Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 19 maja 2025 22:29
  • Data zakończenia: 19 maja 2025 22:39

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Gdzie powinien być umiejscowiony odpowietrznik w instalacji grzewczej zasilanej energią słoneczną?

A. za zaworem bezpieczeństwa
B. w najniższym punkcie instalacji
C. w najwyższym punkcie instalacji
D. bezpośrednio za pompą
Odpowietrznik w słonecznej instalacji grzewczej powinien być umieszczony w najwyższym punkcie instalacji, co jest zgodne z ogólnymi zasadami projektowania systemów grzewczych. Umieszczenie odpowietrznika w najwyższym miejscu umożliwia skuteczne usuwanie powietrza z systemu, które gromadzi się na skutek nagrzewania wody oraz zmieniających się ciśnień. W praktyce, powietrze w instalacji może prowadzić do zakłóceń w obiegu wody, co z kolei może obniżać efektywność systemu grzewczego oraz powodować hałasy. Dlatego w dobrych praktykach branżowych wskazuje się na konieczność umieszczania odpowietrzników w punktach, gdzie gromadzi się powietrze, co najczęściej jest właśnie najwyższy punkt instalacji. Zgodnie z normami, takie rozwiązanie nie tylko zwiększa wydajność, ale również wydłuża żywotność całego systemu. Przykładem mogą być instalacje, w których zastosowano automatyczne odpowietrzniki, które w sposób samoczynny usuwają nadmiar powietrza, co jest korzystne zwłaszcza w większych układach.

Pytanie 2

Podczas przewozu pompy ciepła szczególnie ważne jest, aby zwrócić uwagę na jej wrażliwość na

A. wilgotność powietrza
B. niską temperaturę
C. promienie słoneczne
D. przechylania
Podczas transportu pompy ciepła szczególnie istotne jest unikanie ich przechylania, ponieważ te urządzenia są wrażliwe na zmiany pozycji, które mogą prowadzić do uszkodzenia ich wewnętrznych komponentów. Przechylanie pompy ciepła może powodować przesunięcia lub uszkodzenia sprężarki, wymienników ciepła oraz systemu chłodzenia. W praktyce, zaleca się transport pompy w pozycji pionowej, aby zminimalizować ryzyko takich uszkodzeń. Warto również pamiętać, że podczas załadunku i rozładunku urządzenia, należy stosować odpowiednie uchwyty i podpory, aby zapewnić stabilność. Dobre praktyki w branży dotyczące transportu pomp ciepła obejmują również stosowanie specjalistycznych opakowań, które amortyzują wstrząsy i drgania. W przypadku transportu na dłuższych dystansach, warto również monitorować warunki atmosferyczne, aby zapewnić, że urządzenie nie jest narażone na niekorzystne czynniki zewnętrzne, ale kluczowe pozostaje zachowanie odpowiedniej pozycji podczas transportu.

Pytanie 3

Do kotła, który spala zrębki, jednorazowo można włożyć 0,5 m3 paliwa. W ciągu jednej doby kocioł powinien być załadowany 3 razy. Jaki będzie koszt paliwa na tydzień, jeśli średnia cena jednostkowa wynosi 50,00 zł za 1 m3?

A. 25,00 zł
B. 50,00 zł
C. 525,00 zł
D. 150,00 zł
Aby obliczyć tygodniowy koszt paliwa dla kotła spalającego zrębki, należy zrozumieć, jak oblicza się jego zużycie w dłuższym okresie. Kocioł, który można załadować 0,5 m³ paliwa i wymaga trzykrotnego załadunku dziennie, zużywa codziennie 1,5 m³. Przemnażając tę wartość przez liczbę dni w tygodniu, otrzymujemy tygodniowe zużycie wynoszące 10,5 m³. Znając cenę jednostkową paliwa, która wynosi 50,00 zł za 1 m³, możemy obliczyć całkowity koszt tygodniowy, mnożąc 10,5 m³ przez 50,00 zł. Całkowity koszt wynosi zatem 525,00 zł. Te obliczenia są istotne w praktyce, gdyż pozwalają na efektywne zarządzanie kosztami ogrzewania, a także umożliwiają planowanie budżetu na paliwo. Przykładowo, w przypadku zakupu paliwa na dłuższy okres, wiedza o jego kosztach pozwala na negocjowanie lepszych cen z dostawcami, co wpływa na efektywność ekonomiczną przedsiębiorstw. W kontekście norm i dobrych praktyk, takie obliczenia są kluczowe w przemyśle energetycznym i budowlanym, gdzie kontrola kosztów paliwa jest niezbędna do utrzymania płynności finansowej.

Pytanie 4

Aby osiągnąć maksymalną wydajność przez cały rok w instalacji solarnej do podgrzewania wody użytkowej w Polsce, konieczne jest ustawienie kolektorów w odpowiednim kierunku pod kątem w stosunku do poziomu:

A. 90°
B. 70°
C. 20°
D. 45°
Ustawienie kolektorów słonecznych pod kątem 45° jest kluczowe dla maksymalnej efektywności systemu podgrzewania wody w Polsce. Taki kąt nachylenia jest optymalny ze względu na średnią szerokość geograficzną kraju, która wynosi 52°N. Zgodnie z praktykami branżowymi, kąt ten powinien być o 10-15 stopni mniejszy od szerokości geograficznej, co sprawia, że 45° to idealny wybór. Przy takim nachyleniu, kolektory mogą efektywnie zbierać promieniowanie słoneczne przez cały rok, co jest szczególnie istotne w kontekście sezonowych zmian nasłonecznienia. Przykładowo, zimą, gdy słońce znajduje się nisko nad horyzontem, kąt 45° pozwala na maksymalizację absorpcji promieni słonecznych, co przekłada się na lepsze wyniki w konwersji energii słonecznej na ciepło w systemie grzewczym. Warto także pamiętać, że powiązane z tego standardy, takie jak PN-EN 12975, określają wymagania dotyczące wydajności kolektorów słonecznych, które wzmacniają praktykę ustawienia ich pod odpowiednim kątem. Takie podejście nie tylko zwiększa efektywność energetyczną, ale również przyczynia się do obniżenia kosztów eksploatacyjnych systemu.

Pytanie 5

Naturalną wentylacją nie jest

A. przewietrzanie
B. aeracja
C. wentylacja przeciwpożarowa
D. wentylacja grawitacyjna
W kontekście wentylacji, wiele osób mylnie kojarzy różne systemy z wentylacją naturalną, co prowadzi do nieporozumień. Wentylacja grawitacyjna, często uznawana za formę wentylacji naturalnej, polega na wykorzystaniu różnicy temperatur i ciśnień do wymiany powietrza w budynku. Jest to proces, który działa szczególnie dobrze w klimatach, gdzie występują znaczące wahania temperatury między porami roku. Przewietrzanie, rozumiane jako krótkotrwałe otwieranie okien, również należy do metod naturalnych, ale nie jest to zorganizowany system wentylacji. Aeracja, w kontekście napowietrzania wody, jest procesem zupełnie niezwiązanym z wentylacją powietrza w budynkach. W przypadku wentylacji przeciwpożarowej, warto zauważyć, że jest to system zaprojektowany z myślą o bezpieczeństwie, który korzysta z mechanizmów aktywnych, aby kontrolować i usuwać dym, co odróżnia go od wentylacji naturalnej. Typowym błędem jest mylenie tych dwóch koncepcji, co może prowadzić do nieprawidłowego zaprojektowania systemu wentylacji w budynkach oraz zagrożeń dla bezpieczeństwa użytkowników. Aby uniknąć tych pomyłek, istotne jest zrozumienie różnic między rodzajami wentylacji oraz ich praktycznym zastosowaniem w budownictwie, co jest kluczowe dla zapewnienia zdrowego i bezpiecznego środowiska wewnętrznego.

Pytanie 6

Jakie rodzaje kolektorów słonecznych są najbardziej odpowiednie do montażu w orientacji pionowej?

A. Płaskie.
B. Z selektywną powłoką absorbera.
C. Próżniowe o bezpośrednim przepływie przez absorber.
D. Z przykryciem ze szkła antyrefleksyjnego.
Próżniowe kolektory słoneczne o bezpośrednim przepływie przez absorber są najbardziej efektywne w montażu w pozycji pionowej, ze względu na swoją konstrukcję, która minimalizuje straty ciepła. Próżniowe kolektory składają się z dwóch warstw szklanych, tworzących próżnię, co ogranicza przewodnictwo cieplne i konwekcję. Przy pionowym montażu, te urządzenia mogą efektywnie zbierać energię słoneczną nawet przy niskim kącie padania promieni słonecznych, co jest kluczowe w okresach zimowych lub w regionach o ograniczonej ilości słońca. Dzięki bezpośredniemu przepływowi przez absorber, woda lub inny czynnik roboczy szybko nagrzewają się, co zwiększa efektywność systemu. Przykładem zastosowania mogą być budynki, gdzie przestrzeń na dachach jest ograniczona, a pionowy montaż pozwala na maksymalne wykorzystanie dostępnej powierzchni. Dobre praktyki branżowe wskazują, że instalacja takich kolektorów powinna uwzględniać lokalne warunki atmosferyczne oraz kąt nachylenia, aby zoptymalizować ich wydajność.

Pytanie 7

Przy realizacji zadań związanych z instalacją systemu rekuperacji, konieczne jest przygotowanie projektu, który obejmuje

A. instalację elektryczną
B. kanalizację
C. instalację ciepłej wody użytkowej
D. wentylację
Odpowiedź "wentylacją" jest poprawna, ponieważ system rekuperacji jest nierozerwalnie związany z procesem wentylacji budynku. Rekuperacja służy do odzyskiwania ciepła z powietrza wywiewanego, co pozwala na ogrzewanie świeżego powietrza nawiewanego. Aby projekt systemu rekuperacji był skuteczny, musi zawierać dokładny projekt wentylacji. W praktyce, projekt wentylacji powinien uwzględniać przepływy powietrza, wielkość kanałów wentylacyjnych oraz lokalizację rekuperatora. Ważnym standardem w tym zakresie jest normatyw EN 13779, który odnosi się do jakości powietrza w budynkach. Dobrze zaprojektowany system wentylacji zapewnia komfort użytkowników oraz efektywność energetyczną budynku, a także przyczynia się do obniżenia kosztów ogrzewania. Zastosowanie nowoczesnych rekuperatorów, które są w stanie odzyskać do 90% ciepła, jest szczególnie zalecane w budynkach energooszczędnych i pasywnych, gdzie wentylacja mechaniczna jest kluczowym elementem.

Pytanie 8

Aby naprawić pęknięcie na prostym odcinku poziomego wymiennika gruntowego wykonanego z rur polietylenowych, należy zastosować mufę

A. spawaną
B. zgrzewaną
C. gwintowaną
D. lutowaną
Mufa zgrzewana jest odpowiednią metodą naprawy pęknięć w systemach wymienników gruntowych wykonanych z rur polietylenowych. Proces zgrzewania polega na podgrzewaniu końców rur, które następnie są ze sobą łączone pod wpływem ciśnienia. Taki sposób łączenia zapewnia trwałość i szczelność, co jest kluczowe w przypadku systemów, które są poddawane różnym warunkom atmosferycznym oraz ciśnieniowym. Zgrzewanie polietylenu jest uznawane za jedną z najlepszych praktyk w branży, ponieważ eliminuje ryzyko wycieków i zapewnia długotrwałą wytrzymałość połączenia. W praktyce stosuje się zgrzewanie w wielu zastosowaniach, od instalacji wodociągowych po systemy grzewcze, co potwierdza jego uniwersalność i niezawodność. Dobrą praktyką jest również przeprowadzenie testów szczelności po zakończeniu procesu zgrzewania, co dodatkowo potwierdza jakość wykonanej naprawy.

Pytanie 9

Jak często należy przeprowadzać kontrolę stanu technicznego instalacji elektrycznych w zakresie rezystancji izolacji?

A. co 2 lata
B. co 5 lat
C. co 7 lat
D. co 3 lata
Kontrola stanu technicznego instalacji elektrycznych w zakresie rezystancji izolacji jest kluczowym elementem zapewnienia bezpieczeństwa oraz niezawodności systemów elektroenergetycznych. Zgodnie z obowiązującymi normami, takimi jak PN-IEC 60364 oraz wytycznymi z zakresu utrzymania urządzeń elektrycznych, przegląd tej rezystancji powinien być przeprowadzany co najmniej co 5 lat. Taki okres umożliwia wczesne wykrywanie potencjalnych uszkodzeń izolacji, które mogą prowadzić do poważnych awarii, pożarów czy porażenia prądem. Przykładem zastosowania tej wiedzy jest regularne przeprowadzanie testów rezystancji izolacji w obiektach przemysłowych, gdzie instalacje elektryczne są szczególnie narażone na działanie czynników zewnętrznych, takich jak wilgoć czy substancje chemiczne, które mogą wpływać na degradację materiałów. Systematyczne wykonywanie tego rodzaju kontroli wspiera utrzymanie wysokich standardów bezpieczeństwa oraz zgodności z przepisami prawa.

Pytanie 10

Aby uzyskać optymalną wydajność instalacji słonecznej do podgrzewania wody w basenie w trakcie lata, kolektory powinny być ustawione pod kątem względem poziomu

A. 90o
B. 30o
C. 45o
D. 60o
Ustawienie kolektorów słonecznych pod kątem 30 stopni jest optymalne do maksymalizacji efektywności w sezonie letnim, zwłaszcza w krajach o umiarkowanym klimacie. Kąt ten zapewnia, że kolektory są skierowane bardziej bezpośrednio w stronę słońca, co zwiększa ich zdolność do absorbowania promieniowania słonecznego. Pod kątem 30 stopni kolektory są w stanie osiągnąć wyższą wydajność, zwłaszcza gdy słońce jest wysoko na niebie w letnich miesiącach. Praktyczne zastosowanie tego kąta można zobaczyć w wielu nowoczesnych instalacjach, które stosują go jako standard, co potwierdzają badania dotyczące wydajności energetycznej. Warto również zauważyć, że dostosowanie kąta do lokalnych warunków geograficznych oraz pory roku jest kluczowe dla uzyskania maksymalnych korzyści. Zgodnie z normami branżowymi, dobrze zainstalowane systemy solarne powinny być projektowane z myślą o optymalizacji kąta nachylenia, co w efekcie prowadzi do zwiększenia oszczędności energii i redukcji kosztów eksploatacyjnych.

Pytanie 11

Jaki jest maksymalny współczynnik przenikania ciepła (Uc max) dla zewnętrznych ścian nowych obiektów budowlanych od 01.01.2017 r. przy t1 ≥ 16°C?

A. 0,23 W/m2 · K
B. 0,20 W/m2 · K
C. 0,28 W/m2 · K
D. 0,25 W/m2 · K
Nieprawidłowe odpowiedzi na pytanie dotyczące maksymalnego współczynnika przenikania ciepła dla ścian zewnętrznych nowych budynków często wynikają z nieaktualnych informacji lub niezrozumienia zmieniających się przepisów budowlanych. Warto zauważyć, że współczynniki przenikania ciepła, takie jak 0,20 W/m² · K czy 0,25 W/m² · K, są zbyt niskie lub zbyt wysokie w kontekście obowiązujących norm. W przypadku wartości 0,20 W/m² · K, można myśleć, że jest to wymóg stricte energetyczny, jednak takie wartości mogą dotyczyć starszych regulacji, które nie uwzględniają najnowszych standardów. Z kolei wartość 0,25 W/m² · K jest również mylna, ponieważ wprowadza niepotrzebną mylność co do wymagań technicznych. Odpowiedź 0,28 W/m² · K jest całkowicie niezgodna z aktualnymi normami, gdyż taka wartość wskazuje na znacznie gorsze właściwości izolacyjne, co może prowadzić do znacznego wzrostu kosztów ogrzewania i obniżenia komfortu cieplnego mieszkańców. Zrozumienie aktualnych przepisów jest kluczowe dla projektowania budynków, które są nie tylko energooszczędne, ale także komfortowe w użytkowaniu. Wartości współczynnika U są określane na podstawie obliczeń opartych na materiałach budowlanych, a ich poprawne dobranie pozwala na osiągnięcie efektywności energetycznej budynku, co jest niezbędne w kontekście zrównoważonego rozwoju oraz ochrony środowiska.

Pytanie 12

Aby transportować elementy siłowni wiatrowych w Polsce, konieczne jest uzyskanie zgody od GDDKiA. Jaki jest maksymalny dozwolony nacisk na jedną oś napędową pojazdu przewożącego ładunek?

A. 9,5 t
B. 12,5 t
C. 11,5 t
D. 10,5 t
Wybór odpowiedzi 12,5 t, 10,5 t, czy 9,5 t jest wynikiem nieporozumienia dotyczącego regulacji dotyczących transportu ładunków wielkogabarytowych w Polsce. Maksymalny dopuszczalny nacisk na jedną oś napędową pojazdu określony na 12,5 t jest stosunkowo rzadko spotykany i dotyczy standardowych pojazdów ciężarowych w ruchu drogowym. W kontekście transportu elementów siłowni wiatrowych, które mają większe wymiary i wagę, obowiązują specjalne przepisy. Wybór 10,5 t lub 9,5 t również nie uwzględnia aktualnych norm, które definiują maksymalne obciążenia osi w kontekście transportu nadgabarytowego. Typowe błędy myślowe obejmują mylenie standardowych nacisków osi dla pojazdów transportowych z obciążeniem specyficznym dla ładunków wielkogabarytowych. Alternatywne odpowiedzi mogą wynikać z mylnego założenia, że ogólne przepisy dotyczące transportu ciężarowego są wystarczające dla wszelkich form przewozu. W praktyce, przy planowaniu transportu komponentów siłowni wiatrowych, istotne jest konsultowanie się z odpowiednimi regulacjami prawnymi i normami, aby uniknąć problemów z przepisami oraz zapewnić bezpieczeństwo zarówno przewożonym ładunkom, jak i infrastrukturze drogowej.

Pytanie 13

Aby zabezpieczyć się przed niepełnym spalaniem w kotłach opalanych biomasą, powinno się zainstalować tzw. sondę lambda

A. na wentylatorze podmuchu
B. w komorze paleniskowej
C. w przewodzie kominowym
D. w podajniku paliwa
Sonda lambda jest kluczowym elementem systemu kontroli spalania w kotłach na biomasę, ponieważ jej zadaniem jest monitorowanie stężenia tlenu w spalinach. Montaż sondy w przewodzie kominowym pozwala na precyzyjne pomiary, które są niezbędne do optymalizacji procesu spalania. Dzięki tym pomiarom system może dostosować ilość powietrza dostarczanego do kotła, co z kolei wpływa na efektywność spalania oraz redukcję emisji szkodliwych substancji. Przykładowo, w przypadku, gdy sonda wykrywa zbyt niskie stężenie tlenu, system automatycznie zwiększa podmuch powietrza, co pozwala na uzyskanie pełniejszego spalania paliwa. W praktyce, zastosowanie sondy lambda w odpowiednim miejscu, jakim jest przewód kominowy, przyczynia się do poprawy efektywności energetycznej całego systemu grzewczego oraz spełnienia norm środowiskowych, co jest zgodne z najlepszymi praktykami branżowymi. Rekomendacje dotyczące instalacji sondy lambda w przewodach kominowych są również zgodne z wytycznymi wielu organizacji zajmujących się ochroną środowiska.

Pytanie 14

Które urządzenie jest używane do wymuszania obiegu cieczy solarnej w systemie?

A. pompa
B. zbiornik wyrównawczy
C. zawór regulacyjny
D. kolektor słoneczny
Pompa w instalacji solarnej odgrywa kluczową rolę w wymuszaniu obiegu cieczy solarnej, co jest niezbędne do efektywnego transportu ciepła z kolektorów do systemu grzewczego. Działa na zasadzie mechanicznego przemieszczenia cieczy, co pozwala na utrzymanie optymalnego przepływu, a tym samym zapewnienie wysokiej efektywności energetycznej całego systemu. Pompy są projektowane z myślą o różnorodnych zastosowaniach, w tym do pracy w warunkach zmiennego obciążenia, co jest typowe dla systemów solarnych, gdzie ilość dostępnej energii cieplnej jest uzależniona od warunków atmosferycznych. Standardy takie jak EN 16297-1 dotyczące pomiarów efektywności pomp podkreślają znaczenie ich właściwego doboru i instalacji, co wpływa na trwałość i niezawodność systemu. Przykładem może być pompa obiegowa, która zapewnia stabilny przepływ w instalacjach z kolektorami słonecznymi, co pozwala na skuteczne wykorzystanie energii odnawialnej.

Pytanie 15

Możliwość ogrzewania oraz chłodzenia przy użyciu jednego urządzenia jest efektem zastosowania

A. ogniwa wodorowego
B. próżniowego kolektora słonecznego
C. rewersyjnej pompy ciepła
D. ogniwa fotowoltaicznego typu CIGS
Rewersyjna pompa ciepła to urządzenie, które w zależności od potrzeb użytkownika może zarówno ogrzewać, jak i chłodzić pomieszczenia. Działa na zasadzie wymiany ciepła z otoczeniem, wykorzystując cykl termodynamiczny, który pozwala na odwrócenie kierunku przepływu czynnika chłodniczego. W trybie ogrzewania, pompa ciepła pobiera ciepło z zewnątrz (nawet przy niskich temperaturach) i przekształca je, aby podnieść temperaturę w budynku. Natomiast w trybie chłodzenia, proces jest odwrotny, co pozwala na usuwanie ciepła z wnętrza budynku. Dzięki tej uniwersalności, rewersyjne pompy ciepła znajdują szerokie zastosowanie w nowoczesnym budownictwie, w tym w domach jednorodzinnych, biurach oraz obiektach przemysłowych. Standardy dotyczące efektywności energetycznej, takie jak SEER i HSPF, mają na celu oceny wydajności systemów HVAC, w tym pomp ciepła, co potwierdza ich znaczenie w zrównoważonym rozwoju. W praktyce, instalacja pompy ciepła może prowadzić do znacznego obniżenia kosztów ogrzewania i chłodzenia, a także redukcji emisji CO2, co jest zgodne z globalnymi trendami proekologicznymi.

Pytanie 16

Turbina akcyjna to turbina

A. X
B. Francisa
C. Kaplana
D. Peltona
Wybór odpowiedzi Kaplana, Francisa czy X prowadzi do nieporozumień związanych z klasyfikacją turbin wodnych. Turbina Kaplana jest przykładem turbiny osiowej, która jest zaprojektowana do pracy w warunkach niskiego spadku, gdzie przepływ wody jest duży. Jej działanie opiera się na zasadzie pracy w ruchu ciągłym, co różni ją zasadniczo od turbin akcyjnych. Z kolei turbina Francisa, będąca kombinacją turbin osowych i akcyjnych, działa efektywnie w średnim zakresie spadków. Jest to turbina, która wykorzystuje zarówno energię potencjalną, jak i kinetyczną wody. Wybór X, który nie jest klasycznym przykładem turbiny wodnej, również wskazuje na brak zrozumienia podstawowych podziałów turbin. Typowe błędy myślowe, prowadzące do tych błędnych odpowiedzi, często wynikają z nieznajomości funkcji i zastosowań różnych typów turbin. Kluczowe dla poprawnego identyfikowania turbin jest zrozumienie mechanizmu ich działania oraz odpowiednich warunków, w jakich będą one najbardziej efektywne. Niezrozumienie tej problematyki prowadzi do niepoprawnych wniosków, które mogą wpływać na dalsze decyzje inżynieryjne oraz projektowe w dziedzinie hydroenergetyki.

Pytanie 17

Jakie narzędzia należy zastosować do łączenia rur PE Ø 32 mm podczas instalacji poziomego kolektora, obok gratownika zewnętrznego i wewnętrznego oraz nożyc do cięcia rur?

A. kształtek zaciskowych 11/4"
B. pilnika w kształcie trójkąta
C. klucza łańcuchowego 1"
D. piły metalowej
Wybór piły do metalu, pilnika trójkątnego czy klucza łańcuchowego 1" w kontekście montażu kolektora poziomego z rur PE Ø 32 mm jest błędny z kilku powodów technicznych. Piła do metalu nie jest narzędziem przeznaczonym do cięcia rur plastikowych; w przypadku rur PE zaleca się stosowanie nożyc do cięcia, które zapewniają czyste i równe cięcie, minimalizując ryzyko uszkodzenia materiału. Dodatkowo, piła do metalu może powodować odpryski i zniekształcenia krawędzi, co w konsekwencji może prowadzić do problemów ze szczelnością połączeń. Pilnik trójkątny, mimo że może wydawać się użyteczny do wygładzania krawędzi, nie jest standardowo stosowany w procesie montażu rur PE, gdzie bardziej odpowiednie są gratowniki, które są zaprojektowane do tego celu. Klucz łańcuchowy 1" jest narzędziem używanym głównie do pracy z rurami stalowymi lub dużymi instalacjami, a nie z rurami plastikowymi, ponieważ nie zapewnia odpowiedniego momentu obrotowego, co może prowadzić do uszkodzenia rur. Zrozumienie właściwych metod i narzędzi jest kluczowe dla zapewnienia trwałości i bezpieczeństwa instalacji, a wybór odpowiednich komponentów i narzędzi jest zgodny z najlepszymi praktykami branżowymi.

Pytanie 18

Aby podłączyć kocioł na biomasę do wymiennika c.w.u w wodnej instalacji grzewczej w systemie otwartym, można zastosować rurę

A. ze stali nierdzewnej
B. ze stali ocynkowanej
C. z polipropylenu
D. Alu-PEX
Stal nierdzewna jest materiałem, który doskonale sprawdza się w instalacjach grzewczych, w tym w podłączeniach kotłów na biomasę do wężownic zasobników c.w.u. W porównaniu z innymi materiałami, stal nierdzewna charakteryzuje się wysoką odpornością na korozję oraz na wysokie temperatury i ciśnienia, co jest kluczowe w instalacjach, gdzie zachodzi transfer energii cieplnej. Zastosowanie stali nierdzewnej zapewnia długotrwałość i niezawodność połączenia, co jest istotne dla użytkowników szukających efektywnych i bezpiecznych rozwiązań. Przykładowo, w wielu nowoczesnych instalacjach grzewczych w budynkach mieszkalnych, stal nierdzewna jest preferowanym materiałem do tworzenia węzłów ciepłowniczych oraz do łączenia elementów takich jak kotły, zasobniki czy wymienniki ciepła. Dodatkowo, stosowanie stali nierdzewnej często jest zgodne z wymogami norm budowlanych oraz standardów dotyczących instalacji grzewczych, co zwiększa bezpieczeństwo oraz efektywność systemów grzewczych.

Pytanie 19

Montaż paneli słonecznych na płaskim dachu został zrealizowany przez jednego instalatora oraz dwóch asystentów. Wartość stawki instalatora wynosi 50,00 zł za każdą godzinę pracy, a stawka asystenta to 20,00 zł. Jaką łączną wartość robocizny można oszacować, jeśli całkowity czas pracy wynosi 8 godzin?

A. 960,00 zł
B. 560,00 zł
C. 720,00 zł
D. 90,00 zł
Kosztorysowa wartość robocizny wynosi 720,00 zł, co wynika z obliczenia całkowitych kosztów pracy instalatora i pomocników przy montażu kolektorów słonecznych. Instalator, którego stawka wynosi 50,00 zł za roboczogodzinę, pracował przez 8 godzin, co daje 400,00 zł (50,00 zł x 8 h). Dodatkowo, dwóch pomocników, zarabiających po 20,00 zł za roboczogodzinę, pracowało również przez 8 godzin. Każdy pomocnik zarobił 160,00 zł (20,00 zł x 8 h), więc dla dwóch pomocników łączny koszt wynosi 320,00 zł (160,00 zł x 2). Suma kosztów wynosi zatem 400,00 zł (instalator) + 320,00 zł (pomocnicy) = 720,00 zł. Taki sposób obliczania kosztów robocizny jest standardem w branży budowlanej i instalacyjnej, gdzie ważne jest uwzględnienie różnorodnych stawek wynagrodzenia oraz czasu pracy wszystkich zaangażowanych pracowników.

Pytanie 20

Jakie urządzenie stosuje się do pomiaru ciśnienia atmosferycznego oraz podciśnienia?

A. manowakuometr
B. wakuometr
C. mikrometr
D. anemometr
Manowakuometr jest urządzeniem wykorzystywanym do pomiaru ciśnienia w systemach, gdzie konieczne jest monitorowanie zarówno nadciśnienia, jak i podciśnienia. Działa na zasadzie pomiaru różnicy ciśnień, co pozwala na dokładne określenie stanu medium w różnych aplikacjach inżynieryjnych. Przykłady zastosowania manowakuometru obejmują przemysł chemiczny, gdzie monitorowanie ciśnienia jest kluczowe dla bezpieczeństwa procesów, oraz w systemach HVAC do kontrolowania ciśnienia w kanałach wentylacyjnych. Zgodnie z normami ISO 5167, pomiary ciśnienia muszą być wykonywane z użyciem odpowiednich przyrządów, aby zapewnić ich dokładność i wiarygodność. Manowakuometry są często kalibrowane zgodnie z odpowiednimi standardami, co pozwala na uzyskanie wyników o wysokiej precyzji, co jest niezbędne w zastosowaniach wymagających ścisłych tolerancji.

Pytanie 21

Najwyższą efektywność energetyczną uzyskują panele fotowoltaiczne

A. organiczne
B. monokrystaliczne
C. polikrystaliczne
D. amorficzne
Monokrystaliczne fotoogniwa to naprawdę świetna opcja, mają najwyższą sprawność energetyczną. Dzieje się tak głównie przez ich strukturę i materiały, jakie wykorzystuje się do ich produkcji. W zasadzie są robione z pojedynczych kryształów krzemu, przez co lepiej zamieniają energię słoneczną na elektryczną. Ich sprawność często przekracza 22%, co sprawia, że są idealne w miejscach, gdzie trzeba maksymalnie wykorzystać dostępne miejsce, jak dachy domów czy farmy słoneczne. W branży często wybiera się monokrystaliczne ogniwa tam, gdzie miejsca jest mało, a ich dłuższy czas życia oraz mniejsze straty energii w wysokich temperaturach sprawiają, że długoterminowo są opłacalne. Co więcej, monokrystaliczne ogniwa są bardziej odporne na degradację, co zwiększa ich niezawodność i wydajność w długim okresie. Widać to szczególnie w nowoczesnej architekturze, gdzie stosuje się zintegrowane systemy fotowoltaiczne.

Pytanie 22

Jakiego elementu należy użyć, aby połączyć dwie stalowe rury o tej samej średnicy z gwintem zewnętrznym?

A. mufy
B. nypla
C. redukcji
D. odpowietrznika
Mufa jest kluczowym elementem stosowanym do łączenia stalowych rur o tej samej średnicy z gwintem zewnętrznym. Działa jako połączenie, które zapewnia ścisłość i bezpieczeństwo w systemach rurnych. Mufy są dostępne w różnych materiałach, ale stalowe mufy są powszechnie stosowane w instalacjach przemysłowych i budowlanych, gdzie wymagana jest wysoka odporność na ciśnienie i korozję. W praktyce, podczas instalacji, dwa końce rur z gwintem zewnętrznym są wkręcane w mufe, co tworzy solidne połączenie. Warto zauważyć, że użycie mufy jest zgodne z normami, takimi jak PN-EN 10241, które określają wymagania dotyczące materiałów i metod połączeń w instalacjach rurowych. Odpowiednie dobieranie mufy do średnicy rur oraz ich gwintu jest kluczowe dla zapewnienia długotrwałej i szczelnej instalacji, co jest istotne w kontekście bezpieczeństwa i efektywności systemów transportujących różne media.

Pytanie 23

Zanim instalacja kotłowni spalającej biomasę zostanie oddana do użytku, jaki dokument jest niezbędny?

A. pozytywna opinia straży miejskiej
B. ocena wpływu inwestycji na środowisko
C. protokół odbioru końcowego
D. decyzja o wprowadzaniu zanieczyszczeń do powietrza atmosferycznego
Protokół odbioru końcowego jest kluczowym dokumentem w procesie oddawania do eksploatacji instalacji kotłowni spalającej biomasę. Stanowi on formalne potwierdzenie, że instalacja została zbudowana zgodnie z projektem, spełnia wymagania techniczne oraz bezpieczeństwa, a także jest gotowa do użytkowania. W praktyce, protokół ten powinien być sporządzony przez odpowiednie organy nadzoru budowlanego lub inżynierów, którzy przeprowadzają inspekcję instalacji. Protokół powinien zawierać informacje o wykonanych pracach, zastosowanych materiałach oraz zgodności z obowiązującymi normami prawnymi i technicznymi. Przykładowo, zgodnie z normą PN-EN 303-5, która dotyczy kotłów na paliwa stałe, protokół odbioru powinien potwierdzać, że kotłownia spełnia wymogi dotyczące emisji zanieczyszczeń. Dobre praktyki branżowe zalecają również, aby protokół był dokumentowany w formie pisemnej, co ułatwia przyszłe audyty oraz kontrole. Odpowiedni protokół odbioru jest nie tylko wymogiem prawnym, ale również kluczowym elementem dla zapewnienia bezpieczeństwa i efektywności energetycznej kotłowni.

Pytanie 24

Korzystając z danych zamieszczonych w tabeli, wskaż kolektor słoneczny o najwyższej sprawności optycznej.

Rodzaj parametruKolektor 1Kolektor 2Kolektor 3Kolektor 4
Transmisyjność pokrywy przezroczystej0,920,920,860,86
Emisyjność absorbera0,050,850,120,05
Absorpcyjność absorbera0,950,850,950,04

A. Kolektor 1.
B. Kolektor 4.
C. Kolektor 2.
D. Kolektor 3.
Kolektor 1 został wybrany jako ten o najwyższej sprawności optycznej, co jest wynikiem starannej analizy trzech kluczowych parametrów: transmisyjności pokrywy przezroczystej, emisyjności absorbera oraz absorpcyjności absorbera. W praktyce, wysoka transmisyjność oznacza, że większa ilość promieniowania słonecznego przenika przez pokrywę do wnętrza kolektora, co zwiększa efektywność jego działania. Emisyjność absorbera odnosi się do zdolności materiału do emitowania energii cieplnej; niski współczynnik emisyjności jest pożądany, ponieważ minimalizuje straty ciepła. Absorpcja energii słonecznej przez absorber jest kluczowa dla efektywności kolektora. Kolektor 1 osiąga najwyższe wartości w tych trzech kategoriach, co czyni go idealnym wyborem do zastosowań, takich jak ogrzewanie wody użytkowej czy wspomaganie systemów grzewczych w budynkach. W odniesieniu do standardów branżowych, takie podejście do oceny kolektorów słonecznych jest zgodne z normami IEC i ISO, które promują efektywność i zrównoważony rozwój technologii odnawialnych.

Pytanie 25

Aby zobrazować za pomocą symboli graficznych ogólny przebieg oraz wyposażenie instalacji grzewczej podczas jej funkcjonowania, należy skorzystać z rysunku

A. szczegółowego
B. aksonometrycznego
C. schematycznego
D. zasadniczego
Odpowiedź schematycznego rysunku jest poprawna, ponieważ takie rysunki są powszechnie stosowane do przedstawiania ogólnych przebiegów oraz wyposażenia instalacji grzewczych. Rysunki schematyczne umożliwiają zrozumienie ogólnej struktury systemu bez wchodzenia w szczegóły poszczególnych komponentów. Za pomocą symboli graficznych i uproszczonych przedstawień, schematy te ułatwiają identyfikację kluczowych elementów instalacji, takich jak kotły, pompy, grzejniki oraz ich wzajemne połączenia. Zastosowanie rysunków schematycznych jest zgodne z normami branżowymi, takimi jak PN-EN 13306, które podkreślają znaczenie jednolitych symboli i oznaczeń w dokumentacji technicznej. Dzięki nim zarówno inżynierowie, jak i technicy mają możliwość szybkiej analizy oraz komunikacji dotyczącej systemów grzewczych. Przykładem zastosowania takiego rysunku mogą być projekty instalacji w budynkach mieszkalnych, gdzie schematy pomagają w planowaniu i późniejszym serwisowaniu systemu grzewczego.

Pytanie 26

Kiedy odbywa się odbiór instalacji solarnej?

A. po napełnieniu zbiornika i przed ustawieniem mocy pompy.
B. po pierwszym uruchomieniu systemu.
C. po wykonaniu próby ciśnieniowej i przed ustawieniem regulatora.
D. przed pierwszym uruchomieniem systemu.
Odbiór instalacji solarnej po pierwszym uruchomieniu jest kluczowym etapem w zapewnieniu, że system działa zgodnie z wymaganiami projektowymi oraz spełnia normy bezpieczeństwa. Po pierwszym uruchomieniu można ocenić, jak instalacja reaguje na różne warunki operacyjne, takie jak wydajność paneli słonecznych, efektywność wymiany ciepła oraz ogólne zachowanie systemu. Warto zwrócić uwagę na monitorowanie parametrów, takich jak ciśnienie i temperatura, które powinny mieścić się w przyjętych normach. Przykładem zastosowania tego procesu może być sprawdzenie, czy pompa obiegowa działa z odpowiednią mocą, co ma kluczowe znaczenie dla efektywności całej instalacji. Praktyki te są zgodne z wytycznymi branżowymi, takimi jak normy ISO oraz lokalne regulacje dotyczące odnawialnych źródeł energii, które podkreślają znaczenie starannego odbioru technicznego w celu zapewnienia długotrwałej i niezawodnej pracy systemu.

Pytanie 27

Jaką minimalną powierzchnię działki należy posiadać do zainstalowania poziomego wymiennika gruntowego w glebie gliniastej, który będzie źródłem energii niskotemperaturowej dla pompy ciepła o mocy grzewczej wynoszącej 10 kW?

A. od 2000 m2 do 3000 m2
B. od 10 m2 do 20 m2
C. od 400 m2 do 600 m2
D. od 60 m2 do 100 m2
Odpowiedź od 400 m2 do 600 m2 jest prawidłowa, ponieważ montaż wymiennika gruntowego poziomego w gruncie gliniastym wymaga odpowiedniej powierzchni do efektywnego pozyskiwania energii cieplnej. W gruntach gliniastych, ze względu na ich niską przewodność cieplną, wymiennik musi mieć większą powierzchnię, aby zapewnić efektywne przekazywanie ciepła do pompy ciepła o nominalnej mocy grzewczej wynoszącej 10 kW. Zgodnie z normami i zaleceniami branżowymi, optymalne projektowanie wymienników gruntowych uwzględnia nie tylko moc urządzenia, ale także właściwości gruntu. W praktyce, dla systemów gruntowych, zaleca się, aby na każdy 1 kW mocy grzewczej przypadało przynajmniej 10-15 m2 powierzchni wymiennika, co w przypadku 10 kW daje nam 100-150 m2. Jednak ze względu na specyfikę gruntów gliniastych, powyżej tego minimum, powierzchnia od 400 m2 do 600 m2 jest niezbędna, aby zapewnić optymalną wydajność całego systemu. Przykładowo, w sytuacji, gdy grunt jest zbyt mały, może to doprowadzić do niskiej efektywności systemu, co w dłuższej perspektywie może skutkować wyższymi kosztami eksploatacyjnymi oraz obniżoną wydajnością pompy ciepła.

Pytanie 28

Oblicz objętość pomieszczenia o wymiarach 4 x 3 m oraz wysokości 3 m?

A. 15 m3
B. 48 m3
C. 24 m3
D. 36 m3
Aby obliczyć kubaturę pomieszczenia, należy zastosować wzór: V = długość x szerokość x wysokość. W przypadku podanych wymiarów, mamy długość 4 m, szerokość 3 m oraz wysokość 3 m. Po podstawieniu wartości do wzoru otrzymujemy V = 4 m x 3 m x 3 m = 36 m³. Ta obliczona kubatura jest kluczowa w wielu zastosowaniach, takich jak określenie objętości powietrza w pomieszczeniu, co wpływa na systemy wentylacyjne i klimatyzacyjne. W praktyce, znajomość kubatury pomieszczeń jest również istotna podczas planowania ogrzewania, ponieważ obliczenia te mogą pomóc w określeniu mocy grzewczej potrzebnej do utrzymania komfortowej temperatury. Dodatkowo, w budownictwie, odpowiednie obliczenie kubatury ma znaczenie dla uzyskania niezbędnych pozwoleń oraz spełnienia norm budowlanych, co jest istotne dla bezpieczeństwa i efektywności energetycznej budynku.

Pytanie 29

W systemie pompy ciepła typu powietrze-powietrze, króciec oznaczony jako "wypływ kondensatu" powinien być połączony z instalacją

A. odpływową
B. wentylacyjną
C. ciepłej wody
D. zimnej wody
W przypadku pompy ciepła powietrze-powietrze, króciec oznaczony "wypływ kondensatu" powinien być połączony z instalacją odpływową. Kondensat powstaje w wyniku procesu chłodzenia powietrza, co prowadzi do skraplania się pary wodnej zawartej w powietrzu. Odpowiednie odprowadzenie kondensatu jest kluczowe dla efektywności i trwałości systemu. Zgodnie z zasadami dobrych praktyk branżowych, kondensat powinien być odprowadzany w sposób zapewniający, że nie będzie on gromadził się w urządzeniu ani w jego okolicy, co mogłoby prowadzić do uszkodzenia podzespołów lub sprzyjać rozwojowi pleśni i grzybów. W praktyce, instalacja odpływowa powinna być wykonana z materiałów odpornych na korozję oraz mieć odpowiedni spadek, aby zapewnić swobodny przepływ kondensatu. Dodatkowo, warto zainstalować filtr w odpływie, aby zapobiec zatorom. Właściwe zarządzanie kondensatem jest istotne dla zachowania efektywności energetycznej urządzenia oraz komfortu użytkowników.

Pytanie 30

Jakim symbolem określa się przetwornicę, która zmienia napięcie stałe na zmienne?

A. AC/AC
B. DC/DC
C. AC/DC
D. DC/AC
Odpowiedź DC/AC jest poprawna, ponieważ przetwornice DC/AC, znane również jako inwertery, są urządzeniami elektronicznymi, które konwertują napięcie stałe (DC) na napięcie zmienne (AC). Takie przetwornice są kluczowe w systemach, gdzie napięcie stałe, na przykład z baterii, musi być przekształcone do formy zmiennej do zasilania urządzeń elektrycznych, które wymagają AC. Przykładem zastosowania inwerterów są systemy fotowoltaiczne, gdzie energia słoneczna, przetwarzana na energię elektryczną w postaci DC, jest następnie konwertowana na AC, aby mogła być używana w domowych instalacjach elektrycznych lub wprowadzana do sieci energetycznej. Dobre praktyki w projektowaniu systemów z inwerterami obejmują wybór odpowiednich komponentów, takich jak tranzystory i układy scalone, które zapewniają wysoką sprawność konwersji oraz minimalizację zakłóceń w sieci elektrycznej. Zrozumienie zasady działania przetwornic DC/AC jest istotne dla inżynierów zajmujących się energią odnawialną oraz automatyzacją przemysłową.

Pytanie 31

W wymienniku ciepła jednopłaszczowym z dwoma wężownicami, który współpracuje z instalacją solarną oraz kotłem, podgrzewa się

A. mieszaninę glikolu
B. ciecz solarną
C. ciepłą wodę użytkową
D. powietrze
W jednopłaszczowym, dwuwężownicowym wymienniku ciepła, który współpracuje z instalacją solarną oraz kotłem, ciepła woda użytkowa jest kluczowym medium, które jest ogrzewane. Wymienniki ciepła tego typu są zaprojektowane w taki sposób, aby efektywnie przekazywać ciepło z jednego medium do drugiego. W tym przypadku, energia cieplna jest przekazywana z płynu solarnego lub z wody grzewczej dostarczanej przez kocioł do wody użytkowej. Ogrzewanie wody użytkowej jest istotnym elementem w systemach grzewczych, ponieważ zapewnia komfort w domach oraz spełnia podstawowe potrzeby sanitarno-higieniczne. Przykładowo, w domach jednorodzinnych lub budynkach użyteczności publicznej, wymienniki ciepła są szeroko stosowane do efektywnego podgrzewania wody, co jest zgodne z normami i wymaganiami efektywności energetycznej. Warto również zaznaczyć, że stosowanie wymienników ciepła wspomaga w osiąganiu celów związanych z redukcją zużycia energii oraz poprawą efektywności energetycznej budynków, co jest zgodne z obowiązującymi standardami budowlanymi.

Pytanie 32

Aby zrealizować połączenia instalacji ciepłej wody użytkowej z rur PPR, należy skorzystać ze zgrzewarki

A. punktowej
B. doczołowej
C. elektrooporowej
D. kielichowej
Zgrzewarka kielichowa jest najodpowiedniejszym narzędziem do łączenia rur PPR w instalacjach ciepłej wody użytkowej, ponieważ zapewnia stabilne i trwałe połączenie dzięki procesowi zgrzewania, który polega na podgrzewaniu materiałów do temperatury topnienia, a następnie ich łączeniu. W praktyce, podczas używania zgrzewarki kielichowej, końcówka rury PPR jest włożona w kielich złączki, a następnie poddawana działaniu wysokiej temperatury. W efekcie, materiał rury i złączki topnieje, a po schłodzeniu tworzy mocne i hermetyczne połączenie. Zastosowanie tej metody jest zgodne z normami PN-EN 12201 dotyczącymi instalacji wodociągowych i zapewnia, że połączenia są odporne na wysokie ciśnienia oraz temperatury. W instalacjach ciepłej wody użytkowej, gdzie wysokie ciśnienie i temperatura mogą być normą, kluczowe jest wykorzystanie właśnie tej metody, co podkreśla jej popularność w branży budowlanej oraz instalacyjnej.

Pytanie 33

Wskaż gaz, który powinien być wykorzystywany do przewozu biomasy w formie pyłu?

A. Błotny
B. Inertny
C. Ziemny
D. Węglowy
Odpowiedź "Inertny" jest prawidłowa, ponieważ gazy inertne, takie jak azot czy argon, są stosowane do transportu materiałów pylistych, w tym biomasy. Gazy te nie reagują chemicznie z transportowanym materiałem, co minimalizuje ryzyko reakcji, które mogłyby prowadzić do niebezpiecznych sytuacji, takich jak zapłon czy wybuch. W praktyce, w transporcie biomasy w postaci pyłu, stosowanie gazów inertnych pozwala na stworzenie atmosfery ochronnej, która nie tylko zabezpiecza materiał przed utlenieniem, ale również chroni przed pyłami, które mogą być łatwopalne. Zgodnie z normami ISO oraz dobrymi praktykami branżowymi, użycie gazów inertnych jest rekomendowane w wielu procesach przemysłowych, szczególnie tam, gdzie występują substancje łatwopalne lub reaktywne. Przykładowo, w przemysłowych systemach transportu biomasy, takich jak linie do pneumatycznego transportu, zastosowanie atmosfery azotowej pozwala na bezpieczne przewożenie pyłu drzewnego, który jest powszechnie wykorzystywany jako źródło energii.

Pytanie 34

Do pomiaru mocy wyjściowej baterii słonecznej, o parametrach podanych w przedstawionej tabeli, należy zastosować

Parametry baterii słonecznej
Moc maksymalna, P max1951 V
Napięcie maksymalne (jałowe), Uoc45,5 V
Napięcie w punkcie mocy maksymalnej, Um36,9 V
Prąd zwarcia, Isc5,63 A
Prąd w punkcie mocy maksymalnej, Im5,37 A

A. amperomierz i woltomierz.
B. mostek Graetza.
C. miernik mocy promieniowania słonecznego.
D. miernik natężenia oświetlenia.
Odpowiedź "amperomierz i woltomierz" jest poprawna, ponieważ do pomiaru mocy wyjściowej baterii słonecznej kluczowe jest zmierzenie zarówno prądu, jak i napięcia w punkcie pracy systemu. Moc elektryczna jest definiowana jako iloczyn prądu (I) i napięcia (V), zgodnie ze wzorem P = I * V. Amperomierz, stosowany do pomiaru natężenia prądu, dostarcza informacji na temat ilości elektronów przepływających przez obwód, co jest kluczowe w kontekście wydajności baterii słonecznych. Z kolei woltomierz mierzy napięcie, które jest istotne dla określenia potencjału elektrycznego w obwodzie. Poprawne korzystanie z tych narzędzi pozwala nie tylko na określenie mocy wyjściowej, ale również na optymalizację pracy systemu fotowoltaicznego, co jest zgodne z najlepszymi praktykami w branży energetycznej. Użycie amperomierza i woltomierza umożliwia także monitorowanie parametrów pracy baterii w czasie rzeczywistym, co jest istotne dla zapewnienia ich długotrwałej efektywności.

Pytanie 35

Podczas podłączania pompy wodnej do systemu elektrycznego, stosując się do aktualnych norm, przewód neutralny "N" powinien mieć kolor

A. jasnoniebieski
B. żółto-zielony
C. czerwony
D. pomarańczowy
Odpowiedź jasnoniebieskiego koloru dla przewodu neutralnego 'N' jest zgodna z obowiązującymi normami oraz zasadami elektroinstalacji. Zgodnie z normą PN-IEC 60446, kolor niebieski jest przypisany do przewodów neutralnych, co ma na celu ułatwienie identyfikacji poszczególnych przewodów w instalacji. Użycie jasnoniebieskiego koloru pozwala na szybką i jednoznaczną identyfikację przewodu neutralnego, co jest istotne zarówno podczas montażu, jak i konserwacji instalacji elektrycznych. Przykładowo, w instalacjach domowych czy przemysłowych, gdzie zainstalowane są pompy wodne, poprawne podłączenie przewodów ma kluczowe znaczenie dla bezpieczeństwa użytkowników i niezawodności systemu. W przypadku pompy, której działanie zależy od zasilania elektrycznego, błędne podłączenie przewodów może prowadzić do awarii urządzenia lub zagrożenia porażeniem prądem. Z tego względu stosowanie ustalonych norm kolorystycznych ma ogromne znaczenie w praktyce elektroinstalacyjnej.

Pytanie 36

Aby zapewnić jednostronny przepływ czynnika grzewczego, należy zainstalować zawór

A. zwrotny
B. bezpieczeństwa
C. spustowy
D. czerpalny
Zawór zwrotny to urządzenie stosowane w systemach hydraulicznych i grzewczych, które zapewnia przepływ czynnika grzewczego tylko w jednym kierunku, zapobiegając cofaniu się płynu. Jego działanie opiera się na zasadzie wykorzystania ciśnienia różnicowego, które otwiera zawór w kierunku przepływu, a zamyka go w przeciwnym. Zawory te są kluczowe w instalacjach grzewczych, gdzie niekontrolowany przepływ może prowadzić do strat ciepła i obniżenia efektywności systemu. Na przykład, w instalacjach centralnego ogrzewania, stosowanie zaworów zwrotnych zapewnia, że gorąca woda z kotła nie wraca do niego, co mogłoby prowadzić do uszkodzenia sprzętu oraz obniżenia komfortu grzewczego. W praktyce, zawory zwrotne są często instalowane w pobliżu kotłów oraz na zasilaniu i powrocie do grzejników, co minimalizuje ryzyko niepożądanych zjawisk. Warto także zwrócić uwagę na standardy branżowe, takie jak normy PN-EN dotyczące instalacji, które zalecają stosowanie zaworów zwrotnych w odpowiednich miejscach, aby zapewnić bezpieczeństwo i efektywność systemów grzewczych.

Pytanie 37

Gdzie w systemie grzewczym z kotłem posiadającym automatyczny podajnik paliwa powinno się zainstalować zabezpieczenie przed zbyt niskim poziomem wody?

A. Na powrocie, 10 cm ponad najwyższą częścią kotła
B. Na zasilaniu, 10 cm pod najwyższą częścią kotła
C. Na zasilaniu, 10 cm ponad najwyższą częścią kotła
D. Na powrocie, 10 cm pod najwyższą częścią kotła
Zamontowanie zabezpieczenia przed niskim poziomem wody w niewłaściwych miejscach, takich jak na powrocie 10 cm powyżej lub poniżej najwyższej części kotła, może prowadzić do poważnych problemów operacyjnych. Przede wszystkim zabezpieczenie umieszczone na powrocie nie będzie skutecznie monitorować poziomu wody, co jest kluczowe w systemach z automatycznym podajnikiem paliwa. Powrót to miejsce, gdzie woda wraca z obiegu grzewczego, i takie umiejscowienie nie gwarantuje, że kotłownia zawsze będzie miała odpowiednią ilość wody. Z tego powodu, może dojść do sytuacji, w której kocioł, mimo że na powrocie jest woda, działa na sucho, ponieważ pompa nie jest w stanie dostarczyć jej wystarczającej ilości z zasilania. Ponadto, umiejscowienie zabezpieczenia na zasilaniu, 10 cm poniżej najwyższej części kotła, również stwarza ryzyko, gdyż kocioł może działać w sytuacji, gdy poziom wody spadnie poniżej bezpiecznego marginesu. W takich przypadkach, woda w kotle nie jest wystarczająco chłodzona, co prowadzi do przegrzewania się urządzenia i potencjalnych uszkodzeń. Dlatego ważne jest, aby stosować się do zaleceń producentów i norm branżowych, które jasno wskazują, że zabezpieczenie powinno być montowane na zasilaniu, aby efektywnie kontrolować poziom wody i zapewnić optymalną pracę całego systemu grzewczego.

Pytanie 38

Na podstawie danych zawartych w tabeli oblicz koszt wykonania instalacji pompy ciepła z kolektorem poziomym.

WyszczególnienieTypWartość netto
Pompa ciepłaWPS 6 K26114 zł
Zbiornik buforowyPSP3002652 zł
Materiały instalacyjne-6000 zł
Montaż instalacji pompy ciepła wraz z rozruchem technicznym-2000 zł
Kolektor pionowy z rur polietylenowych L = 102 mb wraz z montażemPE Ø 409690 zł
Kolektor poziomy z rur polietylenowych L = 400 mb wraz z montażemPE Ø 408000 zł

A. 44 766 zł
B. 46 456 zł
C. 8 000 zł
D. 9 690 zł
Odpowiedź, którą wybrałeś, to 44 766 zł. To właściwa kwota, bo obejmuje wszystkie elementy, które są potrzebne do zainstalowania pompy ciepła z kolektorem poziomym. Koszt samej pompy wynosi 26 114 zł, co pasuje do obowiązujących norm jakości w branży. Do tego mamy zbiornik buforowy oraz materiały instalacyjne, które razem kosztują 8 652 zł. Te elementy są naprawdę ważne, bo wpływają na to, jak dobrze działa cały system. Pamiętaj, że 2 000 zł za montaż to też rozsądna cena, bo profesjonalny montaż jest kluczowy, żeby system działał bezawaryjnie i bezpiecznie. Koszt kolektora z rur polietylenowych wynoszący 8 000 zł jest również uzasadniony, biorąc pod uwagę jego jakość i efektywność energetyczną. Jak połączysz te wszystkie wartości, dostajesz 44 766 zł, co jest zgodne z rynkowymi realiami. Właściwe obliczenie kosztów to głównie klucz do efektywności energetycznej budynków, a normy EN 14511 podkreślają, jak ważne to jest w systemach grzewczych.

Pytanie 39

Jakie urządzenia stosuje się w celu zabezpieczenia modułów fotowoltaicznych połączonych w równoległe łańcuchy przed prądem zwarciowym?

A. rozłączniki instalacyjne
B. wyłączniki różnicowo-prądowe
C. bezpieczniki topikowe o charakterystyce gPV
D. ograniczniki przepięć
Wyłączniki różnicowo-prądowe to urządzenia, które bardziej chronią przed porażeniem prądem elektrycznym, a nie od zwarć w instalacjach fotowoltaicznych. Działają one na zasadzie wykrywania różnicy prądu między przewodami, ale to nie odnosi się bezpośrednio do ochrony w przypadku zwarć. A te rozłączniki instalacyjne to już w ogóle są raczej do odłączania obwodów podczas konserwacji. Nie zadziałają, jak nagle prąd wzrośnie, a to jest kluczowe, kiedy coś się dzieje. Ograniczniki przepięć mają swoje zadanie w ochronie przed przepięciami, ale nie pomogą w przypadku zwarć, więc to nie jest dobry wybór do ochrony przed takim prądem. Często ludziom się mylą funkcje tych zabezpieczeń i nie wiedzą, jak działają w kontekście instalacji PV. Ważne jest, żeby znać te różnice i dobierać zabezpieczenia odpowiednio do systemu, żeby wszystko działało jak powinno.

Pytanie 40

Jakie narzędzia są potrzebne do montażu instalacji w systemie PEX skręcanym?

A. kalibrator do rur z fazownikiem, obcinak do rur oraz zestaw kluczy płaskich
B. kalibrator do rur z fazownikiem, obcinak do rur oraz zaciskarka
C. obcinak do rur, gratownik oraz zaciskarka
D. obcinak do rur, gratownik i zestaw kluczy płaskich
Jak nie uwzględnisz kalibratora do rur z fazownikiem, obcinaka i kluczy płaskich, to mogą wystąpić spore problemy. Kalibrator to istotne narzędzie, które pomaga formować rurę przed połączeniem, co jest konieczne w systemach PEX, żeby całość działała jak trzeba. Jak go brakuje, to ryzyko nieszczelności strasznie rośnie, co w efekcie może spowodować poważne kłopoty z instalacją. Obcinak też jest ważny, bo pozwala na czyste cięcia, a jego brak sprawia, że końce rur mogą być nierówne, co utrudnia montaż. Klucze płaskie są przydatne, ale same nie dadzą rady, żeby wszystko działało bez zgrzytów. Wybieranie gratowników to też niezbyt mądra decyzja, bo one nie spełniają wymagań dotyczących precyzyjnych połączeń. Dlatego warto wiedzieć, jak każde narzędzie pełni swoją rolę, żeby uniknąć błędów, które mogą prowadzić do drobnych napraw i problemów z wydajnością.