Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 1 kwietnia 2025 09:49
  • Data zakończenia: 1 kwietnia 2025 09:59

Egzamin niezdany

Wynik: 7/40 punktów (17,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Aby podłączyć dysk twardy do płyty głównej komputera, jaki interfejs należy zastosować?

A. SATA
B. LPT
C. D-SUB 15
D. RS 232
Interfejs RS 232, znany jako Interfejs szeregowy, jest stosunkowo przestarzałym standardem komunikacyjnym, który służył głównie do łączenia urządzeń peryferyjnych, takich jak modemy, myszy czy drukarki. Mimo że RS 232 był powszechnie stosowany w przeszłości, jego ograniczenia w zakresie prędkości transferu i odległości sprawiają, że nie nadaje się on do podłączania nowoczesnych dysków twardych, które wymagają bardziej wydajnych interfejsów. LPT, czyli port równoległy, był także używany w kontekście podłączania drukarek, lecz jego zastosowanie nie obejmowało dysków twardych. LPT jest również ograniczony pod względem prędkości i wydajności, co czyni go nieodpowiednim wyborem. Z kolei D-SUB 15 to złącze, które najczęściej kojarzone jest z portem VGA używanym do podłączania monitorów. Nie jest to interfejs do komunikacji z dyskami twardymi i jego wykorzystanie w tym kontekście jest całkowicie nieadekwatne. W przeszłości wiele osób może było skłonnych do używania starszych standardów ze względu na ich dostępność, jednak z perspektywy nowoczesnej architektury komputerowej, takie podejście prowadzi do problemów z wydajnością i kompatybilnością. W rezultacie, wybór interfejsu SATA jest właściwy i zgodny z obecnymi standardami branżowymi, które promują efektywność i szybkość transferu danych.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Jakiego koloru powinien być przewód ochronny PE w elektrycznej instalacji zasilającej urządzenia elektroniczne?

A. Żółto-zielony.
B. Czarny.
C. Jasnoniebieski.
D. Czerwony.
Przewód ochronny PE (Protection Earth) w instalacjach elektrycznych zasilających urządzenia elektroniczne powinien mieć kolor żółto-zielony. Taki kolor jest zgodny z międzynarodowymi standardami, w tym normą IEC 60446, która określa oznaczenia kolorów przewodów elektrycznych. Żółto-zielony przewód pełni kluczową rolę w zapewnieniu bezpieczeństwa, ponieważ jego zadaniem jest odprowadzenie prądu doziemnego w przypadku awarii, co minimalizuje ryzyko porażenia prądem elektrycznym. Przykładem zastosowania przewodu PE może być podłączanie urządzeń, takich jak komputery, drukarki czy serwery, gdzie zapewnienie odpowiedniego uziemienia chroni nie tylko użytkowników, ale również sam sprzęt przed uszkodzeniami. Nieprzestrzeganie tych norm może prowadzić do poważnych zagrożeń, takich jak zwarcia czy pożary, dlatego istotne jest stosowanie się do wytycznych branżowych w zakresie instalacji elektrycznych.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Aby zlokalizować metalowy obiekt w systemie automatyki przemysłowej, najbardziej odpowiednim rozwiązaniem będzie czujnik

A. optyczny
B. indukcyjny
C. temperatury
D. pojemnościowy
Czujnik indukcyjny jest najbardziej odpowiednim rozwiązaniem do wykrywania metalowych przedmiotów w zastosowaniach automatyki przemysłowej. Działa na zasadzie generowania pola elektromagnetycznego, które zmienia się w obecności obiektu metalowego. Kiedy metalowy przedmiot wchodzi w zasięg pola, zmienia się jego wartości, co pozwala czujnikowi na detekcję obiektu. Jest to szczególnie użyteczne w zautomatyzowanych liniach produkcyjnych, gdzie precyzyjne wykrywanie elementów metalowych jest kluczowe dla zapewnienia bezpieczeństwa i efektywności operacyjnej. Przykładowo, czujniki indukcyjne są powszechnie stosowane w robotyce do detekcji pozycji narzędzi lub komponentów, a także w systemach transportowych, gdzie mogą monitorować obecność części na taśmach produkcyjnych. W branży przemysłowej standardy takie jak ISO 13849-1 dotyczące bezpieczeństwa maszyn podkreślają znaczenie stosowania niezawodnych czujników wykrywających obecność obiektów, co czyni czujniki indukcyjne odpowiednim wyborem. Dodatkowo, ich odporność na zanieczyszczenia oraz możliwość pracy w trudnych warunkach, jak np. w wysokiej temperaturze czy w obecności wilgoci, sprawia, że są one często preferowanym rozwiązaniem w przemysłowych aplikacjach.

Pytanie 8

Jakie kroki należy podjąć w celu udzielenia pomocy osobie dotkniętej prądem elektrycznym?

A. odłączenia osoby od źródła prądu
B. wykonania sztucznego oddychania
C. przeprowadzenia masażu serca
D. zgłoszenia sytuacji przełożonemu
Uwolnienie osoby spod działania prądu elektrycznego jest kluczowym pierwszym krokiem w udzielaniu pomocy w przypadku porażenia prądem. Prąd elektryczny może prowadzić do skurczów mięśni, co często uniemożliwia osobie dotkniętej porażeniem uwolnienie się z niebezpiecznego źródła. Dlatego też, zanim przystąpimy do wszelkich działań resuscytacyjnych, jak sztuczne oddychanie czy masaż serca, niezbędne jest usunięcie zagrożenia. Użycie odpowiednich narzędzi, takich jak kij czy materiał izolacyjny, może pomóc w wyciągnięciu ofiary bez narażania siebie na ryzyko porażenia. Ponadto, należy zawsze upewnić się, że źródło prądu zostało wyłączone lub że jesteśmy w stanie je odizolować. Dbanie o własne bezpieczeństwo jest podstawą dobrych praktyk w udzielaniu pierwszej pomocy. W sytuacjach zagrożenia życia, takich jak te, należy stosować się do wytycznych organizacji takich jak Europejska Rada Resuscytacji, które podkreślają, jak ważne jest najpierw zabezpieczenie miejsca zdarzenia i ochrona ratownika przed dodatkowym ryzykiem.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Która z podanych metod łączenia radiatora z obudową procesora gwarantuje najwyższą efektywność w odprowadzaniu ciepła?

A. Między radiatorem a obudową znajduje się przekładka mikowa
B. Radiator został zamocowany bez użycia żadnych przekładek oraz past
C. Powierzchnia styku jest pokryta warstwą pasty termoprzewodzącej
D. Powierzchnie styku pokrywane są warstwami pasty termoprzewodzącej oraz oddzielone przekładką mikową
Choć istnieją różne metody łączenia radiatora z obudową procesora, nie wszystkie zapewniają skuteczne odprowadzanie ciepła. Użycie radiatora zamocowanego bez przekładek i pasty jest jedną z najgorszych opcji, ponieważ nie eliminuje nierówności powierzchni, co prowadzi do powstawania pustek powietrznych i zwiększonego oporu termicznego. Taki układ znacząco ogranicza efektywność transferu ciepła, co może prowadzić do przegrzewania się procesora. Z kolei umieszczenie przekładki mikowej pomiędzy radiatorem a obudową może niekorzystnie wpłynąć na efektywność odprowadzania ciepła, ponieważ mikowe przekładki, mimo że są dobrym izolatorem, mogą ograniczać przewodnictwo cieplne. Chociaż mogą one pełnić funkcję ochronną, lepszym rozwiązaniem jest zastosowanie materiałów termoprzewodzących, takich jak pasta, która skutecznie wypełnia wszystkie dostępne mikroszczeliny. To prowadzi do typowego błędu w rozumieniu budowy układów chłodzenia, gdzie pomija się znaczenie, jakie ma kontakt powierzchniowy i odpowiednie materiały na wydajność chłodzenia. W praktyce, aby osiągnąć wysoką efektywność odprowadzania ciepła, kluczowe jest zapewnienie maksymalnego kontaktu między powierzchniami styku oraz zastosowanie odpowiednich materiałów termoprzewodzących.

Pytanie 12

Zastosowanie uszkodzonych bezpieczników, zastępując je bezpiecznikami o większej wartości prądu znamionowego, może prowadzić do

A. większego zużycia energii
B. większego zużycia mocy
C. wzrostu napięcia źródła zasilania
D. przeciążenia oraz zniszczenia instalacji
Rozumiem, że zwiększony pobór energii, wzrost napięcia zasilającego oraz większy pobór mocy wydają się mieć sens, ale to nie do końca tak działa w przypadku zmiany bezpieczników. Bezpiecznik nie kontroluje poboru energii, a tylko ochrania obwód przed przeciążeniem. Kiedy wstawisz bezpiecznik o wyższej wartości, urządzenia mogą się kręcić z większym prądem, ale to nie zawsze oznacza, że pobór energii wzrośnie. Co do wzrostu napięcia zasilającego, to też nie jest efekt zmiany bezpiecznika – napięcie zasilające jest ustalone przez źródło. A to, że pobór mocy wzrasta przy wyższym prądzie, to już inna bajka, ale nie jest bezpośrednio związane z bezpiecznikiem. Pamiętaj, że niewłaściwy bezpiecznik może namieszać w systemie elektrycznym i dlatego tak ważne jest trzymanie się zasad doboru zabezpieczeń wedle ich wartości znamionowych. Zmiany w zabezpieczeniach powinny być dobrze przemyślane, bo chodzi o bezpieczeństwo ludzi i trwałość instalacji. Z doświadczenia wiem, że zawsze warto przestrzegać norm i zasad branżowych, żeby uniknąć problemów i zagrożeń.

Pytanie 13

Brak uziemienia na nadgarstku pracownika zajmującego się serwisowaniem sprzętu elektronicznego może prowadzić do

A. wpływu pola magnetycznego na organizm ludzki
B. porażenia prądem elektrycznym
C. powstania prądów wirowych, wywołanych przez zmienne pole magnetyczne
D. wyładowania elektrostatycznego groźnego dla układów typu MOS
Pojawiające się mylne przekonania dotyczące potencjalnych konsekwencji braku uziemionej opaski na przegubie pracownika serwisu wynika z niepełnego zrozumienia zagadnień związanych z elektrycznością i wpływem pola magnetycznego na człowieka. Pierwsza z odpowiedzi sugeruje, że brak uziemienia może prowadzić do powstawania prądów wirowych wywoływanych przez zmienne pole magnetyczne. W rzeczywistości prądy wirowe są zjawiskami związanymi z przewodnikami umieszczonymi w zmiennym polu magnetycznym, co jest bardziej związane z indukcją elektromagnetyczną niż z uziemieniem. Oddziaływanie pola magnetycznego na organizm człowieka nie jest bezpośrednio związane z brakiem uziemienia, a raczej z długotrwałym narażeniem na silne pola magnetyczne, co jest zupełnie innym zagadnieniem. Porażenie prądem elektrycznym nie jest głównym zagrożeniem związanym z elektrostatyką, gdyż wyładowania elektrostatyczne mają znacznie niższe napięcie, jednak mogą być szkodliwe dla delikatnych układów elektronicznych. Kluczowe jest zrozumienie, że wyładowania elektrostatyczne, a nie prąd elektryczny w tradycyjnym rozumieniu, są realnym zagrożeniem dla komponentów takich jak układy MOS. Zastosowanie technologii ESD (Electrostatic Discharge) w praktyce, w tym uziemienie oraz stosowanie mat antystatycznych, jest niezbędne do ochrony sprzętu i zapewnienia jego długotrwałej niezawodności.

Pytanie 14

Podczas pomiaru ciągłości obwodów za pomocą multimetru z brzęczykiem, dochodzi do aktywacji sygnału dźwiękowego. Co to oznacza?

A. badany obwód jest uszkodzony
B. w badanym obwodzie znajduje się źródło prądowe
C. badany obwód jest ciągły
D. w badanym obwodzie znajduje się złącze półprzewodnikowe
Pomiar ciągłości obwodu za pomocą multimetru z brzęczykiem jest kluczowym narzędziem w diagnostyce elektrycznej. Kiedy multimetr sygnalizuje dźwiękiem, oznacza to, że badany obwód jest ciągły, co potwierdza, że nie ma przerwy w połączeniu elektrycznym. Dźwięk wskazuje na to, że przepływ prądu jest możliwy, a zatem obwód jest sprawny. W praktyce, takie pomiary są niezbędne w instalacjach elektrycznych, gdyż pozwalają szybko zidentyfikować uszkodzenia kabli, złe połączenia lub problemy z urządzeniami. Na przykład, podczas sprawdzania instalacji w budynku, jeśli multimetr nie wydaje dźwięku, wskazuje to na problem, który wymaga dalszej diagnostyki. W branży elektrycznej standardy takie jak IEC 61010-1 definiują wymagania dotyczące bezpieczeństwa sprzętu pomiarowego, co podkreśla znaczenie stosowania odpowiednich narzędzi do analizy ciągłości obwodów. Dlatego umiejętność interpretacji wyników pomiarów jest niezbędna dla każdego elektryka.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Podczas instalacji kabla krosowego w przyłączach gniazd nie można pozwolić na rozkręcenie par przewodów na odcinku większym niż 13 mm, ponieważ

A. zredukowana zostanie jego impedancja
B. kabel stanie się źródłem intensywniejszego pola elektromagnetycznego
C. może to prowadzić do obniżenia odporności na zakłócenia
D. nastąpi wzrost jego impedancji
Wybór odpowiedzi, że zmniejszenie impedancji byłoby wynikiem rozkręcenia par przewodów, jest niepoprawny, gdyż pojęcie impedancji odnosi się do oporu, który przewód stawia przepływowi prądu przemiennego. W kontekście kabli krosowych, rozkręcenie przewodów na większym odcinku wpływa na charakterystykę sygnału, ale nie w sposób, który prowadziłby do jednoznacznego zmniejszenia impedancji. Również stwierdzenie, że kabel stanie się źródłem większego pola elektromagnetycznego, jest mylące; owszem, większe pole elektromagnetyczne może wystąpić, lecz niekoniecznie w wyniku samego rozkręcenia. Całkowita emisja pola elektromagnetycznego zależy od wielu czynników, w tym od konstrukcji kabla, jego ekranowania oraz otaczających go elementów. Warto zauważyć, że zwiększone pole elektromagnetyczne nie jest bezpośrednio związane z zakłóceniami, które mogą wpływać na sygnał. Ostatecznie, stwierdzenie, że nastąpi zwiększenie impedancji, jest również nieprawdziwe, ponieważ impedancja zależy od długości kabla i jego właściwości, a nie od długości rozkręcenia pary. Dlatego tak ważne jest zwracanie uwagi na parametry techniczne instalacji i przestrzeganie standardów, aby zminimalizować ryzyko zakłóceń w systemach komunikacyjnych.

Pytanie 18

Protokół internetowy, który pozwala na pobieranie wiadomości e-mail z serwera na komputer, to

A. DHCP
B. POP3
C. ARP
D. FTP
Wybór odpowiedzi innej niż POP3 wskazuje na pewne niezrozumienie funkcji protokołów w kontekście komunikacji internetowej. ARP, czyli Address Resolution Protocol, jest protokołem stosowanym w sieciach lokalnych do mapowania adresów IP na adresy MAC, co nie ma związku z odbieraniem poczty elektronicznej. Protokół DHCP (Dynamic Host Configuration Protocol) jest używany do automatycznej konfiguracji ustawień sieciowych urządzeń, co również nie dotyczy bezpośrednio przesyłania poczty e-mail. Z kolei FTP (File Transfer Protocol) to protokół służący do przesyłania plików między serwerem a klientem, a nie do odbierania wiadomości pocztowych. Często mylone są funkcje tych protokołów, ponieważ wszystkie mają na celu komunikację w sieci, lecz każdy z nich pełni zupełnie inną rolę. Poprawne rozróżnienie tych protokołów jest kluczowe dla właściwego zrozumienia, jak działają sieci komputerowe i jakie są mechanizmy wymiany informacji. Niezrozumienie takich podstawowych koncepcji może prowadzić do błędnych wniosków w zakresie projektowania systemów oraz ich konfiguracji. Użytkownicy powinni zwracać uwagę na specyfikacje i zastosowania zaawansowanych protokołów, aby lepiej zrozumieć ich funkcjonalności i zastosowania w praktyce.

Pytanie 19

W specyfikacji diody prostowniczej znajduje się maksymalny średni prąd obciążenia (Ifav) oraz maksymalny szczytowy prąd przewodzenia (Ifsm). Jaką relację można zapisać między tymi wartościami?

A. Ifav > Ifsm
B. Ifav < Ifsm
C. Ifav = Ifsm
D. Ifav ~= Ifsm
Odpowiedź Ifav > Ifsm jest nietrafiona. To tak, jakbyś powiedział, że dioda może dłużej pracować na prądzie wyższym niż to, co jest zaprojektowane. Zazwyczaj Ifav powinien być mniejszy niż Ifsm, żeby dioda miała zapas bezpieczeństwa. Jeżeli tego nie zrozumiesz, to możesz źle dobrać komponenty, co na pewno prowadzi do awarii. Dalej, odpowiedź Ifav ~= Ifsm też nie ma sensu. Dioda prostownicza działająca w takich warunkach po prostu nie wytrzyma tego, dlatego te wartości muszą mieć różnicę. I jeszcze, Ifav = Ifsm to kolejny błąd, bo sugeruje, że obie wartości mogą być równe, a to nie powinno mieć miejsca. Standardy mówią jasno – maksymalny prąd szczytowy zawsze musi być większy od średniego, żeby dioda mogła wytrzymać chwilowe obciążenia bez problemu. Jeśli to zaniedbasz, może się to źle skończyć, zwłaszcza w ważnych projektach, jak przemysłowe czy medyczne.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Jaką minimalną powierzchnię należy zapewnić na jednego pracownika pracującego równocześnie w tej samej przestrzeni biurowej?

A. 3 m2
B. 1 m2
C. 4 m2
D. 2 m2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
W kontekście aranżacji przestrzeni biurowej, minimalna powierzchnia 2 m2 przypadająca na jednego pracownika jest zgodna z normami i zaleceniami dotyczącymi ergonomii oraz zdrowia w miejscu pracy. Zgodnie z wytycznymi, takimi jak normy PN-EN 15251 oraz wytyczne BHP, zapewnienie odpowiedniej przestrzeni osobistej jest kluczowe dla komfortu i efektywności pracy. Pracownicy, mający do dyspozycji nie tylko biurko, ale także przestrzeń na poruszanie się, ograniczają uczucie przytłoczenia i zwiększają swoją wydajność. Przykładem zastosowania tej zasady mogą być biura typu open space, gdzie mimo otwartej przestrzeni, odpowiednie rozmieszczenie stanowisk pracy oraz zapewnienie przynajmniej 2 m2 na osobę sprzyja lepszej koncentracji i mniejszemu stresowi. Warto również zauważyć, że w przypadku organizacji biura, większa przestrzeń wpływa na poprawę komunikacji między pracownikami oraz umożliwia lepsze funkcjonowanie zespołów, co jest szczególnie ważne w kontekście współczesnych modeli pracy zespołowej.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Nie wolno stosować gaśnicy do gaszenia pożaru w instalacji elektrycznej, gdy jest pod napięciem?

A. pianowej
B. halonowej
C. proszkowej
D. śniegowej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Gaśnica pianowa jest odpowiednia do gaszenia pożarów instalacji elektrycznych, ponieważ nie przewodzi prądu. W przypadku pożaru w instalacji elektrycznej, kluczowym aspektem jest unikanie używania środków gaśniczych, które mogą przewodzić prąd, co może prowadzić do porażenia prądem oraz dodatkowego zagrożenia pożarowego. Standardy ochrony przeciwpożarowej zalecają stosowanie gaśnic pianowych, które tworzą warstwę piany, izolując ogień od tlenu, co skutecznie gasi ogień. Przykładem zastosowania gaśnicy pianowej może być sytuacja, w której dochodzi do zapalenia się przewodów elektrycznych w obiektach przemysłowych. W takich przypadkach, użycie gaśnicy pianowej nie tylko jest zgodne z zasadami bezpieczeństwa, ale również jest skuteczne w ograniczaniu skutków pożaru. Zgodnie z normami, w budynkach użyteczności publicznej oraz w różnych obiektach przemysłowych powinny być dostępne gaśnice pianowe, które są przeszkolone do użycia przez pracowników, co zwiększa bezpieczeństwo w razie zagrożenia.

Pytanie 25

Pasywny komponent wykorzystywany w telekomunikacyjnych oraz komputerowych sieciach, który na zewnątrz posiada gniazda, a wewnątrz styki do zamocowania kabla, określany jest jako

A. panelem krosowniczym
B. skrótką
C. kanałem kablowym
D. złączką

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Panel krosowniczy to kluczowy element infrastruktury sieciowej, który umożliwia organizację i zarządzanie połączeniami kablowymi w sieciach telekomunikacyjnych oraz komputerowych. Zewnętrzne gniazda pozwalają na łatwe podłączanie kabli, natomiast wewnętrzne styki umożliwiają ich uporządkowanie i terminację. Dzięki takiej konstrukcji, inżynierowie sieciowi mogą szybko i efektywnie zmieniać konfigurację połączeń, co jest niezwykle ważne w dynamicznych środowiskach, takich jak centra danych czy biura. Przykładem zastosowania paneli krosowniczych jest możliwość łatwej reorganizacji sieci przy zmianach w infrastrukturze biurowej, co pozwala na elastyczność w zarządzaniu zasobami. Zgodnie z najlepszymi praktykami branżowymi, stosowanie paneli krosowniczych znacznie ułatwia diagnostykę i utrzymanie sieci, umożliwiając łatwe identyfikowanie problemów związanych z połączeniami kablowymi. Ponadto, panele krosownicze są zgodne z różnorodnymi standardami, takimi jak TIA/EIA, co zapewnia ich szeroką kompatybilność z innymi elementami infrastruktury sieciowej.

Pytanie 26

Jakie są właściwe kroki do wykonania podczas wymiany uszkodzonej kamery monitoringu połączonej z rejestratorem wideo?

A. Odłączenie zasilania od kamery, demontaż kamery, odłączenie przewodu sygnałowego od uszkodzonej kamery i podłączenie do nowego urządzenia, zamontowanie kamery, podłączenie zasilania do kamery
B. Odłączenie zasilania od rejestratora, odłączenie przewodu sygnałowego od kamery, zdemontowanie uszkodzonej kamery i zamontowanie nowej, podłączenie przewodu sygnałowego do kamery, podłączenie zasilania do rejestratora
C. Odłączenie przewodu sygnałowego od kamery, odłączenie zasilania od kamery, zdemontowanie uszkodzonej kamery i zamontowanie nowej, podłączenie zasilania do kamery, podłączenie przewodu sygnałowego do kamery
D. Odłączenie zasilania od kamery, odłączenie przewodu sygnałowego od kamery, zdemontowanie uszkodzonej kamery i zamocowanie nowej, podłączenie przewodu sygnałowego do kamery, podłączenie zasilania do kamery

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa kolejność czynności przy wymianie kamery monitoringu zaczyna się od odłączenia zasilania od kamery, co jest kluczowe dla zapewnienia bezpieczeństwa podczas pracy z urządzeniem. Następnie należy odłączyć przewód sygnałowy, aby uniknąć uszkodzenia gniazd lub kabli. Kolejnym krokiem jest demontaż uszkodzonej kamery i montaż nowej, co należy wykonać z zachowaniem ostrożności, aby nie uszkodzić uchwytów czy innych elementów konstrukcyjnych. Po zamontowaniu nowej kamery, podłączenie przewodu sygnałowego powinno być wykonane z uwagą na właściwe oznaczenia, aby zapewnić prawidłowy przesył danych. Na końcu podłączamy zasilanie do kamery. Taka procedura nie tylko spełnia zasady BHP, ale także jest zgodna z zaleceniami producentów sprzętu, co przekłada się na długotrwałe i niezawodne działanie systemu monitoringu. W praktyce, przestrzeganie tej kolejności minimalizuje ryzyko uszkodzenia sprzętu oraz zapewnia, że nowa kamera będzie działać od razu po zakończeniu instalacji.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Jakim stosunkiem uciśnięć klatki piersiowej do oddechów powinno się prowadzić resuscytację krążeniowo-oddechową u osoby nieprzytomnej, która została porażona prądem elektrycznym i nie oddycha?

A. 15:2
B. 2:15
C. 30:2
D. 2:30

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Właściwy stosunek uciśnięć mostka do wentylacji podczas resuscytacji krążeniowo-oddechowej (RKO) dla osoby dorosłej wynosi 30:2. Oznacza to, że wykonujemy 30 uciśnięć klatki piersiowej, a następnie 2 wdechy. Ten protokół odzwierciedla standardy wytycznych opublikowanych przez Europejską Radę Resuscytacji oraz American Heart Association. Uciśnięcia klatki piersiowej mają na celu zapewnienie odpowiedniego przepływu krwi do najważniejszych narządów, w tym serca i mózgu. Prawidłowe tempo uciśnięć wynosi 100-120 na minutę, a ich głębokość powinna wynosić co najmniej 5 cm, co jest kluczowe dla efektywności resuscytacji. Włączenie wentylacji po 30 uciśnięciach jest istotne, aby dostarczyć tlen do płuc, co zwiększa szansę na powrót spontanicznego krążenia. W praktyce, podczas resuscytacji, ważne jest, aby osoba prowadząca RKO nie traciła rytmu i zachowała skupienie, co jest kluczowe dla skuteczności akcji ratunkowej. W sytuacjach, gdy jest więcej niż jedna osoba, warto rotować między wykonawcami, aby uniknąć zmęczenia, które może obniżyć jakość uciśnięć.

Pytanie 30

W instrukcji technicznej zasilacza impulsowego podano, że amplituda napięcia wyjściowego nie przekracza 50 mVpp. Co oznacza, że wartość nieprzekraczająca 50 mV to

A. maksymalna wartość napięcia tętnień
B. międzyszczytowa wartość napięcia tętnień
C. średnia wartość napięcia tętnień
D. skuteczna wartość napięcia tętnień

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca międzyszczytowej wartości napięcia tętnień jest poprawna, gdyż odnosi się ona do analizy sygnałów zmiennych w zasilaczach impulsowych. Międzyszczytowa wartość tętnień, oznaczająca różnicę między maksymalnym a minimalnym napięciem w jednym cyklu, jest kluczowym parametrem w ocenie jakości zasilania. Tętnienia napięcia wyjściowego są istotne, ponieważ mogą wpływać na stabilność pracy różnych komponentów elektronicznych. Zgodnie ze standardami, takimi jak IEC 61000-3-2, kontrola tętnień jest niezbędna dla zapewnienia zgodności z normami elektromagnetycznymi. Przykładem zastosowania tej wiedzy jest zaprojektowanie zasilacza do urządzeń audio, gdzie niskie tętnienia są kluczowe dla eliminacji zakłóceń, co przekłada się na lepszą jakość dźwięku. W praktyce, projektanci zasilaczy stosują różne techniki filtrowania, aby uzyskać jak najniższe wartości międzyszczytowe, co jest istotne dla poprawnego działania odbiorników elektronicznych.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Ile wynosi maksymalna prędkość przesyłania danych do urządzenia, którego dane techniczne przedstawiono w tabeli?

Napięcie zasilające230 V AC; 50 Hz
Wejście pomiarowePt100/Pt500/Pt1000
Rezystancja przewodów pomiarowychmaksymalnie 20 Ω w każdym przewodzie
Wyjścia przekaźnikowe2 styki zwierne; 2 A/250 V AC (cosφ=1)
Interfejs komunikacyjnyRS485
Szybkość transmisji1 200 b/s ÷ 115 200 b/s
Pamięć danychEEPROM

A. 115 200 B/s
B. 1 200 B/s
C. 150 B/s
D. 14 400 B/s

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to 14 400 B/s, ponieważ jest to maksymalna prędkość przesyłania danych, która jest zgodna z typowymi standardami komunikacji w urządzeniach elektronicznych. W kontekście urządzeń, które komunikują się z komputerami lub innymi systemami, istnieją różne protokoły, które określają maksymalne prędkości transferu. Na przykład, standard RS-232, który jest powszechnie stosowany w komunikacji szeregowej, może obsługiwać prędkości do 115 200 bps, ale w praktyce wiele urządzeń korzysta z niższych prędkości, aby zapewnić stabilność i niezawodność transferu danych. W przypadku urządzeń, które mają maksymalną prędkość 14 400 B/s, oznacza to, że mogą one efektywnie przesyłać dane, nie przeciążając jednocześnie interfejsu komunikacyjnego. Przykłady zastosowania to modemy czy urządzenia do przesyłania danych, które wymagają stabilnych prędkości transferu, aby zapewnić ich sprawne działanie.

Pytanie 36

Który z wymienionych komponentów obwodów elektronicznych wytwarza sygnał napięciowy pod działaniem pola magnetycznego i znajduje zastosowanie w miernikach pola magnetycznego?

A. Piezorezystor
B. Kontaktron
C. Hallotron
D. Warystor

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Hallotron to element elektroniczny, który generuje sygnał napięciowy w odpowiedzi na obecność pola magnetycznego. Działa na zasadzie efektu Halla, który polega na generowaniu różnicy potencjałów w przewodniku, gdy przez niego przepływa prąd i jednocześnie jest wystawiony na działanie pola magnetycznego. Hallotrony znajdują szerokie zastosowanie w różnych urządzeniach, takich jak mierniki pola magnetycznego, czujniki pozycji, a także w systemach automatyzacji przemysłowej. Dzięki swojej zdolności do pomiaru pola magnetycznego, hallotrony są kluczowe w wielu aplikacjach, w tym w pojazdach elektrycznych, gdzie monitorują położenie wału silnika. Ponadto, ich zastosowanie obejmuje także układy ochrony przed przeciążeniami, gdzie szybka reakcja na zmiany pola magnetycznego jest istotna dla bezpieczeństwa. Standardy branżowe, takie jak IEC 60947, podkreślają znaczenie wykorzystania czujników Hall’a w nowoczesnych aplikacjach, co stawia je w czołówce technologii sensorów. W praktyce, hallotrony umożliwiają precyzyjne i niezawodne pomiary, co jest kluczowe w wielu dziedzinach inżynierii.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Który z parametrów odnosi się do wartości 20 Mpx, podanej w specyfikacji cyfrowego aparatu fotograficznego?

A. Cyfrowe powiększenie obrazu
B. Rozdzielczość matrycy światłoczułej
C. Optyczne powiększenie obrazu
D. Czas reakcji migawki

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wartość 20 Mpx (megapikseli) odnosi się do rozdzielczości matrycy światłoczułej w cyfrowym aparacie fotograficznym. Oznacza to, że matryca składa się z 20 milionów pikseli, co bezpośrednio wpływa na jakość zdjęć, które aparat może rejestrować. Im wyższa rozdzielczość, tym więcej szczegółów można uchwycić na zdjęciu, co jest szczególnie istotne w kontekście druku dużych formatów oraz przy edytowaniu zdjęć w postprodukcji. W praktyce, aparat o rozdzielczości 20 Mpx pozwala na wykonanie wydruków o wymiarach sięgających 50x75 cm bez zauważalnej utraty jakości. Standardy branżowe wskazują, że dla większości zastosowań amatorskich rozdzielczości w przedziale 16-24 Mpx są wystarczające, natomiast w zastosowaniach profesjonalnych zalecane są wyższe rozdzielczości. Warto również zauważyć, że wysoka rozdzielczość nie zawsze oznacza lepszą jakość obrazu, ponieważ na ostateczny efekt wpływają także inne czynniki, takie jak jakość obiektywu czy algorytmy przetwarzania obrazu. Dlatego przy wyborze aparatu warto zwrócić uwagę na całościową specyfikację techniczną urządzenia.

Pytanie 40

Aby zidentyfikować brak ciągłości obwodu w instalacjach elektrycznych, należy użyć

A. omomierza
B. oscyloskopu
C. woltomierza
D. wobulatora

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Omomierz jest narzędziem służącym do pomiaru oporu elektrycznego, co czyni go idealnym do lokalizowania braków ciągłości obwodu w instalacjach elektrycznych. W momencie, gdy występuje przerwanie obwodu, omomierz pozwala na dokładne określenie, czy dany segment instalacji ma odpowiednią wartość oporu. W praktyce, aby zweryfikować ciągłość obwodu, wykonuje się pomiar oporu między różnymi punktami w instalacji; jeśli wartość oporu wynosi zero lub jest bardzo bliska zeru, obwód jest ciągły. W przypadku braku ciągłości, omomierz zasygnalizuje dużą wartość oporu, co wskazuje na problem w instalacji. Warto również pamiętać, że stosowanie omomierza jest zgodne z normami PN-IEC 61010, które określają wymagania dotyczące bezpieczeństwa sprzętu elektrycznego. W codziennej pracy elektryka, umiejętność wykorzystania omomierza do lokalizacji usterki jest niezbędna, co wpływa na bezpieczeństwo oraz niezawodność instalacji elektrycznych.