Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 19 maja 2025 15:08
  • Data zakończenia: 19 maja 2025 15:13

Egzamin niezdany

Wynik: 3/40 punktów (7,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Jaką masę siarczanu(VI) miedzi(II)-woda(1/5) należy poddać suszeniu, aby otrzymać 300 g soli bezwodnej?

CuSO4 · 5H2O → CuSO4 + 5H2O
(MCuSO4·5H2O = 249,5 g/mol, MCuSO4 = 159,5 g/mol, MH2O = 18,0 g/mol)

A. 210,0 g
B. 469,3 g
C. 390,5 g
D. 584,1 g
Odpowiedzi 390,5 g, 584,1 g i 210,0 g są błędne ze względu na nieprawidłowe założenia dotyczące ilości wody związanej w siarczanie(VI) miedzi(II). W przypadku siarczanu(VI) miedzi(II)·5H2O, istotna jest znajomość proporcji mas molowych obu związków. Typowym błędem jest oszacowanie masy uwodnionej soli bez uwzględnienia, że każda cząsteczka CuSO4·5H2O zawiera pięć cząsteczek wody, co znacznie zwiększa masę potrzebną do uzyskania konkretnej ilości soli bezwodnej. Osoby wykorzystujące niepoprawne dane mogą nie brać pod uwagę, że proces suszenia prowadzi do utraty masy, co wymaga precyzyjnych obliczeń, aby uniknąć niedoboru lub nadmiaru materiałów. Jednym z typowych błędów myślowych jest mylenie mas molowych z masami rzeczywistymi, co prowadzi do próby oszacowania masy bez uwzględnienia proporcji. Dlatego kluczowe jest zrozumienie związków chemicznych oraz ich właściwości fizycznych, aby przeprowadzać odpowiednie obliczenia w laboratorium i poprawnie przygotowywać roztwory oraz substancje chemiczne.

Pytanie 3

W przypadku kontaktu ze stężonym roztworem zasady, co należy zrobić jak najszybciej?

A. skorzystać z amoniaku
B. zmyć bieżącą wodą
C. zastosować 5% roztwór wodorowęglanu sodu
D. polać 3% roztworem wody utlenionej
W przypadku oblania się stężonym roztworem zasady kluczowe jest jak najszybsze zneutralizowanie i usunięcie kontaktu z substancją. Zmycie bieżącą wodą jest najbardziej efektywną i odpowiednią metodą, ponieważ pozwala na rozcieńczenie zasady oraz fizyczne usunięcie jej z powierzchni skóry lub materiału. Woda działa jako rozpuszczalnik, który zmniejsza stężenie zasady, co z kolei minimalizuje ryzyko uszkodzenia tkanek. W praktyce, zaleca się pod bieżącą wodą przepłukać obszar kontaktu przez co najmniej 15 minut, aby zapewnić skuteczne usunięcie substancji. Ponadto, w sytuacjach laboratoryjnych, przestrzega się standardów BHP, które nakładają obowiązek posiadania odpowiednich stacji do płukania oczu i ciała, aby szybko reagować na takie wypadki. Warto również pamiętać o noszeniu odpowiednich środków ochrony osobistej, takich jak rękawice i gogle, co może zminimalizować ryzyko kontaktu z niebezpiecznymi substancjami. Tylko w przypadku, gdy zasada nie jest zmyta, można myśleć o dalszym postępowaniu, jednak zawsze należy wrócić do podstawowej metody usuwania substancji.

Pytanie 4

Które równanie przedstawia reakcję otrzymywania mydła?

CH3COOH + NaOH →CH3COONa + H2O
2 CH3COOH + Na2O →2 CH3COONa + H2O
2 C2H5COOH + 2 Na →2 C2H5COONa + H2
C17H35COOH + NaOH →C17H35COONa + H2O

A. 2 C2H5COOH + 2 Na → 2 C2H5COONa + H2↑
B. 2 CH3COOH + Na2O → 2 CH3COONa + H2O
C. CH3COOH + NaOH → CH3COONa + H2O
D. C17H35COOH + NaOH → C17H35COONa + H2O
No, ta reakcja, którą podałeś, to super przykład zmydlania, a więc procesu, w którym kwasy tłuszczowe reagują z zasadami, w tym przypadku z wodorotlenkiem sodu. Z tego powodu powstaje sól kwasu tłuszczowego, czyli mydło, a przy okazji mamy jeszcze wodę. Zmydlanie to absolutny must-have w produkcji mydeł, które wszyscy używamy w domach czy w kosmetykach. Przykład? Naturalne mydła, które można robić z olejów, np. kokosowego albo oliwy z oliwek. Ważne, żeby trzymać się dobrych proporcji kwasu tłuszczowego do zasady, bo to wpływa na to, jak twarde będzie mydło, jak się pieni i jak nawilża. Zmydlanie jest też ważnym procesem w chemii, bo używa się go do produkcji różnych substancji chemicznych. Jak widać, to istotna sprawa!

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

W nieopisanej butelce prawdopodobnie znajduje się roztwór zasadowy. Wskaż odczynnik, który pozwoli to zweryfikować?

A. Roztwór chlorku potasu o stężeniu 1 mol/dm3
B. Alkoholowy roztwór fenoloftaleiny o stężeniu 2%
C. Roztwór kwasu siarkowego(VI) o stężeniu 2%
D. Roztwór wodorotlenku potasu o stężeniu 0,5 mol/dm3

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Alkoholowy roztwór fenoloftaleiny o stężeniu 2% jest skutecznym odczynnikiem do wykrywania odczynu zasadowego. Fenoloftaleina, będąca wskaźnikiem pH, zmienia swój kolor z bezbarwnego na różowy w obecności roztworów o odczynie zasadowym, co czyni ją idealnym narzędziem w laboratoriach chemicznych. Jej zastosowanie w praktyce obejmuje nie tylko kontrolę odczynu pH w różnorodnych procesach chemicznych, ale również w edukacji, gdzie uczniowie uczą się o reakcjach kwasowo-zasadowych. Warto zauważyć, że fenoloftaleina działa w zakresie pH od około 8,2 do 10,0, co oznacza, że będzie wyraźnie widoczna w roztworach zasadowych. W kontekście standardów laboratoryjnych, korzystanie z fenoloftaleiny dla analizy pH jest zgodne z dobrymi praktykami, ponieważ pozwala na szybkie i efektywne określenie odczynu, co jest kluczowe w wielu zastosowaniach, takich jak analiza wody, synteza chemiczna, czy też kontrola jakości produktów chemicznych.

Pytanie 7

Przy transporcie próbek wody zaleca się, aby próbki były

A. zalkalizowane
B. zakwaszone do pH < 6
C. schłodzone do temperatury 2 - 5°C
D. narażone na działanie światła

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Schłodzenie próbek wody do temperatury 2 - 5°C to naprawdę ważny krok, gdy transportujemy te próbki. Chodzi o to, żeby zmniejszyć wszelkie zmiany w ich składzie chemicznym i biologicznym. Niska temperatura spowalnia mikroorganizmy i różne reakcje chemiczne, które mogą zniszczyć próbki. W praktyce, według wytycznych takich organizacji jak EPA albo ISO, próbki powinny być transportowane w termosach czy chłodnicach, żeby zachować ich właściwości fizykochemiczne. Na przykład, jeśli analizujemy wodę pitną, to dobre utrzymanie temperatury jest konieczne dla dokładnych wyników badań, co jest kluczowe dla zdrowia publicznego. Dodatkowo, schłodzenie próbek pomaga też w zachowaniu ich wartości analitycznej, co jest ważne, zwłaszcza w kontekście monitorowania jakości wód w środowisku. Dlatego naprawdę trzeba trzymać się tych standardów, żeby uzyskać wiarygodne wyniki.

Pytanie 8

Preparaty zawierające KOH (tzw. żrący potaż), oznaczone są symbolem S 1/2. Na podstawie informacji zawartych w tabeli, określ zasady przechowywania tych preparatów.

Numer zwrotu SWarunki bezpiecznego stosowaniaNumer zwrotu SWarunki bezpiecznego stosowania
S1Przechowywać pod zamknięciemS12Nie przechowywać pojemnika szczelnie zamkniętego
S2Chronić przed dziećmiS13Nie przechowywać razem z żywnością, napojami i karmą dla zwierząt
S3Przechowywać w chłodnym miejscuS15Przechowywać z dala od źródeł ciepła
S4Nie przechowywać w pomieszczeniach mieszkalnychS16Nie przechowywać w pobliżu źródeł zapłonu – nie palić tytoniu

A. Przechowywać w zamknięciu, z daleka od dzieci.
B. Nie przechowywać w szczelnie zamkniętym pojemniku.
C. Przechowywać z dala od źródeł ciepła i ognia.
D. Przechowywać w zamkniętym, chłodnym miejscu.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'Przechowywać w zamknięciu, z daleka od dzieci.' jest zgodna z obowiązującymi normami bezpieczeństwa oraz zasadami przechowywania substancji chemicznych. Preparaty zawierające KOH, klasyfikowane jako substancje niebezpieczne, wymagają szczególnych środków ostrożności. Symbol S1 wskazuje, że powinny być one przechowywane w zamknięciu, co ma na celu minimalizację ryzyka przypadkowego dostępu do nich. Z kolei symbol S2 podkreśla konieczność ochrony przed dziećmi, co jest kluczowe, aby zapobiec nieszczęśliwym wypadkom. W praktyce oznacza to, że substancje te powinny być składowane w miejscach niedostępnych dla osób postronnych, zwłaszcza dzieci, oraz w odpowiednich pojemnikach, które zapobiegają ich przypadkowemu otwarciu. Dobre praktyki w laboratoriach i gospodarstwach domowych sugerują, aby takie preparaty były trzymane w zamkniętych szafkach z dodatkowymi zabezpieczeniami, co dodatkowo zwiększa bezpieczeństwo. Właściwe przechowywanie nie tylko chroni zdrowie, ale również minimalizuje ryzyko zanieczyszczenia środowiska.

Pytanie 9

Który z wskaźników nie jest używany w alkacymetrii?

A. Błękit tymolowy
B. Skrobia
C. Fenoloftaleina
D. Oranż metylowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Skrobia jest polisacharydem, który nie pełni funkcji wskaźnika pH w reakcjach alkacymetrycznych. W alkacymetrii, kluczowe jest monitorowanie zmian pH roztworu, co pozwala na określenie punktu równoważności. W tym kontekście, wskaźniki takie jak oranż metylowy, fenoloftaleina oraz błękit tymolowy są stosowane ze względu na ich zdolność do zmiany koloru w określonym zakresie pH. Oranż metylowy zmienia kolor w pH od 3,1 do 4,4, co czyni go użytecznym w reakcjach kwasowo-zasadowych w środowisku kwasowym. Fenoloftaleina natomiast zmienia kolor z bezbarwnego na różowy w pH od 8,2 do 10,0, co jest istotne w alkacymetrii zasadowej. Błękit tymolowy działa w zakresie pH 6,0 - 7,6, co pozwala na wykrywanie przejścia z kwasowego do obojętnego. W przeciwieństwie do tych wskaźników, skrobia nie jest używana w alkacymetrii, a jej zastosowanie koncentruje się głównie w analizie jakościowej, jako reagent do wykrywania jodu.

Pytanie 10

Reakcja neutralizacji wodorotlenku sodu z kwasem solnym zrealizowana jest zgodnie z równaniem:
NaOH + HCl → NaCl + H2O Masy molowe: MNaOH = 40 g/mol, MHCl = 36,5 g/mol Aby zneutralizować 10 g wodorotlenku sodu, wymagane jest

A. 9,125 g roztworu kwasu solnego o stężeniu 38%
B. 36,5 g roztworu kwasu solnego o stężeniu 38%
C. 24,013 g roztworu kwasu solnego o stężeniu 38%
D. 10 g roztworu kwasu solnego o stężeniu 38%

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby zobojętnić 10 g wodorotlenku sodu (NaOH), najpierw musimy obliczyć liczbę moli NaOH. Liczba moli obliczana jest ze wzoru n = m/M, gdzie m to masa, a M to masa molowa substancji. Masy molowe NaOH wynoszą 40 g/mol, więc liczba moli NaOH to 10 g / 40 g/mol = 0,25 mol. Reakcja zobojętniania NaOH z kwasem solnym (HCl) jest jednoczynnikowa, co oznacza, że jeden mol NaOH reaguje z jednym molem HCl. Zatem potrzebujemy 0,25 mola HCl do zobojętnienia 0,25 mola NaOH. Masy molowe HCl wynoszą 36,5 g/mol, więc masa HCl potrzebna do reakcji wynosi 0,25 mol * 36,5 g/mol = 9,125 g. Roztwór kwasu solnego o stężeniu 38% oznacza, że w 100 g roztworu znajduje się 38 g HCl. Aby obliczyć masę roztworu potrzebnego do uzyskania 9,125 g HCl, można skorzystać ze wzoru: masa roztworu = masa HCl / (stężenie HCl/100) = 9,125 g / (38/100) = 24,013 g. Tak więc do zobojętnienia 10 g NaOH potrzeba 24,013 g roztworu kwasu solnego o stężeniu 38%. Takie obliczenia są kluczowe w laboratoriach chemicznych, gdzie precyzyjne dawkowanie reagentów jest niezbędne dla uzyskania dokładnych wyników.

Pytanie 11

Podczas łączenia bezwodnego etanolu z wodą występuje zjawisko kontrakcji. Gdy zmieszamy 1000 cm3 wody oraz 1000 cm3 etanolu, otrzymujemy roztwór o objętości

A. 1936 cm3
B. 2000 cm3
C. 2036 cm3
D. 2010 cm3

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Podczas mieszania bezwodnego etanolu z wodą zachodzi zjawisko kontrakcji, co oznacza, że objętość roztworu jest mniejsza niż suma objętości składników. W przypadku zmieszania 1000 cm³ etanolu i 1000 cm³ wody, rzeczywista objętość uzyskanego roztworu wynosi 1936 cm³. Zjawisko to jest wynikiem interakcji cząsteczek etanolu i wody, które prowadzą do efektywnej kompaktacji cząsteczek. W praktyce, takie zjawisko ma kluczowe znaczenie w chemii analitycznej oraz procesach przemysłowych, gdzie precyzyjne dawkowanie reagentów jest niezbędne. Wiedza o kontrakcji objętości jest również istotna w produkcji napojów alkoholowych, gdzie dokładne pomiary składników mają wpływ na końcowy produkt. Zastosowanie tej wiedzy w praktyce pozwala uniknąć błędów w przygotowywaniu roztworów oraz zapewnia lepszą kontrolę nad procesami chemicznymi.

Pytanie 12

W standardowym układzie destylacyjnym, który ma ukośną chłodnicę, wykorzystuje się chłodnicę

A. kulistą
B. palcową
C. spiralną
D. prostą

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Destylacja to proces rozdzielania składników mieszaniny na podstawie różnicy w temperaturach wrzenia. W zestawie z chłodnicą prostą stosuje się ją ze względu na jej efektywność w chłodzeniu pary, co jest kluczowe dla skutecznego kondensowania substancji. Chłodnica prosta składa się z jednego, prostego odcinka, co zapewnia wystarczająco dużą powierzchnię wymiany ciepła. Dzięki temu, para może skutecznie skraplać się w chłodnicy, co prowadzi do uzyskania czystego destylatu. W praktycznych zastosowaniach, chłodnice proste są często wykorzystywane w laboratoriach chemicznych, a także w przemyśle, gdzie konieczne jest osiągnięcie wysokiego stopnia czystości produktów. Warto również zauważyć, że zgodnie z dobrą praktyką laboratoryjną, wybór rodzaju chłodnicy powinien być dostosowany do specyfiki przeprowadzanego procesu, co podkreśla znaczenie znajomości właściwości różnych typów chłodnic w kontekście ich zastosowania w destylacji.

Pytanie 13

Związki chromu(VI) oddziałują negatywnie na środowisko, ponieważ

A. powodują nadmierny wzrost roślinności w zbiornikach wodnych
B. stanowią główną przyczynę korozji urządzeń technicznych w wodzie
C. prowadzą do zakwaszenia wód
D. wykazują toksyczne działanie na organizmy żywe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Związki chromu(VI), takie jak chromiany i dichromiany, są znane z ich wysokiej toksyczności dla organizmów żywych. Działają one na poziomie komórkowym, wpływając na różne procesy biochemiczne oraz powodując uszkodzenia DNA, co może prowadzić do nowotworów. Chrom(VI) jest szczególnie niebezpieczny, ponieważ ma zdolność do przenikania przez błony komórkowe i wywoływania reakcje oksydacyjne, które mogą prowadzić do stresu oksydacyjnego w komórkach. Z tego powodu substancje te są klasyfikowane jako substancje niebezpieczne i wymagają szczególnej ostrożności podczas transportu oraz przechowywania. W praktyce, w zakładach przemysłowych, gdzie stosuje się związki chromu(VI), należy wdrażać odpowiednie środki ochrony, takie jak systemy wentylacyjne, osobiste zabezpieczenia dla pracowników oraz ścisłe kontrole emisji do środowiska. Przykładem standardów, które regulują te kwestie, są normy ISO 14001 dotyczące zarządzania środowiskowego oraz dyrektywy unijne dotyczące substancji niebezpiecznych. Dzięki tym praktykom można minimalizować ryzyko związane z wykorzystaniem tych toksycznych substancji.

Pytanie 14

Jakie substancje wykorzystuje się do wykrywania obecności jonów chlorkowych w wodzie mineralnej?

A. roztwór azotanu srebra
B. roztwór szczawianu potasu
C. roztwór chlorku baru
D. uniwersalny papierek wskaźnikowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Roztwór azotanu srebra (AgNO3) jest kluczowym odczynnikiem w analizie chemicznej do wykrywania jonów chlorkowych (Cl-) w wodzie mineralnej. Po dodaniu azotanu srebra do próby zawierającej jony chlorkowe, zachodzi reakcja, w wyniku której powstaje biały osad chlorku srebra (AgCl). Reakcja ta jest równaniem: AgNO3 + NaCl → AgCl + NaNO3. Osad chlorku srebra jest nierozpuszczalny w wodzie, co czyni tę metodę bardzo efektywną w jakościowym wykrywaniu anionów chlorkowych. Praktyczne zastosowanie tej metody można zaobserwować w laboratoriach analitycznych, gdzie monitoruje się jakość wód mineralnych, aby spełniały one normy zdrowotne. Ponadto, metoda ta jest zgodna z wytycznymi organizacji takich jak ISO, co podkreśla jej wiarygodność i powszechne uznanie w branży analitycznej.

Pytanie 15

Wskaż zbiór substancji, które po rozpuszczeniu w wodzie stają się elektrolitami?

A. Kwas solny, gliceryna, tlenek siarki(VI)
B. Glukoza, kwas azotowy(V), wodorotlenek wapnia
C. Cukier, sól stołowa, ocet
D. Chlorek sodu, wodorotlenek sodu, kwas siarkowy(VI)

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa odpowiedź to chlorek sodu, wodorotlenek sodu oraz kwas siarkowy(VI), ponieważ są to substancje, które w rozpuszczalniku wodnym dysocjują na jony. Elektrolity to substancje, które w roztworach wodnych przewodzą prąd elektryczny dzięki obecności naładowanych cząsteczek – jonów. Chlorek sodu (NaCl) po rozpuszczeniu w wodzie dissocjuje na jony sodu (Na+) i jony chlorkowe (Cl-), co czyni go doskonałym elektrolitem, często stosowanym w przemyśle spożywczym oraz w procesach biologicznych. Wodorotlenek sodu (NaOH) również rozkłada się na jony Na+ i OH-, co czyni go silnym elektrolitem, wykorzystywanym w wielu procesach chemicznych, w tym w produkcji mydeł i detergentów. Kwas siarkowy(VI) (H2SO4) w wodzie dissocjuje, tworząc jony H+ oraz jony SO4^2-, co sprawia, że jest jednym z najsilniejszych elektrolitów i znajduje zastosowanie w akumulatorach kwasowo-ołowiowych oraz w przemyśle chemicznym. Zrozumienie roli elektrolitów jest kluczowe nie tylko w chemii, ale również w biologii oraz medycynie, gdzie ich równowaga ma istotne znaczenie dla funkcjonowania organizmu.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Sączków o najmniejszych średnicach, nazywanych "twardymi" i oznaczonych kolorem niebieskim, używa się do filtracji osadów?

A. serowatych
B. grubokrystalicznych
C. galaretowatych
D. drobnokrystalicznych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sączki o najmniejszych porach, oznaczane kolorem niebieskim, są przeznaczone do sączenia osadów drobnokrystalicznych. Te sączki charakteryzują się wysoką zdolnością do zatrzymywania cząstek stałych o niewielkich rozmiarach, co czyni je idealnym narzędziem w procesach laboratoryjnych i przemysłowych, gdzie wymagana jest wysoka jakość filtracji. Przykładem zastosowania takich sączków może być oczyszczanie roztworów chemicznych w laboratoriach analitycznych, gdzie istotne jest usunięcie wszelkich zanieczyszczeń, które mogą wpłynąć na wyniki pomiarów. Ponadto, w branży farmaceutycznej, sączki te są wykorzystywane do filtracji substancji aktywnych, co zapewnia ich czystość i skuteczność. Stosowanie sączków z odpowiednią porowatością zgodnie z wymaganiami procesu filtracji jest zgodne z normami ISO i innymi standardami branżowymi, co podkreśla znaczenie ich właściwego doboru.

Pytanie 19

Do metalowego sprzętu laboratoryjnego używanego w praktykach analitycznych zalicza się

A. bagietka
B. statyw
C. zlewka
D. eksykator

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Statyw jest kluczowym elementem wyposażenia w laboratoriach analitycznych, używanym do stabilnego podtrzymywania różnych narzędzi i urządzeń, takich jak probówki czy kolby. Jego głównym celem jest zapewnienie bezpieczeństwa i precyzji podczas przeprowadzania doświadczeń, co jest niezbędne w pracy laboratoryjnej. Użycie statywu minimalizuje ryzyko przypadkowego przewrócenia się substancji chemicznych, co może prowadzić do niebezpiecznych sytuacji. Dobre praktyki laboranckie wskazują, że stabilne mocowanie sprzętu zwiększa dokładność pomiarów i powtarzalność wyników. Ponadto, statyw może być wykorzystywany w połączeniu z innymi narzędziami, takimi jak palniki Bunsena, co pozwala na przeprowadzanie bardziej złożonych eksperymentów. Warto również zauważyć, że w zależności od zastosowania, statywy mogą mieć różne konstrukcje i materiały, co wpływa na ich funkcjonalność i odporność na działanie substancji chemicznych.

Pytanie 20

Proces przesiewania próbki prowadzi się za pomocą urządzenia przedstawionego na rysunku

Tabela. Sposoby utrwalania próbek wody i ścieków, miejsce analizy, dopuszczalny czas przechowywania próbek
Oznaczany parametrRodzaj naczynia do przechowywania próbkiSposób utrwalania próbkiMiejsce wykonania analizyDopuszczalny czas przechowywania próbki
Chlorkiszklane
lub polietylenowe
-laboratorium96 godzin
Chlor pozostałyszklane-w miejscu
pobrania próbki
-
ChZTszklanezakwaszenie do pH<2,
schłodzenie
do temperatury 2-5°C
laboratorium24 godziny
Kwasowośćszklane
lub polietylenowe
schłodzenie
do temperatury 2-5°C
laboratorium4 godziny
Manganszklane
lub polietylenowe
zakwaszenie do pH<2,
schłodzenie
do temperatury 2-5°C
laboratorium48 godzin

A. A.
B. D.
C. B.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Proces przesiewania próbki za pomocą sita laboratoryjnego, które zostało przedstawione na rysunku, jest kluczowym etapem w analityce materiałów sypkich. Sita laboratoryjne umożliwiają rozdzielanie cząstek na podstawie ich rozmiaru, co jest istotne w wielu dziedzinach, w tym w chemii, biologii i inżynierii materiałowej. Standardowe sita są zgodne z normami, takimi jak ISO 3310, co zapewnia dokładność i powtarzalność wyników. Na przykład, w badaniach ziemi i minerałów, przesiewanie jest często pierwszym krokiem w analizach granulometrycznych, pozwalając na ocenę struktury i składu próbki. W przemyśle farmaceutycznym, proces ten jest niezbędny do zapewnienia jednorodności składników w lekach. Zastosowanie sita laboratoryjnego przyczynia się do uzyskania wiarygodnych danych badawczych, co jest fundamentem dla podejmowania właściwych decyzji technologicznych i jakościowych w procesach produkcyjnych.

Pytanie 21

W chemicznym laboratorium apteczka pierwszej pomocy powinna zawierać

A. środki opatrunkowe
B. leki przeciwbólowe
C. spirytus salicylowy
D. leki nasercowe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Środki opatrunkowe są niezbędnym elementem apteczki pierwszej pomocy w laboratorium chemicznym, ponieważ ich podstawową funkcją jest zabezpieczenie ran oraz ochrona przed zakażeniem. W przypadku wystąpienia urazów, takich jak skaleczenia czy oparzenia, odpowiednie opatrunki umożliwiają szybkie udzielenie pomocy i zmniejszają ryzyko późniejszych powikłań. Na przykład, w sytuacji, gdy pracownik ma do czynienia z chemikaliami, niektóre z nich mogą powodować podrażnienia lub oparzenia. Szybkie zastosowanie opatrunku może złagodzić skutki i przyspieszyć proces gojenia. Dodatkowo, zgodnie z wytycznymi organizacji takich jak OSHA (Occupational Safety and Health Administration) oraz NFPA (National Fire Protection Association), każda przestrzeń robocza w laboratoriach powinna być odpowiednio wyposażona w materiały opatrunkowe, aby zapewnić bezpieczeństwo pracowników. Warto również pamiętać o regularnym przeglądaniu oraz uzupełnianiu apteczki, aby zawsze była gotowa do użycia, gdy zajdzie taka potrzeba.

Pytanie 22

Skrót "cz." na etykiecie odczynnika chemicznego wskazuje, że

A. zawartość zanieczyszczeń nie przekracza 0,01-0,001%
B. odczynnik jest przeznaczony do analiz spektralnych
C. zawartość głównego składnika wynosi 99-99,9%
D. zawartość głównego składnika wynosi 99,9-99,99%

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Skrót 'cz.' oznacza, że zawartość głównego składnika odczynnika chemicznego wynosi od 99% do 99,9%. Jest to standard stosowany w chemii analitycznej, gdzie wysoka czystość substancji chemicznych jest kluczowa dla uzyskiwania wiarygodnych wyników analiz. W praktyce oznacza to, że stosując reagenty oznaczone tym skrótem, możemy mieć wysoką pewność co do ich jakości i niezawodności. Przykładem zastosowania jest przygotowanie roztworów wzorcowych, gdzie precyzyjne stężenie substancji chemicznych jest niezbędne do przeprowadzenia dokładnych pomiarów. Reagenty o wysokiej czystości są również niezbędne w laboratoriach badawczych, gdzie niewielkie zanieczyszczenia mogą prowadzić do błędów w wynikach eksperymentów. Standardy takie jak ISO 9001 czy ASTM E2412-10 podkreślają znaczenie stosowania reagentów o określonej czystości w różnych procesach laboratoryjnych.

Pytanie 23

Sposoby utrwalania i przechowywania próbek wody przeznaczonych do badań fizykochemicznych.
Próbkę wody przeznaczoną do oznaczenia zawartości metali poddaje się utrwalaniu za pomocą

OznaczenieSposób utrwalania i przechowywania
BarwaPrzechowywać w ciemności
MętnośćPrzechowywać w ciemności
TwardośćpH = 3 z użyciem HNO3
OWO0,7 ml HCl/30 ml próbki
ChZTpH 1- 2 z użyciem H2SO4
FosforPrzechowywać w temperaturze 1-5°C
GlinpH 1-2 z użyciem HNO3
ŻelazopH 1-2 z użyciem HNO3
UtlenialnośćpH1-2 z użyciem H2SO4, Przechowywać w ciemności

A. kwasu fosforowego(V).
B. kwasu solnego.
C. kwasu azotowego(V).
D. kwasu siarkowego(VI).

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kwas azotowy(V) (HNO3) jest powszechnie stosowanym środkiem do utrwalania próbek wody przeznaczonych do badań fizykochemicznych, zwłaszcza w kontekście oznaczania metali ciężkich. Działa poprzez stabilizację rozpuszczonych metali, takich jak glin czy żelazo, co jest kluczowe dla uzyskania dokładnych wyników analizy. Utrwalanie próbek przy użyciu HNO3 zapobiega osadzaniu się tych metali oraz ich redystrybucji w czasie transportu i przechowywania próbek. To podejście jest zgodne z wytycznymi przedstawionymi w standardach analitycznych, takich jak ISO 5667, które podkreślają znaczenie odpowiednich metod przygotowania próbek dla rzetelności wyników. Ponadto, kwas azotowy(V) zapewnia odpowiednie pH, co jest istotne dla zachowania stabilności chemicznej analizowanych substancji. W praktyce, stosowanie HNO3 w laboratoriach badawczych jest standardową procedurą, co potwierdzają liczne publikacje naukowe oraz dokumenty normatywne.

Pytanie 24

Jakie oznaczenie znajduje się na naczyniach szklanych kalibrowanych do wlewu?

A. Ex
B. In
C. W
D. R

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oznaczenie In na naczyniach szklanych kalibrowanych na wlew wskazuje, że naczynie to jest zaprojektowane do precyzyjnego pomiaru objętości cieczy, która ma zostać wlane w jego wnętrze. W praktyce oznaczenie to oznacza, że objętość wskazana na naczyniu jest równa objętości cieczy, gdy jej poziom osiąga oznaczenie kalibracyjne. Naczynia te są szeroko stosowane w laboratoriach chemicznych, biologicznych oraz w przemyśle farmaceutycznym, gdzie dokładność pomiarów jest kluczowa. Przykładem zastosowania może być przygotowywanie roztworów o określonej stężeniu, gdzie precyzyjna objętość reagentów jest niezbędna do uzyskania powtarzalnych wyników analiz. Warto również zwrócić uwagę na standardy ISO oraz normy ASTM, które regulują wymagania dotyczące kalibracji naczyń, co zapewnia wysoką jakość i rzetelność wyników eksperymentalnych.

Pytanie 25

Aby odcedzić galaretowaty osad, konieczne jest użycie sączka

A. średni
B. miękki
C. sztywny
D. utwardzony

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'miękki' jest prawidłowa, ponieważ do przesączania galaretowatego osadu najlepiej zastosować sączek o właściwościach umożliwiających skuteczne oddzielanie cieczy od stałych cząstek. Miękkie sączki charakteryzują się zdolnością do wchłaniania większych cząstek, co czyni je odpowiednim wyborem w przypadku substancji o konsystencji galaretowatej. Przykładem sączków miękkich są te wykonane z papieru filtracyjnego, które mają wysoką porowatość i są w stanie zatrzymać cząstki, jednocześnie pozwalając na przepływ cieczy. W zastosowaniach laboratoryjnych, takie jak analiza chemiczna lub mikrobiologiczna, użycie odpowiednich sączków jest kluczowe dla uzyskania czystych i precyzyjnych wyników. Ponadto, użycie miękkiego sączka minimalizuje ryzyko uszkodzenia delikatnych cząstek, co jest istotne w przypadku analizy próbek, w których struktura materiału jest istotna dla dalszych badań. Zgodnie z normami ISO i dobrą praktyką laboratoryjną, dobór odpowiedniego sączka jest kluczowym etapem procesu filtracji.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Na podstawie danych zawartych w tabeli wskaż, który dodatek należy zastosować, w celu konserwacji próbek wody przeznaczonych do oznaczania jej twardości.

Tabela. Techniki konserwacji próbek wody
Stosowany dodatek
lub technika
Rodzaje próbek, do których dodatek lub technika jest stosowana
Kwas siarkowy(VI)zawierające węgiel organiczny, oleje lub tłuszcze, przeznaczone do oznaczania ChZT, zawierające aminy lub amoniak
Kwas azotowy(V)zawierające związki metali
Wodorotlenek soduzawierające lotne kwasy organiczne lub cyjanki
Chlorek rtęci(II)zawierające biodegradowalne związki organiczne oraz różne formy azotu i fosforu
Chłodzenie w
temperaturze 4°C
zawierające mikroorganizmy, barwę, zapach, organiczne formy węgla, azotu i fosforu, przeznaczone do określenia kwasowości, zasadowości oraz BZT

A. Kwas siarkowy(VI).
B. Wodorotlenek sodu.
C. Kwas azotowy(V).
D. Chlorek rtęci(II).

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kwas azotowy(V) jest powszechnie stosowany w laboratoriach do konserwacji próbek wody, zwłaszcza gdy istnieje potrzeba oznaczania twardości wody. Twardość wody jest głównie spowodowana obecnością kationów wapnia i magnezu, które mogą reagować z zanieczyszczeniami. Kwas azotowy(V) działa jako środek konserwujący, stabilizując próbki i zapobiegając ich degradacji przy jednoczesnym zachowaniu właściwości chemicznych. W praktyce, dodatek tego kwasu pozwala na dłuższe przechowywanie próbek przed analizą, co jest kluczowe dla dokładnych wyników. W standardach laboratoriach analitycznych, takich jak ISO 5667 dotyczący pobierania próbek wody, zaleca się stosowanie odpowiednich środków konserwujących, w tym kwasu azotowego(V), w celu uzyskania rzetelnych wyników analitycznych. Stosowanie tego kwasu w praktyce zapewnia, że próbki zachowują swoją integralność chemiczną, co jest niezbędne do precyzyjnego określenia twardości wody.

Pytanie 28

W celu uzyskania 500 g mieszaniny oziębiającej o temperaturze -18oC należy zmieszać

Tabela. Mieszaniny oziębiające
Temperatura
mieszaniny [°C]
Skład mieszaninyStosunek
masowy
-2Woda + chlorek amonu10 : 3
-15Woda + rodanek amonu10 : 13
-18Lód + chlorek amonu10 : 3
-21Lód + chlorek sodu3 : 1
-22Lód + chlorek amonu + azotan(V) amonu25 : 5 : 11
-25Lód + azotan(V) amonu1 : 1

A. 250,0 g wody i 250,0 g rodanku amonu.
B. 375,0 g lodu i 125,0 g chlorku sodu.
C. 384,6 g lodu i 115,4 g chlorku amonu.
D. 384,6 g wody i 115,4 g chlorku amonu.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby uzyskać mieszaninę oziębiającą o temperaturze -18°C, kluczowe jest zrozumienie zasad termodynamiki i reakcji chemicznych zachodzących podczas mieszania substancji. W przypadku lodu i chlorku amonu, lód służy jako substancja o niskiej temperaturze, a chlorek amonu działa jako solwat, który wpływa na obniżenie temperatury roztworu. Stosunek masowy 10:3, w którym należy zmieszać te dwie substancje, zapewnia optymalne warunki do osiągnięcia pożądanej temperatury. Z przeprowadzonych obliczeń wynika, że mieszanka 384,6 g lodu i 115,4 g chlorku amonu pozwala uzyskać 500 g mieszaniny o odpowiedniej temperaturze. Praktyczne zastosowanie tej wiedzy można znaleźć w wielu dziedzinach, takich jak chłodnictwo i przemysł spożywczy, gdzie kontrola temperatury jest kluczowa. Stosowanie odpowiednich proporcji substancji chemicznych jest zgodne z najlepszymi praktykami w laboratoriach chemicznych oraz przemyśle, co pozwala na skuteczne i bezpieczne uzyskiwanie pożądanych efektów.

Pytanie 29

Ile gramów 80% kwasu mrówkowego trzeba zważyć, aby uzyskać 200 g 20% roztworu tego kwasu?

A. 50g
B. 200g
C. 20g
D. 80g

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć, ile gramów 80% kwasu mrówkowego należy użyć do przygotowania 200 g 20% roztworu, stosujemy zasadę zachowania masy oraz obliczenia dotyczące stężenia. Zacznijmy od ustalenia, ile czystego kwasu mrówkowego potrzebujemy w roztworze końcowym. 20% roztwór o masie 200 g zawiera 40 g czystego kwasu mrówkowego (20% z 200 g = 0,2 * 200 g). Teraz musimy ustalić, ile gramów 80% roztworu potrzeba, aby uzyskać te 40 g czystego kwasu. W 80% roztworze znajduje się 0,8 g czystego kwasu w 1 g roztworu. Dlatego, aby uzyskać 40 g czystego kwasu, musimy odważyć 50 g 80% roztworu (40 g / 0,8 = 50 g). To podejście jest zgodne z praktycznymi zasadami przygotowywania roztworów chemicznych, gdzie precyzyjne obliczenia mają kluczowe znaczenie dla uzyskania pożądanych stężeń. Takie umiejętności są niezbędne w chemii analitycznej oraz w laboratoriach, gdzie dokładność ma znaczenie dla wyników eksperymentów i analiz.

Pytanie 30

Resztki szkła, osadników czy inne odpady stałe powstałe w laboratorium analitycznym powinny być umieszczone

A. w pojemnikach na odpady komunalne
B. w workach z polietylenu i oznaczyć zawartość
C. w szklanych słoikach z plastikowym wieczkiem
D. w kartonowych opakowaniach

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Umieszczanie odpadów stałych typu resztki sączków oraz zbitego szkła w pojemnikach na odpady komunalne jest zgodne z obowiązującymi normami i regulacjami dotyczącymi gospodarki odpadami. Tego rodzaju odpady, ze względu na swoje właściwości, powinny być segregowane i składowane w odpowiednich pojemnikach, które są przystosowane do tego celu. Zgodnie z dyrektywami unijnymi i krajowymi, odpady te nie mogą być wrzucane do ogólnych pojemników, ponieważ mogą stwarzać zagrożenie dla ludzi oraz środowiska. Na przykład, zbite szkło w laboratoriach analitycznych wymaga szczególnej uwagi, ponieważ może powodować urazy. Praktyczne podejście do zarządzania tymi odpadami obejmuje nie tylko ich odpowiednie pakowanie, ale także prowadzenie dokumentacji dotyczącej ich pochodzenia i rodzaju. Odpowiednia segregacja i składowanie odpadów są kluczowe dla ich późniejszego przetwarzania oraz recyklingu, co pozwala na minimalizację negatywnego wpływu na środowisko i zdrowie publiczne.

Pytanie 31

Aby otrzymać czystą substancję, próbka z nitroaniliną została poddana procesowi krystalizacji. Jaką masę nitroaniliny użyto do krystalizacji, jeśli uzyskano 1,5 g czystego związku, a wydajność krystalizacji wyniosła 75%?

A. 2 g
B. 0,5 g
C. 50 g
D. 0,02 g

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć masę odważki nitroaniliny użytej do krystalizacji, należy zastosować wzór na wydajność krystalizacji, który jest wyrażony jako stosunek masy uzyskanego produktu do masy początkowej próbki, pomnożony przez 100%. W tym przypadku znamy masę czystego związku, która wynosi 1,5 g, oraz wydajność krystalizacji równą 75%. Możemy zatem zastosować równanie: masa próbki = masa czystego związku / (wydajność krystalizacji / 100%). Podstawiając wartości, otrzymujemy masę próbki równą 1,5 g / 0,75, co daje 2 g. To oznacza, że do uzyskania 1,5 g czystej nitroaniliny potrzebna była masa próbki wynosząca 2 g. Jednak pytanie dotyczy masy odważki, którą można obliczyć jako 2 g * 0,75 = 1,5 g, co jest mylące, ponieważ pytanie nie precyzuje, że chodzi o masę próbki w kontekście czystej substancji. W praktyce, krystalizacja jest techniką stosowaną w chemii do oczyszczania substancji, odgrywając kluczową rolę w produkcji farmaceutycznej oraz materiałowej, gdzie czystość substancji jest kluczowa.

Pytanie 32

Do szklanych narzędzi laboratoryjnych wielomiarowych używanych w analizach ilościowych należy

A. pipeta Mohra
B. kolba stożkowa
C. zlewka
D. cylinder z podziałką

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Cylinder z podziałką jest jednym z kluczowych elementów sprzętu laboratoryjnego wykorzystywanego w analizie ilościowej, ze względu na swoją zdolność do precyzyjnego pomiaru objętości cieczy. Oferuje on wyraźne podziały, które pozwalają na dokładne odczytanie objętości, co jest niezbędne w wielu eksperymentach chemicznych i biologicznych. Użycie cylindra z podziałką jest standardem w laboratoriach, gdzie wymagana jest wysoka dokładność i powtarzalność pomiarów. Przykładowo, w analizie stężenia roztworu chemicznego, cylinder umożliwia odmierzenie dokładnej ilości reagentów, co jest kluczowe dla uzyskania wiarygodnych wyników. W praktyce laboratoryjnej, zgodnie z normami ISO, korzystanie z odpowiednich narzędzi pomiarowych, takich jak cylinder z podziałką, jest wymogiem, który zapewnia jakość i rzetelność wyników badań. Ponadto, cylinder z podziałką jest łatwy w użyciu i czyszczeniu, co czyni go praktycznym wyborem w codziennej pracy laboratoryjnej.

Pytanie 33

Przedstawiony schemat ideowy ilustruje proces syntezy z propanu C3H8 → C3H7Cl → C3H6 → C3H6(OH)2 → C3H5(OH)2Cl → C3H5(OH)3

A. glikolu propylowego
B. glikolu etylowego
C. glicyny
D. glicerolu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Glicerol, znany również jako 1,2,3-propanotriol, jest trójwodorotlenowym alkoholem, który odgrywa kluczową rolę w biochemii oraz przemyśle chemicznym. Proces przekształcania propanu (C3H8) w glicerol odbywa się poprzez szereg reakcji chemicznych, które obejmują chlorowanie, dehydratację oraz hydrolizę. Glicerol znajduje zastosowanie w wielu dziedzinach, w tym w farmaceutyce jako środek nawilżający i rozpuszczalnik, a także w kosmetykach ze względu na swoje właściwości humektantne. Dodatkowo, glicerol jest wykorzystywany w przemyśle spożywczym jako substancja słodząca i stabilizująca. W kontekście dobrych praktyk branżowych, glicerol jest stosowany zgodnie z normami bezpieczeństwa żywności oraz regulacjami dotyczącymi kosmetyków, co podkreśla jego wszechstronność i znaczenie w różnych sektorach. Znajomość tego procesu i właściwości glicerolu jest istotna dla chemików oraz inżynierów zajmujących się produkcją substancji chemicznych oraz formulacjami kosmetycznymi.

Pytanie 34

Do 300 g wody o temperaturze 30oC dodano 120 g substancji, co zaowocowało powstaniem roztworu nasyconego. Jaką ma rozpuszczalność ta substancja w temperaturze 30oC?

A. 20 g
B. 40 g
C. 50 g
D. 30 g

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 40 g jest poprawna, ponieważ oznacza to, że w 300 g wody w temperaturze 30°C maksymalna ilość substancji, która może się w niej rozpuścić, wynosi właśnie 40 g. Rozpuszczalność jest charakterystyczną właściwością substancji i jest określona dla danej temperatury. W praktyce oznacza to, że w celu uzyskania roztworu nasyconego należy dodać substancję do wody, aż osiągnie się stan, w którym wszelka dodatkowa substancja nie rozpuści się, co jest praktycznym krokiem przy przygotowywaniu roztworów w laboratoriach chemicznych. Wartości rozpuszczalności są kluczowe w różnych zastosowaniach, na przykład w przemyśle farmaceutycznym, gdzie odpowiednia rozpuszczalność substancji aktywnej wpływa na efektywność leku. Zrozumienie tego parametru pozwala na precyzyjne formułowanie roztworów o odpowiednich stężeniach, co jest niezbędne w procesach produkcyjnych. Dodatkowo, wiedza o rozpuszczalności substancji jest istotna w analizach chemicznych oraz w ocenie wpływu czynników fizykochemicznych na procesy rozpuszczania.

Pytanie 35

Temperatura topnienia mocznika wynosi 133 °C. W celu określenia czystości preparatów tej substancji, przeprowadzono badania temperatury ich topnienia, uzyskując wyniki przedstawione w tabeli. Wskaż preparat o najmniejszym stopniu czystości.

PreparatABCD
Zakres temperatury topnienia [°C]132-133130-133125-133128-133

A. D.
B. B.
C. A.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź C jest prawidłowa, ponieważ temperatura topnienia czystego mocznika wynosi 133 °C. W przypadku analizy czystości substancji, kluczowym czynnikiem jest ocena temperatury topnienia - im niższa temperatura początkowa oraz szerszy zakres topnienia, tym większa obecność zanieczyszczeń w próbce. Preparat C osiąga temperaturę początkową topnienia na poziomie 125 °C, co wskazuje na obecność zanieczyszczeń obniżających jego punkt topnienia. Dodatkowo, zakres topnienia 125-133 °C również sugeruje, że substancja nie jest w pełni czysta, co jest zgodne z zasadami analizy chemicznej i standardami jakości. W praktyce, takie badania są istotne w przemyśle chemicznym, farmaceutycznym czy spożywczym, gdzie czystość substancji ma kluczowe znaczenie dla jakości końcowego produktu. Ważne jest, aby zapewnić odpowiednią kontrolę jakości, a metody takie jak pomiary temperatury topnienia są standardem w laboratoriach analitycznych, co umożliwia zapewnienie wysokich standardów jakości preparatów.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Korzystając z danych w tabeli wskaż, ile cm3 36% roztworu HCl należy użyć, aby przygotować 250 cm3 0,1-molowego roztworu tego kwasu.

% wagowy
[%]
d420
[g/cm3]
m HCl
w 100 cm3
[g/100cm3]
CM HCl
[mol/dm3]
301,149234,489,46
321,159337,1010,17
341,169139,7510,90
361,178942,4411,64

A. 2,13 cm3
B. 2,15 cm3
C. 2,52 cm3
D. 2,50 cm3

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby przygotować 250 cm³ 0,1-molowego roztworu HCl z 36% roztworu, użycie 2,15 cm³ tego roztworu jest poprawne. Obliczenia opierają się na zasadzie rozcieńczenia, która jest kluczowym pojęciem w chemii. Przygotowując roztwory, istotne jest, aby znać stężenie molowe roztworu wyjściowego oraz objętość roztworu, który chcemy uzyskać. W tym przypadku, 36% roztwór HCl ma stężenie molowe wynoszące około 10 mol/dm³. Aby obliczyć, ile tego roztworu potrzeba, stosujemy równanie rozcieńczenia: C1 * V1 = C2 * V2, gdzie C1 to stężenie roztworu wyjściowego, V1 to objętość roztworu wyjściowego, C2 to stężenie roztworu docelowego, a V2 to objętość roztworu docelowego. Po podstawieniu wartości i przekształceniu równania otrzymujemy, że V1 wynosi 2,15 cm³. Praktyczne zastosowanie tej wiedzy jest niezwykle istotne w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania powtarzalnych i wiarygodnych wyników eksperymentalnych. Dobrą praktyką jest również zawsze zwracać uwagę na jednostki oraz dokładność pomiaru, co jest fundamentalne w chemii analitycznej.

Pytanie 38

Instalacja, do której należy podłączyć palnik, powinna być pokryta farbą w kolorze

A. zielonym
B. żółtym
C. szarym
D. niebieskim

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'żółty' jest prawidłowa, ponieważ zgodnie z europejskimi standardami dotyczącymi oznaczeń kolorystycznych instalacji gazowych, szczególnie w kontekście palników, kolor żółty jest używany do oznaczania instalacji związanych z gazem. Takie oznaczenie ma na celu zwiększenie bezpieczeństwa, umożliwiając łatwe zidentyfikowanie instalacji gazowych w obiektach przemysłowych oraz mieszkalnych. Praktycznie, jeśli instalacja gazowa jest pomalowana na kolor żółty, operatorzy i serwisanci mogą szybko zidentyfikować, że mają do czynienia z systemem wymagającym szczególnej uwagi, co jest kluczowe w kontekście zapobiegania awariom. Dodatkowo, w dokumentacji technicznej wielu krajów europejskich, w tym Polskim Normie PN-EN 60079, podkreśla się znaczenie użycia odpowiednich kolorów do oznaczania instalacji, co ułatwia prace konserwacyjne i serwisowe. Użycie właściwego koloru minimalizuje ryzyko pomyłek i poprawia ogólne bezpieczeństwo w miejscu pracy.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Który symbol literowy umieszczany na naczyniach miarowych wskazuje na kalibrację do "wlewu"?

A. A
B. IN
C. EX
D. B

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'IN' oznacza, że to naczynie miarowe jest skalibrowane na 'wlew'. To jest naprawdę ważne, gdy chodzi o dokładne pomiary objętości cieczy. W praktyce to znaczy, że ilość cieczy, którą zobaczysz na naczyniu, odnosi się do tego, co wlewasz do środka, a nie do tego, co zostaje po opróżnieniu. Kiedy używasz naczynia z takim oznaczeniem, działasz zgodnie z normami ISO i metrologicznymi. To ma znaczenie, zwłaszcza w laboratoriach chemicznych lub medycznych, gdzie dokładne pomiary objętości są kluczowe. Używając naczyń oznaczonych jako 'IN', masz pewność, że otrzymujesz dokładną ilość płynu potrzebną do eksperymentów czy analiz. Warto też dodać, że to oznaczenie jest zwłaszcza istotne w badaniach, bo każda pomyłka w pomiarze może prowadzić do błędnych wyników.