Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 21 maja 2025 19:04
  • Data zakończenia: 21 maja 2025 19:41

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Aby poprawić jakość obrazu w trudnych warunkach oświetleniowych, należy zwiększyć odstęp S/N generowany przez układy elektroniczne kamery?

A. zmniejszyć
B. zwiększyć
C. wyrównać
D. wyzerować
Aby poprawić jakość obrazu w słabych warunkach oświetleniowych, kluczowe jest zwiększenie odstępu sygnału do szumu (S/N) wytwarzanego przez układy elektroniczne kamery. Wysoki stosunek S/N oznacza, że sygnał, który jest istotny dla reprodukcji obrazu, jest znacznie silniejszy od szumów, które mogą wprowadzać zakłócenia. Przykładowo, w zastosowaniach takich jak monitoring nocny, zwiększenie czułości matrycy kamery pozwala na uzyskanie lepszej jakości w trudnych warunkach oświetleniowych. W praktyce można to osiągnąć poprzez zastosowanie większych pikseli matrycy, co zwiększa zbieranie światła, lub przez poprawę algorytmów redukcji szumów. Standardy branżowe, takie jak ISO w fotografii, wskazują, że wyższe wartości ISO, które często towarzyszą poprawionemu S/N, mogą doprowadzić do jaśniejszego obrazu w ciemności, choć mogą także wprowadzać szumy. Dlatego ważne jest, aby znaleźć równowagę pomiędzy czułością a jakością obrazu, co jest kluczowe dla uzyskania zadowalających rezultatów.

Pytanie 2

Parametry takie jak wzmocnienie mocy, moc wyjściowa, pasmo przenoszenia oraz współczynnik efektywności energetycznej odnoszą się do

A. filtra
B. wzmacniacza
C. zasilacza
D. generatora
Wzmocnienie mocy, moc wyjściowa, pasmo przenoszenia oraz współczynnik sprawności energetycznej to kluczowe parametry wzmacniaczy. Wzmacniacze są urządzeniami elektrycznymi, których podstawowym zadaniem jest zwiększenie amplitudy sygnału elektrycznego. Wzmocnienie mocy odnosi się do zdolności wzmacniacza do podnoszenia mocy sygnału, co jest niezbędne w aplikacjach audio, telekomunikacyjnych czy radiowych. Moc wyjściowa określa, ile energii wzmacniacz może dostarczyć do obciążenia, co ma kluczowe znaczenie dla zapewnienia odpowiedniej jakości dźwięku lub sygnału. Pasmo przenoszenia natomiast definiuje zakres częstotliwości, w jakim wzmacniacz może efektywnie działać, co jest istotne w kontekście reprodukcji dźwięku czy przesyłania danych. Współczynnik sprawności energetycznej mierzy, jak efektywnie wzmacniacz przekształca moc zasilania na moc wyjściową, co jest istotne dla ograniczenia strat energii i poprawy wydajności systemu. Przykładem zastosowania wzmacniacza może być system audio, gdzie poprawne zgranie tych parametrów decyduje o jakości dźwięku i jego mocy. Zgodnie z normami branżowymi, jak np. normy IEC, ważne jest, aby wzmacniacze były projektowane z uwzględnieniem tych parametrów, aby spełniały wymagania użytkowników i zapewniały niezawodność w działaniu.

Pytanie 3

Firma zajmująca się pomiarami wydaje każdego roku 12 000 zł na legalizację sprzętu pomiarowego. Jaką kwotę zaoszczędzono, jeśli w drugim półroczu uzyskano 30% zniżki?

A. 1 200 zł
B. 1 800 zł
C. 3 600 zł
D. 1 000 zł
Aby obliczyć oszczędność wynikającą z uzyskanego rabatu na legalizację przyrządów pomiarowych, należy najpierw ustalić, ile wydatków przypada na drugie półrocze. Przedsiębiorstwo wydaje rocznie 12 000 zł, co oznacza, że w drugim półroczu wydaje 6 000 zł. Następnie, obliczamy rabat, który wynosi 30% z tej kwoty. 30% z 6 000 zł to 1 800 zł (0,30 * 6 000 zł = 1 800 zł). Odpowiedź 1 800 zł jest poprawna, ponieważ odzwierciedla realne oszczędności, jakie przedsiębiorstwo uzyskuje dzięki korzystaniu z rabatu. W praktyce, takie podejście do analizy kosztów jest zgodne z zasadami zarządzania finansami, które podkreślają znaczenie efektywności kosztowej. Oprócz bezpośrednich oszczędności, wartość ta może wpłynąć na dalsze inwestycje w rozwój technologii pomiarowych, a tym samym poprawić jakość usług oferowanych przez przedsiębiorstwo, co jest kluczowe w kontekście utrzymania konkurencyjności na rynku.

Pytanie 4

Jakim kablem należy połączyć antenę z odbiornikiem, aby przesłać sygnał cyfrowej telewizji naziemnej?

A. Symetrycznego
B. Skrętki nieekranowanej
C. Skrętki ekranowanej
D. Koncentrycznego
Użycie kabla koncentrycznego do doprowadzenia sygnału cyfrowej telewizji naziemnej z anteny do odbiornika jest powszechnie uznawane za standard w branży telekomunikacyjnej. Kabel koncentryczny charakteryzuje się strukturą, która składa się z rdzenia, otoczonego dielektrykiem oraz ekranem, co sprawia, że jest on doskonałym przewodnikiem sygnałów wysokiej częstotliwości. Dzięki swoim właściwościom, takim jak niska tłumienność i odporność na zakłócenia elektromagnetyczne, kabel koncentryczny minimalizuje straty sygnału, co jest kluczowe dla jakości odbioru sygnałów telewizyjnych. W praktyce, stosuje się różne typy kabli koncentrycznych, takie jak RG-6 czy RG-59, które są używane w instalacjach domowych oraz przemysłowych. Kabli koncentrycznych używa się również w instalacjach satelitarnych, co podkreśla ich uniwersalność i niezawodność. Wybór kabla koncentrycznego zgodnego z normami, jak np. EN 50117, zapewnia wysoką jakość sygnału i zgodność z najlepszymi praktykami w zakresie instalacji telewizyjnych.

Pytanie 5

Jakie narzędzia są używane do określenia trasy przewodów na ścianie z betonu?

A. śruby i śrubokręt
B. gwoździe oraz młot
C. ołówek i poziomica
D. wiertarka i kołki rozporowe
Wybranie ołówka i poziomnicy do wyznaczenia trasy przewodów na ścianie betonowej jest najbardziej właściwym podejściem, ponieważ te narzędzia pozwalają na precyzyjne i estetyczne wykonanie pracy. Ołówek umożliwia zaznaczenie linii, po których będą prowadzone przewody, co jest kluczowe dla zachowania porządku i estetyki w instalacji. Poziomnica natomiast jest niezbędna do uzyskania dokładności w poziomie, co ma fundamentalne znaczenie dla zapewnienia prawidłowego ułożenia przewodów oraz ich prawidłowego funkcjonowania. Przykładowo, gdy przewody są prowadzone wzdłuż ściany, ich równe ułożenie nie tylko poprawia estetykę, ale również minimalizuje ryzyko uszkodzeń mechanicznych oraz ułatwia późniejsze prace konserwacyjne. Zgodnie ze standardami branżowymi, takie jak normy ISO dotyczące instalacji elektrycznych, precyzyjne wyznaczenie tras przewodów jest kluczowym elementem w zapewnieniu bezpieczeństwa i trwałości instalacji. Warto również pamiętać, że poprawnie wykonana instalacja nie tylko spełnia wymagania techniczne, ale również wpływa na komfort użytkowania przestrzeni.

Pytanie 6

Jakie środki należy wykorzystać do ugaszenia ubrania palącego się na ciele?

A. gaśnicę śniegową
B. gaśnicę pianową
C. koc gaśniczy
D. gaśnicę proszkową
Stosowanie gaśnic, takich jak gaśnice śniegowe, pianowe czy proszkowe, do gaszenia płonącego ubrania na ciele człowieka jest niewłaściwe z kilku powodów. Gaśnice te są przeznaczone do gaszenia pożarów w zamkniętych pomieszczeniach lub w przestrzeni, gdzie można kontrolować środki gaśnicze i ich skutki. Gaśnica śniegowa działa na zasadzie chłodzenia i wyparowania, co w praktyce może być nieefektywne w przypadku bezpośredniego kontaktu z ciałem człowieka, ponieważ substancje w niej zawarte mogą prowadzić do odmrożeń. Z kolei gaśnice pianowe i proszkowe, mimo iż skutecznie gaszą pożary, mogą powodować dodatkowe uszkodzenia skóry oraz utrudniać oddychanie, co w sytuacji zagrożenia życia jest niebezpieczne. Nieprawidłowym jest również przekonanie, że te metody można stosować w bezpośrednim kontakcie z osobą. W sytuacji, gdy ubranie płonie, kluczowe jest jak najszybsze odcięcie dopływu tlenu, co w przypadku gaśnic może być trudne, a ich użycie wymaga stosowania odpowiednich technik, które nie są standardowo dostępne dla nieprzeszkolonych osób. Takie błędne podejście może prowadzić do opóźnień w gaszeniu ognia, co zwiększa ryzyko poważnych obrażeń lub śmierci. Dlatego najskuteczniejszym rozwiązaniem pozostaje koc gaśniczy, który w przeciwieństwie do innych metod, jest zaprojektowany specjalnie do sytuacji, w których zagrożone jest życie ludzkie.

Pytanie 7

Aby zabezpieczyć naprawiane urządzenie elektroniczne przed działaniem ESD, należy

A. przy demontażu obudowy wykazać szczególną ostrożność
B. otwierać urządzenie umieszczone na uziemionej macie
C. podłączyć urządzenie do źródła zasilania
D. zasilać urządzenie poprzez transformator separujący
Zachowanie szczególnej ostrożności przy otwieraniu obudowy urządzenia bez zastosowania odpowiednich środków ochronnych, takich jak uziemiona mata, nie zapewnia skutecznej ochrony przed ESD. Choć ostrożność jest ważnym czynnikiem w każdym procesie naprawy, sama w sobie nie eliminuje ryzyka, że ładunki elektrostatyczne zgromadzone na ciele technika przeniosą się na komponenty elektroniczne, co może prowadzić do ich uszkodzenia. Zasilanie urządzenia przez transformator separujący nie jest rozwiązaniem chroniącym przed ESD, ponieważ transformatory nie odprowadzają ładunków elektrostatycznych, a jedynie izolują obwody zasilające. Podłączanie urządzenia do zasilania przed jego otwarciem może prowadzić do poważnych uszkodzeń, zagrażając zarówno urządzeniu, jak i bezpieczeństwu osoby dokonującej naprawy. Niewłaściwe podejście do zabezpieczeń ESD może prowadzić do mylnego przekonania, że brak bezpośredniego kontaktu z elementami w urządzeniu wystarczy do zapewnienia bezpieczeństwa. W rzeczywistości, nieodpowiednie praktyki w zakresie ochrony przed ESD mogą skutkować dużymi stratami finansowymi związanymi z kosztownymi naprawami lub wymianą uszkodzonych komponentów, co czyni narażenie na ESD poważnym problemem w branży elektronicznej.

Pytanie 8

W trakcie serwisowania, dotyczącego wylutowywania komponentów elektronicznych w wzmacniaczu dźwiękowym, pracownik powinien mieć

A. buty na izolowanej podeszwie
B. rękawice ochronne
C. fartuch bawełniany
D. okulary ochronne
Na pierwszy rzut oka można sądzić, że okulary ochronne, rękawice ochronne i buty na izolowanej podeszwie również mogą być odpowiednimi elementami odzieży ochronnej podczas prac serwisowych. Jednak ich zastosowanie nie jest wystarczające w kontekście wylutowywania podzespołów elektronicznych. Okulary ochronne są ważne do ochrony oczu przed odpryskami i substancjami chemicznymi, jednak nie chronią one całego ciała przed zanieczyszczeniem oraz niepełnym zabezpieczeniem odzieży. Rękawice ochronne mogą być niezbędne, gdy pracujemy z substancjami niebezpiecznymi, jednak w przypadku wylutowywania, ich stosowanie może być niewygodne i obniżać precyzję manipulacji delikatnymi komponentami. Wiele osób może również mylnie sądzić, że buty na izolowanej podeszwie są wystarczające do ochrony w takim środowisku; owszem, chronią one przed porażeniem prądem, ale nie zabezpieczają w wystarczającym stopniu przed chemikaliami czy odpadami, które mogą być wytwarzane podczas prac serwisowych. Dlatego kluczowe jest zrozumienie, że odpowiedni fartuch bawełniany stanowi najbardziej wszechstronną i skuteczną ochronę, zapewniając jednocześnie komfort i bezpieczeństwo. Efektywna odzież ochronna powinna być zgodna z zaleceniami BHP oraz standardami branżowymi, co w praktyce oznacza, że fartuch bawełniany jest najodpowiedniejszym rozwiązaniem w tym przypadku.

Pytanie 9

Zawartość pamięci EPROM może zostać utracona w wyniku

A. braku napięcia zasilającego
B. bezpośredniego wpływu promieni słonecznych
C. obniżenia napięcia zasilającego poniżej 2,5 V
D. niesprawnego układu odświeżającego
Bezpośrednie działanie promieni słonecznych może prowadzić do uszkodzenia pamięci EPROM, ponieważ te układy są wrażliwe na promieniowanie UV. EPROM (Erasable Programmable Read-Only Memory) stosuje się w sytuacjach, w których potrzebne jest wielokrotne programowanie układu, a jego zawartość można usunąć poprzez naświetlanie promieniami UV. W praktyce oznacza to, że jeśli pamięć EPROM jest wystawiona na działanie intensywnego światła słonecznego, istnieje ryzyko, że dane zostaną przypadkowo usunięte. Z tego powodu w zastosowaniach przemysłowych i elektronicznych często stosuje się obudowy chroniące te pamięci przed bezpośrednim działaniem światła. Warto również zaznaczyć, że standardy dotyczące przechowywania urządzeń elektronicznych zalecają unikanie ekspozycji na silne źródła światła, aby zapewnić trwałość i wiarygodność przechowywanych danych. Zrozumienie tego zjawiska jest kluczowe dla inżynierów zajmujących się projektowaniem systemów elektronicznych, w których wykorzystuje się pamięci EPROM.

Pytanie 10

Podłączenie telewizyjnej anteny lub odbiornika TV o wejściu symetrycznym przy użyciu przewodu współosiowego wymaga stosowania

A. linii rezonansowych równoległych
B. symetryzatorów
C. falowodów
D. linii nierezonansowych typu delta
Wybór falowodów jako metody połączenia anteny telewizyjnej lub odbiornika TV o wejściu symetrycznym jest nietrafiony, ponieważ falowody są stosowane głównie w wysokich częstotliwościach i wymagają specyficznych warunków do prawidłowego funkcjonowania. Falowody są skuteczne w przypadku komunikacji mikrofalowej i nie są przeznaczone do aplikacji niskoczęstotliwościowych, jak większość systemów telewizyjnych. Dodatkowo, linie rezonansowe równoległe oraz linie nierezonansowe typu delta również nie są odpowiednie do tego typu zastosowań. Linie rezonansowe są projektowane do pracy na określonych częstotliwościach rezonansowych, co w praktyce nie jest zgodne z wymaganiami dla sygnałów telewizyjnych, które muszą być odbierane w szerokim zakresie częstotliwości. Linie nierezonansowe typu delta z kolei są bardziej skomplikowane i mogą wprowadzać dodatkowe straty sygnału, co jest niepożądane w kontekście jakości odbioru telewizyjnego. Wybór niewłaściwych rozwiązań technologicznych może prowadzić do problemów z jakością sygnału, a także do zwiększenia kosztów instalacji, dlatego kluczowe jest zrozumienie i zastosowanie odpowiednich komponentów, takich jak symetryzatory, które są dostosowane do specyfiki systemów telewizyjnych.

Pytanie 11

W jakim celu nosi się opaskę antyelektrostatyczną na ręku podczas wymiany podzespołów lub układów scalonych w nowoczesnych urządzeniach elektronicznych?

A. Aby chronić układy scalone TTL przed niekorzystnym wpływem ładunków elektrostatycznych nagromadzonych na ciele montera
B. Aby chronić montera przed porażeniem prądem elektrycznym z zasilenia urządzenia elektronicznego
C. Aby zabezpieczyć montera przed szkodliwym działaniem ładunków elektrostatycznych nagromadzonych w urządzeniu
D. Aby chronić układy scalone CMOS przed szkodliwym działaniem ładunków elektrostatycznych gromadzących się na ciele montera
Opaska antyelektrostatyczna na rękę jest kluczowym elementem zabezpieczającym podczas pracy z delikatnymi komponentami elektronicznymi, szczególnie z układami scalonymi CMOS. Układy te są szczególnie wrażliwe na ładunki elektrostatyczne, które mogą powodować uszkodzenia, a nawet zniszczenie elementów. Opaska działa na zasadzie uziemienia ciała montera, co pozwala na rozproszenie nagromadzonych ładunków elektrostatycznych, eliminując ryzyko ich przekazania na wrażliwe komponenty. Przykładem praktycznego zastosowania opaski może być wymiana pamięci RAM czy procesora w komputerze stacjonarnym. W takich sytuacjach, nie tylko zapobiega się uszkodzeniu pojedynczych układów, ale także zwiększa się ogólną niezawodność urządzenia. Zgodnie z normami IPC (Institute for Interconnecting and Packaging Electronics), stosowanie opasek antyelektrostatycznych jest standardową procedurą w procesach montażu i serwisowania elektroniki, co dodatkowo podkreśla ich znaczenie w branży.

Pytanie 12

Jaką wartość ma częstotliwość prądu zmiennego, jeśli jego okres wynosi 0,001 s?

A. 10 kHz
B. 0,1 kHz
C. 1 kHz
D. 100 kHz
Częstotliwość prądu zmiennego (AC) jest odwrotnością okresu, który jest czasem jednego pełnego cyklu fali. Wzór na obliczenie częstotliwości (f) to f = 1/T, gdzie T to okres w sekundach. Dla okresu wynoszącego 0,001 s, obliczamy częstotliwość jako f = 1/0,001 s = 1000 Hz, co jest równoważne 1 kHz. Częstotliwość 1 kHz jest powszechnie występująca w różnych zastosowaniach, takich jak telekomunikacja, gdzie sygnały o wyższej częstotliwości są transmitowane z mniejszymi stratami. W praktyce 1 kHz można spotkać w prostych układach elektronicznych oraz w aplikacjach audio. Zrozumienie tego związku między okresem a częstotliwością jest kluczowe w projektowaniu i analizie systemów elektronicznych, zgodnie z zasadami inżynierii elektrycznej, które podkreślają znaczenie właściwego doboru parametrów sygnału, aby zapewnić jego skuteczną transmisję i minimalizację zakłóceń.

Pytanie 13

Jak powinna przebiegać prawidłowa sekwencja uruchamiania instalacji telewizyjnej?

A. zaprogramować kanały, uruchomić odbiornik TV, podłączyć kabel antenowy
B. podłączyć kabel antenowy, zaprogramować kanały, uruchomić odbiornik TV
C. uruchomić odbiornik TV, zaprogramować kanały, podłączyć kabel antenowy
D. podłączyć kabel antenowy, uruchomić odbiornik TV, zaprogramować kanały
Prawidłowa kolejność uruchomienia instalacji telewizyjnej to podłączenie kabla antenowego, uruchomienie odbiornika TV, a następnie zaprogramowanie kanałów. Zaczynając od podłączenia kabla antenowego, zapewniamy odbiornikowi dostęp do sygnału telewizyjnego, co jest kluczowe, ponieważ bez tego nie będzie on w stanie odebrać żadnych transmisji. Po upewnieniu się, że kabel antenowy jest prawidłowo podłączony, należy uruchomić odbiornik telewizyjny. W momencie włączenia urządzenia, system operacyjny TV inicjuje potrzebne procesy, które umożliwiają dalszą konfigurację. Ostatecznie, programowanie kanałów jest krokiem, który pozwala na dostosowanie odbiornika do preferencji użytkownika i lokalnych dostępnych stacji. Ta sekwencja działa zgodnie z najlepszymi praktykami instalacyjnymi, ponieważ zapewnia logiczny i efektywny proces konfiguracji, co jest zgodne z zaleceniami producentów sprzętu telewizyjnego. Prawidłowe podejście do instalacji wpływa na ogólne doświadczenia użytkownika oraz funkcjonalność urządzenia, co podkreśla znaczenie przestrzegania ustalonych procedur.

Pytanie 14

Jakie narzędzie jest niezbędne do zainstalowania wtyku kompresyjnego typu F na kablu koncentrycznym?

A. śrubokręt.
B. obcęgi.
C. nóż montażowy.
D. zaciskarkę.
Zaciskarka to narzędzie specjalnie zaprojektowane do montażu wtyków kompresyjnych na kablach koncentrycznych. Dzięki precyzyjnemu mechanizmowi chwytania i zaciskania, pozwala na pewne i trwałe połączenie wtyku z kablem, co jest kluczowe dla uzyskania optymalnej jakości sygnału. Użycie zaciskarki zapewnia, że wtyk jest prawidłowo zamocowany, eliminując ryzyko luzów, które mogłyby prowadzić do zakłóceń sygnału. W branży telekomunikacyjnej oraz w instalacjach antenowych, gdzie jakość sygnału jest kluczowa, stosowanie odpowiednich narzędzi, takich jak zaciskarka, jest zgodne z najlepszymi praktykami. W przypadku kabli koncentrycznych, wtyki kompresyjne oferują lepszą ochronę przed zakłóceniami elektromagnetycznymi, a ich prawidłowy montaż przy użyciu zaciskarki jest niezbędny, aby zapewnić optymalne działanie całego systemu. Warto zwrócić uwagę na standardy, takie jak ISO/IEC 11801, które podkreślają znaczenie odpowiedniego montażu i użycia właściwych narzędzi w celu zapewnienia niezawodności i wydajności systemów transmisji danych.

Pytanie 15

Na podstawie danych zamieszczonych w tabeli określ, w którym przypadku całkowity koszt wykonania zasilacza jest najniższy, jeśli koszt brutto roboczogodziny wynosi 10 zł?

Koszt materiałów bruttoCzas pracy
A.10 zł3,0 h
B.20 zł2,5 h
C.15 zł2,0 h
D.25 zł1,5 h

A. C.
B. A.
C. D.
D. B.
Poprawna odpowiedź to C, ponieważ najniższy całkowity koszt wykonania zasilacza wynosi 35 zł. Obliczamy go, mnożąc czas pracy (2,0 h) przez koszt roboczogodziny (10 zł/h), co daje 20 zł. Następnie dodajemy koszt materiałów, który wynosi 15 zł. Zatem całkowity koszt wynosi 20 zł + 15 zł = 35 zł. W kontekście branżowym, analiza kosztów jest kluczowym elementem optymalizacji procesów produkcyjnych. Właściwe kalkulacje pozwalają na identyfikację obszarów, w których można obniżyć wydatki, co jest zgodne z zasadami Lean Management. Dzięki takim praktykom przedsiębiorstwa mogą zwiększyć swoją konkurencyjność na rynku. Ponadto, umiejętność efektywnego zarządzania kosztami jest niezbędna w projektowaniu nowych produktów i usług, co przekłada się na lepsze podejmowanie decyzji i planowanie budżetu.

Pytanie 16

Badanie złącza p-n w tranzystorze bipolarnym można przeprowadzić przy użyciu

A. watomierza
B. omomierza
C. amperomierza
D. woltomierza
Woltomierz, watomierz i amperomierz to fajne przyrządy, ale do badania oporu złącza p-n w tranzystorze bipolarnym się nie nadają. Woltomierz mierzy napięcie, ale w kontekście złącza p-n to nie da nam pełnego obrazu. Może zmierzymy napięcie na złączu, ale to za mało, by stwierdzić, czy działa sprawnie. Watomierz też nie jest pomocny, bo on mierzy moc, a nie opór. Może się przydać w innych sytuacjach, ale nie do oceny samego złącza. Amperomierz bada natężenie prądu i daje jakieś wieści o przepływie prądu przez złącze, ale bez znajomości napięcia jest ciężko stwierdzić, czy złącze działa jak należy. Wiele osób myli te pojęcia, przez co czasem sądzimy, że inne przyrządy nadają się do złącz p-n. Ważne jest, żeby wiedzieć, że do pomiaru oporu potrzebujemy omomierza, który jest jedynym słusznym wyborem w tej sprawie.

Pytanie 17

Jakim narzędziem wykonuje się pobielanie końcówek przewodów elektrycznych?

A. nagrzewnicy
B. zgrzewarki
C. lutownicy
D. opalarki
Pobielanie końcówek przewodów elektrycznych za pomocą lutownicy jest standardową praktyką w branży elektroinstalacyjnej. Lutownica, która wykorzystuje wysoką temperaturę do stopienia lutu, umożliwia trwałe połączenie przewodu z końcówką, co jest kluczowe dla zapewnienia dobrej przewodności elektrycznej oraz długotrwałej trwałości połączenia. W procesie lutowania ważne jest, aby przed przystąpieniem do pracy, odpowiednio przygotować powierzchnię przewodu, usuwając wszelkie zanieczyszczenia oraz oksydację. Zastosowanie lutownicy jest szczególnie istotne w kontekście norm i standardów, takich jak IEC 60364, które określają wymagania dotyczące instalacji elektrycznych. Dobrą praktyką jest również stosowanie lutów o odpowiednich parametrach, co wpływa na jakość oraz niezawodność wykonanego połączenia. Warto zaznaczyć, że technika lutowania wymaga pewnej wprawy oraz znajomości zasad bezpieczeństwa, aby uniknąć poparzeń oraz innych niebezpieczeństw związanych z obsługą urządzeń grzewczych.

Pytanie 18

Jakie urządzenie jest przeznaczone do bezdotykowego pomiaru temperatury?

A. pirometru
B. kalorymetru
C. multimetru
D. luksomierza
Pirometr jest urządzeniem służącym do bezdotykowego pomiaru temperatury obiektów. Działa na zasadzie rejestrowania promieniowania podczerwonego emitowanego przez ciało, co pozwala na określenie jego temperatury bez konieczności bezpośredniego kontaktu. Pirometry są niezwykle przydatne w sytuacjach, gdzie tradycyjne metody pomiaru, takie jak termometry, mogą być niepraktyczne lub niebezpieczne, na przykład w przypadku gorących powierzchni, elementów w ruchu lub materiałów szkodliwych. W przemyśle, medycynie, a także w laboratoriach, użycie pirometrów pozwala na szybkie i dokładne pomiary, co jest zgodne z najlepszymi praktykami w zakresie monitorowania procesów technologicznych oraz zapewnienia bezpieczeństwa. Warto również zaznaczyć, że wiele pirometrów jest wyposażonych w funkcje, które umożliwiają zapisywanie danych oraz ich analizę, co zwiększa efektywność monitorowania temperatury w dłuższym okresie czasu.

Pytanie 19

W trakcie serwisowania systemu alarmu przeciwwłamaniowego oraz napadowego konieczne jest sprawdzenie

A. dokumentu gwarancyjnego systemu
B. poziomu naładowania akumulatora
C. ustawienia lokalizacji czujników
D. ciągłości linii dozorowych za pomocą miernika
Sprawdzanie stanu naładowania akumulatora jest kluczowym elementem konserwacji systemu sygnalizacji włamania i napadu, ponieważ akumulator jest odpowiedzialny za zasilanie systemu w przypadku przerwy w dostawie energii elektrycznej. W praktyce, akumulatory, które są zbyt słabe lub całkowicie rozładowane, mogą prowadzić do awarii systemu, co z kolei naraża obiekt na ryzyko włamania lub usunięcia. Standardy branżowe, takie jak norma EN 50131, podkreślają znaczenie regularnych testów zasilania i stanu akumulatorów. Regularne pomiary napięcia i pojemności akumulatora pozwalają na wczesne wykrycie problemów oraz zapobiegają nieprzewidzianym przestojom w funkcjonowaniu systemu. Na przykład, jeśli akumulator nie jest w stanie utrzymać wymaganego napięcia w czasie testu, może to oznaczać konieczność jego wymiany, co powinno być częścią planu konserwacji. Działania te przyczyniają się do zachowania integralności systemu oraz ochrony mienia.

Pytanie 20

Jakie urządzenie pozwala na podłączenie anteny o impedancji falowej 300 Ω do odbiornika, który ma gniazdo antenowe o impedancji 75 Ω?

A. konwerter
B. rozdzielacz
C. zwrotnica
D. symetryzator
Rozgałęźnik, przemiennik oraz zwrotnica to urządzenia, które mają inne funkcje i nie są odpowiednie do konwersji impedancji w tej konkretnej sytuacji. Rozgałęźnik służy do dzielenia sygnału na wiele wyjść, co może prowadzić do osłabienia sygnału, jednak nie jest w stanie dostosować impedancji sygnału, co jest kluczowe w przypadku podłączania anteny o różnych impedancjach. Przemiennik z kolei zmienia częstotliwość sygnału, ale nie wpływa na jego impedancję, co sprawia, że nie nadaje się do zastosowań związanych z dopasowaniem impedancji anten. Znalezienie odpowiedniego dopasowania impedancji jest istotne dla osiągnięcia wysokiej efektywności energetycznej i uniknięcia strat sygnałowych. Zwrotnica, chociaż jest użytecznym urządzeniem w systemach audio i radiowych, ma za zadanie kierowanie sygnałów do właściwych torów, ale nie ma funkcji przystosowania impedancji. Typowym błędem myślowym jest mylenie tych urządzeń z symetryzatorem, co prowadzi do niewłaściwego doboru sprzętu i w efekcie do pogorszenia jakości sygnału lub całkowitych problemów z odbiorem. W kontekście standardów branżowych, każda z tych funkcji wymaga odrębnych podejść i rozwiązań, dlatego kluczowe jest zrozumienie właściwego zastosowania danego urządzenia w systemie transmisji sygnałów.

Pytanie 21

Metalowa obudowa urządzenia elektronicznego powinna być połączona z przewodem ochronnym instalacji zasilającej poprzez przewód o izolacji w odcieniu

A. żółto-zielonym
B. czarno-białym
C. niebieskim
D. czerwonym
Metalowa obudowa urządzeń elektronicznych powinna być połączona z żyłą ochronną instalacji elektrycznej za pomocą przewodu o izolacji w kolorze żółto-zielonym, co wynika z europejskich norm dotyczących instalacji elektrycznych, takich jak norma PN-EN 60446. Kolor żółto-zielony jednoznacznie identyfikuje przewody ochronne, które mają na celu zabezpieczenie przed porażeniem prądem elektrycznym poprzez odprowadzenie ewentualnego prądu upływowego do ziemi. W praktyce, połączenie metalowej obudowy z żyłą ochronną minimalizuje ryzyko uszkodzenia ciała ludzkiego w przypadku awarii urządzenia. W kontekście praktycznym, stosowanie odpowiednich kolorów przewodów ułatwia identyfikację ich funkcji, co jest kluczowe przy konserwacji i naprawach. Przykładowo, w przypadku modernizacji instalacji w budynku, stosowanie przewodów o standardowej kolorystyce zapewnia bezpieczeństwo techniczne i zgodność z przepisami, co jest niezbędne do przeprowadzenia skutecznych prac instalacyjnych. Zrozumienie tej zasady jest kluczowe dla każdego elektryka, ponieważ nieprzestrzeganie norm może prowadzić do poważnych konsekwencji prawnych oraz zagrożeń zdrowotnych.

Pytanie 22

Wzrost efektywnej pojemności torów przesyłowych dla kabla UTP wskazuje na

A. przerwanie jednej z żył
B. zbyt dużą rezystancję pętli
C. błędne podłączenie kabla
D. uszkodzenie izolacji
Zwiększenie pojemności skutecznej torów transmisyjnych w kablu UTP wskazuje na problemy z izolacją, co może prowadzić do zakłóceń w przesyłanym sygnale. Uszkodzenie izolacji pozwala na infiltrację wilgoci oraz innych zanieczyszczeń, co z kolei może prowadzić do zwiększonej pojemności w obwodach. W praktyce, taka sytuacja może skutkować pogorszeniem jakości sygnału, co jest szczególnie istotne w aplikacjach wymagających wysokiej wydajności, takich jak sieci Ethernet. Standardy takie jak IEEE 802.3, definiujące zasady działania sieci lokalnych, wymagają, aby kable UTP były w pełni sprawne, aby zapewnić odpowiednie prędkości transmisji. Dlatego w przypadku stwierdzenia wzrostu pojemności, kluczowe jest przeprowadzenie dokładnej analizy izolacji kabla oraz jego stanu technicznego, co może obejmować testy za pomocą specjalistycznych narzędzi, takich jak reflektometry. Regularne monitorowanie stanu kabli i ich izolacji jest zalecane zgodnie z normami branżowymi, aby zapobiegać awariom i zapewnić stabilność sieci.

Pytanie 23

W regulatorze PID podwojono stałą czasową Ti (czas całkowania), co skutkuje

A. brakiem zmian w czasie regulacji
B. wydłużeniem czasu regulacji
C. zmniejszeniem stabilności układu
D. wzrostem amplitudy oscylacji
Stwierdzenie, że zwiększenie stałej czasowej Ti w regulatorze PID zmniejsza stabilność układu, nie znajduje uzasadnienia. Stabilność układu regulacji PID jest przede wszystkim determinowana przez proporcjonalne i różniczkowe składniki regulatora oraz przez charakterystykę samego systemu. Zwiększenie Ti nie wpływa na te parametry w sposób bezpośredni. Czas regulacji to inny wskaźnik, który odnosi się do tego, jak szybko system osiąga wartość zadaną. Zwiększając Ti, wydłużamy czas, po którym system zaczyna reagować na zmiany, co może być mylnie interpretowane jako spadek stabilności. Również przypisanie większej amplitudy oscylacji do wydłużonego czasu całkowania jest nieprawidłowe. Oscylacje w odpowiedzi układu mogą być wynikiem zbyt agresywnego ustawienia parametrów PID, a nie samej wartości Ti. Ponadto, ustalenie, że czas regulacji nie ulegnie zmianie, jest błędne, ponieważ w systemach regulacji czas regulacji jest bezpośrednio powiązany z parametrami regulatora. W praktyce, każde zwiększenie Ti skutkuje spowolnieniem reakcji systemu, co nieuchronnie prowadzi do wydłużenia czasu regulacji. Właściwe podejście do strojenia regulatorów PID jest kluczowe w inżynierii sterowania i powinno opierać się na analizie dynamiki systemu oraz symulacjach, zamiast na błędnych założeniach.

Pytanie 24

Podwyższenie dobroci Q filtru RLC w selektywnym wzmacniaczu doprowadzi do

A. wzrostu częstotliwości środkowej fo
B. spadku współczynnika prostokątności
C. spadku częstotliwości środkowej fo
D. wzrostu współczynnika prostokątności
Zrozumienie wpływu dobroci Q na filtry RLC jest kluczowe, aby odpowiednio interpretować konsekwencje projektowe. Pierwsza z niepoprawnych odpowiedzi sugeruje, że zwiększenie dobroci Q mogłoby prowadzić do zwiększenia częstotliwości środkowej f0, co jest nieprawidłowe. W rzeczywistości wartość f0 jest określona przez komponenty RLC i nie zmienia się w wyniku zmiany dobroci Q. Zwiększenie Q nie wpływa na częstotliwość centralną, lecz na charakterystykę pasma przenoszenia. Kolejna odpowiedź sugerująca zmniejszenie częstotliwości środkowej f0 również jest mylna, jako że zmiana dobroci Q nie ma wpływu na jej wartość. W rzeczywistości, zwiększenie dobroci Q prowadzi do większej wyrazistości filtru, ale nie zmienia jego centralnej częstotliwości. Dlatego też, koncepcja współczynnika prostokątności jest nieodłącznie związana z dobrocią Q, a jego zmiana wpływa na szerokość pasma przenoszenia. Należy również zwrócić uwagę na to, że w praktyce stosuje się różne metody obliczania i regulacji Q, aby osiągnąć pożądane efekty w różnych zastosowaniach, takich jak filtry w radiotechnice czy systemy audio. Typowym błędem w analizie charakterystyki filtrów RLC jest mylenie dobroci Q z innymi parametrami, co może prowadzić do niepoprawnych wniosków dotyczących działania układów elektronicznych.

Pytanie 25

Napięcie na wyjściu czujnika generacyjnego wynosi około 18 V, a rezystancja wyjściowa tego czujnika to około 200 kOhm. Aby uzyskać jak najbardziej precyzyjny pomiar napięcia na tym czujniku, powinno się zastosować woltomierz

A. cyfrowy na zakresie U=20 V i Rwe=10 MOhm
B. cyfrowy na zakresie U=200 V i Rwe=10 MOhm
C. analogowy na zakresie U=20 V i Rwe=100 kOhm
D. analogowy na zakresie U=200 V i Rwe=10 kOhm
Wybór cyfrowego woltomierza na zakresie U=20 V z rezystancją wewnętrzną Rwe=10 MOhm jest najlepszym rozwiązaniem w tej sytuacji z kilku powodów. Po pierwsze, napięcie wyjściowe czujnika wynosi około 18 V, co oznacza, że zakres 20 V jest optymalny, ponieważ umożliwia dokładny pomiar w pełnym zakresie napięcia bez ryzyka przesterowania. Po drugie, wysoka rezystancja wewnętrzna woltomierza (10 MOhm) minimalizuje wpływ samego instrumentu na obwód, co jest kluczowe, gdy mierzony czujnik ma dużą rezystancję wyjściową wynoszącą około 200 kOhm. W przypadku pomiarów w obwodach wysokorezystancyjnych, jak ten, zastosowanie woltomierza o wysokiej rezystancji wewnętrznej jest standardem, który pozwala na uzyskanie najbardziej wiarygodnych wyników. Na przykład, w aplikacjach, gdzie istotne jest zachowanie integralności sygnału, takich jak pomiary w naukach przyrodniczych czy elektronice, wybór odpowiedniego woltomierza jest kluczowy. Dzięki temu pomiar staje się dokładniejszy, a wyniki bardziej wiarygodne.

Pytanie 26

W dokumentach technicznych dotyczących magnetofonów kasetowych często można znaleźć terminy "Dolby", "Dolby C". Co to oznacza w kontekście zastosowanego w urządzeniu systemu?

A. korekcji amplitudowej dźwięku
B. wzmocnienia sygnałów o małej amplitudzie
C. podbicia niskich tonów w urządzeniu
D. redukcji szumów
Systemy Dolby, takie jak Dolby B, Dolby C i inne, są powszechnie stosowane w magnetofonach kasetowych w celu redukcji szumów towarzyszących nagraniom dźwiękowym. Działają one na zasadzie kompresji i dekompresji sygnału audio, co pozwala na zminimalizowanie wpływu niepożądanych szumów podczas odtwarzania kaset. W szczególności Dolby C, wprowadzony w latach 80., oferuje poprawioną efektywność w porównaniu do wcześniejszych wersji, umożliwiając lepszą jakość dźwięku w szerszym zakresie dynamiki. Przykładowo, w zastosowaniach studiów nagraniowych, zastosowanie systemu Dolby C może znacząco poprawić jakość nagrań, zachowując jednocześnie ich naturalność i klarowność. Standardy Dolby są uznawane w branży audio jako jedne z najlepszych praktyk w zakresie redukcji szumów, co czyni je istotnym elementem zarówno w produkcji muzycznej, jak i w domowych systemach audio.

Pytanie 27

Zanim przystąpimy do wymiany uszkodzonej fotokomórki szlabanu wjazdowego na posesję, najpierw należy

A. skonfigurować piloty do sterowania szlabanem
B. odłączyć napięcie zasilające szlaban
C. usunąć obudowę fotokomórki
D. zdjąć napęd szlabanu
Odłączenie napięcia zasilającego szlaban przed przystąpieniem do wymiany uszkodzonej fotokomórki jest kluczowym krokiem zapewniającym bezpieczeństwo pracy. Podstawową zasadą w pracy z urządzeniami elektrycznymi jest zawsze rozłączenie zasilania przed przeprowadzaniem jakichkolwiek czynności naprawczych lub konserwacyjnych. Taki krok minimalizuje ryzyko porażenia prądem, a także chroni komponenty elektroniczne przed uszkodzeniem podczas demontażu. Przykładem zastosowania tej zasady może być sytuacja, gdy fotokomórka nie działa prawidłowo z powodu zwarcia w obwodzie, a podczas wymiany nie odłączenie zasilania mogłoby prowadzić do dalszych uszkodzeń. Ponadto, zgodnie z normami bezpieczeństwa, takimi jak PN-IEC 60364, zanim wykonamy jakiekolwiek prace przy urządzeniach elektrycznych, należy upewnić się, że zasilanie zostało odłączone i odpowiednio zabezpieczone. Takie praktyki są kluczowe w celu zapewnienia bezpieczeństwa oraz integralności systemu, a ich przestrzeganie jest niezbędne w każdej instalacji elektrycznej.

Pytanie 28

Na jaką metodę najlepiej postawić, by ocenić sprawność tranzystora wylutowanego z obwodu, wykonując pomiary?

A. woltomierza
B. oscyloskopu i generatora funkcyjnego
C. oscyloskopu i zasilacza
D. omomierza
Podczas oceny stanu tranzystora, wybór narzędzia pomiarowego ma kluczowe znaczenie. Zastosowanie woltomierza, oscyloskopu czy generatora funkcyjnego w tej sytuacji nie jest optymalne. Woltomierz, choć może być użyty do pomiaru napięć, nie dostarcza informacji o rezystancji wewnętrznej tranzystora, co jest esencjonalne w ocenie jego sprawności. Z kolei oscyloskop w połączeniu z zasilaczem może pomóc w analizie sygnałów oraz charakterystyki dynamicznej tranzystora, ale wymaga złożonej konfiguracji oraz dostarcza jedynie pośrednie informacje o stanie komponentu. Generator funkcyjny, używany z oscyloskopem, głównie służy do testowania odpowiedzi tranzystora na sygnały zmienne, co również nie jest praktycznym sposobem na wykrycie uszkodzeń. Często w takich przypadkach można popełnić błąd myślowy, zakładając, że bardziej zaawansowane urządzenia pomiarowe zawsze dostarczają lepsze wyniki, co nie jest zgodne z rzeczywistością diagnostyki komponentów elektronicznych. Kluczowe jest zrozumienie, że dla szybkiej i efektywnej analizy stanu tranzystora, omomierz jest narzędziem o największej skuteczności w ocenie podstawowych parametrów.

Pytanie 29

W jakim urządzeniu stosuje się zjawisko defleksji elektronów w polu elektromagnetycznym?

A. Monitorze CRT
B. Nośniku optycznym
C. Ekranie LCD
D. Dysku twardym
Monitor CRT (katodowy) wykorzystuje zjawisko odchylania elektronów w polu elektromagnetycznym do wyświetlania obrazu. W jego wnętrzu znajduje się lampa elektronowa, która emituje strumień elektronów. Te elektrony są przyciągane do ekranu, na którym pokrycie fosforowe emitują światło w momencie, gdy są bombardowane przez te cząstki. Odchylanie elektronów odbywa się za pomocą pól elektromagnetycznych generowanych przez cewki odchylające, które zmieniają trajektorię elektronów, kierując je na odpowiednie miejsce na ekranie. Ta technologia była powszechnie stosowana w monitorach komputerowych i telewizorach przez wiele lat, zanim została w dużej mierze zastąpiona przez nowocześniejsze technologie, takie jak LCD i OLED. Monitor CRT ilustruje zasadę działania elektromagnetyzmu, co jest kluczowe w naukach fizycznych oraz inżynieryjnych, a jego konstruowanie wymagało znajomości zjawisk fizycznych oraz umiejętności projektowania układów elektronicznych.

Pytanie 30

Podstawowe działania serwisowe realizowane w ramach konserwacji systemu monitoringu wizyjnego nie dotyczą

A. weryfikacji zasilania kamer
B. diagnostyki uszkodzeń
C. definiowania pola widzenia kamer
D. zamiany kamery na nowocześniejszy model
Wybór odpowiedzi dotyczącej wymiany kamery na nowszy model jako niezaliczonej do podstawowych prac serwisowych w ramach konserwacji systemu telewizji dozorowej jest poprawny. Konserwacja służy utrzymaniu istniejącego systemu w dobrym stanie technicznym i nie obejmuje modernizacji sprzętu. Wymiana kamery na nowszy model to proces, który zazwyczaj wymaga szerszego planowania, budżetowania oraz może wiązać się z różnymi aspektami, takimi jak zgodność z istniejącą infrastrukturą, integracja z systemami zarządzania oraz szkolenie personelu. W ramach bieżącej konserwacji kluczowe są działania takie jak sprawdzenie zasilania, czy ustawienie pola widzenia, które mają na celu zapewnienie prawidłowego funkcjonowania sprzętu bez wprowadzania nowych elementów. Przykładowo, rutynowe przeglądy zasilania kamer są niezbędne, aby uniknąć przestojów w pracy systemu, co jest zgodne z najlepszymi praktykami w dziedzinie monitoringu wizyjnego.

Pytanie 31

W tabeli wymieniono dane techniczne

Przetwornik2 Mpx high-performance CMOS
Rozdzielczość1920 × 1080 (2 Mpx)
Czułość0 lux z IR
Obiektyw2,8 mm
Kąt widzenia103°
FunkcjeAGC, BLC, DWDR
Zasilanie12 V DC
ZastosowanieZewnętrzne, IP66

A. odbiornika telewizyjnego.
B. dekodera DVB-T.
C. czujki PIR.
D. kamery CCTV.
Kamery CCTV są urządzeniami przeznaczonymi do monitorowania i rejestrowania obrazu w różnych warunkach oświetleniowych. W danych technicznych, które wskazują na przetwornik, rozdzielczość, czułość oraz obiektyw, można zauważyć, że są to kluczowe parametry dla jakości obrazu. Na przykład, wysoka rozdzielczość jest niezbędna do uzyskania wyraźnych nagrań, które są istotne w kontekście identyfikacji osób i zdarzeń. Czułość kamery, zwłaszcza w warunkach słabego oświetlenia, pozwala na skuteczne monitorowanie w nocy. Funkcje takie jak AGC (Automatic Gain Control) oraz BLC (Back Light Compensation) poprawiają jakość obrazu w trudnych warunkach oświetleniowych, co jest kluczowe dla skutecznego nadzoru. Zasilanie 12 V DC oraz oznaczenie IP66 świadczą o tym, że kamera jest przeznaczona do stosowania na zewnątrz i jest odporna na warunki atmosferyczne, co jest standardem w branży monitoringu wizyjnego. Użycie tego typu kamer jest powszechne w systemach zabezpieczeń budynków, parków i innych obiektów publicznych.

Pytanie 32

Co oznacza opis na przewodzie YTDY 6×0,5?

A. sześciożyłowy z żyłą miedzianą typu linka, o przekroju żyły 0,5 mm2
B. sześciożyłowy z żyłą miedzianą typu drut, o przekroju żyły 0,5 mm2
C. sześciożyłowy z żyłą aluminiową typu drut, o przekroju żyły 0,5 mm2
D. sześciożyłowy z żyłą aluminiową typu linka, o przekroju żyły 0,5 mm2
Odpowiedź wskazująca na przewód sześciożyłowy z żyłą miedzianą typu drut o przekroju żyły 0,5 mm2 jest poprawna, ponieważ oznaczenie YTDY odnosi się do specyfikacji przewodów elektrycznych, w których 'Y' oznacza przewód miedziany, 'T' oznacza, że przewód ma zastosowanie do instalacji w trudnych warunkach, a 'D' i 'Y' oznaczają odpowiednio, że przewód jest wielożyłowy i ma izolację z PVC. Przewody z żyłą miedzianą są powszechnie używane w instalacjach elektrycznych ze względu na dobre przewodnictwo elektryczne oraz odporność na utlenianie. Przykładem zastosowania tego typu przewodu może być okablowanie oświetleniowe w budynkach mieszkalnych, gdzie przewody o małym przekroju są wystarczające do zasilania energooszczędnych źródeł światła. W przypadku instalacji, które nie wymagają znacznych obciążeń, przewody o przekroju 0,5 mm2 są odpowiednie, a ich elastyczność sprawia, że można je łatwo układać w różnych konfiguracjach. Zgodnie z normą PN-EN 60228, przewody tego typu powinny być stosowane zgodnie z określonymi zasadami, co zapewnia bezpieczeństwo użytkowania.

Pytanie 33

Jakie elementy urządzeń elektronicznych opisuje termin LCD?

A. Czujników zbliżeniowych
B. Barier podczerwieni
C. Sygnalizatorów akustycznych
D. Wyświetlaczy ciekłokrystalicznych
Czujniki zbliżeniowe, sygnalizatory akustyczne oraz bariery podczerwieni to technologie, które działają na zupełnie innych zasadach niż wyświetlacze ciekłokrystaliczne. Czujniki zbliżeniowe wykorzystywane są w systemach automatyki i bezpieczeństwa, aby wykrywać obecność obiektów w ich pobliżu, zazwyczaj poprzez emitowanie fal elektromagnetycznych lub ultradźwięków. Natomiast sygnalizatory akustyczne generują dźwięk jako formę komunikacji lub alarmowania, co również jest zupełnie odmiennym zastosowaniem technologii. Bariera podczerwieni służy do wykrywania ruchu lub obecności obiektów, polegając na przerwie w wiązce podczerwonej. Te błędne odpowiedzi mogą wynikać z nieporozumienia dotyczącego roli i funkcji wyświetlaczy LCD. Kluczowym błędem myślowym jest mylenie wyświetlania informacji z detekcją obiektów lub generowaniem dźwięku, co prowadzi do nieprawidłowej interpretacji pytania. Rozumienie różnorodności technologii dostępnych w elektronice jest niezbędne, aby poprawnie identyfikować ich zastosowania i funkcje. Aby skutecznie odnaleźć się w tej dziedzinie, warto zaznajomić się z podstawowymi zasadami działania różnych podzespołów oraz ich zastosowaniem w praktyce.

Pytanie 34

Układ DMA stosowany w mikrokomputerach pozwala na

A. używanie pamięci RAM bez pośrednictwa CPU
B. wstrzymywanie CPU w każdym momencie
C. realizowanie podwójnych poleceń
D. podwójne zwiększenie częstotliwości zegara systemu
Pierwsza odpowiedź dotyczy podwajania częstotliwości zegara systemowego, co jest koncepcją błędną, ponieważ DMA nie ma żadnego wpływu na częstotliwość pracy procesora. Częstotliwość zegara jest determinowana przez parametry sprzętowe oraz ustawienia systemowe, a nie przez technologię dostępu do pamięci. Zatrzymywanie CPU w dowolnym momencie, jak sugeruje kolejna odpowiedź, jest również nieprawidłowe. DMA działa równolegle do CPU, ale nie przerywa jego pracy; zamiast tego efektywnie zarządza dostępem do pamięci w sposób, który nie wymaga zatrzymywania procesora. Ponadto, wykonanie podwójnych rozkazów jest terminologią, która nie odnosi się do funkcji DMA. DMA nie jest zaprojektowane do realizowania rozkazów, lecz do transferowania danych między urządzeniami bez angażowania CPU. Typowym błędem myślowym jest mylenie funkcji DMA z operacjami, które są stricte związane z architekturą procesora. Pojęcie DMA dotyczy uproszczenia i optymalizacji procesów I/O, a nie wpływania na samą architekturę CPU czy jego taktowanie. W związku z powyższym, rozumienie specyfiki funkcji DMA jest kluczowe dla właściwego podejścia do projektowania systemów komputerowych i ich wydajności. Znajomość tego mechanizmu pomaga uniknąć powszechnych nieporozumień dotyczących interakcji między CPU a pamięcią.

Pytanie 35

Przyczyną chwilowego znikania obrazu (zamrożenia) podczas odbioru sygnału z satelity mogą być

A. nieprawidłowości w synchronizacji
B. warunki atmosferyczne
C. awarie układu synchronizacji
D. uszkodzenia systemu odchylania
Analizując inne odpowiedzi, warto zauważyć, że uszkodzenia układu odchylania mogą prowadzić do problemów z obrazem, ale nie są one bezpośrednią przyczyną zamrożenia obrazu z powodu warunków atmosferycznych. Układ odchylania odpowiada za precyzyjne ustawienie toru sygnału w odbiorniku, a jego uszkodzenia mogą skutkować zniekształceniem obrazu lub całkowitym brakiem sygnału, ale niekoniecznie powodują chwilowe zamrożenie spowodowane czynnikami zewnętrznymi. W przypadku nieprawidłowości w dostrojeniu, problemy te mogą występować, gdy antena nie jest prawidłowo ustawiona na satelitę, co z kolei prowadzi do ciągłych zakłóceń, a nie krótkoterminowych zamrożeń. To zjawisko można łatwo zaobserwować podczas prób dostrojenia odbiornika do nowego satelity, gdzie wymagana jest precyzyjna regulacja. Uszkodzenia układu synchronizacji mogą wpływać na stabilność sygnału, jednak ich wpływ na czasowe zjawiska zamrożenia obrazu jest ograniczony i często widać je w długoterminowych problemach z jakością odbioru. W rzeczywistości, błędne przekonania dotyczące tych zagadnień mogą prowadzić do niewłaściwych diagnoz i prób napraw, które nie przyniosą oczekiwanych rezultatów. Dlatego kluczowe jest zrozumienie, że warunki atmosferyczne są głównym winowajcą w przypadku chwilowych zakłóceń odbioru sygnału satelitarnego, co jest istotnym elementem w obsłudze technologii satelitarnych.

Pytanie 36

Pasywny komponent wykorzystywany w telekomunikacyjnych oraz komputerowych sieciach, który na zewnątrz posiada gniazda, a wewnątrz styki do zamocowania kabla, określany jest jako

A. skrótką
B. złączką
C. panelem krosowniczym
D. kanałem kablowym
Panel krosowniczy to kluczowy element infrastruktury sieciowej, który umożliwia organizację i zarządzanie połączeniami kablowymi w sieciach telekomunikacyjnych oraz komputerowych. Zewnętrzne gniazda pozwalają na łatwe podłączanie kabli, natomiast wewnętrzne styki umożliwiają ich uporządkowanie i terminację. Dzięki takiej konstrukcji, inżynierowie sieciowi mogą szybko i efektywnie zmieniać konfigurację połączeń, co jest niezwykle ważne w dynamicznych środowiskach, takich jak centra danych czy biura. Przykładem zastosowania paneli krosowniczych jest możliwość łatwej reorganizacji sieci przy zmianach w infrastrukturze biurowej, co pozwala na elastyczność w zarządzaniu zasobami. Zgodnie z najlepszymi praktykami branżowymi, stosowanie paneli krosowniczych znacznie ułatwia diagnostykę i utrzymanie sieci, umożliwiając łatwe identyfikowanie problemów związanych z połączeniami kablowymi. Ponadto, panele krosownicze są zgodne z różnorodnymi standardami, takimi jak TIA/EIA, co zapewnia ich szeroką kompatybilność z innymi elementami infrastruktury sieciowej.

Pytanie 37

Jaki standard kompresji audio jest stosowany w Polsce w dekoderach telewizji cyfrowej naziemnej DVB-T?

A. MPEG-4
B. MPEG-2
C. MPEG-1
D. MPEG-3
Wybór złych standardów kompresji audio i wideo pewnie może wynikać z tego, że nie wszyscy wiedzą, jak technologia się rozwinęła i jak zmieniały się standardy w branży. MPEG-1 był jednym z pierwszych standardów, robiony głównie do kompresji wideo na nośniki CD, więc jest mało efektowny w dzisiejszych realiach telewizyjnych. Jego jakość i efektywność kompresji po prostu nie są wystarczające dla współczesnego nadawania, jak DVB-T. Z kolei MPEG-2, który był dość popularny w telewizji cyfrowej, dawał znacznie lepszą jakość obrazu niż MPEG-1, ale wciąż nie spełniał wymagań dotyczących transmisji w HD. W miarę jak technologia się rozwijała, pojawił się MPEG-4, który wykorzystywał bardziej zaawansowane algorytmy do kompresji, co umożliwiło lepsze przesyłanie danych. MPEG-3, który wielu myli z innymi standardami, nie stał się powszechnie uznawanym standardem do kompresji wideo, a raczej kojarzy się z muzyką, więc nie nadaje się do telewizji. Wiedza na temat tych różnic jest ważna, żeby zrozumieć, czemu MPEG-4 jest obecnie standardem w cyfrowej telewizji naziemnej.

Pytanie 38

Aby prawidłowo uziemić system antenowy, nie powinno się używać

A. ciągłych rur z instalacji wodociągowej
B. przewodu zerowego z sieci zasilającej
C. ciągłych rur z instalacji grzewczej
D. gołych przewodów miedzianych
Wykorzystanie przewodów miedzianych gołych, ciągłych rur instalacji grzewczej czy ciągłych rur instalacji wodociągowej do uziemienia systemu antenowego może wydawać się rozsądne, jednak w praktyce niesie ze sobą wiele ryzyk i niebezpieczeństw. Przewody miedziane gołe, choć mają doskonałą przewodność, nie są odpowiednie do uziemienia ze względu na ich narażenie na korozję oraz możliwość wystąpienia przerwy w ciągłości przewodzenia prądu. Korozja może znacząco zmniejszyć efektywność uziemienia, co w konsekwencji prowadzi do niewystarczającej ochrony przed przepięciami. Z kolei ciągłe rury instalacji grzewczej oraz wodociągowej mogą być podłączone do systemów zasilających, które nie są właściwie uziemione lub mogą być pod napięciem, co stwarza ryzyko porażenia prądem. W normach instalacyjnych, takich jak PN-EN 61140, klarownie wskazuje się, że uziemienie powinno być realizowane przy użyciu dedykowanych systemów uziemiających, które są projektowane z myślą o zapewnieniu maksymalnego bezpieczeństwa i efektywności. Typowym błędem myślowym jest założenie, że jakiekolwiek przewodniki metalowe mogą być stosowane do uziemienia – takie podejście pomija kluczowe zasady bezpieczeństwa i może prowadzić do tragicznych konsekwencji.

Pytanie 39

Podczas wymiany uszkodzonych części elektronicznych w systemie automatyki przemysłowej, technik korzysta z narzędzi z uchwytami pokrytymi izolacją, aby zabezpieczyć się przed

A. uszkodzeniami mechanicznymi
B. niską wilgotnością
C. wysoką temperaturą
D. porażeniem prądem elektrycznym
Izolacja uchwytów narzędzi stosowanych w instalacjach automatyki przemysłowej jest kluczowym środkiem ochrony przed porażeniem prądem elektrycznym. Prąd elektryczny, w przypadku kontaktu z nagimi metalowymi częściami narzędzi, może prowadzić do poważnych obrażeń, a nawet śmierci. Dlatego odpowiednie zastosowanie narzędzi z izolowanymi uchwytami jest niezbędne, aby zminimalizować ryzyko takich zdarzeń. W takich środowiskach, jak przemysł, gdzie występują wysokie napięcia, izolacja jest nie tylko zalecana, ale wręcz wymagana przez normy bezpieczeństwa, takie jak IEC 60900, która określa wymagania dotyczące narzędzi izolowanych do pracy pod napięciem. Przykładem zastosowania mogą być wkrętaki, szczypce czy klucze, które są używane w instalacjach elektrycznych. Używając narzędzi z izolacją, instalatorzy mogą bezpiecznie pracować w obszarach potencjalnego ryzyka, co przyczynia się do poprawy bezpieczeństwa w miejscu pracy oraz zwiększa efektywność wykonywanych zadań.

Pytanie 40

Każdą funkcję logiczną da się zrealizować jedynie przy wykorzystaniu bramek

A. NAND
B. NOT
C. EX-OR
D. OR
Odpowiedź 'NAND' jest poprawna, ponieważ bramka NAND jest uniwersalną bramką logiczną, co oznacza, że może być użyta do realizacji każdej dowolnej funkcji logicznej. W praktyce, za pomocą kombinacji bramek NAND możemy skonstruować wszystkie inne podstawowe bramki, takie jak AND, OR, oraz NOT. Użycie bramki NAND do budowy logiki cyfrowej jest standardem w branży, ponieważ pozwala na uproszczenie procesu projektowania układów logicznych. Na przykład, w projektach układów scalonych, bramki NAND często dominują ze względu na ich prostą strukturę oraz mniejsze wymagania dotyczące zasilania w porównaniu do innych bramek. W zastosowaniach takich jak mikroprocesory czy układy FPGA, bramki NAND są często wykorzystywane do optymalizacji wydajności oraz redukcji kosztów produkcji. Warto zauważyć, że teoria bramek uniwersalnych jest kluczowym elementem w nauczaniu o logice cyfrowej oraz projektowaniu systemów cyfrowych, co czyni tę wiedzę niezbędną dla inżynierów i techników w tej dziedzinie.