Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 15 maja 2025 17:31
  • Data zakończenia: 15 maja 2025 17:51

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Podczas serwisowania silnika wymieniono 4 wtryskiwacze o łącznym koszcie 1750,00 zł netto oraz turbinę w cenie 1900,00 zł netto. Całkowity czas serwisowania wyniósł 5,5 roboczogodziny, a stawka za jedną roboczogodzinę to 120,00 zł brutto. Części samochodowe podlegają opodatkowaniu VAT w wysokości 23%. Jaki jest całkowity koszt serwisowania brutto?

A. 5 301,30 zł
B. 4 489,50 zł
C. 4 310,00 zł
D. 5 149,50 zł
Wybór odpowiedzi, która nie jest zgodna z prawidłowymi obliczeniami, może wynikać z kilku typowych błędów myślowych związanych z kalkulacją kosztów. Przede wszystkim, należy pamiętać, że koszty części zamiennych oraz robocizny powinny być sumarycznie obliczane na poziomie netto, a następnie powiększane o podatek VAT. Niekiedy osoby obliczające mogą nie uwzględnić VAT na wszystkich elementach, co prowadzi do zaniżenia łącznego kosztu. Inną powszechną pomyłką jest nieuwzględnienie kosztów robocizny w całości, co prowadzi do niepełnych kalkulacji. Warto również zwrócić uwagę, że niektóre odpowiedzi mogą ignorować istotne zasady dotyczące obliczeń brutto, co może być wynikiem braku znajomości przepisów podatkowych. Dobrą praktyką w takich sytuacjach jest zawsze weryfikacja, czy wszystkie elementy kosztowe, w tym VAT, zostały uwzględnione w obliczeniach, aby uniknąć pomyłek. W kontekście branży motoryzacyjnej, właściwe zarządzanie kosztami oraz ich poprawna kalkulacja są kluczowe dla prowadzenia działalności oraz utrzymania przejrzystości finansowej.

Pytanie 2

Częścią systemu chłodzenia nie jest

A. termostat
B. czujnik temperatury
C. przekładnia ślimakowa
D. pompa wody
Przekładnia ślimakowa nie jest elementem układu chłodzenia silnika, ponieważ pełni zupełnie inną funkcję, związana głównie z przenoszeniem napędu i momentu obrotowego w mechanizmach. Układ chłodzenia silnika składa się z takich elementów jak pompa wody, czujnik temperatury oraz termostat, które współpracują w celu utrzymania optymalnej temperatury pracy silnika. Pompa wody jest odpowiedzialna za cyrkulację płynu chłodzącego w obiegu, co jest kluczowe dla efektywnego odprowadzania ciepła. Czujnik temperatury monitoruje temperaturę płynu chłodzącego, co pozwala na bieżąco kontrolować działanie układu. Termostat natomiast reguluje przepływ płynu chłodzącego, otwierając lub zamykając obieg, co zapobiega przegrzaniu silnika. W związku z tym, zrozumienie roli każdego z tych elementów oraz ich współpracy jest kluczowe dla prawidłowego funkcjonowania silnika i jego układu chłodzenia.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Po zainstalowaniu nowego, zewnętrznego przegubu napędowego na półosi, powinno się go nasmarować odpowiednim smarem

A. molibdenowym
B. miedziowym
C. grafitowym
D. łożyskowym
Wybór niewłaściwego rodzaju smaru do przegubów napędowych może prowadzić do poważnych problemów eksploatacyjnych. Smar łożyskowy, chociaż często używany w różnych aplikacjach, nie jest odpowiedni do przegubów napędowych, ponieważ może nie zapewniać wymaganej odporności na ekstremalne warunki pracy, a jego zastosowanie prowadzi do szybszego zużycia mechanizmów. Z kolei smar miedziowy, mimo że posiada właściwości antyzatarciowe, może być zbyt agresywny dla niektórych materiałów stosowanych w przegubach i prowadzić do ich degradacji. Grafitowy smar, choć może być skuteczny w niektórych specyficznych aplikacjach, nie jest zalecany do przegubów napędowych z powodu braku odpowiedniej adhezji oraz tendencji do wypłukiwania w obecności cieczy. Często błędnie zakłada się, że różnorodność smarów pozwala na ich dowolne stosowanie, co jest nieprawidłowe i może prowadzić do kosztownych napraw. Prawidłowy dobór smaru powinien opierać się na zrozumieniu specyfikacji technicznych oraz wymagań stawianych przez producentów pojazdów, co jest kluczowe dla utrzymania optymalnej wydajności i bezpieczeństwa jednostek napędowych.

Pytanie 5

Aby ocenić poziom zużycia tulei cylindrowej silnika spalinowego, należy przeprowadzić pomiar jej średnicy?

A. średnicówką czujnikową
B. suwmiarką uniwersalną
C. czujnikiem zegarowym
D. mikrometrem do otworów
Średnicówka czujnikowa jest najodpowiedniejszym narzędziem do pomiaru średnicy tulei cylindrowej silnika spalinowego, ponieważ zapewnia wysoką precyzję i dokładność, co jest kluczowe w ocenie stopnia zużycia elementów silników. Umożliwia ona mierzenie średnicy z dokładnością do setnych części milimetra, co jest niezbędne przy ocenie stanu technicznego tulei, które mogą ulegać deformacjom podczas eksploatacji. W praktyce, użycie średnicówki czujnikowej pozwala na uzyskanie informacji dotyczących nie tylko samej średnicy, ale również ewentualnych nierówności czy odkształceń wewnętrznych. Dobrą praktyką jest przeprowadzenie pomiarów w kilku punktach wzdłuż długości tulei, aby uzyskać pełny obraz jej stanu. Standardy branżowe, takie jak ISO 14405, podkreślają znaczenie precyzyjnych pomiarów wymiarowych, co czyni średnicówkę czujnikową narzędziem pierwszego wyboru w takich sytuacjach.

Pytanie 6

Przy użyciu areometru dokonuje się pomiaru

A. napięcia akumulatora.
B. wysokości elektrolitu.
C. gęstości elektrolitu.
D. temperatury elektrolitu.
Odpowiedź gęstości elektrolitu jest poprawna, ponieważ areometr jest narzędziem służącym do pomiaru gęstości cieczy. W przypadku elektrolitu akumulatorowego, gęstość jest kluczowym wskaźnikiem stanu naładowania akumulatora. Wartość gęstości elektrolitu zależy od jego stanu naładowania: im wyższa gęstość, tym lepsza kondycja akumulatora. Przykładem zastosowania areometru w praktyce jest okresowe sprawdzanie gęstości elektrolitu w akumulatorach kwasowo-ołowiowych, co pozwala na ocenę ich wydajności oraz żywotności. Standardy branżowe, takie jak SAE J537, zalecają monitorowanie gęstości elektrolitu jako kluczowego parametru podczas konserwacji akumulatorów. Wiedza na temat tego, jak interpretować wyniki pomiarów gęstości, jest niezbędna do prawidłowego zarządzania akumulatorami i zapewnienia ich długotrwałej pracy.

Pytanie 7

Ciśnienie powietrza w oponach pojazdu określane jest

A. w zależności od wzoru bieżnika.
B. w zależności od sezonu.
C. przez wytwórcę pojazdu.
D. dla określonego rozmiaru opon.
Ciśnienie powietrza w oponach to naprawdę ważna sprawa. Wiesz, jak to jest – odpowiednie ciśnienie wpływa na to, jak jeździsz, pożerasz paliwo i czy podróż jest wygodna. Producenci aut ustalają te wartości, bo robią różne testy i mają swoje normy dla każdego modelu. Ważne, żeby trzymać się tych zalecanych ciśnień, bo wtedy opony dobrze przylegają do drogi, co oznacza lepszą przyczepność i stabilność. Na przykład, niskie ciśnienie może sprawić, że opony szybciej się zużywają, a nawet mogą pęknąć. Z kolei zbyt wysokie ciśnienie może być niebezpieczne, bo opony mogą gorzej trzymać się drogi, zwłaszcza w deszczu. Z mojego doświadczenia wynika, że kierowcy powinni regularnie kontrolować ciśnienie w oponach, szczególnie przed dłuższymi trasami, bo to naprawdę się opłaca. Warto też pamiętać o zaleceniach różnych organizacji, jak ETRTO czy ANSI.

Pytanie 8

Aby poluzować zapieczoną śrubę w układzie zawieszenia, należy użyć

A. szlifierki kątowej.
B. rurhaka.
C. podgrzewacza indukcyjnego.
D. młotka.
Wybór niewłaściwych narzędzi do poluzowania zapieczonych śrub często prowadzi do nieefektywności oraz potencjalnych uszkodzeń układów mechanicznych. Rurhak, mimo że może wydawać się logicznym wyborem, jest narzędziem stosowanym głównie do przykręcania lub odkręcania elementów, a nie do poluzowywania zapieczonych śrub. Jego zastosowanie w takim kontekście może prowadzić do zerwania gwintu lub uszkodzenia śruby. Szlifierka kątowa, z kolei, jest narzędziem o dużej mocy, które może spalić lub uszkodzić okoliczne komponenty, a także same śruby, powodując ich całkowitą degradację. Użycie młotka, choć może wydawać się instynktownym rozwiązaniem, również niesie ze sobą ryzyko uszkodzenia. Siła uderzenia młotka może prowadzić do odkształcenia śruby lub jej łba, co znacznie utrudnia dalsze prace serwisowe. W praktyce, aby skutecznie poradzić sobie z zapieczonymi śrubami, należy stosować metody, które są zgodne z dobrą praktyką inżynieryjną. Użycie odpowiednich technik, takich jak podgrzewanie indukcyjne, pozwala na uniknięcie niepotrzebnych uszkodzeń i zapewnia większe bezpieczeństwo podczas pracy. Kluczowe jest również zrozumienie, że wybór właściwego narzędzia powinien być podyktowany nie tylko jego dostępnością, ale także specyfiką problemu oraz oczekiwanym rezultatem.

Pytanie 9

Do jakich pomiarów stosuje się wakuometry?

A. ciśnienia atmosferycznego
B. ciśnienia paliwa
C. wydajności pompy paliwowej
D. podciśnienia w układzie dolotowym
Wakuometry są instrumentami służącymi do pomiaru ciśnienia, a ich głównym zastosowaniem jest pomiar podciśnienia w układzie dolotowym silników spalinowych. Podciśnienie w tym kontekście jest kluczowym parametrem, ponieważ wpływa na proces mieszania paliwa z powietrzem oraz na eficjencję pracy silnika. Przykładowo, prawidłowe ustawienie podciśnienia zapewnia optymalne warunki do spalania, co przekłada się na lepszą wydajność i oszczędność paliwa. W branży motoryzacyjnej, wakuometry są często wykorzystywane do diagnostyki układów dolotowych i mogą pomóc zidentyfikować problemy, takie jak nieszczelności w systemie dolotowym czy niewłaściwe ustawienia gaźnika. Standardy przemysłowe sugerują użycie wakuometrów w regularnych przeglądach technicznych, co zapewnia utrzymanie silników w dobrej kondycji. W związku z tym, umiejętność interpretacji wyników pomiarów wakuometrycznych jest kluczowa dla mechaników i techników samochodowych.

Pytanie 10

Metalizację natryskową wykorzystuje się w procesie regeneracji

A. tarcz hamulcowych
B. rury wydechowej
C. reaktora katalitycznego
D. wału korbowego
Wybór odpowiedzi dotyczących regeneracji rury wydechowej, tarcz hamulcowych lub reaktora katalitycznego wskazuje na nieporozumienie dotyczące zastosowania metalizacji natryskowej. Rura wydechowa to element silnika, który głównie podlega korozji chemicznej i termicznej, a jej regeneracja zazwyczaj polega na wymianie lub spawaniu, a nie na nanoszeniu powłok metalowych. Tarcz hamulcowych, z kolei, wymagają doskonałej jakości materiałów przystosowanych do wysokich temperatur i dużych obciążeń, co sprawia, że ich regeneracja najczęściej opiera się na szlifowaniu lub wymianie na nowe. Reaktor katalityczny to zaawansowane urządzenie stosowane w procesach chemicznych, w którym kluczowe są właściwości katalizatorów, a nie metalizacji natryskowej. Odpowiedzi te nie uwzględniają specyfiki materiałów i ich zachowań w różnych warunkach eksploatacyjnych, co może prowadzić do błędnych wniosków. Typowym błędem jest mylenie regeneracji z wymianą, co skutkuje podejmowaniem niewłaściwych decyzji w kontekście naprawy i konserwacji. Metalizacja natryskowa to technika, która sprawdza się głównie w przypadkach, gdzie konieczne jest odbudowanie zużytych powierzchni, jak ma to miejsce w przypadku wałów korbowych, a nie w zastosowaniach, które wymagają szczególnych właściwości mechanicznych i chemicznych, jak w przypadku pozostałych wymienionych elementów.

Pytanie 11

Element aerodynamiczny samochodu, który zwiększa przyczepność do nawierzchni, korzystający z przepływu powietrza pod nadwoziem, to

A. retarder
B. rezonator
C. rekuperator
D. dyfuzor
Dyfuzor to kluczowy element aerodynamiczny zastosowany w pojazdach, który ma na celu zwiększenie docisku do podłoża poprzez efektywną manipulację przepływem powietrza pod podwoziem. Działa na zasadzie rozprężania strumienia powietrza, co prowadzi do obniżenia ciśnienia pod pojazdem. W wyniku tego zjawiska, pojazd jest lepiej przylegający do nawierzchni, co z kolei przekłada się na zwiększenie stabilności i przyczepności, zwłaszcza podczas szybkiej jazdy oraz w zakrętach. Dyfuzory są szeroko stosowane w sportach motorowych, takich jak Formuła 1, gdzie ich zaawansowana konstrukcja pozwala na optymalizację aerodynamiki, co jest kluczowe dla osiągów pojazdu. Warto również zwrócić uwagę na to, że poprawnie zaprojektowany dyfuzor może znacząco obniżyć opór powietrza. Dobrą praktyką jest stosowanie dyfuzorów w połączeniu z innymi elementami aerodynamicznymi, takimi jak skrzydła, co pozwala na uzyskanie maksymalnych korzyści z aerodynamiki pojazdu.

Pytanie 12

Ustawienie świateł mijania w pojazdach samochodowych przeprowadza się przy pomocy urządzenia, które funkcjonuje na zasadzie porównania granicy światła oraz cienia reflektora z

A. wartościami zdefiniowanymi dla pojazdów z maksymalną prędkością do 130 km/h
B. wartościami określonymi w tabelach naświetleń
C. liniami odcięcia według wzoru urządzenia
D. wartościami ustalonymi przez producenta auta
Wybór odpowiedzi na temat wartości podanych przez producentów pokazuje pewne nieporozumienia, bo ustawienie świateł mijania to nie tylko proste przyjęcie wartości. Producenci dają ogólne wytyczne, ale w praktyce potrzebujemy dokładnych narzędzi, jak szablony. Gdy tylko opieramy się na wartościach producenta, może to być mylące. Często te parametry nie mówią, jak je właściwie stosować w rzeczywistości. Co więcej, tabela naświetleń sugeruje, że wszystkie samochody są do siebie podobne, a to wcale nie jest prawda. Każdy model ma swoje unikalne cechy, więc potrzebne jest indywidualne podejście. Użycie takich tabel zazwyczaj opiera się na teoretycznych danych, a nie na fizycznym ustawieniu świateł. To może prowadzić do złych regulacji i oślepienia innych kierowców. Odpowiedź związana z prędkością do 130 km/h może dawać wrażenie, że ustawienia są tylko zależne od maksymalnej prędkości, co jest błędne. Ustawienia świateł mijania powinny być zgodne z normami dla wszystkich pojazdów, niezależnie od ich prędkości. Te błędy w myśleniu mogą skutkować złymi praktykami w diagnostyce i konserwacji pojazdów.

Pytanie 13

Podczas montażu pierścieni uszczelniających Simmera wyjętych ze skrzyni biegów należy

A. wymienić na nowe
B. pozostawić w oryginalnych gniazdach
C. zamienić miejscami
D. zregenerować, gdy uległy zniszczeniu
Wymiana pierścieni uszczelniających Simmera na nowe jest niezbędna, ponieważ te elementy są kluczowe dla zapewnienia szczelności układów mechanicznych, w tym skrzyń biegów. Uszczelnienia te często narażone są na działanie wysokich temperatur, ciśnień oraz substancji chemicznych, co prowadzi do ich zużycia i degradacji. Nowe uszczelnienia zapewniają optymalną funkcjonalność i minimalizują ryzyko wycieków oleju lub innych płynów eksploatacyjnych, co mogłoby prowadzić do poważnych uszkodzeń mechanicznych. Stosowanie nowych pierścieni jest zgodne z najlepszymi praktykami branżowymi, które podkreślają znaczenie używania oryginalnych lub wysokiej jakości zamienników. Na przykład, w przypadku wymiany uszczelnień w samochodach, producenci zalecają stosowanie elementów zgodnych z ich specyfikacjami, co ma na celu zapewnienie długotrwałej i niezawodnej pracy pojazdu. Oprócz tego, wymiana starych uszczelnień na nowe w trakcie przeglądów technicznych lub napraw zwiększa bezpieczeństwo i efektywność urządzeń, co jest niezbędne w kontekście utrzymania właściwego stanu technicznego pojazdów.

Pytanie 14

Który z wymienionych składników nie wchodzi w skład układu przeniesienia napędu?

A. Koło talerzowe
B. Wałek rozrządu
C. Sprzęgło
D. Przekładnia główna
Wałek rozrządu jest komponentem silnika, który odpowiada za synchronizację otwierania i zamykania zaworów, co jest kluczowe dla prawidłowego funkcjonowania silnika spalinowego. W przeciwieństwie do elementów układu przeniesienia napędu, takich jak sprzęgło, koło talerzowe czy przekładnia główna, wałek rozrządu nie uczestniczy w przenoszeniu mocy z silnika na układ napędowy. Sprzęgło ma za zadanie rozłączenie i połączenie napędu, co pozwala na płynne przełączanie biegów, podczas gdy przekładnia główna i koło talerzowe są odpowiedzialne za przekazywanie momentu obrotowego na koła. Znajomość roli wałka rozrządu jest istotna w kontekście diagnostyki i konserwacji silników, ponieważ jego awaria może prowadzić do poważnych uszkodzeń. Zrozumienie, które elementy wchodzą w skład układu przeniesienia napędu, jest kluczowe dla techników i mechaników, aby skutecznie diagnozować problemy oraz przeprowadzać naprawy według najlepszych praktyk branżowych.

Pytanie 15

Podczas analizy układu korbowo-tłokowego zauważono zarysowanie tłoka w rejonie pierścieni. Uszkodzony tłok powinien zostać

A. zregenerowany metodą klejenia
B. wymieniony na nowy
C. naprawiony przez oszlifowanie uszkodzonego miejsca papierem ściernym
D. pozostawiony bez naprawy do dalszego użytkowania
Wymiana uszkodzonego tłoka na nowy jest kluczowym elementem zapewnienia prawidłowego funkcjonowania silnika. Zarysowanie w części pierścieniowej tłoka może prowadzić do nieszczelności, co z kolei skutkuje utratą kompresji i obniżeniem efektywności pracy silnika. Praktyka wskazuje, że stosowanie uszkodzonych komponentów zamiast ich wymiany może prowadzić do poważniejszych awarii, w tym uszkodzenia cylindrów. Dobrym przykładem jest procedura przeglądów silników wysokoprężnych, gdzie zaleca się wymianę tłoków w przypadku stwierdzenia jakichkolwiek uszkodzeń. Przemysłowy standard jakości dla silników, zwany ISO 9001, promuje zasadę wymiany uszkodzonych części w celu zapewnienia długoterminowej efektywności i niezawodności. Wymiana tłoka na nowy, zgodnie z producentem, zapewnia optymalne dopasowanie oraz wydajność, co jest niezbędne w przypadku serwisowania i naprawy silników.

Pytanie 16

Mechanizm różnicowy w tylnym moście napędowym pojazdu umożliwia podział napędu na

A. przód i tył, w przypadku pojazdu z napędem na cztery koła
B. tył i przód z pominięciem przekładni głównej mostu napędowego
C. koła napędowe, przy jednoczesnej możliwości obracania się kół z różnymi prędkościami obrotowymi
D. koła napędowe, przy jednoczesnym braku możliwości obracania się kół z różnymi prędkościami obrotowymi
Mechanizm różnicowy w tylnym moście napędowym jest kluczowym elementem, który odpowiada za rozdział napędu na koła napędowe, pozwalając im na toczenie się z różnymi prędkościami obrotowymi. W praktyce oznacza to, że podczas skręcania samochodu wewnętrzne koło pokonuje krótszą odległość niż zewnętrzne, co powoduje różnice w prędkościach obrotowych. Mechanizm różnicowy umożliwia kompensację tych różnic, co jest niezwykle istotne dla stabilności i przyczepności pojazdu. Przykładem zastosowania tego rozwiązania są samochody osobowe, które podczas jazdy w zakręcie zyskują na manewrowości oraz minimalizują zużycie opon, a także poprawiają komfort jazdy. Zgodnie z praktykami inżynieryjnymi, mechanizmy różnicowe są projektowane w oparciu o normy dotyczące bezpieczeństwa i wydajności, co zapewnia ich niezawodność w różnych warunkach drogowych. Warto dodać, że nowoczesne technologie, takie jak elektroniczne mechanizmy różnicowe, jeszcze bardziej zwiększają możliwości dostosowania napędu do warunków panujących na drodze, poprawiając dynamikę jazdy i efektywność.

Pytanie 17

Gdzie instaluje się świece żarowe w silnikach diesla?

A. w misce olejowej
B. w układzie wydechowym
C. w głowicy silnika
D. w bloku chłodnicy
Świece żarowe w silnikach wysokoprężnych pełnią kluczową rolę w procesie rozruchu silnika, zwłaszcza w niskotemperaturowych warunkach. Montowane są w głowicy silnika, gdzie mają za zadanie podgrzewać mieszankę powietrzno-paliwową, co ułatwia jej zapłon. Dzięki temu silniki diesla mogą osiągnąć stabilną pracę nawet w trudnych warunkach atmosferycznych. Użycie świec żarowych znacząco poprawia wydajność silnika, redukuje emisję spalin i zmniejsza zużycie paliwa. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie jakości komponentów w silnikach, co czyni świece żarowe kluczowym elementem konstrukcji silnika wysokoprężnego. Dla przykładu, w wielu nowoczesnych pojazdach stosuje się świece żarowe z systemem automatycznego wyłączania po osiągnięciu optymalnej temperatury, co zwiększa ich żywotność i efektywność.

Pytanie 18

Kosztorys realizacji usługi serwisowej jest przygotowywany m.in. na podstawie

A. wartości rynkowej pojazdu
B. czasochłonności naprawy
C. szacunkowego poziomu zużycia pojazdu
D. liczby części wymienionych w ramach usługi
Odpowiedź dotycząca ilości czasu potrzebnej do naprawy jest kluczowym elementem w procesie tworzenia kosztorysu usługi serwisowej. W praktyce, szacowanie czasu naprawy opiera się na przemyślanej analizie zleceń oraz doświadczeniu technika. Czas naprawy jest bezpośrednio związany z kosztem robocizny, który stanowi znaczącą część całkowitego kosztu usługi. Standardy branżowe, takie jak normy czasowe określone przez producentów pojazdów, umożliwiają technikom dokładne oszacowanie, ile czasu zajmie im wykonanie danej naprawy. Na przykład, serwisanci często korzystają z tzw. 'czasów referencyjnych', które pomagają określić przeciętny czas potrzebny na wykonanie różnych rodzajów napraw. Dodatkowo, umiejętność dokładnego oszacowania czasu naprawy pozwala na lepsze zarządzanie zasobami w warsztacie oraz na zadowolenie klientów poprzez rzetelne informowanie ich o czasie realizacji usługi. Taka praktyka przyczynia się do zwiększenia efektywności operacyjnej serwisu oraz do budowy pozytywnego wizerunku w oczach klientów.

Pytanie 19

Podczas analizy kąta wyprzedzenia wtrysku paliwa, zmierzona wartość wynosiła od 7° do 12°. Powodem nieustalonej wartości kąta wyprzedzenia wtrysku paliwa może być

A. zużycie komponentów napędu układu rozrządu
B. zbyt wysokie ciśnienie otwarcia wtryskiwacza
C. zużycie elementów napędu pompy wtryskowej
D. niewystarczające ciśnienie otwarcia wtryskiwacza
Analizując pozostałe odpowiedzi, można zauważyć, że zbyt małe ciśnienie otwarcia wtryskiwacza może prowadzić do obniżonej ilości paliwa dostarczanego do komory spalania, co skutkuje niższą efektywnością pracy silnika. Jednakże, brak stałej wartości kąta wyprzedzenia wytrysku nie jest bezpośrednio związany z tym problemem. Działa to w przeciwnym kierunku, gdyż niewystarczające ciśnienie wtrysku spowoduje raczej stałe opóźnienie wtrysku niż jego zmienność. Z kolei zbyt duże ciśnienie otwarcia wtryskiwacza może prowadzić do nadmiaru paliwa, co również skutkuje problemami, ale ponownie nie jest to przyczyna wahań kąta wyprzedzenia. Zużycie elementów napędu układu rozrządu, choć może wpływać na synchronizację pracy silnika, to sama zmiana kąta wyprzedzenia wtrysku jest bardziej bezpośrednio związana z parametrami wtrysku paliwa. W rzeczywistości, jeśli układ rozrządu działa poprawnie, to zmiany w wtrysku wynikające z ciśnienia paliwa mają znacznie większy wpływ na kąt wyprzedzenia. Rozumienie tych zjawisk jest kluczowe dla diagnostyki i naprawy systemów wtryskowych oraz dla zapewnienia efektywności energetycznej silników spalinowych.

Pytanie 20

Uszkodzony gwint w otworze świecy zapłonowej w głowicy silnika można naprawić przy użyciu

A. lutowania twardego
B. pasty uszczelniającej
C. tulejowania
D. kołkowania
Tulejowanie jest skuteczną metodą naprawy uszkodzonych otworów gwintowanych, szczególnie w przypadku głowic silników. Proces ten polega na wprowadzeniu tulei, która tworzy nowe, trwałe gwintowanie, zapewniając jednocześnie odpowiednią szczelność i wytrzymałość. Tulejki stosowane w tej metodzie wykonane są z materiałów odpornych na wysokie temperatury i ciśnienia, co czyni je idealnym rozwiązaniem w kontekście pracy silnika. Przykładem zastosowania tulejowania jest sytuacja, gdy w wyniku zużycia lub uszkodzenia gwintu w głowicy silnika, konieczne jest przywrócenie możliwości mocowania świecy zapłonowej. W takich przypadkach, zastosowanie tulei pozwala uniknąć kosztownej wymiany całej głowicy, co stanowi praktyczną i efektywną oszczędność. Tulejowanie jest zgodne z najlepszymi praktykami w naprawie silników spalinowych, co potwierdzają liczne normy dotyczące obróbki i naprawy elementów silnika.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Proces ładowania akumulatora, który został rozładowany, powinien trwać aż do momentu pojawienia się "gazowania" oraz osiągnięcia napięcia na ogniwie, które wynosi

A. 2,20 Y
B. 2,40 Y
C. 2,00 Y
D. 1,75 Y
Odpowiedź 2,40 V jest prawidłowa, ponieważ jest to wartość napięcia, przy której akumulator kwasowo-ołowiowy osiąga stan pełnego naładowania. W trakcie ładowania akumulatorów ważne jest, aby monitorować napięcie, ponieważ przekroczenie wartości 2,40 V na ogniwie może prowadzić do gazowania, co oznacza, że ​​elektrolit zaczyna się rozkładać na wodór i tlen. To zjawisko jest nie tylko nieefektywne, ale także może być niebezpieczne z uwagi na możliwość powstania mieszaniny wybuchowej. W praktyce, gdy akumulator osiąga napięcie 2,40 V, można uznać, że jest w pełni naładowany i gotowy do użycia. Dobrą praktyką jest również stosowanie ładowarek z funkcją automatycznego wyłączania, które zapobiegają przeładowaniu. Wartości te są zgodne z normami IEC oraz SAE, które definiują procedury ładowania akumulatorów kwasowo-ołowiowych, co dodatkowo potwierdza poprawność tej odpowiedzi.

Pytanie 23

W dokumencie odbioru, sporządzanym w momencie przyjęcia pojazdu do serwisu, powinny być zawarte informacje dotyczące

A. masy całkowitej pojazdu
B. liczby osi pojazdu
C. widocznych uszkodzeń nadwozia pojazdu
D. daty ważności ubezpieczenia pojazdu
Widoczne uszkodzenia nadwozia pojazdu są kluczowym elementem protokołu zdawczo-odbiorczego, ponieważ dokument ten ma na celu dokładne udokumentowanie stanu technicznego pojazdu w momencie jego przyjęcia do naprawy. Właściwe odnotowanie wszelkich uszkodzeń pozwala na późniejsze rozstrzyganie ewentualnych sporów dotyczących zakresu napraw, zarówno pomiędzy klientem a warsztatem, jak i w kontekście roszczeń ubezpieczeniowych. Na przykład, jeżeli pojazd przychodzi do warsztatu z widocznymi wgnieceniami czy rysami, ich szczegółowe opisanie w protokole umożliwia warsztatowi precyzyjne określenie zakresu prac oraz oszacowanie kosztów. Dodatkowo, w branży motoryzacyjnej standardy jakości, takie jak ISO 9001, podkreślają znaczenie dokładnej dokumentacji w procesach zarządzania jakością. Dlatego tak istotne jest, aby każdy pojazd był starannie sprawdzany i dokumentowany przez wykwalifikowany personel przed rozpoczęciem jakichkolwiek prac naprawczych.

Pytanie 24

Ile dm3 powietrza potrzeba do całkowitego spalenia 1 kg benzyny?

A. 14,7 m3 powietrza
B. 14,7 mm powietrza
C. 14,7 dm3 powietrza
D. 14,7 kg powietrza
Poprawna odpowiedź to 14,7 kg powietrza, ponieważ do całkowitego spalenia 1 kg benzyny potrzebna jest odpowiednia ilość tlenu, który jest dostarczany przez powietrze. Benzyna (C8H18) spala się w tlenie, a reakcja spalenia wymaga około 14,7 kg powietrza na każdy kilogram benzyny, co odpowiada stechiometrycznemu obliczeniu proporcji. W praktyce oznacza to, że w warunkach standardowych, gdzie powietrze składa się z około 21% tlenu, potrzebna ilość powietrza jest znacznie większa niż ilość tlenu. Przykładowo, silniki spalinowe, które wykorzystują benzynę, muszą być odpowiednio dostrojone, aby zapewnić optymalne spalanie, co wpływa na emisje spalin i wydajność energetyczną. Zrozumienie tego procesu jest kluczowe w przemyśle motoryzacyjnym oraz w projektowaniu systemów grzewczych, gdzie wydajność spalania ma bezpośredni wpływ na zużycie paliwa oraz emisję zanieczyszczeń. Wiedza ta jest również istotna w kontekście ochrony środowiska oraz regulacji dotyczących emisji gazów cieplarnianych.

Pytanie 25

Która z poniższych czynności musi być wykonana przy wymianie klocków hamulcowych?

A. Kalibracja systemu ESP
B. Sprawdzenie grubości tarcz hamulcowych
C. Ustawienie geometrii kół
D. Zmiana płynu chłodzącego
Sprawdzenie grubości tarcz hamulcowych to kluczowy krok przy wymianie klocków hamulcowych. Tarcze hamulcowe mają określoną minimalną grubość, poniżej której nie powinny być używane, ponieważ ich efektywność hamowania i zdolność do rozpraszania ciepła są znacznie ograniczone. Jeśli tarcze są zbyt cienkie, mogą się przegrzewać, co prowadzi do wydłużenia drogi hamowania i zwiększonego ryzyka awarii układu hamulcowego. Standardową praktyką jest porównanie grubości tarcz z wartościami podanymi przez producenta pojazdu. Często podczas wymiany klocków zaleca się również wymianę tarcz, zwłaszcza jeśli są one bliskie minimalnej grubości. Przy okazji warto sprawdzić powierzchnię tarcz pod kątem nierówności czy pęknięć. Takie działania są zgodne z dobrymi praktykami serwisowymi, które mają na celu zapewnienie bezpieczeństwa i długowieczności układu hamulcowego. Przy odpowiedniej grubości tarcz nowe klocki będą działać efektywnie, co przekłada się na lepsze bezpieczeństwo na drodze.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Z przedstawionego fragmentu tabeli taryfikatora czasu napraw wynika, że całkowity czas wymiany uszczelnień tłoczków hamulcowych we wszystkich czterech zaciskach hamulcowych oraz odpowietrzenia układu w samochodzie Fiat Grande Punto wynosi

Taryfikator czasochłonności napraw
Rodzaj naprawyFiat Punto     Fiat Grande Punto
Czas naprawy
Wymiana uszczelek tłoczków hamulcowych przód1,5 h1,5 h
Wymiana uszczelek tłoczków hamulcowych tył-----2 h
Wymiana uszczelek cylinderków hamulcowych tył2,5 h-----
Odpowietrzenie układu hamulcowego1 h1 h

A. 3,5 godziny
B. 5,0 godzin
C. 4,5 godziny
D. 4,0 godziny
Odpowiedź 4,5 godziny jest poprawna, ponieważ zgodnie z danymi przedstawionymi w tabeli taryfikatora czasu napraw, całkowity czas wymiany uszczelnień tłoczków hamulcowych oraz odpowietrzenia układu hamulcowego w samochodzie Fiat Grande Punto wynosi właśnie 4,5 godziny. Czas ten obejmuje wszystkie niezbędne czynności, takie jak demontaż zacisków, wymiana uszczelnień, ponowny montaż oraz odpowietrzenie układu hamulcowego. W branży motoryzacyjnej, precyzyjne określenie czasu naprawy jest kluczowe dla efektywności pracy warsztatu oraz zadowolenia klientów. Warto zaznaczyć, że przygotowując się do przeprowadzenia takich napraw, mechanicy często korzystają z tabel taryfikacyjnych, które uwzględniają czas potrzebny na różne czynności serwisowe. Standardy te są zgodne z najlepszymi praktykami w branży, co zapewnia zarówno bezpieczeństwo, jak i jakość wykonywanych usług. Wiedza na temat takich standardów jest niezbędna dla każdego profesjonalnego mechanika, aby móc rzetelnie planować czas pracy oraz wyceny usług.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Specyfikacja techniczna elementu wchodzącego w skład instalacji elektrycznej informuje, że rezystancja uzwojenia pierwotnego wynosi 3 Ohm, natomiast uzwojenia wtórnego 70 Ohm. Co to za element?

A. Czujnik temperatury
B. Czujnik ciśnienia paliwa
C. Cewka zapłonowa
D. Świeca zapłonowa
Cewka zapłonowa to kluczowy element układu zapłonowego w silnikach spalinowych, odpowiedzialny za generowanie wysokiego napięcia potrzebnego do zapłonu mieszanki paliwowo-powietrznej w cylindrze. Wskazane wartości rezystancji uzwojeń pierwotnego (3 Ohm) i wtórnego (70 Ohm) są zgodne z typowymi parametrami cewek zapłonowych. W uzwojeniu pierwotnym przepływa prąd, który generuje pole magnetyczne, a w uzwojeniu wtórnym to pole powoduje indukcję elektryczną, wytwarzając wysokie napięcie. Cewki zapłonowe są projektowane zgodnie z normami branżowymi, aby zapewnić optymalną wydajność i niezawodność, co jest kluczowe w kontekście efektywności pracy silnika. Praktyczne zastosowanie cewki zapłonowej obejmuje nie tylko silniki spalinowe w pojazdach, ale również inne aplikacje, takie jak generatory prądu czy systemy grzewcze. Właściwe zrozumienie działania tego elementu jest niezbędne dla każdego technika zajmującego się diagnostyką i naprawą układów zapłonowych, a także dla inżynierów projektujących systemy elektryczne w motoryzacji.

Pytanie 30

W pojazdach metalowe żeliwo wykorzystuje się do produkcji

A. kolektorów wydechowych
B. wałów napędowych
C. zaworów wydechowych
D. łożysk tocznych
Żeliwo jest materiałem powszechnie stosowanym w budowie kolektorów wydechowych w samochodach, głównie ze względu na swoje korzystne właściwości mechaniczne i termiczne. Kolektory wydechowe muszą wytrzymywać wysokie temperatury oraz korozję, co czyni żeliwo idealnym wyborem. Dzięki swojej odporności na ścieranie i utlenianie, żeliwo zapewnia długowieczność elementów, co przekłada się na mniejsze koszty serwisowania. Przykładowo, w silnikach spalinowych żeliwne kolektory wydechowe są w stanie wytrzymać intensywne warunki pracy, takie jak wysokie ciśnienie spalin. Ponadto, żeliwo ma doskonałą zdolność tłumienia drgań, co pozwala na cichszą pracę silnika, a także ogranicza przenoszenie wibracji na inne elementy układu wydechowego. Zastosowanie żeliwa w kolektorach wydechowych jest zgodne z najlepszymi praktykami inżynieryjnymi, które kładą nacisk na trwałość i bezpieczeństwo komponentów samochodowych.

Pytanie 31

Aby zdemontować łożyska z piast kół samochodu, jakie narzędzie powinno być wykorzystane?

A. szczypiec uniwersalnych
B. rozpieraka
C. zbieraka
D. prasy hydraulicznej
Użycie prasy hydraulicznej do demontażu łożysk z piast kół pojazdów jest najskuteczniejszą oraz najbezpieczniejszą metodą, która zapewnia odpowiednią siłę nacisku niezbędną do skutecznego usunięcia łożyska. Prasy hydrauliczne działają na zasadzie różnicy ciśnień, co pozwala na łatwe i precyzyjne wyciąganie łożysk bez ryzyka uszkodzenia piasty. Przykładowo, w warsztatach mechanicznych, zwłaszcza tych zajmujących się naprawą pojazdów ciężarowych lub sportowych, prasy te są standardowym wyposażeniem, umożliwiającym szybkie i efektywne wykonywanie usług. Zgodnie z normami branżowymi, stosowanie prasy hydraulicznej jest zgodne z zasadami bezpiecznej i ergonomicznej pracy, co zmniejsza ryzyko kontuzji dla mechanika. Warto zaznaczyć, że nieodpowiednie metody, takie jak użycie szczypiec uniwersalnych, mogą prowadzić do uszkodzenia łożysk oraz innych elementów układu, co z kolei wydłuża czas naprawy i generuje dodatkowe koszty.

Pytanie 32

Analizując jakość naprawy systemu wtrysku w silniku wysokoprężnym, co należy zweryfikować?

A. poziom emisji dwutlenku węgla
B. poziom emisji tlenków azotu
C. obecność kodów błędów kategorii B
D. obecność kodów błędów kategorii P
Występowanie kodów usterek typu B, emisja dwutlenku węgla oraz emisja tlenków azotu to kwestie, które mogą być istotne w kontekście ogólnej diagnostyki silnika, ale nie są one właściwymi wskaźnikami do oceny jakości naprawy układu wtryskowego silnika o zapłonie samoczynnym. Kody usterek typu B koncentrują się głównie na systemach nadwozia i są mniej związane z parametrami silnika, co czyni je mniej użytecznymi w kontekście układu wtryskowego. Emisja dwutlenku węgla, który jest naturalnym produktem spalania, może wskazywać na ogólną efektywność silnika, ale nie dostarcza bezpośrednich informacji o stanie układu wtryskowego. Z kolei emisja tlenków azotu, będąca wynikiem spalania paliwa w wysokotemperaturowych warunkach, może być analizowana w kontekście norm ekologicznych, ale nie jest wskaźnikiem na poziomie diagnostycznym dla samego układu wtryskowego. Typowym błędem myślowym jest skupienie się na ogólnych wskaźnikach emisji, które mogą być efektem wielu czynników, nie tylko jakości naprawy, zamiast na specyficznych kodach usterek, które są kluczowe dla diagnostyki i naprawy. Właściwe zrozumienie różnicy między tymi kategoriami kodów i emisji jest istotne dla skutecznej diagnostyki i zachowania standardów jakości w naprawach motoryzacyjnych.

Pytanie 33

W udzielaniu pierwszej pomocy osobie z poparzeniem, jak powinno się postąpić z miejscem oparzenia?

A. zabezpieczyć jałowym opatrunkiem
B. schłodzić czystą wodą
C. schłodzić za pomocą spirytusu
D. nałożyć tłuszcz na miejsce oparzenia
Schłodzenie oparzonego miejsca czystą wodą jest najskuteczniejszą metodą pierwszej pomocy w przypadku oparzeń. Woda powinna być letnia, a nie lodowata, aby uniknąć szoku termicznego. Schładzanie miejsca oparzenia przez co najmniej 10-20 minut pomaga zmniejszyć ból, obrzęk oraz ogranicza głębokość uszkodzenia tkanek. Warto pamiętać, że nie należy stosować lodu ani zimnej wody, ponieważ może to pogorszyć uszkodzenia. Zgodnie z wytycznymi Europejskiej Rady Resuscytacji oraz innych organizacji medycznych, kluczowym krokiem w przypadku oparzeń jest szybkie usunięcie źródła ciepła oraz schłodzenie zranionego miejsca. Należy unikać stosowania tłuszczy, olejów czy spirytusu, ponieważ te substancje mogą prowadzić do dodatkowych podrażnień oraz zwiększać ryzyko infekcji. Po schłodzeniu, miejsce oparzenia warto przykryć jałowym opatrunkiem, co zminimalizuje ryzyko zakażeń. W sytuacjach poważniejszych, lub gdy oparzenie obejmuje dużą powierzchnię ciała, należy natychmiast wezwać pomoc medyczną.

Pytanie 34

Refraktometr jest wykorzystywany do oceny możliwości dalszej eksploatacji

A. płynu hamulcowego
B. klocków hamulcowych
C. łożysk tocznych
D. oleju silnikowego
Refraktometr jest kluczowym narzędziem w ocenie jakości płynów eksploatacyjnych, zwłaszcza płynów hamulcowych. Jego główną funkcją jest pomiar współczynnika załamania światła, co umożliwia określenie stanu chemicznego i fizycznego badanego płynu. W przypadku płynów hamulcowych, ich właściwości są krytyczne dla bezpieczeństwa pojazdów. W miarę starzenia się płynu, jego właściwości mogą ulec zmianie, co prowadzi do obniżenia efektywności hamowania. Wartości te można porównywać z danymi od producentów, co pozwala na zaplanowanie wymiany płynu w odpowiednim czasie. Przykładem zastosowania refraktometru jest pomiar, który powinien być przeprowadzany regularnie, szczególnie w pojazdach użytkowanych w trudnych warunkach. Standardy branżowe, takie jak DOT 3, DOT 4 i DOT 5.1, określają wymagania dotyczące właściwości płynów hamulcowych, a refraktometr dostarcza praktycznych informacji pomocnych w ich monitorowaniu.

Pytanie 35

Zainstalowanie wtryskiwaczy w dolotowym kolektorze silnika ma miejsce w systemie zasilania

A. gaźnikowym
B. wtryskowym z wtryskiem pośrednim
C. wtryskowym z układem bezpośrednim
D. wtryskowym jednopunktowym
Umieszczenie wtryskiwaczy w kolektorze dolotowym silnika w układzie z wtryskiem pośrednim ma kluczowe znaczenie dla optymalizacji procesu spalania mieszanki paliwowo-powietrznej. Wtryskiwacze w tym układzie dostarczają paliwo do kolektora dolotowego, gdzie następuje jego wymieszanie z powietrzem zanim trafi do cylindrów silnika. Takie podejście umożliwia lepsze rozprężenie paliwa i zapewnia bardziej jednorodną mieszankę, co wpływa na efektywność spalania oraz redukcję emisji. Wtrysk pośredni jest często stosowany w silnikach benzynowych, gdzie kluczowe jest uzyskanie optymalnej mieszanki w różnych warunkach pracy silnika. Praktycznym przykładem zastosowania tego rozwiązania są silniki samochodowe, które wykorzystują technologię wielopunktowego wtrysku, co pozwala na lepsze dostosowanie parametrów pracy silnika do zmieniających się warunków, co przekłada się na większą moc oraz oszczędność paliwa. W branży motoryzacyjnej standardy emisji spalin, takie jak Euro 6, wymuszają na producentach stosowanie bardziej zaawansowanych układów wtryskowych, co sprawia, że wtryskiwanie pośrednie staje się coraz bardziej popularne jako efektywne rozwiązanie.

Pytanie 36

Jakie elementy można naprawić stosując metodę lutowania?

A. zużyte łożysko ślizgowe wału korbowego
B. pęknięty wał napędowy
C. uszkodzoną końcówkę drążka kierowniczego
D. nieszczelną chłodnicę
W kontekście napraw maszyn i układów, inne odpowiedzi dotyczą metod, które nic nie mają wspólnego z lutowaniem. Na przykład, jak łożysko ślizgowe wału korbowego się zużyje, to należy je wymienić albo zregenerować, a nie lutować. Lutowanie to nie jest sposób na odpowiednią wytrzymałość czy precyzję, a nowe elementy są kluczowe dla silnika. Pęknięty wał napędowy to też nie jest dobry temat do lutowania, bo jest pod ogromnym obciążeniem i drganiami. W takich przypadkach lepiej spawać albo wymieniać na nowy, bo to wpływa na bezpieczeństwo. Końcówka drążka kierowniczego to kolejny krytyczny element, gdzie lutowanie by było błędem. W takim przypadku lepiej sięgnąć po spawanie albo wymianę. Często ludzie myślą, że lutowanie sprawdzi się we wszystkim, a to prowadzi do niewłaściwych wyborów i zagrożeń zdrowotnych. Użycie lutowania w tych sytuacjach może spowodować awarie, a to w przyszłości ma poważne konsekwencje dla użytkowników.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Frenotest to przyrząd wykorzystywany do pomiaru

A. opóźnienia hamowania
B. poziomu wody w elektrolicie
C. ciśnienia oleju w silniku
D. ciśnienia w oponach
Frenotest to specjalistyczne urządzenie wykorzystywane do pomiaru opóźnienia hamowania, które jest kluczowym parametrem w ocenie skuteczności systemów hamulcowych pojazdów. Pomiar ten jest niezwykle istotny dla bezpieczeństwa jazdy, ponieważ pozwala na weryfikację, czy układ hamulcowy działa prawidłowo i jest w stanie zapewnić odpowiednie zatrzymanie pojazdu w różnych warunkach. Przykładowo, w testach drogowych, inżynierowie motoryzacyjni mogą korzystać z Frenotestu, aby dokładnie zmierzyć czas, jaki zajmuje pojazdowi zatrzymanie się z określonej prędkości. Tego typu pomiary są zgodne z normami ISO oraz regulacjami bezpieczeństwa w motoryzacji, które wymagają regularnych testów hamulców w celu zapewnienia ich efektywności. Dodatkowo, stosowanie Frenotestu pozwala na identyfikację ewentualnych problemów z układem hamulcowym, takich jak zużycie komponentów czy niewłaściwe ustawienie, co jest kluczowe dla utrzymania wysokich standardów bezpieczeństwa w pojazdach.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.