumienie, że każdy z tych elementów ma swoją specyfikę i nie należy ich stosować zamiennie. Aby skutecznie zabezpieczać instalacje i urządzenia przed wyładowaniami atmosferycznymi, niezbędne jest stosowanie odpowiednich rozwiązań, takich jak ochronniki przepięciowe, które są projektowane do tego celu. Wiedza o różnorodnych urządzeniach zabezpieczających jest istotna dla zapewnienia bezpieczeństwa zarówno w domach, jak i w obiektach przemysłowych.

Pytanie 5

Aby prawidłowo wykonać zakładanie wtyku RJ45, należy użyć

A. nóż monterskiego
B. zaciskarki do złączy
C. narzędzia LSA typu KRONE
D. płaskiego śrubokręta
Zaciskarka złącz to narzędzie kluczowe w procesie instalacji wtyków RJ45, które służy do trwałego połączenia przewodów z wtykiem. Jej konstrukcja umożliwia precyzyjne wciśnięcie metalowych pinów w wtyku w przewody, co zapewnia stabilne i niezawodne połączenie. W przypadku użycia wtyków RJ45, które są powszechnie stosowane w sieciach Ethernet, fundamentalne jest, aby przewody były odpowiednio ułożone w standardzie T568A lub T568B przed ich zaciskiem. Właściwie użyta zaciskarka zapewnia nie tylko poprawne połączenie, ale także minimalizuje ryzyko zakłóceń sygnału, co jest kluczowe dla utrzymania wysokiej wydajności sieci. Dodatkowo, stosowanie zaciskarki z funkcją automatycznego cięcia może przyspieszyć proces instalacji oraz poprawić jakość końcowego połączenia. Znajomość i umiejętność posługiwania się tym narzędziem są niezbędne w pracy technika sieciowego oraz elektrotechnika, co czyni je istotnym elementem szkolenia w tej dziedzinie.

Pytanie 6

Na jakim zakresie woltomierza należy dokonać pomiaru napięcia AC o wartości skutecznej 90 V?

A. 500 V DC
B. 100 V DC
C. 750 V AC
D. 200 V AC
Wybór niewłaściwego zakresu pomiarowego może prowadzić do niepoprawnych wyników i uszkodzenia sprzętu. Odpowiedzi takie jak 100 V DC i 500 V DC są całkowicie nieodpowiednie do pomiaru napięcia przemiennego, ponieważ są one przeznaczone do pomiarów napięcia stałego. Napięcie stałe i przemienne mają różne właściwości, a użycie woltomierza ustawionego na DC do pomiarów AC może skutkować brakiem odczytu lub, co gorsza, uszkodzeniem urządzenia. Zakres 750 V AC, mimo że technicznie jest wystarczający, jest zbyt wysoki w porównaniu do oczekiwanego wyniku, co może prowadzić do obniżonej dokładności pomiaru. W pomiarach elektronicznych, optymalny dobór zakresu jest kluczowy dla uzyskania wiarygodnych wyników. Idealnym podejściem jest wybieranie zakresu, który jest blisko mierzonych wartości, ale nie mniejszy niż 20% większy od maksymalnego przewidywanego napięcia. To podejście gwarantuje zarówno bezpieczeństwo, jak i precyzję pomiaru, co jest zgodne z najlepszymi praktykami w branży. Prawidłowy wybór zakresu pomiarowego jest zatem fundamentem skutecznych pomiarów w inżynierii elektrycznej.

Pytanie 7

W urządzeniu elektronicznym narażonym na drgania może dojść do

A. spadku efektywności zasilacza
B. uszkodzenia obwodów drukowanych
C. zmniejszenia pojemności kondensatorów
D. utraty danych w pamięci wewnętrznej
Podczas analizy problemu narażenia urządzeń elektronicznych na wibracje, należy zrozumieć, że nie wszystkie efekty są jednakowo istotne. Zmniejszenie wydajności zasilacza jest powiązane z różnymi czynnikami, takimi jak obciążenie czy jakość komponentów, ale nie jest bezpośrednio związane z wibracjami. Choć wibracje mogą powodować awarie zasilaczy, głównie poprzez uszkodzenie elementów pasywnych, to nie są one głównym czynnikiem wpływającym na ich wydajność. Utrata pojemności kondensatorów może wystąpić w wyniku długotrwałego narażenia na wysokie temperatury lub niewłaściwych warunków użytkowania, ale sama w sobie nie jest bezpośrednio spowodowana wibracjami. Kondensatory mogą tracić pojemność z różnych powodów, w tym z powodu starzenia się materiałów dielektrycznych, a niekoniecznie wskutek drgań. Utrata danych pamięci wewnętrznej, chociaż poważnym problemem, nie jest typowym skutkiem wibracji, lecz raczej błędów w zasilaniu lub uszkodzeń fizycznych nośnika. Ponadto, w przypadku nowoczesnych urządzeń, wiele z nich wyposażonych jest w mechanizmy zabezpieczające przed utratą danych, co dodatkowo minimalizuje ryzyko. Zrozumienie tych aspektów i precyzyjne określenie przyczyn problemów technicznych jest kluczowe w inżynierii elektronicznej, co pozwala na podejmowanie właściwych działań prewencyjnych i diagnostycznych.

Pytanie 8

W jaki sposób należy zrealizować połączenie uszkodzonego kabla koncentrycznego, który prowadzi do odbiornika sygnału telewizyjnego, aby miejsce złączenia wprowadzało minimalne tłumienie?

A. Skręcając żyłę sygnałową i ekran w miejscu uszkodzenia
B. Lutując żyłę sygnałową i ekran w miejscu uszkodzenia
C. Łącząc żyłę sygnałową i ekran przy użyciu tulejek zaciskowych
D. Łącząc żyłę sygnałową i ekran przy pomocy złącza typu F
Lutowanie rdzenia i oplotu w miejscu przerwania, choć może wydawać się praktycznym rozwiązaniem, nie jest zalecane w przypadku kabli koncentrycznych. Lutowanie może wprowadzić dodatkowe tłumienie sygnału z powodu zmian w impedancji, które mogą wystąpić na skutek niewłaściwego lutowania lub nieodpowiednich materiałów. Ponadto, w miejscach lutowania mogą pojawiać się zjawiska termiczne, które wpływają na jakość połączenia, w tym na trwałość samego kabla. Skręcanie rdzenia i oplotu to kolejna metoda, która, mimo że może być szybka i łatwa w zastosowaniu, prowadzi do niestabilnych połączeń. Takie połączenie jest bardziej narażone na zakłócenia elektromagnetyczne oraz wpływ warunków atmosferycznych, co może znacząco obniżyć jakość sygnału. Użycie tulejek zaciskowych również nie jest optymalne, ponieważ nie zapewnia odpowiedniego kontaktu elektrycznego, co może prowadzić do utraty sygnału w czasie. Rekomendowane standardy w branży telekomunikacyjnej, takie jak normy IEC dotyczące instalacji antenowych, wskazują na używanie złączy typu F jako najlepszego rozwiązania, co powinno skłonić profesjonalistów do unikania innych metod łączenia kabli koncentrycznych. W kontekście praktycznym, dobór odpowiedniej metody łączenia może znacząco wpłynąć na jakość odbioru sygnału telewizyjnego, dlatego warto stosować najnowsze standardy i technologie w celu zapewnienia optymalnej wydajności.

Pytanie 9

W instalacjach telewizyjnych używa się standardu DVB-C w technologii

A. kablowej
B. dozorowej
C. naziemnej
D. satelitarnej
DVB-C jest standardem stworzonym z myślą o telewizji kablowej, a więc odpowiedzi dotyczące dozoru, satelitarnej czy naziemnej są błędne i wynikają z nieporozumienia dotyczącego specyfiki i zastosowania różnych technologii transmisji. Telewizja dozorowa wykorzystuje inne systemy, które są bardziej skoncentrowane na monitorowaniu i rejestracji obrazu, a nie na przesyle sygnałów telewizyjnych w tradycyjnym rozumieniu. Przykładem mogą być systemy CCTV, które korzystają z technologii analogowej lub cyfrowej, ale nie są związane z DVB-C. W przypadku systemów satelitarnych, standard DVB-S jest odpowiedzialny za przesył sygnałów telewizyjnych za pośrednictwem satelitów, co jest całkowicie odrębne od technologii kablowej. Z kolei DVB-T dotyczy transmisji naziemnej, która jest używana do nadawania sygnału telewizyjnego z anten naziemnych, także nie mając związku z kablowym przesyłem sygnałów. Błędne rozumienie zastosowania tych standardów prowadzi do mylnego wniosku, że DVB-C mógłby być użyty w kontekście innych form transmisji, co jest niezgodne z jego projektowymi założeniami i praktycznym użyciem w branży telekomunikacyjnej.

Pytanie 10

Którego urządzenia nie wykorzystuje się przy ustawianiu anten satelitarnych?

A. Kątomierza
B. Miernika sygnału
C. Multimetru
D. Kompasu
Wybór innych przyrządów, takich jak miernik sygnału, kompas czy kątomierz, może prowadzić do błędnych założeń na temat ich funkcji w kontekście ustawiania anten satelitarnych. Miernik sygnału jest kluczowym narzędziem, które pozwala instalatorom na bezpośrednie podejrzenie, jak silny i stabilny jest sygnał odbierany przez antenę. Jego użycie jest niezbędne do skutecznego ustawienia anteny, co czyni go niezastąpionym w procesie instalacji. Kompas jest również istotnym narzędziem, gdyż pozwala na orientację anteny w odpowiednim kierunku geograficznym, co jest fundamentem do prawidłowego ustawienia anteny na satelitę. Kątomierz zaś umożliwia precyzyjne określenie kąta azymutu i elewacji, co ma kluczowe znaczenie dla efektywności odbioru sygnału. Używanie multimetrów w tej sytuacji jest błędnym podejściem, ponieważ ich funkcje nie obejmują pomiaru parametrów sygnału satelitarnego. Typowym błędem myślowym jest połączenie różnych zastosowań przyrządów pomiarowych, co prowadzi do nieefektywnej pracy i frustracji podczas instalacji. Wiedza na temat specyfiki każdego z narzędzi oraz ich prawidłowego zastosowania jest kluczowa dla zapewnienia wysokiej jakości usług w dziedzinie instalacji systemów satelitarnych.

Pytanie 11

Aby dostosować wartość temperatury w danym obiekcie, należy użyć

A. termowizora
B. termostatu
C. termopary
D. termometru
Termometr jest urządzeniem służącym do pomiaru temperatury, ale nie ma zdolności do regulacji temperatury w obiekcie. W praktyce, jego głównym zastosowaniem jest monitorowanie i wskazywanie aktualnej wartości temperatury, co jest istotne w wielu dziedzinach, ale nie umożliwia aktywnej kontroli warunków panujących w danym pomieszczeniu czy systemie. Z kolei termopara, będąca czujnikiem temperatury, działa na zasadzie pomiaru różnicy potencjałów elektrycznych wytwarzanych przez dwa różne metale, a jej funkcją jest tylko rejestrowanie temperatury, a nie jej regulacja. W kontekście utrzymania określonej wartości temperatury, termopara także nie spełnia tej roli. Termowizor, to urządzenie służące do detekcji promieniowania podczerwonego, umożliwiające wizualizację rozkładu temperatury w obiekcie, ale nie ma funkcji regulacyjnej. Tego rodzaju błędne rozumienie polega często na mylnym założeniu, że urządzenia pomiarowe mogą pełnić funkcje kontrolne, co jest nieprawidłowe. W kontekście profesjonalnych standardów zarządzania temperaturą, takich jak normy ISO czy HACCP, kluczowym jest rozróżnienie między pomiarem a regulacją, co jest istotne dla zapewnienia jakości i bezpieczeństwa procesów. Odpowiednia regulacja temperatury w obiektach przemysłowych czy mieszkalnych powinna opierać się na wydajnych termostatach, które są zaprojektowane specjalnie do zarządzania tymi parametrami.

Pytanie 12

Konwerter satelitarny typu Twin to urządzenie, które pozwala na przesyłanie

A. sygnału z jednaj anteny satelitarnej do dwóch odbiorników za pośrednictwem kabli koncentrycznych
B. sygnału z dwóch anten satelitarnych do jednego odbiornika za pomocą światłowodu
C. sygnału z jednej anteny satelitarnej do dwóch odbiorników przy wykorzystaniu światłowodu
D. sygnału z dwóch anten satelitarnych do jednego odbiornika przy zastosowaniu kabli koncentrycznych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Konwerter satelitarny typu Twin jest specjalistycznym urządzeniem stosowanym w systemach telekomunikacyjnych, które umożliwia jednoczesne odbieranie sygnału z jednej anteny satelitarnej i przesyłanie go do dwóch odbiorników. To rozwiązanie jest szczególnie przydatne w domach lub biurach, gdzie więcej niż jeden odbiornik telewizyjny jest używany. Dzięki zastosowaniu kabli koncentrycznych, sygnał jest przekazywany w sposób efektywny i stabilny, co zapewnia wysoką jakość obrazu i dźwięku. W praktyce oznacza to, że użytkownicy mogą korzystać z różnych kanałów telewizyjnych na dwóch odbiornikach jednocześnie, co zwiększa komfort oglądania. Zastosowanie konwertera Twin jest zgodne z obowiązującymi standardami branżowymi, co zapewnia jego niezawodność i efektywność. Ponadto, takie rozwiązanie eliminuje potrzebę instalacji dodatkowej anteny, co jest korzystne z punktu widzenia kosztów oraz estetyki. W nowoczesnych instalacjach satelitarnych konwertery Twin stanowią standard, a ich wdrożenie znacząco podnosi funkcjonalność systemów odbiorczych.

Pytanie 13

Jednokanałowy oscyloskop analogowy pozwala na pomiar

A. czasów narastania i opadania impulsów
B. współczynnika zniekształceń nieliniowych
C. bitowej stopy błędów
D. przesunięcia fazy między dwoma sygnałami sinusoidalnymi

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Analogowy oscyloskop jednokanałowy to naprawdę fajne narzędzie do zrozumienia, jak zachowują się sygnały elektryczne w czasie. Jednym z jego głównych zastosowań jest pomiar czasów narastania i opadania impulsów, co jest mega ważne, gdy analizujemy sygnały cyfrowe i analogowe. Te czasy mają duży wpływ na to, jak dobrze przesyłamy informacje i jakie są właściwości całych systemów elektronicznych. Moim zdaniem, ocenianie tych czasów pomaga zobaczyć, jak układy reagują na zmiany w sygnale, co jest szczególnie istotne, kiedy projektujemy systemy cyfrowe. W telekomunikacji na przykład, czas narastania jest kluczowy, bo jeśli jest za długi, to sygnał może się zniekształcić, a to może prowadzić do błędów w transmisji. Dodatkowo, normy jak IEC 61000-4-2 pokazują, jak ważne jest mierzenie tych czasów, gdy testujemy urządzenia na odporność na zakłócenia elektromagnetyczne. Dlatego warto znać i umieć te umiejętności w praktyce inżynierskiej.

Pytanie 14

Aby zidentyfikować brak ciągłości obwodu w instalacjach elektrycznych, należy użyć

A. oscyloskopu
B. woltomierza
C. omomierza
D. wobulatora

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Omomierz jest narzędziem służącym do pomiaru oporu elektrycznego, co czyni go idealnym do lokalizowania braków ciągłości obwodu w instalacjach elektrycznych. W momencie, gdy występuje przerwanie obwodu, omomierz pozwala na dokładne określenie, czy dany segment instalacji ma odpowiednią wartość oporu. W praktyce, aby zweryfikować ciągłość obwodu, wykonuje się pomiar oporu między różnymi punktami w instalacji; jeśli wartość oporu wynosi zero lub jest bardzo bliska zeru, obwód jest ciągły. W przypadku braku ciągłości, omomierz zasygnalizuje dużą wartość oporu, co wskazuje na problem w instalacji. Warto również pamiętać, że stosowanie omomierza jest zgodne z normami PN-IEC 61010, które określają wymagania dotyczące bezpieczeństwa sprzętu elektrycznego. W codziennej pracy elektryka, umiejętność wykorzystania omomierza do lokalizacji usterki jest niezbędna, co wpływa na bezpieczeństwo oraz niezawodność instalacji elektrycznych.

Pytanie 15

Jaki standard kompresji audio jest stosowany w Polsce w dekoderach telewizji cyfrowej naziemnej DVB-T?

A. MPEG-1
B. MPEG-4
C. MPEG-3
D. MPEG-2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
MPEG-4, znany też jako MPEG-4 Part 14, to standard kompresji audio i wideo, który wszedł w życie w latach 90. XX wieku. Stał się popularny, bo świetnie radzi sobie z kompresją danych, a jednocześnie oferuje wysoką jakość obrazu i dźwięku. Jeśli chodzi o telewizję cyfrową naziemną DVB-T, to MPEG-4 jest szeroko stosowany do nadawania sygnałów, bo pozwala zmniejszyć wymagania dotyczące przepustowości, a jakość odbioru pozostaje wysoka. W Polsce mamy przykład z platformą DVB-T, która dzięki niemu umożliwia odbiór kanałów telewizyjnych w HD. Co ciekawe, MPEG-4 wspiera również interaktywne treści i różne aplikacje multimedialne, przez co jest bardzo wszechstronny w nadawaniu. A to, że jest zgodny z nowoczesnymi urządzeniami, tylko zwiększa jego popularność i dostępność dla użytkowników. Warto też dodać, że MPEG-4 to rozwinięcie wcześniejszych standardów, jak MPEG-1 i MPEG-2, oferując lepszą kompresję i dostosowanie do nowoczesnych technologii, takich jak streaming i wideo na żądanie.

Pytanie 16

Multiswitch to urządzenie, które pozwala na

A. dystrybucję sygnału telewizyjnego satelitarnego i naziemnego do wielu odbiorników
B. łączenie odmiennych sieci komputerowych
C. rozgałęzienie sygnału wideo, aby móc wyświetlić obraz na wielu monitorach
D. zapisywanie na twardym dysku sygnałów wideo pochodzących z różnych kamer

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Multiswitch to super ważne urządzenie w systemach telewizji satelitarnej i naziemnej. Dzięki niemu można rozdzielać sygnał do kilku odbiorników jednocześnie. Jak to działa? Multiswitch dostaje sygnały z różnych źródeł, jak satelity czy anteny naziemne, a potem dzieli to na różne wyjścia. To świetne, bo w domach, gdzie masz kilka telewizorów, każdy może oglądać coś innego. A co więcej, multiswitch dba o to, żeby sygnał był jak najlepszej jakości – tak, żebyś nie miał zakłóceń, co jest całkiem istotne. W większych instalacjach, jak w blokach, multiswitchy można łączyć, co daje jeszcze większą elastyczność. Warto pamiętać, żeby dobierać multiswitch z odpowiednią liczbą wyjść, bo za mało wyjść może prowadzić do problemów z sygnałem. Takie rzeczy są istotne, żeby telewizja działała bez zarzutu.

Pytanie 17

Akumulator o pojemności 5 Ah zapewnia podtrzymanie zasilania jednej kamery przez czas około 10 minut. W instalacji monitoringu należy wykonać układ podtrzymania zasilania awaryjnego dziesięciu kamer przez 10 minut. Która z zapisanych w tabeli propozycji doboru akumulatorów zapewnia najniższe koszty wykonania układu?

Pojemność akumulatora
Ah
Cena jednostkowa
Ilość
szt.
A.55010
B.7657
C.602451
D.301402

A. A.
B. C.
C. B.
D. D.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź C jest poprawna, ponieważ zapewnia odpowiednią pojemność akumulatorów w minimalnym koszcie. W przypadku zasilania dziesięciu kamer przez 10 minut, kluczowe jest obliczenie całkowitego zapotrzebowania na energię. Jeśli jedna kamera wymaga akumulatora o pojemności 5 Ah na 10 minut, to dla dziesięciu kamer potrzebujemy co najmniej 50 Ah. Opcja C oferuje akumulator o pojemności 60 Ah, co nie tylko spełnia wymogi, ale również pozostawia pewien zapas, co jest zalecane w praktyce. Wybór akumulatorów powinien uwzględniać nie tylko koszt, ale również ich żywotność i efektywność. Zgodnie z dobrą praktyką, należy dobierać akumulatory z pewnym naddatkiem pojemności, aby uniknąć zbyt głębokiego rozładowania, co wydłuża ich żywotność. Wybór C, przy koszcie 245 zł, jest więc najbardziej optymalny, zwłaszcza w dłuższym czasie eksploatacji systemu monitoringu.

Pytanie 18

Jak nazywa się jednostka ładunku elektrycznego?

A. herc
B. kelwin
C. kulomb
D. farad

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kulomb (C) jest jednostką ładunku elektrycznego w układzie SI, który jest powszechnie stosowany w naukach przyrodniczych oraz inżynierii elektrycznej. Definiuje się go poprzez ilość ładunku, która przepływa przez przewodnik, gdy prąd elektryczny o natężeniu jednego ampera płynie przez ten przewodnik przez jedną sekundę. Jest kluczowy w kontekście prawa Coulomba, które opisuje siłę elektrostatyczną między naładowanymi ciałami. Zrozumienie kulomba ma praktyczne zastosowanie w projektowaniu układów elektronicznych, gdzie precyzyjne obliczenie ładunku jest niezbędne do zapewnienia efektywności działania komponentów takich jak kondensatory, które przechowują ładunek elektryczny. W praktyce, w elektronice, często korzysta się z kulombów do określania pojemności kondensatorów, co jest kluczowe przy projektowaniu układów filtrujących oraz w systemach zasilania. Warto również zaznaczyć, że kulomb jest jednostką stosunkowo dużą, a w wielu zastosowaniach inżynieryjnych wykorzystuje się jego podwielkości, takie jak mikro-kulomb (μC) czy nano-kulomb (nC).

Pytanie 19

Jakie narzędzie jest niezbędne do zainstalowania wtyku kompresyjnego typu F na kablu koncentrycznym?

A. zaciskarkę.
B. śrubokręt.
C. nóż montażowy.
D. obcęgi.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zaciskarka to narzędzie specjalnie zaprojektowane do montażu wtyków kompresyjnych na kablach koncentrycznych. Dzięki precyzyjnemu mechanizmowi chwytania i zaciskania, pozwala na pewne i trwałe połączenie wtyku z kablem, co jest kluczowe dla uzyskania optymalnej jakości sygnału. Użycie zaciskarki zapewnia, że wtyk jest prawidłowo zamocowany, eliminując ryzyko luzów, które mogłyby prowadzić do zakłóceń sygnału. W branży telekomunikacyjnej oraz w instalacjach antenowych, gdzie jakość sygnału jest kluczowa, stosowanie odpowiednich narzędzi, takich jak zaciskarka, jest zgodne z najlepszymi praktykami. W przypadku kabli koncentrycznych, wtyki kompresyjne oferują lepszą ochronę przed zakłóceniami elektromagnetycznymi, a ich prawidłowy montaż przy użyciu zaciskarki jest niezbędny, aby zapewnić optymalne działanie całego systemu. Warto zwrócić uwagę na standardy, takie jak ISO/IEC 11801, które podkreślają znaczenie odpowiedniego montażu i użycia właściwych narzędzi w celu zapewnienia niezawodności i wydajności systemów transmisji danych.

Pytanie 20

Jakie są właściwe kroki do wykonania podczas wymiany uszkodzonej kamery monitoringu połączonej z rejestratorem wideo?

A. Odłączenie zasilania od kamery, odłączenie przewodu sygnałowego od kamery, zdemontowanie uszkodzonej kamery i zamocowanie nowej, podłączenie przewodu sygnałowego do kamery, podłączenie zasilania do kamery
B. Odłączenie zasilania od kamery, demontaż kamery, odłączenie przewodu sygnałowego od uszkodzonej kamery i podłączenie do nowego urządzenia, zamontowanie kamery, podłączenie zasilania do kamery
C. Odłączenie zasilania od rejestratora, odłączenie przewodu sygnałowego od kamery, zdemontowanie uszkodzonej kamery i zamontowanie nowej, podłączenie przewodu sygnałowego do kamery, podłączenie zasilania do rejestratora
D. Odłączenie przewodu sygnałowego od kamery, odłączenie zasilania od kamery, zdemontowanie uszkodzonej kamery i zamontowanie nowej, podłączenie zasilania do kamery, podłączenie przewodu sygnałowego do kamery

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa kolejność czynności przy wymianie kamery monitoringu zaczyna się od odłączenia zasilania od kamery, co jest kluczowe dla zapewnienia bezpieczeństwa podczas pracy z urządzeniem. Następnie należy odłączyć przewód sygnałowy, aby uniknąć uszkodzenia gniazd lub kabli. Kolejnym krokiem jest demontaż uszkodzonej kamery i montaż nowej, co należy wykonać z zachowaniem ostrożności, aby nie uszkodzić uchwytów czy innych elementów konstrukcyjnych. Po zamontowaniu nowej kamery, podłączenie przewodu sygnałowego powinno być wykonane z uwagą na właściwe oznaczenia, aby zapewnić prawidłowy przesył danych. Na końcu podłączamy zasilanie do kamery. Taka procedura nie tylko spełnia zasady BHP, ale także jest zgodna z zaleceniami producentów sprzętu, co przekłada się na długotrwałe i niezawodne działanie systemu monitoringu. W praktyce, przestrzeganie tej kolejności minimalizuje ryzyko uszkodzenia sprzętu oraz zapewnia, że nowa kamera będzie działać od razu po zakończeniu instalacji.

Pytanie 21

Telewizor nie odbiera żadnych sygnałów z zewnętrznej anteny w transmisji naziemnej, ale poprawnie prezentuje obraz z tunera satelitarnego podłączonego do niego za pomocą przewodu EUROSCART oraz z kamery VHS-C. Wymienione objawy sugerują, że uszkodzony jest moduł

A. odchylania poziomego i pionowego
B. wielkiej i pośredniej częstotliwości
C. separatora impulsów
D. wzmacniacza wizji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dobra robota! Wskazanie na uszkodzenie modułu wielkiej i pośredniej częstotliwości trafiło w sedno. Ten moduł jest kluczowy do tego, żeby telewizor mógł właściwie demodulować sygnały z anteny. Kiedy telewizor działa z tunera satelitarnego albo z kamery VHS-C, ale nie łapie sygnału z anteny, to raczej coś jest nie tak z obwodami do odbioru sygnału z telewizji naziemnej. To właśnie ten moduł zajmuje się dostosowywaniem częstotliwości sygnału, żeby telewizor mógł go zrozumieć. W praktyce, uszkodzenia mogą być spowodowane zepsuciem komponentów, takich jak kondensatory czy scalaki, co prowadzi do braku obrazu. Warto regularnie sprawdzać antenę i zmierzyć sygnał, żeby zobaczyć, czy wszystko działa jak powinno.

Pytanie 22

Nieprawidłowa impedancja falowa kabla koncentrycznego wskazuje na uszkodzenie

A. izolacji zewnętrznej.
B. żyły.
C. ekranu.
D. izolacji wewnętrznej.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Izolacja wewnętrzna kabla koncentrycznego odgrywa kluczową rolę w utrzymaniu odpowiedniej impedancji falowej. Uszkodzenie tej izolacji prowadzi do nieprawidłowego przechodzenia sygnałów oraz zniekształceń, co skutkuje obniżeniem jakości przesyłanych danych. W przypadku kabli koncentrycznych, które są powszechnie stosowane w telekomunikacji i systemach audio, istotne jest, aby impedancja wynosiła dokładnie 75 Ω. Każde odchylenie od tej wartości może być oznaką problemów z izolacją wewnętrzną, co w praktyce może prowadzić do strat sygnału, interferencji i zwiększonego szumów. Standardy branżowe, takie jak IEC 61196, podkreślają znaczenie spójności impedancji dla jakości sygnału. W zastosowaniach takich jak telewizja kablowa czy systemy monitoringu, nieprzerwana i stabilna impedancja jest kluczowa dla zapewnienia niezawodności systemu. Zrozumienie tego aspektu pozwala na skuteczne diagnozowanie problemów i utrzymanie wysokiej jakości infrastruktury telekomunikacyjnej.

Pytanie 23

Jakie urządzenie pozwala na łączenie się z Internetem poprzez sieć CATV?

A. wzmacniacz
B. hub
C. modem
D. switch

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Modem jest urządzeniem, które konwertuje sygnały analogowe na cyfrowe i vice versa, umożliwiając tym samym komunikację komputerów z siecią Internet. W kontekście sieci CATV (Cable Television), modem kablowy jest niezbędnym elementem, który pozwala użytkownikom na dostęp do Internetu za pośrednictwem infrastruktury telewizyjnej. Dzięki zastosowaniu technologii DOCSIS (Data Over Cable Service Interface Specification), modemy kablowe zapewniają wysoką prędkość transferu danych oraz stabilne połączenie. Przykładem zastosowania modemu może być domowe połączenie z Internetem, gdzie użytkownik łączy modem z routerem, co umożliwia korzystanie z sieci na wielu urządzeniach jednocześnie. Warto również zaznaczyć, że dobór odpowiedniego modemu powinien być zgodny z wymaganiami dostawcy usług internetowych oraz z aktualnymi standardami branżowymi, co zapewnia optymalne parametry pracy i bezpieczeństwo połączenia.

Pytanie 24

Podczas instalacji wzmacniacza antenowego najpierw należy

A. uziemić urządzenie, następnie podłączyć przewody antenowe, włączyć zasilanie, a na końcu zamontować urządzenie
B. najpierw podłączyć przewody antenowe, później włączyć zasilanie, uziemić i na końcu zamontować urządzenie
C. zamontować urządzenie, uziemić, podłączyć przewody antenowe, a na końcu podłączyć zasilanie
D. najpierw podłączyć zasilanie, uziemić, następnie podłączyć przewody antenowe, a na końcu zamontować urządzenie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź polega na odpowiednim porządku prac przy montażu wzmacniacza antenowego. Proces ten powinien zaczynać się od zamontowania urządzenia, co zapewnia, że wszystkie elementy są prawidłowo zainstalowane i mają odpowiednie wsparcie mechaniczne. Następnie kluczowe jest uziemienie urządzenia, aby zminimalizować ryzyko uszkodzeń spowodowanych przepięciami czy wyładowaniami atmosferycznymi. Uziemienie jest istotnym krokiem w ochronie zarówno sprzętu, jak i osób korzystających z systemu. Po tym etapie powinno się podłączyć przewody antenowe, co jest niezbędne do prawidłowego funkcjonowania wzmacniacza, a na końcu można podłączyć zasilanie, co pozwoli na uruchomienie urządzenia. Taki porządek działań jest zgodny z dobrymi praktykami instalacyjnymi i zapewnia zarówno bezpieczeństwo, jak i skuteczność działania wzmacniacza. Przykładem zastosowania tych zasad może być instalacja anteny telewizyjnej, gdzie odpowiednia sekwencja zwiększa jakość odbioru sygnału.

Pytanie 25

Co oznacza funkcja ARW w radiowych odbiornikach?

A. wybieranie oraz wyszukiwanie rodzaju programu
B. odbiór komunikatów drogowych
C. odbiór tekstowych komunikatów
D. automatyczną regulację wzmocnienia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Funkcja automatycznej regulacji wzmocnienia (ARW) w odbiornikach radiowych jest kluczowym elementem zapewniającym stabilność sygnału audio. ARW automatycznie dostosowuje poziom wzmocnienia sygnału, co jest szczególnie przydatne w sytuacjach, gdy sygnał odbierany jest niestabilny lub zmienia się w czasie, na przykład podczas przejazdu przez obszary o różnej jakości sygnału. Dzięki ARW, użytkownicy mogą cieszyć się lepszą jakością dźwięku, ponieważ funkcja ta minimalizuje szumy i przerywania w audio. W praktyce, ARW znajduje zastosowanie w odbiornikach radiowych, systemach audio w samochodach oraz w urządzeniach przenośnych, gdzie utrzymanie stabilności sygnału ma kluczowe znaczenie. Zgodnie z dobrą praktyką branżową, implementacja ARW w urządzeniach radiowych jest standardem, co przyczynia się do poprawy doświadczeń użytkowników i zwiększa ich zadowolenie z korzystania z technologii radiowej. Przykładem zastosowania ARW może być radioodbiornik, który automatycznie dostosowuje wzmocnienie sygnału w trakcie zmiany położenia użytkownika, utrzymując jednocześnie jakość dźwięku na stałym poziomie.

Pytanie 26

W jakim celu nosi się opaskę antyelektrostatyczną na ręku podczas wymiany podzespołów lub układów scalonych w nowoczesnych urządzeniach elektronicznych?

A. Aby chronić układy scalone CMOS przed szkodliwym działaniem ładunków elektrostatycznych gromadzących się na ciele montera
B. Aby zabezpieczyć montera przed szkodliwym działaniem ładunków elektrostatycznych nagromadzonych w urządzeniu
C. Aby chronić montera przed porażeniem prądem elektrycznym z zasilenia urządzenia elektronicznego
D. Aby chronić układy scalone TTL przed niekorzystnym wpływem ładunków elektrostatycznych nagromadzonych na ciele montera

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Opaska antyelektrostatyczna na rękę jest kluczowym elementem zabezpieczającym podczas pracy z delikatnymi komponentami elektronicznymi, szczególnie z układami scalonymi CMOS. Układy te są szczególnie wrażliwe na ładunki elektrostatyczne, które mogą powodować uszkodzenia, a nawet zniszczenie elementów. Opaska działa na zasadzie uziemienia ciała montera, co pozwala na rozproszenie nagromadzonych ładunków elektrostatycznych, eliminując ryzyko ich przekazania na wrażliwe komponenty. Przykładem praktycznego zastosowania opaski może być wymiana pamięci RAM czy procesora w komputerze stacjonarnym. W takich sytuacjach, nie tylko zapobiega się uszkodzeniu pojedynczych układów, ale także zwiększa się ogólną niezawodność urządzenia. Zgodnie z normami IPC (Institute for Interconnecting and Packaging Electronics), stosowanie opasek antyelektrostatycznych jest standardową procedurą w procesach montażu i serwisowania elektroniki, co dodatkowo podkreśla ich znaczenie w branży.

Pytanie 27

Jak określa się poziom sygnału w gniazdku abonenckim telewizji naziemnej?

A. dBµΩ
B. dBmA
C. dBµV
D. dBmW

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to dBµV, co oznacza decybele mikrovoltów. Jest to jednostka miary, która pozwala na określenie poziomu sygnału w systemach telekomunikacyjnych, w tym w telewizji naziemnej. Wartość poziomu sygnału w dBµV jest kluczowa dla oceny jakości odbioru sygnału telewizyjnego, gdyż zbyt niski poziom może prowadzić do zakłóceń w odbiorze, a w rezultacie do utraty jakości obrazu i dźwięku. Z przeprowadzonych badań wynika, że optymalny poziom sygnału w gniazdku abonenckim powinien wynosić od 60 do 80 dBµV, co zapewnia stabilny odbiór sygnału bez zakłóceń. W praktyce, technicy często korzystają z mierników sygnału, które umożliwiają precyzyjne określenie poziomu sygnału w dBµV, co jest niezbędne podczas instalacji i konserwacji systemów antenowych. Zgodnie z normami branżowymi, monitorowanie poziomu sygnału w tej jednostce jest standardem w projektowaniu i eksploatacji infrastruktury telewizyjnej.

Pytanie 28

Całkowity koszt materiałów potrzebnych do zamontowania systemu alarmowego w lokum to 2 000 zł. Wydatki na montaż wynoszą 50% wartości materiałów. Zarówno materiały, jak i montaż są obciążone stawką VAT w wysokości 22%. Jaka będzie całkowita kwota wydatków na instalację?

A. 2 000 zł
B. 3 000 zł
C. 3 660 zł
D. 2 440 zł

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Całkowity koszt wykonania instalacji alarmowej można obliczyć poprzez zsumowanie kosztów materiałów oraz wykonania, a następnie dodanie podatku VAT. Koszt materiałów wynosi 2000 zł, a koszt wykonania to 50% ceny materiałów, czyli 1000 zł (2000 zł * 0,5). Łączny koszt przed opodatkowaniem wynosi więc 3000 zł (2000 zł + 1000 zł). Aby obliczyć kwotę z VAT, należy pomnożyć łączny koszt przez stawkę VAT, co daje 660 zł (3000 zł * 0,22). Całkowity koszt po uwzględnieniu VAT wynosi zatem 3660 zł (3000 zł + 660 zł). Zrozumienie tego procesu jest kluczowe dla właściwego planowania budżetu. W praktyce, dokładne obliczenia kosztów są niezwykle ważne w branży budowlanej i instalacyjnej, gdzie nieprecyzyjne oszacowanie wydatków może prowadzić do znaczących przekroczeń budżetowych. Prawidłowe podejście do kalkulacji kosztów materiałów i robocizny pozwala na efektywne zarządzanie projektami budowlanymi oraz utrzymanie zgodności z regulacjami dotyczącymi VAT.

Pytanie 29

W analizowanym układzie przeprowadzono pomiar rezystancji Rx. Zgodnie z normami wartość rezystancji Rx=(10,06±0,03) Ω. Który z wyników pomiarowych nie jest zgodny z normą?

A. Rx = 10,06 Ω
B. Rx = 10,00 Ω
C. Rx = 10,09 Ω
D. Rx = 10,03 Ω

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź Rx = 10,00 Ω jest prawidłowa, ponieważ wartość ta znajduje się poza dopuszczalnym zakresem błędu pomiarowego określonego przez normę. Zgodnie z danymi, rezystancja Rx powinna wynosić 10,06 Ω z tolerancją ±0,03 Ω, co oznacza, że akceptowalne wartości rezystancji mieszczą się w przedziale od 10,03 Ω do 10,09 Ω. Wartość 10,00 Ω jest poniżej dolnej granicy normy, co czyni ją niezgodną z wymaganiami. W praktyce, takie pomiary są istotne w kontekście zapewnienia jakości produktów elektronicznych, gdzie każda jednostka musi spełniać określone specyfikacje. Normy takie jak IEC 60068-2-6 dostarczają wytycznych dotyczących testowania i określania tolerancji, co jest kluczowe w procesach produkcyjnych. Właściwe zrozumienie tolerancji w pomiarach rezystancji jest niezbędne do analizy i oceny właściwości materiałów oraz zapewnienia ich niezawodności w zastosowaniach inżynieryjnych.

Pytanie 30

Badanie złącza p-n w tranzystorze bipolarnym można przeprowadzić przy użyciu

A. omomierza
B. watomierza
C. woltomierza
D. amperomierza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca omomierza jest jak najbardziej trafna. To narzędzie służy do pomiaru oporu elektrycznego, co jest mega ważne przy badaniu złącza p-n w tranzystorze bipolarnym. Złącze p-n działa jak dioda, która w zasadzie jest przewodnikiem, gdy prąd płynie w jedną stronę, a w drugą - staje się opornikiem. Kiedy używamy omomierza, możemy sprawdzić, czy to złącze działa tak jak powinno, bo mierzymy opór w obu stanach. Jak tranzystor się uszkodzi, omomierz pokaże niską oporność nawet w stanie zaporowym, co oznacza, że coś jest nie tak. W elektronice omomierz to kluczowe narzędzie, zwłaszcza przy diagnozowaniu problemów w obwodach i produkcji komponentów elektronicznych. Każdy tranzystor musi być testowany, żeby był zgodny z normami jakości. To pokazuje, jak ważny jest omomierz przy weryfikacji złączy p-n.

Pytanie 31

Aby zidentyfikować miejsce uszkodzenia w 100-metrowym kablu telekomunikacyjnym umieszczonym w ziemi, należy zastosować

A. reflektometr.
B. dalmiar.
C. spektrometr.
D. multimetr.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Reflektometr to narzędzie stosowane w telekomunikacji, które umożliwia lokalizację uszkodzeń w kablach przez analizę odbicia sygnału. W przypadku kabla telekomunikacyjnego, reflektometr wykorzystuje zjawisko odbicia fali elektromagnetycznej, która jest wysyłana w kierunku kabla. Kiedy fala napotyka na przerwę lub uszkodzenie, część sygnału odbija się z powrotem do reflektometru, co pozwala na określenie miejsca przerwy. Przykładem zastosowania reflektometru może być lokalizacja uszkodzenia w kablu zainstalowanym w terenie, co jest kluczowe dla minimalizacji przestojów w pracy sieci. Standardy branżowe, takie jak ITU-T G.657, podkreślają znaczenie monitorowania i konserwacji kabli optycznych, a reflektometr jest nieocenionym narzędziem w tym kontekście. Dzięki jego zastosowaniu technicy mogą szybko i skutecznie zidentyfikować problem, co zwiększa efektywność operacyjną oraz zadowolenie klientów.

Pytanie 32

Jednym z komponentów urządzenia elektronicznego jest rezystor o wartości rezystancji 1 kΩ i mocy 1 W. Jeśli brakuje elementu o tych parametrach, można go zastąpić rezystorem

A. o identycznej rezystancji i wyższej mocy
B. o wyższej rezystancji i tej samej mocy
C. o niższej rezystancji i tej samej mocy
D. o identycznej rezystancji i niższej mocy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ta odpowiedź jest prawidłowa, ponieważ w przypadku zastępowania rezystora istotne jest, aby zachować jego rezystancję oraz zwiększyć moc. Rezystor o rezystancji 1 kΩ i mocy 1 W oznacza, że przy maksymalnej mocy 1 W, rezystor ten może pracować bez przegrzewania się. Gdybyśmy chcieli zastąpić go innym rezystorem, powinniśmy wybrać taki o tej samej rezystancji (1 kΩ), aby nie zmieniać parametrów obwodu. Zwiększona moc pozwoli na bezpieczniejsze i bardziej stabilne działanie w przypadku, gdy obwód będzie wymagał większej mocy. Standardowe praktyki inżynieryjne zalecają zawsze dobierać komponenty z marginesem bezpieczeństwa, co oznacza, że wybór rezystora o większej mocy (np. 2 W lub 5 W) minimalizuje ryzyko uszkodzenia elementu oraz wydłuża jego żywotność. Przykłady zastosowania obejmują układy zasilające, gdzie elementy są narażone na zmienne obciążenia, a także w aplikacjach audio, gdzie stabilność działania jest kluczowa.

Pytanie 33

Jakiego koloru powinien być przewód ochronny PE w elektrycznej instalacji zasilającej urządzenia elektroniczne?

A. Jasnoniebieski.
B. Żółto-zielony.
C. Czarny.
D. Czerwony.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przewód ochronny PE (Protection Earth) w instalacjach elektrycznych zasilających urządzenia elektroniczne powinien mieć kolor żółto-zielony. Taki kolor jest zgodny z międzynarodowymi standardami, w tym normą IEC 60446, która określa oznaczenia kolorów przewodów elektrycznych. Żółto-zielony przewód pełni kluczową rolę w zapewnieniu bezpieczeństwa, ponieważ jego zadaniem jest odprowadzenie prądu doziemnego w przypadku awarii, co minimalizuje ryzyko porażenia prądem elektrycznym. Przykładem zastosowania przewodu PE może być podłączanie urządzeń, takich jak komputery, drukarki czy serwery, gdzie zapewnienie odpowiedniego uziemienia chroni nie tylko użytkowników, ale również sam sprzęt przed uszkodzeniami. Nieprzestrzeganie tych norm może prowadzić do poważnych zagrożeń, takich jak zwarcia czy pożary, dlatego istotne jest stosowanie się do wytycznych branżowych w zakresie instalacji elektrycznych.

Pytanie 34

Aby zapobiec aktywacji sabotażu podczas wymiany elektroniki w czujniku ruchu w prawidłowo funkcjonującym systemie alarmowym, należy wykonać następujące kroki:

A. wyłączyć system alarmowy, otworzyć obudowę czujki, wymienić elektronikę, zamknąć obudowę czujki, włączyć zasilanie systemu alarmowego
B. otworzyć obudowę czujki, wymienić elektronikę, zamknąć obudowę czujki, włączyć tryb serwisowy w celu zapisania danych
C. otworzyć obudowę czujki, włączyć tryb serwisowy, wyłączyć system alarmowy, wymienić elektronikę, zamknąć obudowę czujki, włączyć zasilanie systemu alarmowego
D. włączyć tryb serwisowy, wyłączyć system alarmowy, otworzyć obudowę czujki, wymienić elektronikę, zamknąć obudowę czujki, włączyć zasilanie systemu alarmowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór właściwej procedury wymiany elektroniki w czujce ruchu w systemie alarmowym jest kluczowy dla zapewnienia bezpieczeństwa i integralności całego systemu. Włączenie trybu serwisowego jest pierwszym krokiem, który pozwala na ochronę przed nieautoryzowanymi zmianami w systemie. Tryb serwisowy często blokuje funkcje alarmowe, co zapobiega uruchomieniu fałszywych alarmów podczas wykonywania prac serwisowych. Następnie, wyłączenie systemu alarmowego jest niezbędne, aby uniknąć aktywacji alarmu w trakcie wymiany komponentów. Po otwarciu obudowy czujki można przystąpić do wymiany elektroniki. Ważne jest, aby zachować środki ostrożności, takie jak odłączenie zasilania przed rozpoczęciem pracy oraz stosowanie odpowiednich narzędzi, aby uniknąć uszkodzeń. Po zakończeniu wymiany elektroniki, zamknięcie obudowy oraz włączenie zasilania systemu alarmowego powinno odbywać się zgodnie z kolejnością, aby system mógł prawidłowo powrócić do pracy. Praktyczne zastosowanie tej procedury jest zgodne z najlepszymi praktykami w branży zabezpieczeń, które podkreślają znaczenie sekwencji działań w celu minimalizacji ryzyka błędów serwisowych.

Pytanie 35

Jak zwiększenie rezystancji obciążenia w układach wzmacniaczy rezystancyjnych wpłynie na

A. wzrost mocy wyjściowej
B. podwyższenie napięcia zasilającego
C. spadek mocy wyjściowej
D. zmniejszenie pasma przenoszenia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wzrost rezystancji obciążenia we wzmacniaczach rezystancyjnych prowadzi do spadku mocy wyjściowej, co wynika z prawa Ohma oraz zasady zachowania energii. W praktyce, gdy rezystancja obciążenia rośnie, prąd przepływający przez obciążenie maleje, co z kolei przekłada się na spadek mocy, która jest definiowana jako iloczyn napięcia i prądu (P = U * I). Przykładem takiego zachowania może być wzmacniacz audio podłączony do głośnika. Jeśli głośnik ma wysoką impedancję (duża rezystancja), to z uwagi na ograniczenie prądu, moc wyjściowa wzmacniacza zmniejsza się. Dla zastosowań w audio, aby uzyskać optymalne wzmocnienie, zmiany rezystancji obciążenia powinny być kontrolowane, aby uniknąć niepożądanych efektów, takich jak zniekształcenia dźwięku. W praktyce inżynierowie często dostosowują parametry układów, aby zapewnić odpowiednią współpracę ze standardowymi obciążeniami, co jest zgodne z dobrymi praktykami branżowymi.

Pytanie 36

Którego rodzaju kabel dotyczy termin STP?

A. Skrętki nieekranowanej
B. Koncentrycznego
C. Światłowodowego
D. Skrętki ekranowanej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oznaczenie STP odnosi się do skrętki ekranowanej (Shielded Twisted Pair), która jest rodzajem kabla wykorzystywanego w sieciach komputerowych do przesyłania danych. Skrętki ekranowane są wyposażone w dodatkową warstwę ekranu, która chroni sygnały przed zakłóceniami elektromagnetycznymi pochodzącymi z otoczenia, co czyni je bardziej odpornymi na różnego rodzaju interferencje. STP znajduje zastosowanie w sytuacjach, gdzie istnieje duże ryzyko zakłóceń, na przykład w środowiskach przemysłowych lub blisko urządzeń elektrycznych. Przykładowe zastosowania obejmują sieci lokalne (LAN) w biurach czy zakładach produkcyjnych, gdzie stabilność sygnału jest kluczowa. Standardy takie jak TIA/EIA-568 określają wymagania dotyczące jakości kabli STP, co pozwala na osiągnięcie najwyższej wydajności transmisji danych. Wiedza na temat różnych typów kabli oraz ich zastosowania jest istotna, aby móc odpowiednio dobrać rozwiązania do konkretnych potrzeb sieciowych.

Pytanie 37

Czujnik kontaktronowy, często wykorzystywany w systemach alarmowych, zmienia swój stan pod wpływem

A. zmiany temperatury
B. zmiany natężenia dźwięku
C. pola elektrycznego
D. pola magnetycznego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujnik kontaktronowy działa na zasadzie detekcji pola magnetycznego. W jego wnętrzu znajdują się dwa metalowe styki, które są zamknięte w hermetycznej obudowie. Gdy w pobliżu czujnika pojawia się pole magnetyczne, styki te zbliżają się do siebie, co skutkuje zmianą stanu czujnika z otwartego na zamknięty. To zjawisko jest wykorzystywane w systemach sygnalizacji włamania oraz w różnych zastosowaniach automatyki budynkowej. Na przykład, w systemach alarmowych, czujniki kontaktronowe mogą być umieszczane w drzwiach i oknach, by informować o ich otwarciu. Dobrą praktyką jest umieszczanie ich w miejscach, gdzie mogą być łatwo zintegrowane z centralą alarmową, co zwiększa bezpieczeństwo obiektu. Warto również zauważyć, że kontaktrony są preferowane w sytuacjach, gdzie wymagana jest wysoka niezawodność oraz estetyka, ponieważ ich działanie jest ciche, a sama konstrukcja jest minimalistyczna.

Pytanie 38

Na jaki zakres powinien być ustawiony woltomierz analogowy, aby minimalizować błąd pomiaru napięcia wynoszącego 19 V?

A. 0 do 20 V
B. 0 do 2 V
C. 0 do 200 V
D. 0 do 700 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Woltomierz analogowy powinien być ustawiony na zakres 0 do 20 V, aby minimalizować błąd pomiaru napięcia wynoszącego 19 V. Ustawienie na ten zakres umożliwia uzyskanie największej dokładności pomiaru, ponieważ analogowe przyrządy pomiarowe zazwyczaj osiągają swoją optymalną precyzję, gdy mierzona wartość znajduje się blisko górnej granicy zakresu. W przypadku napięcia 19 V, to ustawienie daje możliwość uzyskania dokładności w granicach 1-2% w zależności od specyfiki danego woltomierza. Używając zbyt szerokiego zakresu, jak 0 do 200 V lub 0 do 700 V, zjawisko nazywane 'efektem rozdzielczości' powoduje, że pomiary mogą być mniej precyzyjne, a większe wartości mogą generować znaczący błąd w odczycie. Na przykład, jeśli zakres zostanie ustawiony na 200 V, niewielkie zmiany napięcia w pobliżu 19 V mogą nie być wystarczająco wyraźnie widoczne na skali. Ponadto zgodnie z praktykami w zakresie metrologii, ważne jest, aby dostosować przyrządy pomiarowe do specyficznych warunków, co ma kluczowe znaczenie w laboratoriach oraz podczas prac inżynieryjnych, aby zapewnić wiarygodność wyników pomiarów.

Pytanie 39

Aby zamontować element na szynie DIN, jakie narzędzie powinno zostać zastosowane?

A. klucza płaskiego
B. szczypiec płaskich
C. wkrętaka płaskiego
D. cążków bocznych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wkrętak płaski to takie must-have, jeśli chodzi o montowanie elementów na szynie DIN. Dzięki niemu możesz łatwo i dokładnie dokręcać śruby i wkręty, które są naprawdę popularne, gdy mocujemy różne urządzenia elektryczne, jak moduły zabezpieczeń czy przekaźniki. W praktyce, jak już zakładamy te elementy na szynę, ważne jest, żeby śruby były dobrze dokręcone. To daje stabilność całej instalacji i zmniejsza ryzyko luźnych połączeń, które mogą narobić problemów. Z tego, co wiem, każdy element powinien być zamontowany zgodnie z odpowiednim momentem obrotowym, a wkrętak płaski daje możliwość dostosowania siły dokręcania do konkretnego komponentu. No i warto dodać, że wkrętaki płaskie są w różnych rozmiarach, więc można je używać w różnych sytuacjach. Poza tym, korzystanie z wkrętaka płaskiego zamiast innych narzędzi, jak klucz płaski czy cążki, jest lepsze dla ergonomii pracy i bezpieczeństwa, bo daje większą kontrolę podczas montażu.

Pytanie 40

Aby połączyć dwa styki alarmowe z dwóch czujników PIR typu NC w jedno wejście centrali, należy je podłączyć

A. w gwiazdę
B. w trójkąt
C. równolegle
D. szeregowo

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "szeregowo" to strzał w dziesiątkę. Jak masz czujki PIR typu NC, to muszą być połączone w taki sposób, aby alarm załączał się, gdy którakolwiek czujka wyczuje ruch. Łączenie ich szeregowo to świetny pomysł, bo wtedy sygnał przechodzi przez wszystkie czujki, co sprawia, że system jest bardziej niezawodny. W praktyce, jak jedna czujka wykryje ruch, to obwód się przerywa i alarm się włącza. Fajnie też, że przy takim połączeniu łatwiej znaleźć ewentualne usterki, bo szybko wiesz, która czujka nie działa. No i oszczędność miejsca w szafce rozdzielczej to zawsze na plus – łatwiej utrzymać porządek.