Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 20 maja 2025 23:06
  • Data zakończenia: 20 maja 2025 23:25

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Podczas serwisowania pompy cyrkulacyjnej w systemie solarnym zauważono, że urządzenie nie funkcjonuje z powodu uszkodzenia kondensatora. Co należy wykonać jako pierwsze przed jego wymianą?

A. zamknąć zawór przyłączeniowy wody do systemu
B. usunąć glikol z instalacji
C. odkręcić złączki, aby wyciągnąć pompę z systemu
D. odłączyć zasilanie elektryczne pompy
Zamknięcie zaworu doprowadzającego wodę do układu, zlanie glikolu z układu oraz odkręcenie śrubunków w celu demontażu pompy mogą wydawać się logicznymi krokami w procesie konserwacji, jednak nie biorą pod uwagę kluczowych zasad bezpieczeństwa związanych z pracą z urządzeniami elektrycznymi. Zamykanie zaworów w autonomicznych układach, takich jak systemy solarne, może pomóc w prewencji wycieków, ale nie eliminuje ryzyka porażenia prądem, które jest najważniejsze w kontekście pracy nad nienaładowanymi komponentami elektrycznymi. Praktyka zlania glikolu, chociaż może być częścią konserwacji, nie jest pierwszym krokiem, który powinien być podjęty, ponieważ nie zabezpiecza użytkownika przed potencjalnym zagrożeniem. Demontaż pompy bez wcześniejszego wyłączenia zasilania jest skrajnie niebezpieczny, ponieważ w przypadku przypadkowego uruchomienia silnika może dojść do poważnych obrażeń. Typowe błędy myślowe związane z takimi podjęciami mają swoje źródło w niedocenianiu ryzyka związanego z prądem elektrycznym i pomijaniu procedur związanych z bezpieczeństwem pracy. Każdy profesjonalista powinien kierować się zasadą, że najpierw należy zapewnić bezpieczeństwo, a dopiero później przystąpić do działań konserwacyjnych, co jest fundamentem dobrych praktyk w branży instalacyjnej.

Pytanie 2

Energia petrotermiczna jest gromadzona w

A. parze
B. wodzie gruntowej
C. warstwie wodonośnej
D. suchych porowatych skałach
Odpowiedź 'suchych porowatych skałach' jest prawidłowa, ponieważ zasoby energii petrotermicznej są związane z geotermalnymi systemami, w których ciepło zgromadzone w suchych porowatych skałach może być wykorzystane do produkcji energii. Te skały, często nazywane skałami zbiornikowymi, charakteryzują się zdolnością do gromadzenia wody i pary, co czyni je idealnym medium do transportu ciepła. Przykłady zastosowania obejmują instalacje geotermalne, gdzie ciepło z tych skał jest wykorzystywane do ogrzewania budynków lub generowania energii elektrycznej. W praktyce, dobrze zaprojektowane systemy geotermalne mogą znacząco przyczynić się do zrównoważonego rozwoju energetycznego, redukując emisję CO2 i minimalizując zależność od paliw kopalnych. Istotne jest, aby inżynierowie i specjaliści zajmujący się energią odnawialną przestrzegali standardów takich jak ISO 14001, które dotyczą zarządzania środowiskowego oraz efektywności energetycznej w kontekście takich projektów.

Pytanie 3

Nie należy stosować technologii PEX-Al-PEX w słonecznych instalacjach grzewczych, ponieważ

A. rury nie wytrzymują wysokich temperatur
B. polietylenowe części rur mają słabe przewodnictwo cieplne
C. brakuje odpowiednich złączek do połączenia rur z kolektorem
D. aluminium w rurach prowadzi do degradacji glikolu
Wygląda na to, że odpowiedź nie uwzględnia ważnych aspektów technicznych rur PEX-Al-PEX. Nie jest prawdą, że aluminium w tych rurach wpływa negatywnie na glikol, bo glikol ma za zadanie zapobiegać zamarzaniu i nie rozkłada się w obecności aluminium w normalnych warunkach. Stwierdzenie, że polietylenowe warstwy mają zły przewodnictwo ciepła, to nie do końca sedno sprawy, bo głównym problemem jest ich niska odporność na wysokie temperatury. Polietylen sprawdza się w wielu systemach grzewczych, ale nie w instalacjach słonecznych. Jak mówisz o braku odpowiednich złączek do rur, to też jest trochę nie tak, bo na rynku jest sporo adapterów, które sprawiają, że można te rury połączyć z innymi elementami. Ważne, żebyśmy rozumieli, że odpowiednie złącza nie naprawią kiepskich właściwości materiałowych, które mogą prowadzić do awarii. Wybierając materiały do instalacji, dobrze jest zwrócić uwagę na ich właściwości i normy, które zapewniają bezpieczeństwo i skuteczność systemu, zwłaszcza w kontekście energii solarnej.

Pytanie 4

Kosztorys, który nie zawiera danych o cenach, nazywamy kosztorysem:

A. wstępnym
B. powykonawczym
C. ślepym
D. ofertowym
Kosztorys ślepy jest specyficznym rodzajem dokumentu, który nie zawiera informacji o cenach jednostkowych, lecz koncentruje się na ilościach materiałów oraz robocizny niezbędnych do realizacji danego projektu. Tego rodzaju kosztorys jest stosowany w sytuacjach, gdy organizacja chce oszacować zapotrzebowanie na zasoby, nie ujawniając przy tym informacji o kosztach. Jest to praktyka, która znajduje zastosowanie w różnych etapach planowania projektu, szczególnie w fazie wstępnej, gdzie istotna jest ocena zasobów bez obciążania decyzji o konkretne ceny. Wiele przedsiębiorstw budowlanych i inżynieryjnych korzysta z kosztorysów ślepych, aby lepiej planować przyszłe prace oraz negocjować warunki współpracy z dostawcami. W branży budowlanej, w której zmienna dynamika cen materiałów i robocizny może wpływać na ostateczny koszt projektu, posiadanie takiego kosztorysu pozwala na elastyczność w podejmowaniu decyzji i zarządzaniu budżetem.

Pytanie 5

Który z poniższych rodzajów zbiorników nie powinien być używany do przechowywania biogazu?

A. Membranowego dachowego
B. Suchego tłokowego niskociśnieniowego
C. Suchego stalowego wysokociśnieniowego
D. Sferycznego membranowego
Odpowiedź 'Suchego stalowego wysokociśnieniowego' jest poprawna, gdyż zbiorniki te nie są odpowiednie do magazynowania biogazu, który jest mieszaniną gazów o zróżnicowanej kompozycji, w tym metanu i dwutlenku węgla. Biogaz jest zwykle przechowywany w warunkach niskiego ciśnienia, co zapewnia bezpieczeństwo oraz minimalizuje ryzyko eksplozji. Zbiorniki membranowe dachowe i sferyczne membranowe są projektowane z myślą o takich wymaganiach, gdyż potrafią dostosować swoją objętość do zmieniającej się ilości gazu oraz regulować ciśnienie wewnętrzne, umożliwiając efektywne zarządzanie biogazem. Na przykład, w systemach biogazowych wykorzystywanych w rolnictwie, stosowanie zbiorników niskociśnieniowych pozwala na efektywne przechowywanie oraz późniejsze wykorzystanie biogazu jako źródła energii, co jest zgodne ze standardami dotyczącymi zrównoważonego rozwoju. Wybór odpowiedniego zbiornika w kontekście bezpieczeństwa i efektywności energetycznej jest kluczowy dla skutecznego funkcjonowania systemów wykorzystujących biogaz.

Pytanie 6

Przez realizację odwiertów weryfikuje się hydrotermalne zasoby energii, dotyczące

A. wody, pary lub mieszaniny parowo-wodnej
B. gorących suchych skał
C. suchych, ogrzanych i porowatych skał
D. atmosfery
Odpowiedź dotycząca wody, pary lub mieszaniny parowo-wodnej jest poprawna, ponieważ hydrotermiczne zasoby energii odnosi się bezpośrednio do energii geotermalnej, która znajduje się w płynach geotermalnych. Woda i para wodna są kluczowymi nośnikami energii w systemach geotermalnych, które są wykorzystywane do produkcji energii elektrycznej oraz do zastosowań grzewczych. Przykładem praktycznego zastosowania jest użycie geotermalnych źródeł energii w elektrowniach geotermalnych, gdzie woda pod wysokim ciśnieniem jest wydobywana z głębokich odwiertów, a następnie używana do napędzania turbin. W wielu krajach, takich jak Islandia czy Nowa Zelandia, dobrze rozwinięte systemy geotermalne przyczyniają się do znacznej części produkcji energii. Stosowanie odwiertów geotermalnych w celu potwierdzenia zasobów wód gruntowych jest zgodne z najlepszymi praktykami w branży, a także z normami środowiskowymi, które dbają o zrównoważony rozwój i efektywność energetyczną."

Pytanie 7

Do pomiaru mocy wyjściowej baterii słonecznej, o parametrach podanych w przedstawionej tabeli, należy zastosować

Parametry baterii słonecznej
Moc maksymalna, P max1951 V
Napięcie maksymalne (jałowe), Uoc45,5 V
Napięcie w punkcie mocy maksymalnej, Um36,9 V
Prąd zwarcia, Isc5,63 A
Prąd w punkcie mocy maksymalnej, Im5,37 A

A. miernik natężenia oświetlenia.
B. mostek Graetza.
C. miernik mocy promieniowania słonecznego.
D. amperomierz i woltomierz.
Odpowiedź "amperomierz i woltomierz" jest poprawna, ponieważ do pomiaru mocy wyjściowej baterii słonecznej kluczowe jest zmierzenie zarówno prądu, jak i napięcia w punkcie pracy systemu. Moc elektryczna jest definiowana jako iloczyn prądu (I) i napięcia (V), zgodnie ze wzorem P = I * V. Amperomierz, stosowany do pomiaru natężenia prądu, dostarcza informacji na temat ilości elektronów przepływających przez obwód, co jest kluczowe w kontekście wydajności baterii słonecznych. Z kolei woltomierz mierzy napięcie, które jest istotne dla określenia potencjału elektrycznego w obwodzie. Poprawne korzystanie z tych narzędzi pozwala nie tylko na określenie mocy wyjściowej, ale również na optymalizację pracy systemu fotowoltaicznego, co jest zgodne z najlepszymi praktykami w branży energetycznej. Użycie amperomierza i woltomierza umożliwia także monitorowanie parametrów pracy baterii w czasie rzeczywistym, co jest istotne dla zapewnienia ich długotrwałej efektywności.

Pytanie 8

Jakiego elementu należy użyć, aby połączyć dwie stalowe rury o tej samej średnicy z gwintem zewnętrznym?

A. odpowietrznika
B. mufy
C. redukcji
D. nypla
Mufa jest kluczowym elementem stosowanym do łączenia stalowych rur o tej samej średnicy z gwintem zewnętrznym. Działa jako połączenie, które zapewnia ścisłość i bezpieczeństwo w systemach rurnych. Mufy są dostępne w różnych materiałach, ale stalowe mufy są powszechnie stosowane w instalacjach przemysłowych i budowlanych, gdzie wymagana jest wysoka odporność na ciśnienie i korozję. W praktyce, podczas instalacji, dwa końce rur z gwintem zewnętrznym są wkręcane w mufe, co tworzy solidne połączenie. Warto zauważyć, że użycie mufy jest zgodne z normami, takimi jak PN-EN 10241, które określają wymagania dotyczące materiałów i metod połączeń w instalacjach rurowych. Odpowiednie dobieranie mufy do średnicy rur oraz ich gwintu jest kluczowe dla zapewnienia długotrwałej i szczelnej instalacji, co jest istotne w kontekście bezpieczeństwa i efektywności systemów transportujących różne media.

Pytanie 9

Klient, który pragnie jednocześnie uzyskiwać energię elektryczną oraz ciepło z odnawialnych źródeł, powinien rozważyć użycie

A. kotła dwufunkcyjnego
B. kolektora słonecznego hybrydowego
C. pompy ciepła multi-split
D. kolektora rurowego próżniowego
Kolektor słoneczny hybrydowy to urządzenie, które łączy funkcje produkcji energii elektrycznej oraz ciepła w jeden system. Dzięki zastosowaniu nowoczesnych technologii, takich jak ogniwa fotowoltaiczne i kolektory cieplne, możliwe jest jednoczesne pozyskiwanie obu form energii z promieniowania słonecznego. W praktyce oznacza to, że użytkownik może zaspokoić zarówno potrzeby grzewcze, jak i elektryczne budynku, co przekłada się na zwiększenie efektywności energetycznej. Przykładem zastosowania mogą być domy jednorodzinne, które chcą być mniej zależne od tradycyjnych źródeł energii oraz obniżyć koszty eksploatacji. Dodatkowo, integracja systemu hybrydowego z istniejącymi instalacjami OZE, jak pompy ciepła czy systemy zarządzania energią, pozwala na jeszcze lepszą optymalizację zużycia energii. Zgodnie z aktualnymi standardami budownictwa energooszczędnego, takie rozwiązania są rekomendowane jako część strategii zrównoważonego rozwoju i dążenia do neutralności węglowej.

Pytanie 10

Na placu budowy nie można przenosić kolektorów słonecznych

A. w układzie pionowym
B. łapiąc za obudowę kolektora
C. w układzie poziomym
D. za króćce przyłączeniowe
Odpowiedź "za króćce przyłączeniowe" jest poprawna, ponieważ zapewnia najbezpieczniejszy sposób transportu kolektorów słonecznych, minimalizując ryzyko ich uszkodzenia. Króćce przyłączeniowe to miejsca, w których kolektory są podłączane do systemu hydraulicznego, a ich chwytanie w trakcie przenoszenia pozwala na utrzymanie stabilności oraz uniknięcie nadmiernego obciążenia na delikatne elementy strukturalne. W praktyce, stosując tę metodę, operatorzy mogą uniknąć uszkodzenia paneli słonecznych, które mogą być wrażliwe na nacisk i uderzenia. Dobrą praktyką jest także korzystanie z odpowiednich sprzętów transportowych, takich jak wózki o regulowanej wysokości, które umożliwiają przenoszenie kolektorów w kontrolowanych warunkach. Warto również pamiętać, że podczas przenoszenia kolektorów nie powinno się ich obracać ani przechylać, co mogłoby prowadzić do uszkodzenia wewnętrznych komponentów. Rekomendacje te są zgodne z normami branżowymi, które stawiają na bezpieczeństwo i skuteczność w pracy z urządzeniami solarnymi.

Pytanie 11

Przetwornica napięcia to urządzenie stosowane w systemach fotowoltaicznych do

A. ochrony akumulatora przed przeładowaniem
B. przemiany napięcia stałego w napięcie zmienne
C. przemiany napięcia zmiennego w napięcie stałe
D. zapewnienia stabilnego napięcia w akumulatorze
Przetwornica napięcia odgrywa kluczową rolę w instalacjach fotowoltaicznych, gdzie napięcie stałe (DC) generowane przez panele słoneczne musi być przekształcone na napięcie zmienne (AC), aby mogło być efektywnie wykorzystywane w domowych systemach elektrycznych i integrowane z siecią energetyczną. Ta konwersja jest niezbędna, ponieważ większość urządzeń domowych, takich jak lodówki, telewizory czy oświetlenie, działa na napięciu zmiennym. Przykłady zastosowania przetwornic obejmują systemy off-grid, gdzie energia słoneczna jest przechowywana w akumulatorach i wykorzystywana w sposób ciągły. Zgodnie z najlepszymi praktykami, przetwornice powinny być odpowiednio dobrane do mocy generowanej przez panele oraz wymaganej mocy obciążenia, aby zapewnić efektywność energetyczną i długowieczność systemu. Standardy międzynarodowe, takie jak IEC 62109, regulują bezpieczeństwo i wydajność przetwornic, co jest istotne dla zapewnienia niezawodności systemów OZE.

Pytanie 12

Materiał o najwyższym współczynniku absorpcji spośród wymienionych to

A. czarny chrom
B. blacha aluminiowa
C. blacha miedziana
D. czarna farba
Czarny chrom to naprawdę ciekawy materiał, bo ma super wysoką zdolność do pochłaniania światła. Dlatego świetnie sprawdza się wszędzie tam, gdzie potrzebujemy zminimalizować odbicie. Jak pomyślisz o optyce, to czarny chrom często trafia do filtrów optycznych czy różnych części aparatów fotograficznych. W porównaniu do czarnej farby, która też jest dobra, czarny chrom radzi sobie znacznie lepiej, jeśli chodzi o efektywność absorpcji. To dlatego w przemyśle często sięga się po czarny chrom, zwłaszcza w projektach, które wymagają precyzyjnego działania. W instrumentach naukowych i technologicznych jego jakość i działanie są naprawdę kluczowe.

Pytanie 13

Po jakim czasie użytkowania zasobnika ciepła powinno się wymienić anodę magnezową?

A. Po 6 miesiącach
B. Po 2 miesiącach
C. Po 18 miesiącach
D. Po 36 miesiącach
Odpowiedź "Po 18 miesiącach" jest poprawna, ponieważ anoda magnezowa w zasobnikach ciepła pełni kluczową rolę w ochronie przed korozją. W ciągu eksploatacji, ze względu na procesy elektrochemiczne, anoda ulega stopniowemu zużyciu. Zgodnie z zaleceniami producentów oraz normami branżowymi, zaleca się wymianę anody co 18 miesięcy, aby zapewnić optymalną ochronę zbiornika i przedłużyć jego żywotność. Na przykład, jeśli anoda nie jest wymieniana w odpowiednim czasie, może to doprowadzić do zwiększonej korozji zasobnika, co w dłuższym czasie skutkuje koniecznością wymiany całego urządzenia. Regularna kontrola stanu anody jest istotnym elementem konserwacji, a jej wymiana powinna być przeprowadzana przez wykwalifikowany personel, który zgodnie z procedurami zapewni prawidłowe działanie systemu grzewczego. Dobrą praktyką jest również monitorowanie stanu wody w zasobniku, co może wpływać na tempo zużycia anody oraz efektywność całego systemu grzewczego.

Pytanie 14

Zestaw paneli fotowoltaicznych składa się z dwóch paneli fotowoltaicznych, regulatora ładowania oraz dwóch akumulatorów 12 V każdy. Aby zasilać tym zestawem urządzenia o napięciu znamionowym 12 V DC, należy podłączyć

A. akumulatory równolegle
B. panele równolegle
C. akumulatory szeregowo
D. panele szeregowo
Poprawna odpowiedź to akumulatory połączone równolegle, co umożliwia uzyskanie niezmiennego napięcia 12 V przy zwiększonej pojemności. Takie połączenie pozwala na zachowanie napięcia każdego z akumulatorów na poziomie 12 V, co jest kluczowe dla urządzeń zasilanych tym napięciem. W praktyce, łącząc akumulatory równolegle, sumujemy ich pojemności, co zwiększa czas pracy zestawu fotowoltaicznego, a jednocześnie nie zmienia napięcia wyjściowego. Na przykład, dwa akumulatory 12 V o pojemności 100 Ah po połączeniu równolegle dadzą 12 V i 200 Ah, co oznacza, że urządzenia mogą być zasilane przez dłuższy czas. Tego rodzaju połączenie jest zgodne z najlepszymi praktykami w dziedzinie energii odnawialnej, zapewniając stabilność zasilania oraz dłuższą żywotność akumulatorów. Równoległe połączenie akumulatorów jest powszechnie stosowane w systemach solarnych, co pozwala na efektywniejsze zarządzanie energią oraz minimalizowanie ryzyka nadmiernego rozładowania jednego z akumulatorów.

Pytanie 15

Grupę pompową w systemie solarnym należy zainstalować na rurze

A. instalacji podłogowej
B. zasilającym
C. powrotnym
D. zbiornika wzbiorczego
Grupa pompową w instalacji solarnej należy montować na przewodzie powrotnym, ponieważ to w tym miejscu następuje transport schłodzonego czynnika grzewczego z powrotem do kolektorów słonecznych. Umiejscowienie pompy na przewodzie powrotnym zapewnia optymalne warunki do pracy, umożliwiając efektywne przekazywanie ciepła z kolektorów do systemu grzewczego. W praktyce, gdy pompa znajduje się na powrocie, może ona efektywnie regulować przepływ czynnika, co sprzyja lepszemu zarządzaniu temperaturą i ciśnieniem w systemie. Dodatkowo zgodnie z zasadami dobrej praktyki instalacji solarnych, umiejscowienie pompy na powrocie minimalizuje ryzyko zjawiska kawitacji, które może wystąpić, jeśli pompa byłaby zainstalowana na przewodzie zasilającym. Warto również zauważyć, że takie położenie sprzyja łatwiejszemu serwisowaniu i konserwacji systemu, co przekłada się na dłuższą żywotność instalacji.

Pytanie 16

Kolor izolacji przewodu łączącego regulator ładowania z dodatnim biegunem akumulatora powinien być

A. czarny
B. brązowy
C. niebieski
D. czerwony
Pojęcia związane z kolorystyką przewodów elektrycznych są kluczowe w zapewnieniu bezpieczeństwa oraz poprawności działania instalacji. W odpowiedziach, które nie wskazują koloru czerwonego, można zauważyć pewne nieporozumienia dotyczące standardów kolorystycznych. Na przykład, czarny kolor często jest mylony z kolorem ujemnym. W rzeczywistości czarny jest powszechnie używany w wielu systemach jako przewód neutralny lub ujemny, co może prowadzić do niebezpiecznych pomyłek w instalacjach elektrycznych. Brązowy przewód jest również stosowany jako przewód fazowy, ale w kontekście połączenia regulatora ładowania z akumulatorem jest to niewłaściwy wybór, ponieważ nie wskazuje na dodatnią polaryzację. Niebieski kolor jest zarezerwowany dla przewodów neutralnych w większości systemów, co dodatkowo podkreśla, że jego użycie w tym kontekście jest nieodpowiednie. W przypadku instalacji elektrycznych zasada dopasowania kolorów jest nie tylko kwestią estetyki, ale przede wszystkim bezpieczeństwa użytkowania, dlatego tak ważne jest stosowanie standardów w praktyce. Stosowanie niewłaściwych kolorów może prowadzić do poważnych konsekwencji, w tym zwarć, pożarów czy uszkodzeń sprzętu, co powinno być dla każdego technika elektryka ważnym ostrzeżeniem.

Pytanie 17

W pompach ciepła z bezpośrednim odparowaniem, jakie zadanie pełni wymiennik gruntowy?

A. zaworu rozprężnego
B. parownika
C. zaworu odcinającego
D. skraplacza
W pompach ciepła z bezpośrednim odparowaniem, wymiennik gruntowy pełni rolę parownika, co oznacza, że absorbuje ciepło z gruntu, które następnie jest wykorzystywane do odparowania czynnika chłodniczego. Proces ten umożliwia efektywne ogrzewanie budynków w zimie oraz chłodzenie latem. W praktyce, wymienniki gruntowe mogą być wykonane w różnych konfiguracjach, takich jak pionowe lub poziome kolektory, w zależności od warunków geologicznych i potrzeb energetycznych obiektu. Zastosowanie technologii gruntowych pozwala na wykorzystanie stabilnej temperatury gruntu, co znacząco zwiększa efektywność energetyczną systemu. Standardy branżowe, takie jak normy EN 14511 dotyczące pomp ciepła, podkreślają znaczenie optymalizacji wymienników ciepła, co wpisuje się w działania mające na celu zwiększenie efektywności energetycznej budynków oraz redukcję emisji CO2. W praktycznych zastosowaniach, właściwie zaprojektowany i zainstalowany wymiennik gruntowy może zapewnić znaczące oszczędności w kosztach ogrzewania i chłodzenia, a także przyczynić się do zrównoważonego rozwoju poprzez wykorzystanie odnawialnych źródeł energii.

Pytanie 18

Jakim symbolem określa się przetwornicę, która zmienia napięcie stałe na zmienne?

A. AC/DC
B. DC/DC
C. AC/AC
D. DC/AC
Odpowiedzi takie jak DC/DC, AC/DC oraz AC/AC są błędne z różnych powodów. DC/DC oznacza konwerter, który przekształca napięcie stałe na inne napięcie stałe, co nie ma zastosowania w kontekście zmiany napięcia na zmienne. Tego typu przetwornice są używane w aplikacjach takich jak regulacja napięcia w systemach zasilania, ale nie są odpowiednie do konwersji DC na AC. AC/DC to termin odnoszący się do urządzeń, które przekształcają napięcie zmienne w napięcie stałe, co jest odwrotnością tego, co jest wymagane w tym przypadku. Typowe zastosowanie takich konwerterów to zasilacze do ładowania akumulatorów z sieci energetycznej, a więc również nie spełniają one zadanego celu. Ostatecznie AC/AC odnosi się do transformatorów, które zmieniają napięcie zmienne na inne napięcie zmienne, ale z zachowaniem tej samej formy sygnału. W zastosowaniach takich jak regulacja napięcia w sieciach energetycznych, AC/AC konwertery są istotne, jednak nie są one odpowiednie w kontekście konwersji napięcia stałego na zmienne. Te błędne odpowiedzi często wynikają z mylnego zrozumienia podstawowych zasad konwersji napięcia oraz niewłaściwego przypisania terminologii do konkretnych procesów, co prowadzi do nieporozumień w zakresie zastosowań technologicznych.

Pytanie 19

Przy realizacji zadań związanych z instalacją systemu rekuperacji, konieczne jest przygotowanie projektu, który obejmuje

A. kanalizację
B. instalację elektryczną
C. instalację ciepłej wody użytkowej
D. wentylację
Odpowiedź "wentylacją" jest poprawna, ponieważ system rekuperacji jest nierozerwalnie związany z procesem wentylacji budynku. Rekuperacja służy do odzyskiwania ciepła z powietrza wywiewanego, co pozwala na ogrzewanie świeżego powietrza nawiewanego. Aby projekt systemu rekuperacji był skuteczny, musi zawierać dokładny projekt wentylacji. W praktyce, projekt wentylacji powinien uwzględniać przepływy powietrza, wielkość kanałów wentylacyjnych oraz lokalizację rekuperatora. Ważnym standardem w tym zakresie jest normatyw EN 13779, który odnosi się do jakości powietrza w budynkach. Dobrze zaprojektowany system wentylacji zapewnia komfort użytkowników oraz efektywność energetyczną budynku, a także przyczynia się do obniżenia kosztów ogrzewania. Zastosowanie nowoczesnych rekuperatorów, które są w stanie odzyskać do 90% ciepła, jest szczególnie zalecane w budynkach energooszczędnych i pasywnych, gdzie wentylacja mechaniczna jest kluczowym elementem.

Pytanie 20

Przed zainstalowaniem systemu solarnego dokonano pomiarów wewnątrz obiektu. Instalacji solarnych nie można realizować w technologii PEX/Al/PEX, ponieważ

A. nie są odporne na wysokie temperatury
B. brak jest odpowiednich złączek do połączenia z kolektorem
C. warstwy polietylenowe mają słabe właściwości przewodzenia ciepła
D. obecne w nich aluminium prowadzi do degradacji glikolu
Wybór nieodpowiednich materiałów do instalacji solarnych może prowadzić do poważnych problemów, co jest widoczne w proponowanych odpowiedziach. Warstwy polietylenu rzeczywiście mają swoje ograniczenia, ale nie jest prawdą, że źle przewodzą ciepło. Polietylen ma dobrą efektywność przewodzenia ciepła, co czyni go użytecznym w wielu aplikacjach. Niezastosowanie odpowiednich łączek nie jest również problemem, ponieważ rynek oferuje wiele rozwiązań dostosowanych do różnych technologii. Problemem przewodności ciepła nie jest brak łączek, lecz ich właściwości materiałowe. Z kolei degradacja glikolu, choć może być istotna w kontekście nieodpowiednich warunków temperaturowych, nie jest główną przyczyną, dla której rury PEX/Al/PEX są niewłaściwe do użycia. Kluczowym elementem jest odporność na wysokie temperatury, której te rury nie spełniają. Właściwy dobór materiałów powinien opierać się na ich właściwościach termicznych oraz zgodności z wymaganiami systemów OZE, co jest podstawą do zapewnienia efektywności i trwałości instalacji. Często błędy w myśleniu wynikają z niepełnego zrozumienia różnych aspektów technologii solarnej oraz specyfiki wykorzystywanych materiałów. Zrozumienie tych niuansów jest kluczowe dla sukcesu wszelkich projektów związanych z odnawialnymi źródłami energii.

Pytanie 21

Parametr, który nie jest uwzględniany w analizie glikolu, to

A. odczyn
B. przewodność elektryczna
C. barwa
D. temperatura zamarzania
Niektóre odpowiedzi mogą wydawać się odpowiednie, jednak każda z nich zawiera istotne nieporozumienia dotyczące właściwości glikolu. Odczyn (pH) jest jednym z kluczowych parametrów, ponieważ wpływa na stabilność chemiczną glikolu i jego interakcje z innymi chemikaliami, co może prowadzić do korozji lub osadów w systemach, w których jest stosowany. W przypadku zastosowań przemysłowych, takich jak chłodzenie silników, ważne jest, aby wartość pH mieściła się w określonym zakresie, aby zminimalizować ryzyko uszkodzeń. Temperatura zamarzania również odgrywa istotną rolę, ponieważ pozwala zrozumieć, w jakich warunkach glikol może zamarzać, co jest kluczowe dla jego funkcji jako środka chłodzącego. W systemach, gdzie glikol jest używany, ważne jest, aby zachować odpowiednie właściwości w różnych temperaturach otoczenia, co z kolei wpływa na efektywność i bezpieczeństwo systemów. Barwa glikolu, pomimo że może wydawać się mniej istotna, może również dostarczyć cennych informacji na temat jego stanu, na przykład wskazując na obecność zanieczyszczeń lub produktów degradacji. Dlatego wszystkie wymienione parametry mają swoje kluczowe znaczenie w kontekście analizy glikolu.

Pytanie 22

Jakie rodzaje kolektorów słonecznych są najbardziej odpowiednie do montażu w orientacji pionowej?

A. Próżniowe o bezpośrednim przepływie przez absorber.
B. Z przykryciem ze szkła antyrefleksyjnego.
C. Płaskie.
D. Z selektywną powłoką absorbera.
Próżniowe kolektory słoneczne o bezpośrednim przepływie przez absorber są najbardziej efektywne w montażu w pozycji pionowej, ze względu na swoją konstrukcję, która minimalizuje straty ciepła. Próżniowe kolektory składają się z dwóch warstw szklanych, tworzących próżnię, co ogranicza przewodnictwo cieplne i konwekcję. Przy pionowym montażu, te urządzenia mogą efektywnie zbierać energię słoneczną nawet przy niskim kącie padania promieni słonecznych, co jest kluczowe w okresach zimowych lub w regionach o ograniczonej ilości słońca. Dzięki bezpośredniemu przepływowi przez absorber, woda lub inny czynnik roboczy szybko nagrzewają się, co zwiększa efektywność systemu. Przykładem zastosowania mogą być budynki, gdzie przestrzeń na dachach jest ograniczona, a pionowy montaż pozwala na maksymalne wykorzystanie dostępnej powierzchni. Dobre praktyki branżowe wskazują, że instalacja takich kolektorów powinna uwzględniać lokalne warunki atmosferyczne oraz kąt nachylenia, aby zoptymalizować ich wydajność.

Pytanie 23

Jaki jest maksymalny współczynnik przenikania ciepła (Uc max) dla zewnętrznych ścian nowych obiektów budowlanych od 01.01.2017 r. przy t1 ≥ 16°C?

A. 0,20 W/m2 · K
B. 0,28 W/m2 · K
C. 0,25 W/m2 · K
D. 0,23 W/m2 · K
Nieprawidłowe odpowiedzi na pytanie dotyczące maksymalnego współczynnika przenikania ciepła dla ścian zewnętrznych nowych budynków często wynikają z nieaktualnych informacji lub niezrozumienia zmieniających się przepisów budowlanych. Warto zauważyć, że współczynniki przenikania ciepła, takie jak 0,20 W/m² · K czy 0,25 W/m² · K, są zbyt niskie lub zbyt wysokie w kontekście obowiązujących norm. W przypadku wartości 0,20 W/m² · K, można myśleć, że jest to wymóg stricte energetyczny, jednak takie wartości mogą dotyczyć starszych regulacji, które nie uwzględniają najnowszych standardów. Z kolei wartość 0,25 W/m² · K jest również mylna, ponieważ wprowadza niepotrzebną mylność co do wymagań technicznych. Odpowiedź 0,28 W/m² · K jest całkowicie niezgodna z aktualnymi normami, gdyż taka wartość wskazuje na znacznie gorsze właściwości izolacyjne, co może prowadzić do znacznego wzrostu kosztów ogrzewania i obniżenia komfortu cieplnego mieszkańców. Zrozumienie aktualnych przepisów jest kluczowe dla projektowania budynków, które są nie tylko energooszczędne, ale także komfortowe w użytkowaniu. Wartości współczynnika U są określane na podstawie obliczeń opartych na materiałach budowlanych, a ich poprawne dobranie pozwala na osiągnięcie efektywności energetycznej budynku, co jest niezbędne w kontekście zrównoważonego rozwoju oraz ochrony środowiska.

Pytanie 24

Jaki materiał posiada najwyższy współczynnik rozszerzalności liniowej?

A. Mosiądz
B. Stal
C. Miedź
D. Polipropylen
Polipropylen to materiał termoplastyczny, który cechuje się najwyższym współczynnikiem rozszerzalności liniowej spośród wymienionych opcji. Współczynnik rozszerzalności liniowej dla polipropylenu wynosi około 100-150 x 10^-6/K, co oznacza, że pod wpływem zmian temperatury, jego długość zmienia się znacznie bardziej niż w przypadku metali, takich jak stal czy miedź. Taka właściwość polipropylenu sprawia, że jest on często wykorzystywany w aplikacjach, gdzie występują znaczące zmiany temperatur. Na przykład, w przemyśle motoryzacyjnym polipropylen jest używany do produkcji elementów wnętrz samochodów, które muszą być odporne na wysokie temperatury oraz zmiany wielkości. W konstrukcjach budowlanych polipropylen jest wykorzystywany w systemach rur, gdzie jego elastyczność i zdolność do rozszerzania się bez pękania są kluczowe. Zgodnie z normami PN-EN, materiały termoplastyczne muszą spełniać określone parametry, aby zapewnić bezpieczeństwo i trwałość w zastosowaniach przemysłowych. Polipropylen jest więc doskonałym przykładem materiału, który łączy w sobie właściwości mechaniczne i termiczne, co czyni go popularnym wyborem w wielu branżach.

Pytanie 25

Współczynnik wydajności pompy ciepła COP określa się jako

A. iloraz mocy grzewczej uzyskanej do mocy elektrycznej pobranej
B. iloczyn uzyskanej mocy grzewczej i mocy elektrycznej pobranej
C. suma mocy elektrycznej oraz grzewczej
D. różnica między pobraną mocą elektryczną a mocą grzewczą
Współczynnik efektywności pompy ciepła, znany jako COP (Coefficient of Performance), jest kluczowym wskaźnikiem efektywności systemów grzewczych i chłodniczych. Definiuje się go jako iloraz uzyskanej mocy grzewczej do pobranej mocy elektrycznej. Taka definicja jest istotna, ponieważ pozwala ocenić, jak efektywnie urządzenie przekształca energię elektryczną w ciepło. Na przykład, jeśli pompa ciepła pobiera 1 kWh energii elektrycznej i wytwarza 4 kWh energii cieplnej, jej COP wynosi 4. Dzięki temu wskaźnikowi można porównywać różne modele pomp ciepła oraz oceniać, które z nich są najbardziej efektywne w danym zastosowaniu. Wysoki współczynnik COP jest korzystny nie tylko z perspektywy finansowej, ale także ekologicznej, gdyż wskazuje na mniejsze zużycie energii i niższe emisje CO2. W odniesieniu do dobrych praktyk branżowych, zaleca się regularne monitorowanie COP, co pozwala na optymalizację pracy systemów oraz ich właściwe serwisowanie.

Pytanie 26

Czym są zrębki?

A. odpady powstałe podczas pielęgnacji drzew
B. wióry z obróbki drewna
C. mieszanina trocin i kleju
D. rozdrobnione pnie i gałęzie drzew
Zrębki to materiał pochodzący z rozdrobnienia pni i gałęzi drzew, co sprawia, że są jednym z istotnych produktów w kontekście zarządzania drewnem. W procesie tym wykorzystuje się rębaki do drewna, które skutecznie rozdrabniają większe fragmenty drzewa na mniejsze kawałki. Zrębki mają szerokie zastosowanie – często używane są jako biomasa do produkcji energii odnawialnej, co przyczynia się do zmniejszenia emisji CO2 w porównaniu do tradycyjnych paliw kopalnych. W ogrodnictwie stanowią doskonały materiał mulczujący, który pomaga w zatrzymywaniu wilgoci w glebie oraz w ograniczeniu wzrostu chwastów. Zrębki są również wykorzystywane do poprawy struktury gleby, co sprzyja wzrostowi roślin. W kontekście branżowym, zrębki mogą być klasyfikowane według ich wielkości i jakości, co wpływa na ich wartość rynkową oraz zastosowania. W Polsce coraz częściej stosuje się zrębki w elektrowniach biomasowych, co pokazuje rosnące zainteresowanie odnawialnymi źródłami energii.

Pytanie 27

Na dokumentacji dotyczącej zapotrzebowania materiałowego do realizacji instalacji znajduje się symbol Cu-DHP 22x1 R220. Co to oznacza w kontekście rur?

A. o średnicy 22 mm i długości 1m, miękka
B. o promieniu 22 mm i grubości 1 mm, twarda
C. o średnicy 22 mm i długości 1m, twarda
D. o średnicy 22 mm i grubości 1mm, miękka
Wybór opcji, która sugeruje, że rura ma średnicę 22 mm i długość 1 m, lub sugeruje, że rura ma promień 22 mm, wskazuje na nieporozumienia w zakresie oznaczeń technicznych. Rury miedziane oznaczone jako Cu-DHP wskazują na materiał oraz jego właściwości, a nie na długość czy promień. Długość rury nie jest określona w symbolu i może być różna w zależności od potrzeb projektu. Przyjmowanie długości 1 m bez dodatkowych informacji jest błędnym wnioskowaniem, ponieważ rury miedziane są dostępne w różnych długościach, co powinno być dostosowane do specyfikacji projektu. Ponadto, błędne jest przyjęcie, że rura ma promień 22 mm, zamiast średnicy, ponieważ promień to połowa średnicy, a w praktyce to średnica jest kluczowym wymiarem, który określa rozmiar rury w instalacjach. Wybór opcji, która podaje grubość rury jako 1 mm, ale w kontekście twardości, ignoruje istotny aspekt dotyczący zastosowania. Miękkie rury miedziane, z uwagi na swoją elastyczność, są preferowane w instalacjach, które wymagają formowania, a twarde rury są trudniejsze do obróbki. Dlatego zrozumienie oznaczeń i selekcja materiałów według ich właściwości i zastosowania jest kluczowe dla prawidłowego montażu i efektywności systemów hydraulicznych.

Pytanie 28

Jakie narzędzia są potrzebne do montażu instalacji w systemie PEX skręcanym?

A. obcinak do rur, gratownik oraz zaciskarka
B. kalibrator do rur z fazownikiem, obcinak do rur oraz zestaw kluczy płaskich
C. obcinak do rur, gratownik i zestaw kluczy płaskich
D. kalibrator do rur z fazownikiem, obcinak do rur oraz zaciskarka
No więc, wybierając kalibrator do rur z fazownikiem, obcinak do rur oraz zestaw kluczy płaskich, robisz naprawdę dobry krok w stronę prawidłowego montażu instalacji w systemie PEX. Kalibrator pomoże Ci super dopasować końcówkę rury PVC do złączek, co jest mega ważne, żeby wszystko było szczelne. Obcinak pozwala na precyzyjne cięcie rur PEX, więc nie musisz się martwić, że coś będzie krzywo, co mogłoby wprowadzić jakieś niepożądane zanieczyszczenia do systemu. A klucze płaskie? Bez nich ani rusz, bo dokręcanie połączeń to podstawa, żeby nic nie przeciekało. Jak dobrze to wszystko zrobisz, to unikniesz wycieków i problemów z instalacją, co w sumie jest najważniejsze dla bezpiecznego i sprawnego działania systemów wodno-kanalizacyjnych. Zresztą, dobrze wykonane połączenia na pewno przyczynią się do dłuższej żywotności całej instalacji, co jest zgodne z tym, co mówi się w branży.

Pytanie 29

Pierwszym zadaniem po zakończeniu montażu instalacji solarnej do ogrzewania jest

A. napełnianie jej czynnikiem
B. jej odpowietrzenie
C. izolacja jej przewodów
D. jej próba ciśnieniowa
Izolacja przewodów, odpowietrzenie oraz napełnianie instalacji czynnikiem roboczym to ważne czynności, jednak nie są one odpowiednimi pierwszymi krokami po montażu instalacji grzewczej. Izolacja przewodów, choć istotna dla minimalizacji strat ciepła, nie może być przeprowadzona przed upewnieniem się, że system jest szczelny. Przed przystąpieniem do izolacji konieczne jest przeprowadzenie próby ciśnieniowej, która pozwala na weryfikację integralności systemu. Odpowietrzenie natomiast ma na celu usunięcie powietrza z układu, co jest kluczowe dla jego efektywnego działania, ale powinno być realizowane po potwierdzeniu, że instalacja nie ma wycieków. Napełnianie instalacji czynnikiem roboczym to ostatni krok po skutecznym przeprowadzeniu próby ciśnieniowej. Bez wcześniejszej weryfikacji szczelności, wprowadzenie czynnika może prowadzić do poważnych problemów, takich jak uszkodzenia elementów instalacji lub nieprawidłowe działanie systemu. Przyjęcie poprawnej procedury montażu i uruchamiania instalacji grzewczej jest zgodne z najlepszymi praktykami w branży oraz z respektowaniem standardów jakości, co zapewnia długotrwałą i bezproblemową eksploatację systemu.

Pytanie 30

Jaka jest sprawność ogniwa fotowoltaicznego z krzemu monokrystalicznego, które jest produkowane masowo?

A. 5 do 9%
B. 14 do 17%
C. 23 do 27%
D. 27 do 32%
Wartości sprawności ogniw fotowoltaicznych z krzemu monokrystalicznego, które wskazują na zakresy 27 do 32% lub 23 do 27%, są w rzeczywistości nierealistyczne w kontekście masowej produkcji. Tego rodzaju efektywność jest osiągalna jedynie w warunkach laboratoryjnych, gdzie ogniwa mogą być optymalizowane w sposób, który nie jest praktycznie możliwy w standardowych procesach produkcyjnych. Z kolei przedziały 5 do 9% oraz 14 do 17% nie uwzględniają rzeczywistych osiągnięć technologicznych w produkcji ogniw. Ogniwa o sprawności 5 do 9% są typowe dla technologii amorficznego krzemu, które charakteryzują się znacznie niższą efektywnością i są stosowane w specyficznych zastosowaniach, takich jak zasilanie małych urządzeń elektronicznych. Pomijając często stosowane normy branżowe oraz rzeczywiste wyniki naniesione w badaniach naukowych, takie rozumowanie prowadzi do błędnych wniosków. Aby prawidłowo ocenić efektywność ogniw, kluczowe jest zrozumienie różnic pomiędzy różnymi typami ogniw, ich strukturą oraz zastosowaniem. Błąd w postrzeganiu sprawności ogniw fotowoltaicznych często wynika z nieznajomości technologii oraz innowacji, które w ostatnich latach znacząco wpłynęły na rozwój branży energii odnawialnej. W rzeczywistości, standardowe ogniwa krzemowe, zwłaszcza monokrystaliczne, osiągają sprawność w przedziale do 20% w zastosowaniach komercyjnych, a osiągające więcej niż 20% efektywności należy traktować jako wyjątek, często związany z bardzo zaawansowanymi technologiami produkcji oraz wysokimi kosztami.

Pytanie 31

W którym z podanych miesięcy produkcja energii słonecznej z systemu grzewczego jest w Polsce statystycznie najwyższa?

A. We wrześniu
B. W czerwcu
C. W sierpniu
D. W marcu
Czerwiec jest miesiącem, w którym w Polsce osiąga się największy uzysk solarny dzięki optymalnym warunkom nasłonecznienia. W okresie letnim, szczególnie w okolicach przesilenia letniego, dni są najdłuższe, co sprzyja produkcji energii z instalacji słonecznych. Warto zauważyć, że w czerwcu promieniowanie słoneczne jest na najwyższym poziomie, co jest efektem zarówno większej długości dnia, jak i wyższej pozycji Słońca na niebie. Z tego powodu instalacje solarne, takie jak kolektory słoneczne, generują w tym czasie maksymalną ilość energii. W praktyce oznacza to, że gospodarstwa domowe oraz przedsiębiorstwa korzystające z energii słonecznej mogą liczyć na znaczne oszczędności w kosztach ogrzewania w tym miesiącu. Przykładowo, inwestycje w systemy solarne mogą przynieść zwrot z inwestycji w krótkim czasie, zwłaszcza gdy są eksploatowane w miesiącach o wysokim uzysku solarnym, takich jak czerwiec.

Pytanie 32

Przy instalacji kolektorów słonecznych na dachu pokrytym dachówkami, do czego przykręca się stelaż?

A. krokwi
B. dachówek
C. murłat
D. łat
Odpowiedź "krokwi" jest poprawna, ponieważ to właśnie krokwi, będące elementami konstrukcyjnymi dachu, stanowią odpowiednie wsparcie dla stelaży kolektorów słonecznych. Krokwi mają dużą nośność i są zaprojektowane do przenoszenia obciążeń, co jest niezwykle istotne przy montażu cięższych systemów solarnych. Kiedy stelaż jest przykręcany do krokwi, zapewnia to stabilność i bezpieczeństwo całej konstrukcji, co jest kluczowe, zwłaszcza w przypadku silnych wiatrów czy opadów śniegu. Zgodnie z normami budowlanymi, należy stosować odpowiednie wkręty i mocowania, które są przystosowane do materiału krokwi, aby uniknąć uszkodzenia drewna. Dobrą praktyką jest również dokonanie oceny stanu technicznego krokwi przed montażem, aby upewnić się, że nie są one osłabione przez czynniki zewnętrzne, takie jak owady czy wilgoć. Poprawny montaż nie tylko zapewnia efektywność systemu, ale także wydłuża jego żywotność.

Pytanie 33

Gdzie w systemie grzewczym z kotłem posiadającym automatyczny podajnik paliwa powinno się zainstalować zabezpieczenie przed zbyt niskim poziomem wody?

A. Na powrocie, 10 cm ponad najwyższą częścią kotła
B. Na zasilaniu, 10 cm ponad najwyższą częścią kotła
C. Na powrocie, 10 cm pod najwyższą częścią kotła
D. Na zasilaniu, 10 cm pod najwyższą częścią kotła
Zamontowanie zabezpieczenia przed niskim poziomem wody w niewłaściwych miejscach, takich jak na powrocie 10 cm powyżej lub poniżej najwyższej części kotła, może prowadzić do poważnych problemów operacyjnych. Przede wszystkim zabezpieczenie umieszczone na powrocie nie będzie skutecznie monitorować poziomu wody, co jest kluczowe w systemach z automatycznym podajnikiem paliwa. Powrót to miejsce, gdzie woda wraca z obiegu grzewczego, i takie umiejscowienie nie gwarantuje, że kotłownia zawsze będzie miała odpowiednią ilość wody. Z tego powodu, może dojść do sytuacji, w której kocioł, mimo że na powrocie jest woda, działa na sucho, ponieważ pompa nie jest w stanie dostarczyć jej wystarczającej ilości z zasilania. Ponadto, umiejscowienie zabezpieczenia na zasilaniu, 10 cm poniżej najwyższej części kotła, również stwarza ryzyko, gdyż kocioł może działać w sytuacji, gdy poziom wody spadnie poniżej bezpiecznego marginesu. W takich przypadkach, woda w kotle nie jest wystarczająco chłodzona, co prowadzi do przegrzewania się urządzenia i potencjalnych uszkodzeń. Dlatego ważne jest, aby stosować się do zaleceń producentów i norm branżowych, które jasno wskazują, że zabezpieczenie powinno być montowane na zasilaniu, aby efektywnie kontrolować poziom wody i zapewnić optymalną pracę całego systemu grzewczego.

Pytanie 34

Jak należy przechowywać kolektory słoneczne?

A. w zamkniętych pomieszczeniach, umieszczone szybą do góry
B. pod wiatą, umieszczone szybą do góry
C. pod wiatą, umieszczone szybą w dół
D. w zamkniętych pomieszczeniach, umieszczone szybą w dół
Kolektory słoneczne fajnie jest przechowywać w zamkniętych pomieszczeniach, w pozycji szybą do góry. Dzięki temu są mniej narażone na działanie różnych warunków atmosferycznych i uszkodzenia. Jak się je trzyma w suchym i wentylowanym miejscu, to zmniejsza się ryzyko kondensacji i korozji, co jest bardzo ważne, bo wilgoć może zniszczyć te urządzenia. Ułożenie szybą do góry zapobiega zarysowaniom, co jest super ważne, zwłaszcza, że te kolektory są dosyć drogie. Wiele firm, które zajmują się energią odnawialną, sugeruje używanie specjalnych stojaków, żeby je lepiej zabezpieczyć. Dobrze jest też co jakiś czas sprawdzić ich stan, żeby wcześnie zauważyć ewentualne problemy. Wiedza na temat tego, jak dobrze przechowywać kolektory, jest kluczowa dla ich długiego życia i efektywności.

Pytanie 35

Dobierając rozmiar kolektora oraz zbiornika do systemu podgrzewania wody użytkowej w budynku jednorodzinnym, przy założeniu pokrycia rocznego na poziomie 65% oraz dziennego zużycia w granicach 80-100 l/osobę, monter powinien brać pod uwagę wskaźnik

A. 1:3,0 m2 powierzchni absorbera / osobę
B. 1:2,0 m2 powierzchni absorbera / osobę
C. 1:2,5 m2 powierzchni absorbera / osobę
D. 1:1,5 m2 powierzchni absorbera / osobę
Odpowiedź 1:1,5 m2 powierzchni absorbera / osobę jest poprawna, ponieważ w systemach solarnych, które mają na celu podgrzewanie wody użytkowej, kluczowe jest odpowiednie dobranie powierzchni kolektora słonecznego do przewidywanego zużycia wody. Przy założeniu rocznego pokrycia na poziomie 65% oraz zużycia wody wynoszącego 80-100 l/osobę dziennie, obliczenia wskazują, że dla jednego użytkownika powierzchnia absorbera na poziomie 1,5 m2 zapewni odpowiednią produkcję ciepła. Przykładowo, w standardowych warunkach, taki układ pozwala na efektywne wykorzystanie energii słonecznej, co jest zgodne z praktykami branżowymi rekomendującymi optymalne wykorzystanie energii odnawialnej. Warto również pamiętać, że dobór powierzchni kolektora powinien uwzględniać lokalne warunki klimatyczne oraz orientację budynku, co może wpłynąć na efektywność systemu. Dobrze zaprojektowany system grzewczy nie tylko zaspokaja potrzeby mieszkańców, ale również przyczynia się do redukcji emisji CO2, co jest niezwykle istotne w kontekście zrównoważonego rozwoju.

Pytanie 36

Z której strony dachu kopertowego domu jednorodzinnego powinno się zainstalować fotoogniwo, aby osiągnąć maksymalną roczną efektywność?

A. Na wschodniej stronie dachu
B. Na zachodniej stronie dachu
C. Na południowej stronie dachu
D. Na północnej stronie dachu
Montaż fotoogniwa na południowej połaci dachu kopertowego budynku jednorodzinnego jest najlepszym rozwiązaniem, ponieważ ta strona dachu otrzymuje najwięcej światła słonecznego przez cały rok. Południowa ekspozycja zapewnia maksymalną produkcję energii, zwłaszcza w miesiącach letnich, gdy słońce jest najwyżej na niebie. Oprócz tego, w czasie zimy, gdy słońce jest niżej, jednostki fotowoltaiczne na południowej stronie wciąż mogą produkować znaczną ilość energii, co przyczynia się do efektywności całorocznej. Zgodnie z najlepszymi praktykami w branży, instalacje PV powinny być skierowane w stronę, która minimalizuje cień i maksymalizuje nasłonecznienie. Przykładem zastosowania mogą być budynki jednorodzinne, które korzystają z systemów zarządzania energią, aby optymalizować zużycie energii wyprodukowanej przez fotoogniwa, co prowadzi do większych oszczędności na kosztach energii. Takie podejście jest zgodne z wytycznymi dotyczącymi efektywności energetycznej budynków, które zalecają maksymalizację wykorzystania odnawialnych źródeł energii.

Pytanie 37

Podczas przewozu pompy ciepła należy wziąć pod uwagę szczególną podatność tego urządzenia na

A. działanie promieni słonecznych
B. wilgotność powietrza
C. niskie temperatury
D. nachylenia
Pompy ciepła to dość skomplikowane urządzenia, które niestety są dość wrażliwe na różne przechylenia, zwłaszcza podczas transportu. Wynika to z ich konstrukcji oraz użytych części, jak sprężarki, parowniki czy skraplacze. Jak coś pójdzie nie tak w transporcie, to te elementy mogą się po prostu uszkodzić. Na przykład, jeśli sprężarka będzie w złym kącie, to może być problem z jej smarowaniem, co sprawi, że szybciej się zużyje. W branży trzeba naprawdę uważać na standardy transportu, zwłaszcza te normy ISO 9001, które mówią, jak prawidłowo pakować i przewozić takie wrażliwe sprzęty. Dlatego podczas transportu pomp ciepła warto trzymać się wskazówek producenta, które często mówią o tym, jak bardzo można je nachylać i jakie metody zabezpieczenia stosować, żeby wszystko było w porządku.

Pytanie 38

Aby chronić instalację centralnego ogrzewania przed nadmiernym wzrostem ciśnienia czynnika grzewczego spowodowanym temperaturą i związanym ze wzrostem objętości, należy zastosować

A. grupę pompową
B. zawór bezpieczeństwa
C. naczynie wzbiorcze
D. zawór zwrotny
Naczynie wzbiorcze to naprawdę istotny element w systemie centralnego ogrzewania. Jego głównym zadaniem jest ochrona instalacji przed zbyt wysokim ciśnieniem czynnika grzewczego. Kiedy temperatura rośnie, to wiadomo - objętość wody też się zwiększa, a to prowadzi do podwyższenia ciśnienia. I tu właśnie wchodzi naczynie wzbiorcze, które działa jak bufor, czyli tłumi te zmiany. Jeśli odpowiednio je dobierzemy, nadmiar wody zostaje skierowany do zbiornika, co sprawia, że ciśnienie w instalacji jest stabilne. To ważne szczególnie w instalacjach z kotłami gazowymi czy olejowymi – naczynie nie tylko zapobiega uszkodzeniom samej instalacji, ale też urządzeń grzewczych. Ważne, żeby naczynie miało odpowiednią pojemność i ciśnienie wstępne, bo to wynika z norm EN 12828 i PN-EN 12831. W praktyce, dzięki naczyniu wzbiorczemu można uniknąć niebezpiecznych sytuacji, jak awarie czy wręcz eksplozje, które mogą się zdarzyć przy dużym wzroście ciśnienia. Więc można powiedzieć, że to obowiązkowy, ale też kluczowy element, żeby cała instalacja grzewcza działała bezproblemowo.

Pytanie 39

Na podstawie danych zawartych w tabeli wskaż wartość całkowitego rocznego zużycia ciepła.

WielkośćWartośćJednostka miary
Ogrzewana powierzchnia150
Średnia wysokość pomieszczeń2,6m
Jednostkowe zapotrzebowanie na moc cieplną50W/m²
Zapotrzebowanie na moc do ogrzewania7,5kW
Jednostkowe zużycie ciepła do ogrzewania120kWh/(m²·a)
Roczne zużycie ciepła do ogrzewania18 000kWh/a
Liczba mieszkańców4-
Obliczeniowe zużycie c.w.u.55dm³/(osoba·d)
Roczne zużycie c.w.u.80
Roczne zużycie ciepła do przygotowania c.w.u.3600kWh/a

A. 3 600 kWh/a
B. 21 600 kWh/a
C. 7,5 kW/a
D. 18 000 kWh/a
No dobra, 21 600 kWh/a to rzeczywiście poprawna odpowiedź. To wynik, który dostajemy, gdy sumujemy dwa kluczowe elementy, czyli zużycie na ogrzewanie i ciepłą wodę użytkową. W praktyce, te obliczenia są mega ważne do oceny efektywności energetycznej budynków. Są też zgodne z normami, takimi jak PN-EN 12831, która mówi o tym, jak obliczać zapotrzebowanie na ciepło. Pamiętaj, że musisz uwzględnić wszystkie źródła ciepła i potrzeby użytkowników, żeby lepiej oszacować całkowite zużycie energii. Fajnie też zwrócić uwagę na izolację termiczną i nowoczesne systemy grzewcze, bo to może mocno pomóc zmniejszyć roczne zużycie energii. A tak w ogóle? Dobre zarządzanie zużyciem energii i optymalizacja systemów grzewczych to też kroki w stronę redukcji emisji CO2, co jest zgodne z globalnymi celami zrównoważonego rozwoju.

Pytanie 40

Zestaw solarny składa się z: panelu słonecznego, kontrolera ładowania oraz dwóch akumulatorów połączonych w szereg. Napięcie nominalne każdego akumulatora wynosi 12 V. Aby użyć tego zestawu do zasilania urządzeń w jednofazowej sieci elektrycznej o napięciu 230 V, należy połączyć wyjście akumulatorów z

A. przetwornicą 24 V DC/230 V AC
B. przetwornicą 12 V DC/230 V AC
C. instalacją w budynku o napięciu 230 V
D. prostownikiem dwupołówkowym 230 V
Przetwornica 24 V DC/230 V AC to odpowiednie urządzenie do konwersji napięcia z akumulatorów na poziom wymagany do zasilania urządzeń w sieci jednofazowej. W opisanym przypadku, dwa akumulatory o napięciu 12 V połączone szeregowo tworzą system o napięciu 24 V. Przetwornica umożliwia przekształcenie tego napięcia stałego (DC) na napięcie zmienne (AC) o standardowej wartości 230 V, co jest niezbędne do zasilania większości typowych urządzeń elektrycznych. Przykładowe zastosowanie to zasilanie sprzętu AGD, oświetlenia czy elektroniki w domach, które nie są podłączone do sieci elektroenergetycznej. Dobrą praktyką jest stosowanie przetwornic o odpowiedniej mocy, co zapewnia stabilność pracy i efektywność energetyczną. Warto również zaznaczyć, że nowoczesne przetwornice często posiadają dodatkowe funkcje, takie jak monitoring stanu akumulatora, co pozwala na lepsze zarządzanie energią i wydłużenie żywotności systemu.