Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 2 maja 2025 16:10
  • Data zakończenia: 2 maja 2025 16:15

Egzamin niezdany

Wynik: 1/40 punktów (2,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jak zwiększenie rezystancji obciążenia w układach wzmacniaczy rezystancyjnych wpłynie na

A. wzrost mocy wyjściowej
B. spadek mocy wyjściowej
C. zmniejszenie pasma przenoszenia
D. podwyższenie napięcia zasilającego
Zrozumienie wpływu rezystancji obciążenia na wzmacniacze rezystancyjne jest kluczowe w projektowaniu i użytkowaniu systemów elektronicznych. Wybór odpowiedzi sugerujących, że zwiększenie rezystancji obciążenia prowadzi do zwiększenia napięcia zasilania lub wzrostu mocy wyjściowej, opiera się na nieprawidłowym rozumieniu podstawowych zasad działania wzmacniaczy. W rzeczywistości, napięcie zasilania jest na stałym poziomie, które jest dostosowane do wymagań układu. Zwiększenie rezystancji obciążenia nie wpływa na to napięcie; zamiast tego, zmiana ta wpływa na ilość prądu, który może przepływać przez obciążenie. Wzrost rezystancji oznacza spadek prądu, co w konsekwencji prowadzi do zmniejszenia mocy wyjściowej, a nie jej wzrostu. Odpowiedzi sugerujące zmniejszenie pasma przenoszenia także są mylące. Pasmo przenoszenia wzmacniacza zależy głównie od jego topologii oraz użytych komponentów, a nie tylko od rezystancji obciążenia. W praktyce, niewłaściwe połączenie lub zła wartość rezystancji obciążenia mogą prowadzić do nieoptymalnego działania urządzenia, co jest często wynikiem braku zrozumienia związku pomiędzy rezystancją a parametrami wyjściowymi wzmacniacza. Takie błędne myślenie może prowadzić do nieefektywnego projektowania systemów audio czy pomiarowych, co podkreśla znaczenie znajomości teorii w praktyce inżynieryjnej.

Pytanie 2

W firmie produkującej radiatory z aluminiowych kształtowników pracuje pięć osób. Każda z nich wytwarza codziennie 30 radiatorów. Na wykonanie 10 radiatorów potrzebny jest jeden kształtownik aluminiowy. Ile wynosi dzienny koszt nabycia materiałów do produkcji, jeśli jeden kształtownik kosztuje 50 zł?

A. 500 zł
B. 2 500 zł
C. 150 zł
D. 750 zł
Aby obliczyć dzienny koszt zakupu materiałów do produkcji radiatorów, należy najpierw ustalić, ile radiatorów produkują wszyscy pracownicy razem. Każdy z pięciu pracowników wykonuje 30 radiatorów dziennie, co daje 5 * 30 = 150 radiatorów. Ponieważ jeden kształtownik aluminiowy wystarcza na wykonanie 10 radiatorów, potrzebujemy 150 / 10 = 15 kształtowników. Koszt jednego kształtownika wynosi 50 zł, zatem całkowity koszt zakupu materiałów wyniesie 15 * 50 zł = 750 zł. W praktyce, znajomość kosztów materiałowych jest kluczowa dla efektywnego zarządzania produkcją w zakładach przemysłowych. Monitorowanie tych kosztów pozwala na optymalizację procesów i zwiększenie rentowności firmy. Zastosowanie odpowiednich standardów dotyczących zarządzania materiałami, takich jak Just-In-Time, może również przyczynić się do redukcji nadmiarów materiałowych oraz kosztów magazynowania.

Pytanie 3

Parametry takie jak wzmocnienie mocy, moc wyjściowa, pasmo przenoszenia oraz współczynnik efektywności energetycznej odnoszą się do

A. filtra
B. generatora
C. zasilacza
D. wzmacniacza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wzmocnienie mocy, moc wyjściowa, pasmo przenoszenia oraz współczynnik sprawności energetycznej to kluczowe parametry wzmacniaczy. Wzmacniacze są urządzeniami elektrycznymi, których podstawowym zadaniem jest zwiększenie amplitudy sygnału elektrycznego. Wzmocnienie mocy odnosi się do zdolności wzmacniacza do podnoszenia mocy sygnału, co jest niezbędne w aplikacjach audio, telekomunikacyjnych czy radiowych. Moc wyjściowa określa, ile energii wzmacniacz może dostarczyć do obciążenia, co ma kluczowe znaczenie dla zapewnienia odpowiedniej jakości dźwięku lub sygnału. Pasmo przenoszenia natomiast definiuje zakres częstotliwości, w jakim wzmacniacz może efektywnie działać, co jest istotne w kontekście reprodukcji dźwięku czy przesyłania danych. Współczynnik sprawności energetycznej mierzy, jak efektywnie wzmacniacz przekształca moc zasilania na moc wyjściową, co jest istotne dla ograniczenia strat energii i poprawy wydajności systemu. Przykładem zastosowania wzmacniacza może być system audio, gdzie poprawne zgranie tych parametrów decyduje o jakości dźwięku i jego mocy. Zgodnie z normami branżowymi, jak np. normy IEC, ważne jest, aby wzmacniacze były projektowane z uwzględnieniem tych parametrów, aby spełniały wymagania użytkowników i zapewniały niezawodność w działaniu.

Pytanie 4

Podczas wymiany uszkodzonych części elektronicznych w systemie automatyki przemysłowej, technik korzysta z narzędzi z uchwytami pokrytymi izolacją, aby zabezpieczyć się przed

A. porażeniem prądem elektrycznym
B. wysoką temperaturą
C. niską wilgotnością
D. uszkodzeniami mechanicznymi

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Izolacja uchwytów narzędzi stosowanych w instalacjach automatyki przemysłowej jest kluczowym środkiem ochrony przed porażeniem prądem elektrycznym. Prąd elektryczny, w przypadku kontaktu z nagimi metalowymi częściami narzędzi, może prowadzić do poważnych obrażeń, a nawet śmierci. Dlatego odpowiednie zastosowanie narzędzi z izolowanymi uchwytami jest niezbędne, aby zminimalizować ryzyko takich zdarzeń. W takich środowiskach, jak przemysł, gdzie występują wysokie napięcia, izolacja jest nie tylko zalecana, ale wręcz wymagana przez normy bezpieczeństwa, takie jak IEC 60900, która określa wymagania dotyczące narzędzi izolowanych do pracy pod napięciem. Przykładem zastosowania mogą być wkrętaki, szczypce czy klucze, które są używane w instalacjach elektrycznych. Używając narzędzi z izolacją, instalatorzy mogą bezpiecznie pracować w obszarach potencjalnego ryzyka, co przyczynia się do poprawy bezpieczeństwa w miejscu pracy oraz zwiększa efektywność wykonywanych zadań.

Pytanie 5

Na schemacie ideowym elektronicznego urządzenia wskazano wartość rezystancji poprzez oznaczenie k22.
Jaką wartość ma ta rezystancja?

A. 22 Ω
B. 0,22 Ω
C. 0,22 kΩ
D. 22 kΩ

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
No to tak. Wartość rezystancji, którą mamy oznaczoną jako k22, to tak naprawdę 0,22 kΩ, a to jest równoznaczne z 220 Ω. Ten 'k' w tym przypadku to taki prefiks kilo, który oznacza, że to jest tysięczna wielokrotność jednostki. Ale w tym konkretnym przypadku, pierwsza cyfra '2' to nie dodatkowe zera, tylko pełna wartość. Umiejętność czytania oznaczeń rezystorów jest naprawdę ważna, jak chcesz projektować jakieś obwody elektroniczne. To pozwala dobrze dobrać wszystkie komponenty, co ma wielkie znaczenie dla funkcji i bezpieczeństwa całego układu. Zrozumienie tego systemu jest istotne nie tylko dla inżynierów, ale też dla tych, którzy są hobbystami w elektronice. W dzisiejszych czasach, normy takie jak IPC-2221 kładą duży nacisk na dokładne odczytywanie wartości rezystancji, żeby uniknąć różnych pomyłek w projektowaniu obwodów drukowanych, co jest ważne zarówno w przemyśle, jak i dla użytkowników końcowych.

Pytanie 6

Zasady zabraniają przeprowadzania prac serwisowych na instalacjach antenowych w warunkach

A. wyładowań atmosferycznych
B. ograniczonej widoczności
C. niskiej temperatury
D. wietrznej pogody

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prace serwisowe instalacji antenowych w warunkach wyładowań atmosferycznych są zabronione, ponieważ stanowią one poważne ryzyko dla bezpieczeństwa pracowników oraz integralności systemu. Wyładowania atmosferyczne mogą prowadzić do uszkodzeń sprzętu, a także zagrażać życiu ludzi pracujących na wysokości, gdzie instalacje antenowe są często montowane. Standardy BHP oraz przepisy dotyczące prac na wysokości jednoznacznie wskazują, że prace te powinny być wykonywane w warunkach minimalizujących ryzyko, a wyładowania atmosferyczne są jednym z najpoważniejszych zagrożeń. Na przykład, w przypadku burzy, potencjalne uderzenie pioruna może nie tylko uszkodzić sprzęt, ale także spalić instalację elektryczną, co może prowadzić do pożaru. Pracownicy powinni być w pełni świadomi tych zagrożeń i przestrzegać zasad bezpieczeństwa, takich jak monitorowanie prognoz pogody, aby unikać pracy w takich warunkach. Zastosowanie odpowiednich praktyk, takich jak planowanie prac serwisowych w czasie stabilnej pogody, jest kluczowe dla zapewnienia bezpieczeństwa.

Pytanie 7

Czujnik typu PIR służy do wykrywania

A. ruchu
B. dymu
C. światła
D. wilgoci

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujka typu PIR (Passive Infrared Sensor) jest urządzeniem wykrywającym ruch na podstawie analizy promieniowania podczerwonego emitowanego przez obiekty w swoim zasięgu. Działa na zasadzie detekcji zmian temperatury w polu widzenia czujnika, co jest istotne w kontekście monitorowania obszaru. Czujki te są szeroko stosowane w systemach zabezpieczeń, automatyce budynkowej oraz inteligentnych domach. Przykładem zastosowania jest system alarmowy, w którym czujka PIR uruchamia alarm w momencie wykrycia ruchu, co zwiększa bezpieczeństwo obiektu. Standardy branżowe, takie jak EN 50131, definiują wymagania dotyczące wydajności i niezawodności takich czujek, aby zapewnić ich skuteczność w detekcji ruchu. Dzięki swojej konstrukcji czujki PIR są energooszczędne, co czyni je idealnym wyborem do zastosowań w nowoczesnych systemach automatyzacji, gdzie ważna jest efektywność energetyczna. Właściwe umiejscowienie czujnika oraz jego kalibracja są kluczowe dla optymalizacji działania, co podkreśla potrzebę stosowania dobrych praktyk w instalacji i użytkowaniu tych urządzeń.

Pytanie 8

W instalacji antenowej, która ma być używana w warunkach podwyższonej wilgotności oraz zmiennych temperaturach, powinny być zastosowane kable

A. z oplotem miedzianym
B. z linką nośną
C. w płaszczu polietylenowym (PE)
D. w płaszczu PCV

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "w płaszczu polietylenowym (PE)" jest prawidłowa, ponieważ przewody tego typu charakteryzują się wysoką odpornością na działanie wilgoci oraz zmiennych temperatur. Polietylen jest materiałem, który nie tylko chroni przed wpływem wody, ale także wykazuje odporność na wiele chemikaliów, co czyni go idealnym rozwiązaniem w trudnych warunkach atmosferycznych. W instalacjach antenowych, gdzie przewody są narażone na bezpośredni kontakt z opadami deszczu, wilgocią oraz skrajnymi temperaturami, zastosowanie przewodów w płaszczu PE pozwala na zachowanie ich właściwości elektrycznych oraz mechanicznych przez długi czas. Przykładem zastosowania przewodów w płaszczu polietylenowym mogą być instalacje w obszarach przybrzeżnych, gdzie warunki atmosferyczne są szczególnie zmienne. Zgodnie z normami ochrony środowiska i najlepszymi praktykami branżowymi, wybór materiałów odpornych na czynniki zewnętrzne jest kluczowy dla trwałości i niezawodności systemów antenowych.

Pytanie 9

Podczas regularnego przeglądu systemu telewizyjnego należy między innymi

A. określić rezystancję falową kabla i w razie potrzeby ją skorygować
B. oczyścić oraz pomalować antenę, a następnie ją ustawić
C. zmierzyć impedancję falową kabla koncentrycznego
D. zmierzyć poziom sygnału w gniazdku abonenckim oraz ocenić jakość połączeń wtyków F

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar poziomu sygnału w gnieździe abonenckim oraz sprawdzenie jakości połączeń wtyków F jest kluczowym krokiem w ramach okresowego przeglądu instalacji telewizyjnej. Umożliwia to ocenę, czy sygnał docierający do odbiornika jest wystarczającej jakości dla prawidłowego odbioru programów telewizyjnych. Zmierzony poziom sygnału powinien mieścić się w zalecanym zakresie, zazwyczaj pomiędzy -10 dBmV a +10 dBmV, co zapewnia stabilny odbiór bez zakłóceń. Jakość połączeń wtyków F jest także istotna, ponieważ ich niewłaściwe podłączenie może prowadzić do strat sygnału, co w dłuższej perspektywie może skutkować degradacją jakości obrazu. Sprawdzanie i ewentualne poprawianie tych połączeń jest zgodne z najlepszymi praktykami branżowymi, które podkreślają znaczenie regularnych kontroli w celu zapewnienia wysokiej jakości sygnału i długiej żywotności instalacji. Dodatkowo, pomiar impedancji falowej kabla koncentrycznego, choć istotny, nie jest bezpośrednio związany z ocena jakości sygnału w gnieździe abonenckim.

Pytanie 10

Jakie substancje stosuje się do wytrawiania płytek PCB?

A. pasta lutownicza
B. topnik
C. alkohol izopropylowy
D. nadsiarczan sodowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Nadsiarczan sodowy jest substancją chemiczną szeroko stosowaną w procesie wytrawiania płytek PCB (Printed Circuit Board). Jest to silny środek utleniający, który pozwala na efektywne usuwanie miedzi z powierzchni laminatu PCB, pozostawiając jedynie pożądane ścieżki przewodzące. Proces wytrawiania polega na umieszczaniu płytki w roztworze nadsiarczanu sodowego, co prowadzi do reakcji chemicznych, które skutkują usunięciem miedzi. W praktyce, nadsiarczan sodowy jest preferowany ze względu na swoją skuteczność oraz względnie niski koszt, co czyni go popularnym wyborem w przemyśle elektronicznym. Warto zaznaczyć, że podczas pracy z tym związkiem należy przestrzegać odpowiednich norm bezpieczeństwa, takich jak stosowanie rękawic ochronnych i okularów, aby zminimalizować ryzyko kontaktu z substancją. To podejście jest zgodne z najlepszymi praktykami branżowymi, które rekomendują stosowanie odpowiednich materiałów i technologii do uzyskania wysokiej jakości obwodów drukowanych.

Pytanie 11

Która modulacja jest stosowana w zakresie fal długich?

A. Impulsowa
B. Fazy
C. Częstotliwości
D. Amplitudy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Modulacja amplitudy (AM) jest powszechnie stosowana w paśmie fal długich, głównie ze względu na jej zdolność do efektywnego przesyłania informacji na dużych odległościach. W modulacji amplitudy, amplituda fali nośnej jest zmieniana w zależności od sygnału informacyjnego, co sprawia, że AM jest odpowiednia do transmisji radiowych w warunkach, gdzie fale radiowe mogą być mocno zakłócane przez różne przeszkody. W praktyce, stacje radiowe nadające w paśmie fal długich wykorzystują modulację amplitudy, aby umożliwić odbiorcom słuchanie programów radiowych z dużą jakością dźwięku na dużych dystansach. Standardy takie jak CCIR 493-7 określają parametry techniczne dla transmisji AM w paśmie fal długich. Dodatkowo, modulacja amplitudy jest stosunkowo prosta do zrealizowania, co sprawia, że jest często wykorzystywana w aplikacjach komercyjnych i amatorskich.

Pytanie 12

Jaką czujkę powinno się zastosować, aby sygnalizować otwarcie drzwi?

A. Mikrofalową
B. Kontaktronową
C. Ultradźwiękową
D. Podczerwieni

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujka kontaktronowa jest najodpowiedniejszym rozwiązaniem do sygnalizacji otwarcia drzwi, ponieważ wykorzystuje zasadę działania, która opiera się na zbliżeniu dwóch styków magnetycznych. Gdy drzwi się otwierają, magnes umieszczony na drzwiach oddala się od styków, co powoduje ich rozłączenie. Taki mechanizm jest niezwykle niezawodny i często stosowany w systemach alarmowych oraz zabezpieczeniach budynków. Kontaktrony charakteryzują się prostotą instalacji oraz niskim zużyciem energii, co czyni je idealnym rozwiązaniem w przypadku monitorowania otwarcia drzwi. W praktyce czujki te można znaleźć w różnych aplikacjach, od domowych systemów alarmowych po zabezpieczenia w obiektach komercyjnych. Dobrą praktyką jest także ich integracja z systemami automatyki budynkowej, co zwiększa komfort użytkowania oraz efektywność zabezpieczeń. Warto podkreślić, że kontaktrony są zgodne z normami branżowymi dotyczącymi bezpieczeństwa i ochrony, co potwierdza ich skuteczność i powszechną akceptację w branży.

Pytanie 13

Na zdjęciu przedstawiono

Ilustracja do pytania
A. diody
B. termistory
C. tensometry
D. tyrystory

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Termistory to elementy elektroniczne, które zmieniają swoją rezystancję w odpowiedzi na zmiany temperatury. Wyróżniamy dwa główne typy termistorów: NTC (Negative Temperature Coefficient) i PTC (Positive Temperature Coefficient). W przypadku NTC, rezystancja maleje wraz ze wzrostem temperatury, co sprawia, że są one często wykorzystywane w aplikacjach pomiarowych, takich jak termometry elektroniczne, gdzie umożliwiają precyzyjne monitorowanie temperatury. Z kolei PTC zwiększa swoją rezystancję przy wzroście temperatury, co czyni je skutecznymi zabezpieczeniami przed przegrzaniem w urządzeniach elektrycznych. Przykłady zastosowań obejmują kontrolę temperatury w urządzeniach HVAC oraz w układach zasilania, gdzie termistory służą do ochrony komponentów przed uszkodzeniem. Zrozumienie działania termistorów i ich właściwości jest kluczowe w projektowaniu systemów elektronicznych, spełniającym wymagania dotyczące dokładności pomiarów temperatury oraz bezpieczeństwa urządzeń.

Pytanie 14

Który amperomierz powinien być użyty do zmierzenia natężenia prądu 0,5 A przepływającego przez czujnik o rezystancji wyjściowej w przybliżeniu 100 Ω, aby pomiar był jak najbardziej precyzyjny?

A. Analogowy na zakresie I = 10 A i RWE = 50 Ω
B. Cyfrowy na zakresie I = 10 A i RWE = 5 Ω
C. Cyfrowy na zakresie I = 1 A i RWE = 5 Ω
D. Analogowy na zakresie I = 1 A i RWE = 50 Ω

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór cyfrowego amperomierza na zakresie 1 A z wewnętrznym oporem 5 Ω to naprawdę dobry ruch, jeśli chodzi o pomiar natężenia prądu 0,5 A. Osobiście uważam, że cyfrowe amperomierze są znacznie lepsze niż analogowe, bo dają bardziej rzetelne wyniki i mniejsze błędy pomiarowe. Gdy mierzysz 0,5 A, użycie zakresu 1 A to strzał w dziesiątkę – na pewno dostaniesz bardziej dokładne odczyty niż z większym zakresem. Niski opór wewnętrzny, czyli te 5 Ω, jest ważne, bo dzięki temu amperomierz nie wpływa za bardzo na mierzony obwód. To ma znaczenie, gdy masz czujnik o rezystancji 100 Ω, bo wtedy każdy mały wpływ mógłby zniekształcić wyniki. Jak dla mnie, to kluczowe w pomiarach, zwłaszcza w sytuacjach, gdzie liczą się drobne zmiany, jak w czujnikach temperatury czy ciśnienia. Z tego, co pamiętam, standardy jak IEC 61010 mówią, że warto wybierać dobre narzędzia pomiarowe, żeby minimalizować błędy i zapewnić bezpieczeństwo.

Pytanie 15

Jakie z poniższych symptomów może wystąpić w momencie, gdy w niezabezpieczonej sieci energetycznej dojdzie do przepięcia?

A. Włączenie wyłącznika nadprądowego, chroniącego urządzenia zasilane z tej sieci
B. Wzrost poboru prądu przez urządzenia elektroniczne zasilane z tej sieci
C. Włączenie wyłącznika różnicowoprądowego, zamontowanego w tej sieci
D. Uszkodzenie urządzeń elektronicznych zasilanych z tej sieci

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Uszkodzenie urządzeń elektronicznych zasilanych z niezabezpieczonej sieci energetycznej jest wynikiem przepięć, które mogą wystąpić w takich systemach. Przepięcia mogą być spowodowane różnymi czynnikami, takimi jak wyładowania atmosferyczne, nagłe zmiany w obciążeniu sieci lub awarie w dostawie energii. Przykładowo, gdy piorun uderza w linię energetyczną, może dojść do chwilowego wzrostu napięcia, który przekracza dopuszczalne wartości dla podłączonych urządzeń. Takie przepięcia mogą prowadzić do zniszczenia komponentów elektronicznych, takich jak zasilacze, płyty główne czy inne układy scalone. Aby zminimalizować ryzyko uszkodzeń, zaleca się stosowanie urządzeń zabezpieczających, jak listwy antyprzepięciowe, które absorbują nadmiar energii. Kiedy mówimy o ochronie przed przepięciami, warto również pamiętać o standardach, takich jak IEC 61643, które definiują wymagania dla urządzeń zabezpieczających przed przepięciami (SPD). Wiedza na temat tych zagadnień jest istotna w kontekście projektowania i eksploatacji systemów elektrotechnicznych, aby zagwarantować bezpieczeństwo i długowieczność używanych urządzeń.

Pytanie 16

W urządzeniu elektronicznym narażonym na drgania może dojść do

A. spadku efektywności zasilacza
B. utraty danych w pamięci wewnętrznej
C. uszkodzenia obwodów drukowanych
D. zmniejszenia pojemności kondensatorów

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Uszkodzenie obwodów drukowanych w urządzeniach elektronicznych narażonych na wibracje jest rzeczywiście problemem technicznym, który może prowadzić do poważnych awarii sprzętowych. Wibracje mechaniczne mogą wpływać na integralność fizyczną ścieżek prowadzących sygnały w obwodach drukowanych, co w konsekwencji prowadzi do przerwania połączeń lub zwarć. Przykładem mogą być urządzenia stosowane w przemyśle motoryzacyjnym, gdzie komponenty elektroniczne są wystawione na stałe drgania podczas jazdy. Standardy takie jak IPC-A-600 dotyczące akceptacji obwodów drukowanych podkreślają znaczenie projektowania z myślą o takich warunkach, oferując wytyczne dotyczące materiałów i technik montażu, aby zminimalizować ryzyko uszkodzeń. Wysokiej jakości projektowanie obwodów, stosowanie odpowiednich technologii lutowania oraz użycie materiałów odpornych na wibracje są kluczowe w zapewnieniu trwałości urządzeń. Dodatkowo, testy w warunkach ekstremalnych, takie jak testy wibracyjne zgodne z normą MIL-STD-810, mogą pomóc w ocenie odporności urządzeń na drgania, zapewniając ich niezawodność w trudnych warunkach operacyjnych.

Pytanie 17

W specyfikacji diody prostowniczej znajduje się maksymalny średni prąd obciążenia (Ifav) oraz maksymalny szczytowy prąd przewodzenia (Ifsm). Jaką relację można zapisać między tymi wartościami?

A. Ifav < Ifsm
B. Ifav > Ifsm
C. Ifav ~= Ifsm
D. Ifav = Ifsm

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dobrze, że wskazałeś, że Ifav < Ifsm. To ważna zasada, bo Itav to maksymalny prąd, który dioda może prowadzić na stałe. W zwykłych warunkach pracy nie powinieneś go przekraczać, bo to zapewnia, że dioda będzie działać długo i niezawodnie. Ifsm natomiast to maksymalny prąd, jaki dioda może znieść przez krótki czas. Zwykle Ifsm jest dużo większe od Ifav, co daje diodzie możliwość radzenia sobie z chwilowymi skokami prądu, na przykład w przetwornicach czy zasilaczach impulsowych. Kiedy wybierasz diodę prostowniczą, zawsze bierzesz pod uwagę oba te prądy. Musisz upewnić się, że Ifav nie przekracza Ifsm, żeby uniknąć przegrzewania diody i jej uszkodzenia na dłuższą metę. W układach zasilania, gdzie dioda prostownicza działa na prądzie zmiennym, to naprawdę kluczowe zagadnienie.

Pytanie 18

Jaką rolę odgrywa router w sieci komputerowej?

A. Konwertera danych analogowych
B. Węzła komunikacyjnego
C. Konwertera danych cyfrowych
D. Łącznika segmentów sieci

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Router jest kluczowym elementem w sieci komputerowej, pełniącym funkcję węzła komunikacyjnego, co oznacza, że zarządza ruchem danych pomiędzy różnymi sieciami. Jego głównym zadaniem jest kierowanie pakietów danych do odpowiednich adresów, co zapewnia efektywną komunikację między urządzeniami znajdującymi się w różnych lokalizacjach. Przykładem zastosowania routera może być domowa sieć Wi-Fi, gdzie router łączy lokale urządzenia, takie jak komputery, telefony czy smart TV z Internetem. W dzisiejszym świecie, w którym komunikacja opiera się na protokołach takich jak TCP/IP, routery są niezbędne do prawidłowego przesyłania informacji. Dobry router powinien przestrzegać standardów takich jak RFC 791, dotyczącego protokołu IP, co zapewnia jego interoperacyjność z innymi urządzeniami. Dodatkowo, routery mogą oferować zaawansowane funkcje, takie jak NAT (Network Address Translation), co pozwala na oszczędne wykorzystanie adresów IP oraz zwiększa bezpieczeństwo sieci.

Pytanie 19

Jakie urządzenie służy do ochrony elektroniki przed skutkami wyładowań atmosferycznych?

A. wyłącznik nadprądowy
B. ochronnik termiczny
C. wyłącznik różnicowoprądowy
D. ochronnik przepięciowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ochronnik przepięciowy jest urządzeniem zaprojektowanym w celu zabezpieczania instalacji elektrycznych oraz podłączonych do nich urządzeń przed skutkami przepięć, które mogą wystąpić na skutek wyładowań atmosferycznych lub innych nagłych wzrostów napięcia. Działa poprzez odprowadzanie nadmiaru energii, co minimalizuje ryzyko uszkodzenia sprzętu. Przykładem zastosowania ochronników przepięciowych są instalacje w budynkach mieszkalnych, gdzie ochrona sprzętu RTV, AGD oraz komputerów jest kluczowa. Standardy takie jak IEC 61643-11 oraz PN-EN 61643-11 określają wymagania dotyczące tych urządzeń, zapewniając ich skuteczność i bezpieczeństwo. Ważne jest, aby dobierać odpowiednie ochronniki do specyfiki instalacji oraz środowiska, w którym są używane, a także regularnie przeprowadzać ich przeglądy, aby zapewnić ich prawidłowe funkcjonowanie i przedłużyć żywotność chronionego sprzętu.

Pytanie 20

Jednokanałowy oscyloskop analogowy pozwala na pomiar

A. bitowej stopy błędów
B. czasów narastania i opadania impulsów
C. współczynnika zniekształceń nieliniowych
D. przesunięcia fazy między dwoma sygnałami sinusoidalnymi

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Analogowy oscyloskop jednokanałowy to naprawdę fajne narzędzie do zrozumienia, jak zachowują się sygnały elektryczne w czasie. Jednym z jego głównych zastosowań jest pomiar czasów narastania i opadania impulsów, co jest mega ważne, gdy analizujemy sygnały cyfrowe i analogowe. Te czasy mają duży wpływ na to, jak dobrze przesyłamy informacje i jakie są właściwości całych systemów elektronicznych. Moim zdaniem, ocenianie tych czasów pomaga zobaczyć, jak układy reagują na zmiany w sygnale, co jest szczególnie istotne, kiedy projektujemy systemy cyfrowe. W telekomunikacji na przykład, czas narastania jest kluczowy, bo jeśli jest za długi, to sygnał może się zniekształcić, a to może prowadzić do błędów w transmisji. Dodatkowo, normy jak IEC 61000-4-2 pokazują, jak ważne jest mierzenie tych czasów, gdy testujemy urządzenia na odporność na zakłócenia elektromagnetyczne. Dlatego warto znać i umieć te umiejętności w praktyce inżynierskiej.

Pytanie 21

Po uruchomieniu komputera na monitorze wyświetlił się komunikat "CMOS battery failed". Co to oznacza?

A. pamięć CMOS nie została ustawiona.
B. wystąpił problem z sumą kontrolną BIOS-u.
C. pamięć podręczna cache procesora jest uszkodzona.
D. bateria zasilająca pamięć CMOS jest na wyczerpaniu.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, którą zaznaczyłeś, o wyczerpaniu się baterii CMOS, jest jak najbardziej trafna. Pamięć CMOS, czyli ten tajemniczy Complementary Metal-Oxide-Semiconductor, to taka mała pamięć, która trzyma ważne ustawienia Twojego komputera, jak data czy godzina, a także różne parametry BIOS-u. Jeśli bateria zacznie siadać, Twój komputer nie zapamięta tych danych po wyłączeniu. I wtedy pojawia się ten komunikat 'CMOS battery failed'. Wymiana baterii to prosta sprawa, naprawdę każdy może to zrobić, a nowa bateria sprawi, że wszystko wróci do normy. Tak przy okazji, dobrze jest raz na jakiś czas zerknąć na stan tej baterii i wymieniać ją co kilka lat. To jak część dbania o sprzęt – taki mały krok, a często zapominany. W ogóle, myślę, że jeśli chcesz mieć sprawny komputer, to taką wymianę warto włączyć do swojego planu konserwacji sprzętu, bo to z pewnością pomoże uniknąć nieprzyjemnych niespodzianek.

Pytanie 22

Jakie rodzaje układów cyfrowych powinno się wykorzystać, aby zredukować liczbę linii przesyłu danych?

A. Multiplekser i dekoder
B. Koder i transkoder
C. Multiplekser i demultiplekser
D. Koder i demultiplekser

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Multiplekser i demultiplekser to kluczowe elementy w systemach cyfrowych, które umożliwiają zmniejszenie ilości linii przesyłu danych. Multiplekser (MUX) działa jako przełącznik, który wybiera jeden z wielu sygnałów wejściowych i przesyła go na pojedynczy kanał wyjściowy. Przykładowo, w telekomunikacji, multipleksery są wykorzystywane do łączenia wielu linii telefonicznych na jednym łączu, co efektywnie redukuje potrzebną infrastrukturę kablową. Demultiplekser (DEMUX) pełni odwrotną funkcję, rozdzielając sygnał na wiele wyjść. Oba te urządzenia są fundamentem w architekturze komunikacji cyfrowej, gdzie ograniczenie liczby linii przesyłowych prowadzi do obniżenia kosztów i zwiększenia wydajności. Stosowanie tych układów jest zgodne z najlepszymi praktykami inżynieryjnymi, które promują efektywność i oszczędność zasobów w projektowaniu systemów elektronicznych. Dodatkowo, w kontekście standardów, takie rozwiązania wspierają technologie, jak TDM (Time Division Multiplexing), co zwiększa ich uniwersalność i zastosowanie w nowoczesnych systemach.

Pytanie 23

Podczas montażu komponentów elektronicznych metodą lutu miękkiego nie powinno się

A. zajmować się czystością grota
B. ustalać czasu lutowania do poszczególnych miejsc na płytce
C. przenosić lutowia na końcówce grota
D. dostosowywać temperatury lutowania do konkretnej lokalizacji na płytce

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przenoszenie lutowia na grocie lutownicy jest praktyką, której należy unikać, ponieważ może prowadzić do wielu problemów związanych z jakością lutowania. Grota lutownicy powinna być czysta i odpowiednio nagrzana, aby zapewnić skuteczne i trwałe połączenie. Przenoszenie lutowia na grocie zwiększa ryzyko powstawania zanieczyszczeń, co może negatywnie wpłynąć na jakość lutowia i prowadzić do wadliwych połączeń. Zgodnie z najlepszymi praktykami, lutowie powinno być aplikowane bezpośrednio na złącze, a nie na grot. Przykładem dobrego zachowania w tym zakresie jest technika tzw. 'wstępnego podgrzewania' elementów, co zwiększa efektywność procesu lutowania oraz redukuje ryzyko przegrzania. Kolejnym aspektem jest używanie lutowia o odpowiednim składzie, które dobrze wtopi się w materiały bez tworzenia nadmiernych osadów, co z kolei pomoże w uzyskaniu czystego i mocnego połączenia.

Pytanie 24

Który układ scalony, po podłączeniu odpowiednich elementów zewnętrznych, staje się generatorem impulsów prostokątnych?

A. Z80
B. UL7805
C. SN74151
D. NE555

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Układ scalony NE555 jest niezwykle popularnym generatorem impulsów prostokątnych, szeroko stosowanym w różnych aplikacjach elektronicznych. Po dołączeniu odpowiednich elementów zewnętrznych, takich jak rezystory i kondensatory, NE555 może pracować w trybie astabilnym, co oznacza, że generuje ciąg impulsów prostokątnych o określonej częstotliwości. Przykładem zastosowania tego układu jest tworzenie sygnałów zegarowych w systemach cyfrowych, a także w aplikacjach związanych z automatyzacją, gdzie wymagana jest synchronizacja procesów. NE555 jest także wykorzystywany w projektach hobbystycznych, takich jak generatory tonów w zabawkach lub alarmach. Warto zauważyć, że NE555 jest zgodny z wieloma standardami branżowymi, co czyni go wszechstronnym narzędziem w inżynierii elektroniki. Prawidłowe dobieranie wartości elementów zewnętrznych pozwala na precyzyjne dostosowanie parametrów pracy układu, co jest kluczowe w projektowaniu systemów elektronicznych.

Pytanie 25

Aby prawidłowo uziemić system antenowy, nie powinno się używać

A. gołych przewodów miedzianych
B. przewodu zerowego z sieci zasilającej
C. ciągłych rur z instalacji grzewczej
D. ciągłych rur z instalacji wodociągowej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przewód zerowy sieci zasilającej, znany również jako przewód neutralny, nie powinien być wykorzystywany do uziemienia systemu antenowego z kilku istotnych powodów. Przede wszystkim, uziemienie powinno zapewniać skuteczną ochronę przed przepięciami oraz minimalizować ryzyko porażenia prądem elektrycznym. Użycie przewodu zerowego może wprowadzać niebezpieczeństwo, ponieważ w przypadku uszkodzenia może on stać się przewodnikiem prądu, co stwarza poważne zagrożenie dla użytkowników. W standardach dotyczących instalacji elektrycznych, takich jak PN-IEC 60364, podkreśla się znaczenie oddzielania funkcji uziemienia od funkcji neutralnych. Właściwym podejściem jest wykorzystanie oddzielnego przewodu uziemiającego, który ma na celu skuteczne odprowadzanie prądu do ziemi. Przykładem praktycznego zastosowania tego rozwiązania jest instalacja anten, gdzie stosuje się specjalne systemy uziemiające, aby zabezpieczyć zarówno sprzęt, jak i osoby w jego otoczeniu przed skutkami wyładowań atmosferycznych czy innych zakłóceń elektrycznych.

Pytanie 26

W tabeli wymieniono dane techniczne

Przetwornik2 Mpx high-performance CMOS
Rozdzielczość1920 × 1080 (2 Mpx)
Czułość0 lux z IR
Obiektyw2,8 mm
Kąt widzenia103°
FunkcjeAGC, BLC, DWDR
Zasilanie12 V DC
ZastosowanieZewnętrzne, IP66

A. dekodera DVB-T.
B. odbiornika telewizyjnego.
C. kamery CCTV.
D. czujki PIR.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kamery CCTV są urządzeniami przeznaczonymi do monitorowania i rejestrowania obrazu w różnych warunkach oświetleniowych. W danych technicznych, które wskazują na przetwornik, rozdzielczość, czułość oraz obiektyw, można zauważyć, że są to kluczowe parametry dla jakości obrazu. Na przykład, wysoka rozdzielczość jest niezbędna do uzyskania wyraźnych nagrań, które są istotne w kontekście identyfikacji osób i zdarzeń. Czułość kamery, zwłaszcza w warunkach słabego oświetlenia, pozwala na skuteczne monitorowanie w nocy. Funkcje takie jak AGC (Automatic Gain Control) oraz BLC (Back Light Compensation) poprawiają jakość obrazu w trudnych warunkach oświetleniowych, co jest kluczowe dla skutecznego nadzoru. Zasilanie 12 V DC oraz oznaczenie IP66 świadczą o tym, że kamera jest przeznaczona do stosowania na zewnątrz i jest odporna na warunki atmosferyczne, co jest standardem w branży monitoringu wizyjnego. Użycie tego typu kamer jest powszechne w systemach zabezpieczeń budynków, parków i innych obiektów publicznych.

Pytanie 27

Czym jest funkcja AF w radiu?

A. Odbieranie informacji drogowych
B. Automatyczna regulacja głośności
C. Odbieranie lokalnych audycji
D. Automatyczne dostrajanie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Funkcja AF, czyli Automatyczne Dostosowanie, odnosi się do zdolności odbiornika radiowego do automatycznego przestrojenia się na najlepszą dostępną jakość sygnału w danym momencie. W praktyce oznacza to, że gdy sygnał stacji radiowej ulega osłabieniu, system AF może automatycznie przełączyć odbiornik na inną, ale powiązaną częstotliwość, na której ta sama stacja nadaje silniejszy sygnał. To rozwiązanie jest szczególnie przydatne w przypadku stacji, które nadają na kilku częstotliwościach, co jest typowe dla stacji FM. W rezultacie użytkownik nie musi ręcznie zmieniać częstotliwości, co zwiększa komfort i wygodę korzystania z odbiornika. Dobre praktyki w projektowaniu odbiorników radiowych zalecają implementację funkcji AF, aby zapewnić lepszą jakość odbioru oraz minimalizować zakłócenia w trakcie słuchania. To podejście jest zgodne z zasadami ergonomii, które kładą duży nacisk na potrzebę uproszczenia interakcji użytkownika z urządzeniami elektronicznymi.

Pytanie 28

Podczas wymiany uszkodzonego kondensatora filtrującego w zasilaczu sieciowym, tak aby uniknąć zwiększenia tętnień na wyjściu oraz ryzyka uszkodzenia kondensatora z powodu przebicia, można wybrać element o

A. mniejszej pojemności i mniejszym napięciu znamionowym
B. większej pojemności i mniejszym napięciu znamionowym
C. mniejszej pojemności i większym napięciu znamionowym
D. większej pojemności i większym napięciu znamionowym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór kondensatora o większej pojemności oraz o wyższym napięciu znamionowym w kontekście zasilaczy sieciowych jest zgodny z najlepszymi praktykami w dziedzinie elektroniki. Zwiększona pojemność kondensatora filtrującego poprawia zdolność do wygładzania napięcia wyjściowego, co jest kluczowe w zasilaczach przetwornicowych i liniowych, gdzie stabilność napięcia jest istotna dla prawidłowego działania podłączonych urządzeń. Przykład zastosowania to sytuacja, w której wymiana kondensatora w zasilaczu audio może poprawić jakość dźwięku przez redukcję tętnień. Ponadto, wyższe napięcie znamionowe zapewnia margines bezpieczeństwa, co zmniejsza ryzyko przebicia dielektryka kondensatora, szczególnie w aplikacjach, gdzie mogą występować skoki napięcia. Jakiekolwiek zmiany w parametrach kondensatorów filtrujących powinny być zgodne z wytycznymi producentów oraz normami, takimi jak IEC 60384, aby zapewnić bezpieczeństwo i niezawodność systemów elektronicznych.

Pytanie 29

Skrót CCTV odnosi się do telewizji

A. satelitarnej
B. kablowej
C. naziemnej
D. przemysłowej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
CCTV, czyli Closed-Circuit Television, odnosi się do systemu telewizji przemysłowej, który wykorzystuje kamery do nadzoru i monitorowania określonych obszarów. Systemy te działają w zamkniętej sieci, co oznacza, że przesyłane obrazy nie są dostępne publicznie, co zwiększa poziom bezpieczeństwa. Telewizja przemysłowa znajduje zastosowanie w różnych miejscach, takich jak sklepy, biura, parkingi czy obiekty przemysłowe, gdzie monitoring wzmacnia ochronę przed kradzieżą, wandalizmem czy innymi przestępstwami. Przykłady zastosowania to instalacja kamer monitorujących w strefach o podwyższonym ryzyku, takich jak wejścia do budynków użyteczności publicznej, co pozwala na szybszą reakcję służb porządkowych w razie incydentu. W kontekście standardów branżowych, wiele systemów CCTV jest zgodnych z normami ISO/IEC, co zapewnia ich wysoką jakość i niezawodność. Dobrze zaprojektowany system CCTV powinien również uwzględniać aspekty takie jak oświetlenie, kąt widzenia kamer oraz przechowywanie nagrań, co jest kluczowe dla skutecznego monitoringu.

Pytanie 30

Które z działań nie jest konieczne podczas konserwacji bramy przesuwnej?

A. Smarowanie elementów ruchomych napędu
B. Sprawdzenie ustawień krańcowych bramy
C. Weryfikacja działania zabezpieczeń mechanicznych
D. Ponowne programowanie pilotów zdalnego sterowania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Ponowne programowanie pilotów zdalnego sterowania" jest poprawna, ponieważ nie jest to czynność niezbędna do codziennej konserwacji bramy przesuwnej. Regularna konserwacja powinna skupiać się na zapewnieniu prawidłowego działania mechanizmów bramy oraz jej bezpieczeństwa. Sprawdzanie działania zabezpieczeń mechanicznych jest kluczowe, aby uniknąć wypadków i uszkodzeń. Przesmarowanie części ruchomych napędu zapewnia płynność ruchu oraz minimalizuje zużycie elementów, co może wydłużyć ich żywotność. Sprawdzenie położeń krańcowych bramy jest również istotne, ponieważ niewłaściwe ustawienie tych położeń może prowadzić do uszkodzenia bramy oraz systemu napędowego. Warto zaznaczyć, że programowanie pilotów zdalnego sterowania powinno być przeprowadzane tylko w przypadku, gdy zmienia się ich ustawienie lub dodawane są nowe urządzenia. Dlatego nie jest to czynność rutynowa związana z konserwacją bramy.

Pytanie 31

Ochrona podstawowa (przed bezpośrednim kontaktem) w urządzeniach elektrycznych polega na użyciu

A. izolowania części czynnych
B. transformatora separującego
C. wyłączników nadprądowych
D. bezpieczników topikowych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Izolowanie części czynnych jest podstawowym środkiem ochrony przed dotykiem bezpośrednim w urządzeniach elektrycznych, co oznacza, że wszystkie elementy, które mogą być pod napięciem, są oddzielone od dostępnych powierzchni, które mogą być dotykane przez użytkowników. Taki sposób ochrony jest kluczowy, ponieważ minimalizuje ryzyko przypadkowego kontaktu z napięciem oraz potencjalne porażenie prądem. Zastosowanie izolacji w praktyce obejmuje np. użycie obudów wykonanych z materiałów dielektrycznych oraz odpowiedniego projektowania urządzeń, które uniemożliwiają dostęp do części czynnych. W kontekście norm, takich jak IEC 61140, izolacja jest podkreślona jako podstawowy aspekt bezpieczeństwa elektrycznego. Warto również dodać, że izolacja ma różne klasyfikacje, co pozwala na dostosowanie stopnia ochrony do specyficznych warunków pracy urządzenia, co jest zgodne z najlepszymi praktykami w branży elektrycznej.

Pytanie 32

Podczas kontroli czujki czadu stwierdzono, że emituje ona co 30 sekund dwa krótkie sygnały dźwiękowe i czerwona dioda LED miga dwukrotnie. Oznacza to, że

FunkcjaCo to oznaczaJakie działanie należy podjąć
Zielona dioda LED miga co 30 sekundNormalne działanieBrak
Czujnik emituje krótki sygnał dźwiękowy co 60 sekund i miga czerwona dioda LEDNiski poziom bateriiNiezwłocznie wymienić baterie
Czujnik emituje dwa krótkie sygnały co 30 sekund i czerwona dioda LED miga dwukrotnieKoniec okresu eksploatacyjnego czujnikaWymienić czujnik
Czujnik emituje dwa krótkie sygnały co 30 sekund i czerwona dioda LED miga co 30 sekundNieprawidłowe działanieWymienić czujnik
Czerwona dioda LED świeci się i ciągły dźwięk alarmowyAwariaWymienić czujnik
Głośny, ciągły alarm i świecąca się czerwona dioda LEDWykryto niebezpieczne stężenie COPostępować zgodnie z procedurą awaryjną

A. czujka działa poprawnie i wykryła niebezpieczne stężenie tlenku węgla.
B. baterie są rozładowane i należy je wymienić.
C. czujka działa poprawnie i jest w stanie czuwania.
D. okres użytkowania czujki przewidziany przez producenta dobiegł końca i należy ją wymienić.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź jest prawidłowa, ponieważ sygnały emitowane przez czujkę czadu wskazują na koniec jej okresu funkcjonowania. W przypadku czujników tlenku węgla, producenci zazwyczaj przewidują określony czas eksploatacji, zazwyczaj od 5 do 10 lat, po którym czujnik powinien zostać wymieniony, nawet jeśli nie wykrywa on zagrożeń. Emitowanie co 30 sekund dwóch krótkich sygnałów dźwiękowych oraz migająca dioda LED to standardowy sygnał ostrzegawczy używany przez większość producentów, co potwierdzają normy branżowe, takie jak EN 50291. Dlatego w przypadku takiego sygnału należy jak najszybciej wymienić czujkę na nową, aby zapewnić bezpieczeństwo domowników. Przykładowo, po wymianie czujnika warto przeprowadzić regularne kontrole, aby upewnić się, że nowy czujnik działa prawidłowo i jest w stanie skutecznie identyfikować niebezpieczne stężenia czadu.

Pytanie 33

Jakie urządzenia pomiarowe powinny być użyte do określenia charakterystyki przenoszenia wzmacniacza selektywnego LC zasilanego napięciem ±12 V?

A. Zasilacz napięcia stałego, generator funkcyjny oraz oscyloskop
B. Zasilacz symetryczny, generator funkcyjny oraz oscyloskop
C. Generator funkcyjny oraz cyfrowy multimetr
D. Zasilacz symetryczny oraz cyfrowy multimetr

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby wyznaczyć charakterystykę przenoszenia wzmacniacza selektywnego LC, konieczne jest zastosowanie zasilacza symetrycznego, generatora funkcyjnego oraz oscyloskopu. Zasilacz symetryczny zapewnia stabilne napięcie zasilające wzmacniacz, co jest kluczowe dla uzyskania dokładnych pomiarów. Generator funkcyjny umożliwia generowanie sygnałów o różnych częstotliwościach oraz amplitudach, co pozwala na badanie odpowiedzi wzmacniacza na różne częstotliwości. Oscyloskop jest niezbędny do wizualizacji sygnału wyjściowego wzmacniacza, co umożliwia analizę jego charakterystyki przenoszenia. Przykładowo, podczas testowania wzmacniacza selektywnego LC, można wykorzystać generator do przesyłania sygnału sinusoidalnego o zmiennej częstotliwości, a oscyloskop do obserwacji, jak zmienia się amplituda sygnału wyjściowego, co pozwala na określenie pasma przenoszenia oraz zysku wzmacniacza. Stosowanie tych przyrządów jest zgodne z najlepszymi praktykami w dziedzinie elektroniki, co zapewnia wiarygodność i rzetelność uzyskanych wyników pomiarów.

Pytanie 34

Komunikat "HDD Error" na rejestratorze wskazuje na uszkodzenie

A. zasilania kamer.
B. kabelka HDMI.
C. kamer HD.
D. dysku twardego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Komunikat 'HDD Error' w rejestratorze jest jednoznacznym sygnałem, że występuje problem z dyskiem twardym. Dyski twarde, będące kluczowymi komponentami systemów rejestracji wideo, przechowują wszystkie nagrania oraz dane konfiguracyjne. Ich uszkodzenie może prowadzić do utraty danych, co jest szczególnie krytyczne w systemach monitoringu, gdzie bezpieczeństwo jest priorytetem. W przypadku wystąpienia takiego błędu zaleca się natychmiastowe sprawdzenie stanu dysku, na przykład poprzez skanowanie narzędziami diagnostycznymi, takimi jak CrystalDiskInfo, które mogą wykazać stan SMART dysku. Warto również zastanowić się nad regularnym tworzeniem kopii zapasowych danych, aby zminimalizować ryzyko ich utraty w przyszłości. Dobre praktyki w branży monitoringu wizyjnego obejmują również cykliczną wymianę dysków twardych oraz stosowanie dysków przeznaczonych specjalnie do pracy w systemach rejestracji wideo, które są bardziej odporne na naświetlenie i mają dłuższą żywotność.

Pytanie 35

Termin "adres MAC" odnosi się do adresu

A. komputera przydzielonego przez serwer DHCP.
B. serwera DHCP.
C. karty sieciowej przypisanego przez producenta urządzenia.
D. bramy domowej.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Adres MAC (Media Access Control) to unikalny identyfikator przypisany do interfejsu sieciowego urządzenia, takiego jak karta sieciowa, przez producenta. Składa się z 48-bitowej liczby, zazwyczaj zapisywanej w postaci sześciu grup po dwa znaki szesnastkowe. Adresy MAC są używane w warstwie łącza danych modelu OSI do identyfikacji urządzeń w sieci lokalnej. Dzięki unikalności adresu MAC, urządzenia mogą komunikować się bez konfliktów. Przykładowo, router w sieci lokalnej używa adresów MAC do kierowania pakietów do właściwych odbiorców. Warto zauważyć, że adresy MAC są kluczowe w protokołach takich jak Ethernet i Wi-Fi, gdzie identyfikacja urządzeń jest niezbędna do prawidłowego funkcjonowania sieci. Standard IEEE 802.3 dla Ethernetu oraz IEEE 802.11 dla Wi-Fi jasno określają, jak adresy MAC są tworzone i używane. W praktyce, znajomość adresów MAC jest niezbędna przy konfigurowaniu zabezpieczeń w sieci, takich jak filtrowanie MAC, które pozwala administratorom na ograniczenie dostępu do sieci tylko do autoryzowanych urządzeń.

Pytanie 36

Montaż wtyku F na kablu koncentrycznym polega na

A. usunięciu odciętej zewnętrznej izolacji, usunięciu folii, usunięciu izolacji żyły, założeniu wtyku
B. usunięciu odciętej zewnętrznej izolacji, ułożeniu oplotu wzdłuż kabla, usunięciu izolacji żyły, nałożeniu wtyku
C. nacięciu zewnętrznej powłoki, usunięciu folii, usunięciu izolacji żyły, nałożeniu wtyku
D. nacięciu zewnętrznej powłoki, usunięciu oplotu, usunięciu izolacji żyły, nałożeniu wtyku

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazuje na prawidłowy proces montażu wtyku F na przewodzie koncentrycznym. Kluczowym krokiem jest usunięcie odciętej izolacji zewnętrznej, co pozwala na odsłonięcie oplotu. Oplot ten należy prawidłowo ułożyć wzdłuż przewodu, co jest istotne dla zapewnienia dobrego kontaktu elektrycznego oraz ochrony przed zakłóceniami elektromagnetycznymi. Następnie, po usunięciu izolacji żyły, nakręcamy wtyk, co powinno być wykonane z odpowiednią siłą, aby zapewnić solidne połączenie. Praktyczne przykłady zastosowania obejmują instalacje telewizyjne oraz systemy monitoringu, gdzie jakość sygnału jest kluczowa dla poprawnego działania. Dobre praktyki w zakresie montażu wtyków obejmują stosowanie odpowiednich narzędzi, takich jak wyspecjalizowane zaciskarki oraz monitorowanie jakości połączeń za pomocą mierników sygnału. Doświadczeni technicy zwykle przestrzegają standardów branżowych, takich jak ISO/IEC 11801, które zapewniają wytyczne dotyczące instalacji i jakości sygnalizacji w systemach telekomunikacyjnych.

Pytanie 37

Objawem zużycia głowicy laserowej w odtwarzaczu CD będzie

A. spadek obrotów silnika
B. obniżenie prądu lasera
C. wzrost obrotów silnika
D. wzrost prądu lasera

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zwiększenie prądu lasera w odtwarzaczu CD jest symptomem zużycia głowicy laserowej, ponieważ wraz z upływem czasu i eksploatacją, soczewki oraz fotodetektory w głowicy mogą tracić swoje optymalne właściwości. W rezultacie, aby odczytać dane z płyty CD, elektronika odtwarzacza musi zwiększyć prąd dostarczany do lasera, co pozwala na uzyskanie wystarczającej intensywności światła potrzebnej do odczytu. Taki proces może prowadzić do dalszego przyspieszenia zużycia głowicy laserowej, ponieważ wyższy prąd może powodować przegrzewanie i uszkodzenia elementów. W praktyce, kiedy zauważysz, że odtwarzacz CD potrzebuje zwiększonego prądu do poprawnego działania, może to być znak, że wymagana jest konserwacja lub wymiana głowicy. Utrzymywanie urządzeń w dobrym stanie poprzez regularne czyszczenie i unikanie nadmiernego używania może wydłużyć ich żywotność. W branży elektroniki użytkowej, normy jakościowe często zalecają monitorowanie parametrów pracy urządzeń, aby wykrywać takie anomalie jak wzrost prądu lasera.

Pytanie 38

Którego koloru nie powinien mieć przewód fazowy w kablu zasilającym, który dostarcza napięcie z sieci energetycznej do sprzętu elektronicznego?

A. Czarnego
B. Szarego
C. Brązowego
D. Niebieskiego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'niebieskiego' jest poprawna, ponieważ w standardach oznaczania przewodów elektrycznych w Europie, kolor niebieski jest zarezerwowany dla przewodu neutralnego, a nie dla przewodu fazowego. Przewód fazowy powinien być w kolorze brązowym, czarnym lub szarym. W przypadku instalacji elektrycznych, prawidłowe oznaczenie przewodów jest kluczowe dla zapewnienia bezpieczeństwa i funkcjonalności systemów zasilania. Na przykład, w domowych instalacjach elektrycznych, każdy przewód powinien być właściwie oznaczony, aby uniknąć pomyłek przy podłączaniu urządzeń, co może prowadzić do uszkodzeń sprzętu lub zagrożenia porażeniem prądem. Zgodnie z normą PN-EN 60446, separacja kolorów przewodów elektrycznych jest niezbędna dla identyfikacji ich funkcji. Wiedza na temat oznaczeń kolorów przewodów jest istotna nie tylko dla elektryków, ale także dla każdego, kto zajmuje się instalacją lub naprawą urządzeń elektrycznych.

Pytanie 39

Gdy w wzmacniaczu użyjemy ujemnego sprzężenia zwrotnego równoległego o charakterze napięciowym, to wzmocnienie

A. napięciowe zmniejszy się
B. prądowe pozostanie na tym samym poziomie
C. napięciowe zostanie niezmienne
D. napięciowe wzrośnie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Użycie ujemnego sprzężenia zwrotnego równoległego napięciowego w wzmacniaczu ma na celu stabilizację wzmocnienia napięciowego. W praktyce oznacza to, że niezależnie od zmian w warunkach pracy wzmacniacza, jego wzmocnienie napięciowe pozostaje stałe. Taki mechanizm jest istotny, gdyż pozwala na uzyskanie pożądanej jakości sygnału wyjściowego bez względu na zmiany w sygnale wejściowym lub parametrach komponentów wzmacniacza. Na przykład, w zastosowaniach audio, stabilne wzmocnienie umożliwia wierne odwzorowanie dźwięku, co jest kluczowe dla zachowania jakości sygnału. Dobrą praktyką w projektowaniu wzmacniaczy jest stosowanie sprzężenia zwrotnego ujemnego, co pozwala również na poprawę pasma przenoszenia oraz zmniejszenie zniekształceń harmonicznych, co jest zgodne z wieloma standardami branżowymi, takimi jak AES (Audio Engineering Society).

Pytanie 40

Przyrząd, który pozwala na pomiar wartości międzyszczytowej szumów na wyjściu wzmacniacza, to

A. analyzer widma
B. woltomierz cyfrowy
C. oscyloskop jednokanałowy
D. miernik zniekształceń

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oscyloskop jednokanałowy jest narzędziem, które umożliwia obserwację i analizę przebiegów elektrycznych w czasie rzeczywistym. Jego zastosowanie w pomiarze wartości międzyszczytowej szumów na wyjściu wzmacniacza jest szczególnie istotne, ponieważ pozwala na dokładną wizualizację i ocenę charakterystyki sygnału. Dzięki oscyloskopowi możemy zaobserwować nie tylko wartość RMS szumów, ale także ich charakter, co jest kluczowe w diagnostyce systemów audio i telekomunikacyjnych. Przykładem praktycznego zastosowania oscyloskopu w tej roli może być analiza sygnałów w aplikacjach audio, gdzie niska wartość szumów na wyjściu wzmacniacza jest niezbędna do uzyskania wysokiej jakości dźwięku. Dodatkowo, korzystając z oscyloskopu, możemy zidentyfikować źródła zakłóceń w systemie, co pozwala na ich eliminację i poprawę ogólnej jakości sygnału. W branży elektronicznej oscyloskopy są standardowym narzędziem wykorzystywanym do oceny parametrów sygnałów, co potwierdza ich wysoką wartość w procesach inżynieryjnych i testowych.