Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 25 maja 2025 23:37
  • Data zakończenia: 25 maja 2025 23:50

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który z etapów przygotowania próbek do analizy opisano w ramce?

Proces polegający na usuwaniu wody z zamrożonego materiału na drodze sublimacji lodu, tzn. bezpośredniego jego przejścia w stan pary z pominięciem stanu ciekłego.

A. Wstępne suszenie.
B. Liofilizację.
C. Oznaczanie wilgoci.
D. Utrwalanie.
Liofilizacja jest procesem, który polega na sublimacji lodu z zamrożonego materiału, co oznacza, że woda przechodzi bezpośrednio w stan pary, omijając fazę ciekłą. Jest to kluczowa technika stosowana w wielu dziedzinach, w tym w biologii komórkowej, farmacji oraz produkcji żywności. Liofilizacja pozwala na zachowanie struktury oraz właściwości chemicznych materiału, co czyni ją idealnym rozwiązaniem dla preparatów, które są wrażliwe na temperaturę oraz wilgoć. Proces ten jest często stosowany do konserwacji próbek biologicznych, takich jak komórki, białka czy enzymy. Przykładowo, w przemyśle farmaceutycznym, liofilizowane leki są bardziej stabilne i mają dłuższy okres przydatności do spożycia. Dodatkowo, liofilizacja ułatwia transport i przechowywanie próbek, gdyż zmniejsza ich masę i objętość, co jest korzystne w logistyce. Zgodnie ze standardami branżowymi, dobry proces liofilizacji powinien być ściśle kontrolowany, aby zminimalizować ryzyko degradacji cennych substancji.

Pytanie 2

Reagent, który reaguje wyłącznie z jednym konkretnym jonem lub związkiem, nazywamy reagente

A. selektywny
B. grupowy
C. specyficzny
D. maskujący
Odczynnik specyficzny to taki, który reaguje z jednym, ściśle określonym jonem lub związkiem chemicznym, co czyni go niezwykle przydatnym w analizach chemicznych i laboratoryjnych. Przykładem może być odczynnik nieselektywnego wykrywania jonów srebra, jakim jest chlorowodorek sodu, który wytrąca białe osady tylko w obecności jonów srebra. W praktyce, zastosowanie odczynników specyficznych pozwala na przeprowadzanie dokładnych analiz jakościowych i ilościowych, co jest kluczowe w laboratoriach chemicznych, analitycznych, a także w przemyśle farmaceutycznym i środowiskowym. Standardy ASTM i ISO promują stosowanie takich odczynników w badaniach laboratoryjnych, co podkreśla ich znaczenie w zapewnieniu wysokiej jakości wyników. W kontekście praktycznym, specyficzność odczynników jest niezwykle ważna w diagnostyce medycznej, gdzie konieczne jest precyzyjne określenie obecności konkretnych biomarkerów.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Jakie jest stężenie procentowe roztworu uzyskanego poprzez rozpuszczenie 25 g jodku potasu w 100 cm3 destylowanej wody (o gęstości 1 g/cm3)?

A. 2,5%
B. 25%
C. 75%
D. 20%
Wiele osób, analizując problem stężenia roztworu, może popełnić typowe błędy w obliczeniach, które prowadzą do niewłaściwych wyników. Na przykład, wybierając odpowiedź 75%, można pomylić się w interpretacji proporcji masy jodku potasu do masy wody, nie uwzględniając całkowitej masy roztworu. Często zdarza się również zignorowanie faktu, że masa rozpuszczalnika (wody) i masa substancji rozpuszczonej (jodku potasu) muszą być sumowane, aby obliczyć całkowitą masę roztworu. Osoby, które wskazują na 25% stężenie, mogą błędnie obliczać stężenie, przyjmując masę jodku potasu za masę roztworu, co jest oczywistym błędem logicznym. W przypadku opcji 2,5% może wystąpić nieporozumienie związane z myleniem jednostek miary, gdzie mogą być stosowane niewłaściwe wartości masy przy obliczeniach. Ważne jest, aby uwzględnić wszystkie składniki roztworu, aby uzyskać prawidłowe wyniki. Przy obliczaniu stężenia procentowego, kluczowe jest zrozumienie definicji oraz umiejętność prawidłowego sumowania mas, co jest fundamentem chemii i niezbędne w laboratoriach. Użycie odpowiednich jednostek oraz precyzyjnych obliczeń jest kluczowe w naukach chemicznych, zwłaszcza w kontekście norm jakościowych i standardów branżowych.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Fosfor biały, z uwagi na swoje właściwości, powinien być przechowywany

A. w nafcie
B. w benzenie
C. w benzynie
D. w wodzie
Przechowywanie fosforu białego w nafcie, benzynie lub innym rozpuszczalniku organicznym jest nie tylko nieefektywne, ale także bardzo niebezpieczne. Te substancje charakteryzują się łatwopalnością, co w połączeniu z właściwościami fosforu białego stwarza wysokie ryzyko pożaru. Fosfor biały w kontakcie z naftą może prowadzić do nieprzewidywalnych reakcji chemicznych, w tym zapłonu, co stanowi poważne zagrożenie dla zdrowia i bezpieczeństwa. Często występującym błędem jest mylenie nafty z wodą, co wynika z niewłaściwego zrozumienia właściwości chemicznych tych substancji. Woda jest substancją niepalną, która stabilizuje fosfor biały, podczas gdy nafta jest substancją łatwopalną, która mogłaby spowodować pożar. Podobnie, zarówno benzyna, jak i benzen są substancjami organicznymi, które mogą sprzyjać wybuchom oraz są szkodliwe dla zdrowia. W kontekście najlepszych praktyk, takie podejście do przechowywania fosforu białego jest absolutnie niewłaściwe i sprzeczne z zaleceniami instytucji zajmujących się bezpieczeństwem chemicznym. W przemyśle chemicznym oraz laboratoriach stosowane są ściśle określone procedury, które eliminują możliwość przechowywania substancji niebezpiecznych w niewłaściwy sposób, co dodatkowo podkreśla nieodpowiedzialność takich wyborów.

Pytanie 8

Czy odpady laboratoryjne zawierające jony metali ciężkich powinny zostać poddane obróbce przed umieszczeniem ich w odpowiednio oznaczonej pojemności?

A. przeprowadzić w trudnorozpuszczalne związki i odsączyć
B. rozcieńczyć wodą destylowaną
C. zasypać wodorowęglanem sodu
D. zneutralizować kwasem solnym lub zasadą sodową
Odpady laboratoryjne zawierające jony metali ciężkich powinny być przekształcane w trudnorozpuszczalne związki, a następnie odsączane, aby zminimalizować ich toksyczność i ułatwić dalsze postępowanie z nimi. Proces ten zakłada dodawanie reagentów, które reagują z metalami ciężkimi, tworząc osady, które są łatwiejsze do usunięcia. Przykładem może być dodawanie siarczanu sodu, co prowadzi do wytrącenia osadów siarczkowych. Odsączanie pozwala na oddzielenie osadu od cieczy, co jest kluczowe w zarządzaniu odpadami. Praktyki takie są zgodne z normami ochrony środowiska, które nakładają obowiązek zapewnienia, że odpady nie zanieczyszczają wód gruntowych ani innych zasobów wodnych. Z tego powodu laboratoria powinny dysponować odpowiednimi urządzeniami filtracyjnymi oraz zapewniać szkolenia dla personelu w zakresie odpowiedniego postępowania z takimi odpadami. Warto również pamiętać, że metale ciężkie, jak ołów czy kadm, mogą być szkodliwe dla zdrowia ludzkiego, dlatego tak ważne jest ich właściwe zarządzanie.

Pytanie 9

Do systemu odprowadzania ścieków, w formie rozcieńczonego roztworu wodnego o maksymalnej masie 100 g na raz, można wprowadzić

A. BaCl2
B. NaCl
C. Pb(NO3)2
D. AgF
NaCl, czyli chlorek sodu, jest substancją, która doskonale nadaje się do wprowadzania do systemu kanalizacyjnego w formie rozcieńczonego roztworu wodnego. Jest to związek chemiczny, który jest w pełni rozpuszczalny w wodzie i nie niesie ze sobą ryzyka wprowadzenia do środowiska toksycznych substancji. W kontekście standardów ochrony środowiska, NaCl jest szeroko stosowany w różnych dziedzinach, od przemysłu spożywczego po przemysł chemiczny, dzięki czemu jego obecność w kanalizacji jest akceptowalna. NaCl jest także stosowany do wspomagania procesów oczyszczania w oczyszczalniach ścieków, ponieważ wspiera działanie mikroorganizmów odpowiedzialnych za biodegradację organicznych zanieczyszczeń. Bezpieczeństwo stosowania soli kuchennej w ilości do 100 g jednorazowo jest zgodne z dobrymi praktykami w zakresie zarządzania odpadami, co czyni ją idealnym rozwiązaniem w tej sytuacji.

Pytanie 10

Jaką objętość roztworu NaOH o stężeniu 1 mol/dm3 należy użyć, aby przygotować 50 cm3 roztworu NaOH o stężeniu 0,4 mol/dm3?

A. 25 cm3
B. 50 cm3
C. 20 cm3
D. 10 cm3
Aby obliczyć objętość roztworu NaOH o stężeniu 1 mol/dm3, potrzebnej do sporządzenia 50 cm3 roztworu o stężeniu 0,4 mol/dm3, należy zastosować zasadę zachowania moles. Obliczamy liczbę moli NaOH w docelowym roztworze: C1V1 = C2V2, gdzie C1 = 1 mol/dm3, V1 to objętość, C2 = 0,4 mol/dm3 i V2 = 50 cm3 = 0,05 dm3. Z równania mamy: 1 * V1 = 0,4 * 0,05. Obliczając V1, otrzymujemy V1 = 0,4 * 0,05 = 0,02 dm3 = 20 cm3. Takie podejście jest standardem w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania powtarzalnych i wiarygodnych wyników. Przykładem zastosowania może być przygotowanie roztworów do titracji, gdzie dokładność stężenia reagentu jest niezbędna dla prawidłowego przeprowadzenia analizy. Warto również zauważyć, że w praktyce często stosuje się wzory rozcieńczania, co zapewnia efektywność i bezpieczeństwo pracy w laboratorium chemicznym.

Pytanie 11

Podczas oznaczania kwasu siarkowego zachodzi reakcja:

H2SO4 + 2NaOH → Na2SO4 + 2H2O 
Zgodnie z zamieszczoną instrukcją, roztwór poreakcyjny należy

Fragmenty instrukcji zbierania, utylizacji i eliminacji odpadów chemicznych
Lista substancji, które mogą być usunięte z odpadami komunalnymi w postaci stałej, lub wprowadzone do systemu kanalizacyjnego w postaci rozcieńczonych roztworów wodnych, o ile ich ilość nie przekracza jednorazowo 100 g.
Związki nieorganiczne
Siarczany sodu, potasu, magnezu, wapnia, amonu
Kwasy nieorganiczne
Stężone kwasy ostrożnie rozcieńczyć przez wkroplenie z równoczesnym mieszaniem do wody z lodem, a następnie zneutralizować roztworem wodorotlenku sodowego. Po neutralizacji doprowadzić pH roztworu do zakresu 6-8 przelać do pojemnika S. Małe ilości kwasów takich jak siarkowy, solny, azotowy czy fosforowy (nie więcej niż 10 g) po rozcieńczeniu wodą i neutralizacji roztworem wodorotlenku sodowego oraz doprowadzeniu pH takiego roztworu do zakresu 6-8 można wylać do zlewu i obficie spłukać wodą.
Sole nieorganiczne
Stałe sole nieorganiczne – pojemnik N.
Obojętne roztwory soli nieorganicznych pojemnik S. Sole metali ciężkich, sole o właściwościach toksycznych – pojemnik TN.

A. wylać do zlewu i spłukać bieżącą wodą.
B. umieścić w pojemniku S.
C. umieścić w pojemniku TN.
D. zobojętnić i usunąć z odpadami komunalnymi.
Podczas reakcji kwasu siarkowego z wodorotlenkiem sodu powstaje siarczan sodu, który jest substancją neutralną. W przypadku utylizacji niewielkich ilości roztworów chemicznych, takich jak powstały w tej reakcji, istotne jest przestrzeganie zasad bezpieczeństwa i ochrony środowiska. Zgodnie z wytycznymi dotyczącymi zarządzania odpadami chemicznymi, neutralne roztwory, które nie są niebezpieczne, mogą być wylewane do systemu kanalizacji, pod warunkiem, że są odpowiednio rozcieńczone wodą. Praktyczne zastosowanie tej zasady znajduje się w laboratoriach chemicznych oraz placówkach edukacyjnych, gdzie regularnie prowadzone są eksperymenty. Spłukiwanie bieżącą wodą zapewnia, że resztki chemikaliów nie osadzają się w rurach, minimalizując ryzyko zanieczyszczenia środowiska. Przy odpowiednim przestrzeganiu zasad możemy skutecznie zarządzać odpadami chemicznymi, co jest kluczowe w kontekście zrównoważonego rozwoju i ochrony zasobów wodnych.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Symbol "In" znajduje się na

A. kolbach miarowych i wskazuje na sprzęt kalibrowany "na wylew"
B. biuretach i oznacza sprzęt kalibrowany "na wlew"
C. kolbach miarowych i wskazuje na sprzęt kalibrowany "na wlew"
D. pipetach i oznacza sprzęt kalibrowany "na wylew"
Dobra robota! Odpowiedź, którą wybrałeś, jest całkiem trafna. Symbol 'In' rzeczywiście oznacza kolby miarowe, które służą do dokładnego mierzenia objętości cieczy. Kalibracja 'na wlew' jest kluczowa, bo chodzi o to, żeby zmierzyć ciecz do poziomu krawędzi menisku. To ma ogromne znaczenie, zwłaszcza w chemii, gdzie precyzja jest na wagę złota. W laboratoriach często korzysta się z kolb, żeby mieć pewność, że każdy eksperyment jest powtarzalny i wyniki są wiarygodne. Jak napełniasz kolbę do oznaczenia, to wiesz, że używasz całej tej objętości cieczy, co minimalizuje ryzyko błędów. Dlatego warto znać te symbole, bo to podstawa w pracy każdego chemika.

Pytanie 14

Zbiór próbek pierwotnych tworzy próbkę

A. jednostkową
B. analityczną
C. laboratoryjną
D. ogólną
Próbka ogólna to zbiór próbek pierwotnych, które reprezentują szerszą populację danego materiału lub substancji. W kontekście badań laboratoryjnych, próba ogólna jest kluczowa, ponieważ ma na celu uzyskanie wiarygodnych wyników analitycznych, które można ekstrapolować na całość populacji. Na przykład, w przemyśle spożywczym, podczas kontroli jakości, pobiera się próbki ogólne z różnych partii produktów, aby ocenić ich jakość i bezpieczeństwo. Według standardów ISO 2859, próby ogólne powinny być pobierane w sposób losowy, aby zminimalizować ryzyko błędów systematycznych w ocenie. Spojrzenie na próbkę jako całość pozwala na lepszą interpretację danych oraz podejmowanie świadomych decyzji dotyczących procesów produkcyjnych i kontroli jakości. Dlatego zrozumienie różnicy między próbką ogólną a innymi typami próbek, takimi jak próbki jednostkowe, jest fundamentalne w zarządzaniu jakością oraz w badaniach naukowych.

Pytanie 15

Oblicz stężenie molowe 250 cm3 roztworu NaOH, w którym znajduje się 0,5 g substancji. Masa molowa NaOH wynosi 40 g/mol

A. 0,01 mol/dm3
B. 0,50 mol/dm3
C. 0,10 mol/dm3
D. 0,05 mol/dm3
Aby obliczyć stężenie molowe roztworu NaOH, należy najpierw obliczyć liczbę moli NaOH w 0,5 g substancji. Masa molowa NaOH wynosi 40 g/mol, co oznacza, że 1 mol NaOH waży 40 g. Liczba moli można obliczyć ze wzoru: liczba moli = masa (g) / masa molowa (g/mol). Dla 0,5 g NaOH obliczenia będą wyglądały następująco: 0,5 g / 40 g/mol = 0,0125 mol. Następnie przeliczamy objętość roztworu z cm³ na dm³, co daje 250 cm³ = 0,25 dm³. Stężenie molowe obliczamy, dzieląc liczbę moli przez objętość roztworu w dm³: 0,0125 mol / 0,25 dm³ = 0,05 mol/dm³. Zrozumienie tych obliczeń jest kluczowe w chemii analitycznej, gdzie precyzyjne przygotowywanie roztworów o określonym stężeniu jest niezbędne w eksperymentach i analizach. W praktyce, takie umiejętności są szczególnie ważne w laboratoriach chemicznych, gdzie dokładność i powtarzalność wyników mają kluczowe znaczenie.

Pytanie 16

Aby oddzielić połączenia szlifów, należy w miejscu ich styku wprowadzić

A. wodorotlenek sodu
B. kwas fluorowodorowy
C. glicerynę
D. wodorotlenek potasu
Gliceryna jest substancją, która doskonale sprawdza się w procesie rozdzielania zapieczonych połączeń szlifów. Jej zastosowanie wynika z właściwości chemicznych, które pozwalają na skuteczne działanie w trudnych warunkach. Gliceryna jest środkiem niejonowym, co oznacza, że nie wywołuje reakcji z materiałami, z którymi współdziała. W praktyce, podczas zastosowania gliceryny na strefie połączenia szlifów, zwiększa się elastyczność otaczających materiałów, co ułatwia ich oddzielenie bez ryzyka uszkodzenia. Gliceryna ma również właściwości nawilżające, co dodatkowo sprzyja procesowi rozdzielania, zapewniając lepszą penetrację w obszary o dużym skurczeniu. W branżach zajmujących się szlifowaniem i obróbką materiałów, takich jak przemysł motoryzacyjny czy lotniczy, stosowanie gliceryny jako środka pomocniczego w rozdzielaniu połączeń jest zgodne z najlepszymi praktykami, co potwierdzają liczne standardy jakości. Dodatkowo, gliceryna jest substancją nietoksyczną, co czyni ją bezpiecznym wyborem w porównaniu do innych chemikaliów.

Pytanie 17

Podaj nazwę reagentu chemicznego, który w specyficznych warunkach reaguje tylko z jednym jonem, pierwiastkiem lub związkiem chemicznym?

A. Specyficzny
B. Grupowy
C. Wzorcowy
D. Selektywny
Odczynnik specyficzny to substancja chemiczna, która reaguje wyłącznie z określonymi jonami, pierwiastkami lub związkami chemicznymi, co czyni go niezbędnym narzędziem w chemii analitycznej. Przykładem takiego odczynnika może być wskaźnik pH, który zmienia kolor tylko w obecności określonego zakresu wartości pH. Użycie odczynników specyficznych jest kluczowe w różnych dziedzinach, od analizy środowiskowej po medycynę, gdzie precyzyjne oznaczenie obecności określonych substancji jest niezbędne dla bezpieczeństwa i jakości produktów. W praktyce, standardy branżowe, takie jak ISO 17025, podkreślają znaczenie stosowania odczynników specyficznych w laboratoriach, aby zapewnić wiarygodność i dokładność wyników analiz. Używając odczynnika specyficznego, laboratoria mogą minimalizować ryzyko błędnych odczytów i zwiększać efektywność przeprowadzanych ekspertyz, co jest niezwykle ważne w kontekście regulacji prawnych i zarządzania jakością.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Zamieszczony piktogram przedstawia substancję o klasie i kategorii zagrożenia:

Ilustracja do pytania
A. niestabilne materiały wybuchowe.
B. sprężone gazy pod ciśnieniem.
C. gazy łatwopalne, kategoria zagrożenia 1.
D. gazy utleniające, kategoria zagrożenia 1.
Poprawna odpowiedź dotycząca klasyfikacji substancji jako niestabilne materiały wybuchowe jest fundamentem wiedzy w obszarze zarządzania bezpieczeństwem chemicznym. Piktogram przedstawiony w pytaniu jest zgodny z regulacjami międzynarodowymi, szczególnie z GHS, które podkreślają znaczenie odpowiedniego oznakowania substancji chemicznych. Niestabilne materiały wybuchowe są klasyfikowane jako substancje, które mogą eksplodować w wyniku działania bodźców mechanicznych czy termicznych. Przykładami takich substancji są niektóre rodzaje dynamitu lub azotanu amonu w pewnych formach, które są wykorzystywane w przemyśle budowlanym i górniczym. Zrozumienie tej klasyfikacji jest kluczowe dla profesjonalistów zajmujących się bezpieczeństwem w laboratoriach oraz w transporcie substancji chemicznych, ponieważ niewłaściwe postrzeganie i klasyfikacja mogą prowadzić do poważnych wypadków. Przepisy dotyczące transportu i przechowywania substancji niebezpiecznych wymagają ścisłego przestrzegania norm, co podkreśla wagę edukacji w tym zakresie. Znajomość tego typu oznaczeń pozwala na właściwe podejście do magazynowania oraz obsługi substancji chemicznych, minimalizując ryzyko dla zdrowia i środowiska.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Aby uniknąć trwałego połączenia szlifowanych części sprzętu laboratoryjnego, co należy zrobić?

A. dokładnie oczyścić i osuszyć sprzęt
B. przed połączeniem wypłukać szlify acetonem
C. przed połączeniem nałożyć na szlify glicerynę
D. przed połączeniem nałożyć na szlify wazelinę
Właściwe nasmarowanie szlifów wazeliną przed ich połączeniem jest kluczowym krokiem w zapobieganiu trwałemu łączeniu się elementów aparatury laboratoryjnej. Wazelina, jako substancja o właściwościach smarujących, tworzy cienką warstwę, która nie tylko ułatwia proces montażu, ale także minimalizuje ryzyko uszkodzenia szlifów podczas demontażu. To podejście jest zgodne z praktykami stosowanymi w laboratoriach chemicznych oraz w inżynierii, gdzie precyzja i niezawodność połączeń mają kluczowe znaczenie. Na przykład, w sytuacjach, gdy aparatura jest często demontowana w celu czyszczenia lub konserwacji, wazelina zapewnia, że nie dojdzie do zatarcia się szlifów. Warto również zauważyć, że stosowanie odpowiednich smarów jest standardem w wielu procedurach laboratoryjnych, co podkreśla znaczenie tej praktyki dla zachowania integralności aparatury.

Pytanie 23

Na podstawie zmierzonej temperatury topnienia można określić związek organiczny oraz ustalić jego

A. reaktywność
B. palność
C. rozpuszczalność
D. czystość
Rozpuszczalność, palność i reaktywność to cechy chemiczne, które nie są bezpośrednio związane z temperaturą topnienia. Rozpuszczalność odnosi się do zdolności substancji do tworzenia roztworu w danym rozpuszczalniku, a jej pomiar wymaga zupełnie innych metod, takich jak testy rozpuszczalności w różnych rozpuszczalnikach czy badania na podstawie równowagi fazowej. Palność to z kolei właściwość dotycząca łatwości, z jaką substancje palą się w obecności tlenu, co wymaga analizy jej właściwości fizykochemicznych, a nie temperatury topnienia. Reaktywność odnosi się do skłonności substancji do reagowania z innymi substancjami chemicznymi, co można ocenić poprzez różnorodne testy chemiczne, ale również nie jest związane z pomiarem temperatury topnienia. Często błędne myślenie pojawia się, gdy studenci mylą te pojęcia z czystością substancji. Każda z tych cech wymaga odrębnych metod analizy, a skupienie się wyłącznie na temperaturze topnienia do ich oceny prowadzi do nieprawidłowych wniosków i niewłaściwej interpretacji wyników. Dlatego ważne jest, aby zrozumieć, że temperatura topnienia jest szczególnie przydatna w określaniu czystości substancji, a nie w analizie jej rozpuszczalności, palności czy reaktywności.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Proces przesiewania próbki prowadzi się za pomocą urządzenia przedstawionego na rysunku

Tabela. Sposoby utrwalania próbek wody i ścieków, miejsce analizy, dopuszczalny czas przechowywania próbek
Oznaczany parametrRodzaj naczynia do przechowywania próbkiSposób utrwalania próbkiMiejsce wykonania analizyDopuszczalny czas przechowywania próbki
Chlorkiszklane
lub polietylenowe
-laboratorium96 godzin
Chlor pozostałyszklane-w miejscu
pobrania próbki
-
ChZTszklanezakwaszenie do pH<2,
schłodzenie
do temperatury 2-5°C
laboratorium24 godziny
Kwasowośćszklane
lub polietylenowe
schłodzenie
do temperatury 2-5°C
laboratorium4 godziny
Manganszklane
lub polietylenowe
zakwaszenie do pH<2,
schłodzenie
do temperatury 2-5°C
laboratorium48 godzin

A. A.
B. D.
C. B.
D. C.
Wybór odpowiedzi A, B lub D wskazuje na pewne nieporozumienia dotyczące podstawowych zasad przesiewania próbki. Odpowiedzi te mogą sugerować, że użytkownik nie rozumie, że proces przesiewania wymaga zastosowania odpowiednich narzędzi, które są specjalnie zaprojektowane do tego celu. Na przykład, odpowiedzi A i B mogą być mylone z ideą użycia innych metod mechanicznych, takich jak mieszanie czy szarpanie, które nie są właściwe do oddzielania cząstek według ich rozmiaru. W rzeczywistości, metody te nie zapewniają wymaganej precyzji, ponieważ nie segregują one cząstek na podstawie ich właściwości fizycznych. Odpowiedź D sugeruje z kolei inne techniki separacji, takie jak filtracja, która jest stosowana do usuwania większych zanieczyszczeń z cieczy, a nie do przesiewania ciał stałych. Kluczowym błędem myślowym, który może prowadzić do takich odpowiedzi, jest nieporozumienie dotyczące zasad mechaniki ciał stałych i procesów separacji. Przesiewanie i filtracja to dwa różne procesy, które mają swoje specyficzne zastosowania. Zrozumienie tego rozróżnienia jest niezbędne dla prawidłowego podejścia do analizy materiałów sypkich oraz do stosowania norm branżowych, które gwarantują skuteczność i dokładność wyników.

Pytanie 26

Czysty odczynnik (skrót: cz.) charakteryzuje się poziomem czystości wynoszącym

A. 90-99%
B. 99,9-99,99%
C. 99-99,9%
D. 99,99-99,999%
Odpowiedzi, które wskazują na inne zakresy czystości, mylą się w interpretacji standardów jakości substancji chemicznych. Na przykład, zakres 90-99% nie jest wystarczający dla substancji wymagających wysokiej czystości, co może prowadzić do błędnych wyników w eksperymentach czy produkcji farmaceutycznej. Tego rodzaju substancje mogą zawierać istotne zanieczyszczenia, co jest nieakceptowalne w kontekście wielu zastosowań, takich jak preparaty medyczne. Odpowiedź wskazująca na zakres 99,9-99,99% oraz 99,99-99,999% również wprowadza w błąd, gdyż są to wyższe klasy czystości, które nie odpowiadają definicji odczynnika czystego. W praktyce, substancje o czystości 99,9% mogą być uznawane za 'czyste', ale w kontekście czystości klasyfikowane są jako 'high-purity' lub 'ultra-purity'. To prowadzi do nieporozumień, gdyż w laboratoriach często stosuje się inne standardy do oceny czystości, takie jak HPLC lub GC, które mogą wskazywać na różne poziomy kontaminacji. Ponadto, myślenie, że każdy odczynnik musi mieć najwyższą możliwą czystość, jest błędne, ponieważ w wielu przypadkach czystość 99-99,9% jest wystarczająca do przeprowadzenia analiz czy syntez, zachowując równocześnie rentowność i dostępność materiałów. W związku z tym, zrozumienie różnicy pomiędzy różnymi poziomami czystości i ich praktycznym zastosowaniem jest kluczowe dla zapewnienia jakości w pracy laboratoryjnej.

Pytanie 27

Jakie proporcje objętościowe powinny być zastosowane do zmieszania roztworu etanolu o stężeniu 30% (V/V) z roztworem o stężeniu 70% (V/V), aby uzyskać roztwór o stężeniu 50% (V/V)?

A. 1:1
B. 1:2
C. 2:1
D. 3:7
Aby zrobić roztwór o stężeniu 50% (V/V), trzeba połączyć roztwór etanolu 30% (V/V) z roztworem 70% (V/V) w równych częściach. Czyli, jeśli masz jednostkę objętości 30%, to dodajesz dokładnie taką samą jednostkę objętości 70%. W ten sposób końcowe stężenie etanolu wychodzi idealnie 50%, bo dobrze zbalansowaliśmy ilość etanolu z obu roztworów. Można to też zapisać matematycznie: (0.3V1 + 0.7V2) / (V1 + V2) = 0.5, gdzie V1 to objętość 30%, a V2 to objętość 70%. Takie obliczenia są na porządku dziennym w laboratoriach chemicznych i wszędzie tam, gdzie trzeba dokładnie wymieszać substancje. Na pewno widziałeś to w produkcji alkoholu, bo różne stężenia etanolu są tam używane, żeby uzyskać różne smaki. Zrozumienie tych zasad jest też ważne z perspektywy przepisów dotyczących sprzedaży alkoholu, które często opierają się na konkretnych stężeniach substancji aktywnych.

Pytanie 28

Dekantacja to metoda

A. oddzielania cieczy od osadu, która polega na odparowaniu cieczy
B. oddzielania cieczy lub gazu od cząstek ciała stałego, które są w nich zawieszone, polegająca na przepuszczeniu zawiesiny przez przegrodę filtracyjną
C. oddzielania cieczy od osadu, która polega na zlaniu cieczy znad osadu
D. opadania cząstek ciała stałego w wyniku działania siły ciężkości, które są rozproszone w cieczy
Dekantacja to taki sposób oddzielania cieczy od osadu, polegający na tym, że wlewasz ciecz znad osadu do innego naczynia. Jest super popularna w laboratoriach chemicznych i w różnych branżach, szczególnie przy oczyszczaniu i separacji. Głównym celem tego procesu jest zdobycie czystej cieczy i pozbycie się osadu, który ląduje na dnie. Przykłady? No to na przykład wino – dekantuje się je, żeby oddzielić osad, który powstaje przy fermentacji. W laboratoriach też często używają dekantacji, żeby pozbyć się osadu po reakcjach chemicznych. To prosta i skuteczna metoda, co czyni ją jedną z podstawowych technik w chemii. Ważne jest, żeby robić to ostrożnie, żeby nie zmieszać cieczy z osadem. Dobrze jest też używać odpowiednich naczyń, które pomogą ci w precyzyjnym zlaniu cieczy.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Jakiego koloru nabierze lakmus w roztworze NaOH?

A. czerwony
B. malinowy
C. niebieski
D. fioletowy
Lakmus jest wskaźnikiem pH, który zmienia kolor w zależności od kwasowości lub zasadowości roztworu. W roztworze sodu wodorotlenku (NaOH), który jest silną zasadą, lakmus zabarwia się na kolor niebieski. To zjawisko jest wynikiem reakcji chemicznych zachodzących w obecności zasad, które zmieniają konfigurację cząsteczek lakmusu. NaOH, jako substancja alkaliczna, podnosi pH roztworu powyżej 7, co skutkuje zmianą koloru wskaźników pH z czerwonego (typowego dla kwasów) na niebieski. W praktyce, lakmus jest często stosowany w laboratoriach i edukacji, aby szybko ocenić pH różnych substancji, co jest niezwykle istotne w chemii analitycznej oraz w przemyśle chemicznym. Zrozumienie reakcji lakmusu z różnymi substancjami jest kluczowe dla wielu procesów, takich jak kontrola jakości wody czy reakcje chemiczne w przemyśle farmaceutycznym.

Pytanie 31

Aby przygotować roztwór wzorcowy potrzebny do oznaczania miana, konieczne jest użycie odczynnika chemicznego o czystości przynajmniej

A. spektralnej czystości
B. czystości
C. czystości chemicznej
D. czystości drugorzędnej analitycznej
Wybór odczynników o niższej czystości, takich jak 'cz.' (czystość), 'spekt.cz.' (czystość spektroskopowa) czy 'chem.cz.' (czystość chemiczna), może prowadzić do nieprawidłowych wyników analiz chemicznych. Odczynniki te mogą zawierać różne zanieczyszczenia, które mogą znacząco wpłynąć na wyniki pomiarów. Na przykład, czystość spektroskopowa odnosi się do zastosowania w określonych technikach analitycznych, ale nie gwarantuje, że substancja jest odpowiednia do ogólnych analiz chemicznych. Czystość chemiczna może być niewystarczająca, szczególnie gdy wymagana jest wysoka dokładność. Istnieje również ryzyko, że reagenty o niższej czystości mogą zawierać nieznane substancje, co prowadzi do błędnych wniosków w analizach ilościowych. W wielu przypadkach, laboratoria analityczne są zobowiązane do przestrzegania surowych standardów, aby zapewnić, że wszystkie stosowane odczynniki są odpowiedniej czystości. Użycie reagentów o niewłaściwej czystości jest częstym błędem, który może wynikać z niedoinformowania lub nieprzestrzegania protokołów laboratoryjnych. Użytkownicy powinni zwracać szczególną uwagę na specyfikacje każdego odczynnika chemicznego, aby upewnić się, że spełniają one wymogi potrzebne do danego zastosowania analitycznego.

Pytanie 32

Z podanego wykazu wybierz sprzęt potrzebny do zmontowania zestawu do sączenia pod próżnią.

123456
pompka wodnalejek
z długą nóżką
kolba
okrągłodenna
kolba ssawkowalejek sitowychłodnica
powietrzna

A. 1,2,3
B. 1,2,4
C. 1,4,5
D. 4,5,6
Jak wybrałeś niepoprawną odpowiedź, to pewnie masz jakieś niejasności związane z tym, jak działają zestawy do sączenia pod próżnią. Lejek z długą nóżką i kolba okrągłodenne w odpowiedziach pokazują, że coś tu poszło nie tak, bo ich funkcje nie pasują do tego, co chcemy osiągnąć. Lejek z długą nóżką, mimo że jest używany w różnych sytuacjach w laboratoriach, nie jest kluczowy do filtracji pod próżnią, bo jego kształt nie sprzyja wytwarzaniu próżni. Co do kolby okrągłodennej, to okej w wielu reakcjach, ale nie spełnia roli naczynia dla filtratu w tym kontekście. Zdarza się też, że nie doceniamy kolby ssawkowej, a to ona jest naprawdę niezbędna w tym procesie. Jej brak może prowadzić do nieefektywnej separacji substancji. Zrozumienie tych podstawowych zasad i dobór właściwych narzędzi to klucz do sukcesu w chemicznych labach. Wybór niewłaściwych elementów może spowodować problemy i zanieczyszczenia próbek. Warto mieć na uwadze te rzeczy, żeby w przyszłości nie popełniać podobnych błędów.

Pytanie 33

Odpady z rozpuszczalników organicznych, takich jak benzen czy aceton, zawierające co najmniej 80% danego rozpuszczalnika, należy

A. zniszczyć poprzez zastosowanie odpowiednich procesów.
B. połączyć z ziemią okrzemkową i przekazać do utylizacji.
C. poddać recyklingowi w celu odzyskania rozpuszczalnika.
D. odprowadzać bezpośrednio do kanalizacji.
Odpady z rozpuszczalników organicznych, takich jak benzen czy aceton, które mają przynajmniej 80% tego rozpuszczalnika, powinny być poddawane recyklingowi. To naprawdę zgodne z zasadami zrównoważonego rozwoju i tego, jak powinniśmy zarządzać odpadami. Recykling pozwala nam na ich ponowne wykorzystanie w przemysłowych procesach, dzięki czemu zmniejszamy ilość śmieci i ograniczamy potrzebę pozyskiwania nowych surowców. W praktyce chodzi o różne metody, jak destylacja, które pomagają odzyskać czysty rozpuszczalnik. Na przykład w przemyśle lakierniczym często korzysta się z takich procesów, co jest korzystne, bo zmniejsza koszty i wpływ na środowisko. Pamiętaj, że zgodnie z prawem, te odpady są klasyfikowane jako niebezpieczne, więc dobre zarządzanie nimi i ich recykling są naprawdę kluczowe dla zdrowia ludzi i ochrony naszej planety.

Pytanie 34

Na opakowaniu fenolu umieszcza się przedstawiony na rysunku znak ostrzegawczy, który oznacza, że jest to substancja

Ilustracja do pytania
A. utleniająca.
B. toksyczna.
C. drażniąca.
D. wybuchowa.
Odpowiedź 'toksyczna' jest poprawna, ponieważ znak ostrzegawczy przedstawiający czaszkę z kośćmi skrzyżowanymi informuje o substancji, która może być niebezpieczna dla zdrowia. Fenol, jako substancja chemiczna, wykazuje wysoką toksyczność, co może prowadzić do poważnych problemów zdrowotnych, w tym uszkodzenia narządów wewnętrznych oraz zagrażających życiu skutków po kontakcie z organizmem. Oznakowanie substancji chemicznych zgodnie z normami GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów) jest kluczowe dla zapewnienia bezpieczeństwa w miejscach pracy, laboratorjach oraz w gospodarstwach domowych. Znak ten ma na celu ostrzeżenie użytkowników o konieczności zachowania szczególnej ostrożności, stosowania odpowiednich środków ochrony osobistej, takich jak rękawice czy maski, oraz przestrzegania zaleceń dotyczących przechowywania i używania fenolu. Zrozumienie tych informacji jest niezbędne dla każdego, kto ma do czynienia z takimi substancjami w codziennej pracy lub badaniach.

Pytanie 35

Jak przebiega procedura unieszkodliwiania rozlanego kwasu siarkowego(VI)?

A. spłukaniu miejsc z kwasem gorącą wodą
B. dokładnym spłukaniu miejsc z kwasem roztworem węglanu sodu
C. zbieraniu kwasu tlenkiem wapnia w celu późniejszej utylizacji
D. dokładnym spłukaniu miejsc z kwasem roztworem wodorotlenku sodu
Spłukiwanie plam kwasu siarkowego roztworem węglanu sodu może wydawać się atrakcyjną opcją, ponieważ węglan sodu neutralizuje kwasy, jednak w praktyce ta metoda jest mało skuteczna w przypadku silnych kwasów, takich jak kwas siarkowy(VI). W wyniku reakcji może powstać dwutlenek węgla, co generuje dodatkowe ryzyko, zwłaszcza w pomieszczeniach zamkniętych, gdzie gromadzenie się gazu może prowadzić do niebezpiecznych warunków. Z kolei spłukiwanie roztworem wodorotlenku sodu, mimo że również jest techniką neutralizacji, może prowadzić do powstania niebezpiecznych odpadów alkalicznych. Takie podejście może spowodować dalsze zanieczyszczenie środowiska i zwiększenie ryzyka dla zdrowia ludzi i zwierząt. Ponadto, spłukiwanie gorącą wodą nie ma sensu, ponieważ ciepło może przyspieszyć proces parowania, co prowadzi do uwolnienia szkodliwych oparów kwasu siarkowego do atmosfery. Ważne jest, aby zrozumieć, że każda technika unieszkodliwiania substancji niebezpiecznych musi być oparta na solidnych podstawach chemicznych oraz najlepszych praktykach, takich jak stosowanie odpowiednich reagentów do neutralizacji oraz zapewnienie bezpieczeństwa operacji.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Przy przygotowywaniu 100 cm3 roztworu o określonym stężeniu procentowym (m/V) konieczne jest odważenie wyliczonej ilości substancji, a następnie przeniesienie jej do

A. kolby miarowej, rozpuścić, uzupełnić kolbę rozpuszczalnikiem do kreski, wymieszać, opisać
B. zlewki, rozpuścić w 100 cm3 rozpuszczalnika, przenieść do kolby miarowej, opisać
C. zlewki, rozpuścić w 100 cm3 rozpuszczalnika, opisać, wymieszać bagietką
D. kolby miarowej, dodać 100 cm3 rozpuszczalnika, wymieszać, opisać
W procesie przygotowywania roztworów o określonym stężeniu procentowym (m/V) kluczowe jest zastosowanie kolby miarowej. Korzystanie z kolby miarowej pozwala na precyzyjne odmierzenie objętości roztworu. Po odważeniu odpowiedniej ilości substancji, przenosimy ją do kolby miarowej, a następnie dodajemy rozpuszczalnik do kreski. To zapewnia, że całkowita objętość roztworu będzie dokładnie wynosić 100 cm³, co jest niezbędne do osiągnięcia żądanej koncentracji. Po dopełnieniu kolby rozpuszczalnikiem, ważne jest, aby dokładnie wymieszać roztwór, aby zapewnić jednorodność. Opisanie roztworu, tj. podanie jego stężenia, daty oraz innych istotnych informacji, jest częścią dobrej praktyki laboratoryjnej, co ułatwia późniejsze identyfikowanie roztworu oraz zapewnia bezpieczeństwo pracy. Tego typu procedury są zgodne z wytycznymi dotyczącymi bezpieczeństwa chemicznego oraz standardami jakości w laboratoriach badawczych i przemysłowych.

Pytanie 38

Aby w badanej próbie w trakcie zmiany pH nastąpiła zmiana barwy na malinową, należy użyć

Zmiany barw najważniejszych wskaźników kwasowo-zasadowych
WskaźnikBarwa w środowiskuZakres pH zmiany barwy
KwasowymObojętnymZasadowym
oranż metylowyczerwonażółtażółta3,2÷4,4
lakmus
(mieszanina substancji)
czerwonafioletowaniebieska4,5÷8,2
fenoloftaleinabezbarwnabezbarwnamalinowa8,2÷10,0
wskaźnik uniwersalny
(mieszanina substancji)
czerwona
(silnie kwaśne)
pomarańczowa
(słabo kwaśne)
żółtaniebieska
(silnie zasadowe)
zielona
(słabo zasadowe)
co jeden stopień skali
herbatażółtaczerwona-brunatnabrązowa
sok z czerwonej kapustyfioletowaniebieskazielona

A. fenoloftaleiny.
B. oranżu metylowego.
C. wskaźnika uniwersalnego.
D. lakmusu.
Fenoloftaleina to naprawdę fajny wskaźnik pH, który zmienia kolor z bezbarwnego na malinowy, gdy pH jest w granicach od 8,2 do 10,0. Więc jeśli pH jest niższe niż 8,2, to zostaje bezbarwna. To sprawia, że jest super do wykrywania zasadowego środowiska. Używamy jej w laboratoriach chemicznych, szczególnie przy titracji, bo tam zmiany pH są kluczowe. Zauważyłem też, że fenoloftaleina jest przydatna w różnych branżach, na przykład w farmacji i w analizach wody, bo pomaga ocenić, czy próbki są zasadowe. Z moich doświadczeń wynika, że przed wyborem wskaźnika warto dokładnie obliczyć pH próbki, żeby dobrze zrozumieć wyniki. No i trzeba ostrożnie podchodzić do fenoloftaleiny, bo w większych stężeniach może być szkodliwa dla organizmów wodnych.

Pytanie 39

W celu usunięcia drobnych zawiesin z roztworu przed analizą spektrofotometryczną stosuje się:

A. podgrzewanie roztworu do wrzenia
B. sączenie przez sączek o drobnych porach lub filtr membranowy
C. suszenie roztworu w suszarce laboratoryjnej
D. dekantację bez sączenia
Wiele osób błędnie zakłada, że samo podgrzewanie roztworu do wrzenia rozwiąże problem zawiesin. W praktyce jednak podgrzanie może powodować rozpuszczenie niektórych substancji, lecz zupełnie nie usuwa cząstek stałych – a wręcz czasem prowadzi do ich agregacji lub wytrącania nowych osadów, zwłaszcza w złożonych mieszaninach. To klasyczny błąd myślowy: myślimy, że ciepło „załatwi sprawę”, tymczasem w spektrofotometrii nawet drobne cząstki potrafią zaburzyć pomiar, a wrzenie nic tu nie zmieni. Z kolei dekantacja bez sączenia może być dobra do oddzielenia grubego osadu od cieczy, ale nie ma szans, żeby usunąć bardzo drobne zawiesiny czy koloidy – one po prostu zostają w roztworze i skutecznie zniekształcają wynik spektrofotometryczny. W praktyce laboratoryjnej dekantację stosuje się raczej jako etap wstępny, a nie ostateczny. Suszenie roztworu w suszarce laboratoryjnej to już zupełne nieporozumienie w tym kontekście – ta technika służy do odparowania rozpuszczalnika i uzyskania suchej pozostałości, a nie do oczyszczania roztworu z zawiesin. W dodatku po wysuszeniu nie mamy już roztworu, tylko suchą masę, więc nie przeprowadzimy spektrofotometrii. Często spotykam się z myśleniem, że każda operacja laboratoryjna „coś daje”, ale tutaj tylko filtracja przez sączek lub filtr membranowy zapewnia skuteczne oczyszczenie roztworu do pomiaru spektrofotometrycznego. Pozostałe metody są nieefektywne lub wręcz prowadzą do utraty próbki albo zafałszowania wyniku.

Pytanie 40

Którą z poniższych czynności należy wykonać, aby zapewnić wysoką dokładność pomiaru masy substancji podczas przygotowywania próbki do analizy chemicznej?

A. Wystarczy ważyć substancję na zwykłej wadze kuchennej.
B. Zastosować wagę analityczną o dokładności do 0,1 mg.
C. Użyć linijki do określenia objętości substancji.
D. Pominąć etap ważenia przy sporządzaniu roztworu.
Dokładność pomiaru masy substancji chemicznych ma kluczowe znaczenie w analizie laboratoryjnej. Użycie wagi analitycznej o dokładności do 0,1 mg jest standardem wszędzie tam, gdzie wymagane są precyzyjne oznaczenia ilościowe. Wagi analityczne mają specjalną konstrukcję – są zamknięte w osłonie przeciwwiatrowej, mają bardzo czułe mechanizmy i są regularnie kalibrowane, co minimalizuje wpływ czynników zewnętrznych takich jak drgania czy ruchy powietrza. Tak wysoka dokładność pozwala na ważenie nawet niewielkich ilości substancji, co jest często niezbędne przy pracy z odczynnikami o wysokiej aktywności lub kosztownych standardach. W praktyce zawodowej takie podejście pozwala uniknąć błędów systematycznych, które mogłyby zafałszować wyniki analizy i doprowadzić do nieprawidłowych wniosków. Stosowanie wag analitycznych jest opisane w normach branżowych i podręcznikach dla laborantów. Moim zdaniem, bez tej dokładności nie da się mówić o profesjonalnym przygotowaniu próbek. Warto też pamiętać, że nawet drobne różnice masy mogą mieć duże znaczenie przy przygotowywaniu roztworów wzorcowych czy analitycznych, dlatego nie ma tu miejsca na półśrodki.