Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 15 maja 2025 22:22
  • Data zakończenia: 15 maja 2025 22:33

Egzamin zdany!

Wynik: 35/40 punktów (87,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W skład dokumentacji technicznej, która jest przekazywana do Państwowego Zasobu Geodezyjnego i Kartograficznego po zakończeniu pracy geodezyjnej, między innymi wchodzi

A. kopia zawodowych uprawnień geodety
B. oświadczenie o przeprowadzeniu pracy zgodnie z obowiązującymi normami
C. sprawozdanie techniczne
D. faktura za zrealizowane zlecenie
Sprawozdanie techniczne jest kluczowym elementem dokumentacji przekazywanej do Państwowego Zasobu Geodezyjnego i Kartograficznego po wykonaniu prac geodezyjnych. Dokument ten ma na celu szczegółowe przedstawienie wykonanej pracy, jej metod, zastosowanych narzędzi oraz wyników pomiarów. Sprawozdanie powinno zawierać informacje o lokalizacji terenów, charakterystyce wykonanych pomiarów oraz wszelkich odchyleniach od przyjętych norm i standardów. Przykładem praktycznego zastosowania sprawozdania technicznego jest jego wykorzystanie przy weryfikacji dokładności wykonanych pomiarów przez instytucje kontrolujące, co jest niezbędne w kontekście realizacji projektów budowlanych czy infrastrukturalnych. Dodatkowo, zgodnie z ustawą o geodezji i kartografii, sprawozdanie powinno być sporządzone zgodnie z określonymi wytycznymi, co zapewnia wysoką jakość i zaufanie do danych geodezyjnych. Takie dokumenty stanowią również istotne źródło informacji dla dalszych prac planistycznych oraz rozwoju lokalnych baz danych geodezyjnych.

Pytanie 2

Na jakiej długości od początku trasy usytuowany jest punkt oznaczony 2/3+57,00 m?

A. 557,00 m
B. 2557,00 m
C. 2357,00 m
D. 357,00 m
Prawidłowa odpowiedź to 2357,00 m, ponieważ oznaczenie 2/3+57,00 m wskazuje na sposób określania odległości na trasie. W kontekście geodezji i inżynierii lądowej, '2/3' oznacza dwa trzecie odcinka, które zostało już wyznaczone. Przyjmując, że '57,00 m' to dodatkowa odległość, którą należy dodać, obliczamy 2/3 z 3000 m (przykładowo, jeśli pełna długość trasy wynosi 3000 m), co daje 2000 m, a następnie dodajemy 57,00 m, co łącznie daje 2357,00 m. Takie podejście przydaje się w praktyce inżynieryjnej, gdyż pozwala na precyzyjne wyznaczanie punktów na trasach, co jest kluczowe dla prawidłowego prowadzenia robót budowlanych czy projektowania infrastruktury. W standardach geodezyjnych, takich jak PN-EN 1878, określone są metody pomiaru i oznaczania odległości, które są niezbędne w każdym projekcie budowlanym.

Pytanie 3

W której bazie danych państwowego zasobu geodezyjnego i kartograficznego można znaleźć informacje o podziemnych przewodach elektroenergetycznych?

A. BDSOG
B. GESUT
C. BDOT500
D. EGiB
GESUT, czyli Geodezyjna Ewidencja Sieci Uzbrojenia Terenu, to super ważna baza danych. Zawiera ona wszystkie info o infrastrukturze technicznej, w tym o podziemnych kablach elektrycznych. Jak się planuje nowe budowy, to istotne, żeby wiedzieć, gdzie co jest. Dzięki temu można uniknąć uszkodzeń sieci energetycznych, co przecież byłoby katastrofą. Projektanci i geodeci mogą korzystać z GESUT, żeby szybko znaleźć lokalizację i szczegóły dotyczące tych podziemnych przewodów, co jest mega pomocne w trakcie projektowania i budowania. Dodatkowo, standardy GESUT są zgodne z międzynarodowymi rozwiązaniami, co sprawia, że jest to naprawdę przydatne w dzisiejszych czasach, kiedy urbanistyka i inżynieria rozwijają się tak szybko.

Pytanie 4

Do I grupy charakterystycznych detali terenowych, które można jednoznacznie zidentyfikować w terenie i które przejawiają długotrwałą stabilność, zalicza się między innymi

A. wał przeciwpowodziowy
B. boisko sportowe
C. jezioro o naturalnej linii brzegowej
D. budynek szkoły
Budynek szkoły jest przykładem obiektu, który można jednoznacznie zidentyfikować w terenie i który zachowuje długookresową niezmienność. W kontekście analizy terenowej, grupy szczegółów terenowych mogą obejmować obiekty stałe, które mają znaczenie dla planowania przestrzennego i zarządzania infrastrukturą. Budynki publiczne, takie jak szkoły, są zazwyczaj zarejestrowane w systemach GIS (Geographic Information Systems) oraz w dokumentacji urbanistycznej, co pozwala na ich skuteczną lokalizację i analizę w kontekście urbanistyki. Przykładowo, w procesie planowania przestrzennego, informacje o lokalizacji szkół są kluczowe dla ustalania stref oddziaływania, dostępności usług edukacyjnych oraz analizy ruchu uczniów. Dodatkowo, budynki takie jak szkoły są często objęte normami i regulacjami dotyczącymi bezpieczeństwa oraz dostępu, co podkreśla ich znaczenie jako stabilnych elementów infrastruktury społecznej.

Pytanie 5

Jaki opis, używany na mapie zasadniczej, odnosi się do przewodu kanalizacyjnego sanitarnego o średnicy
20 cm, zmierzonego na osnowę?

A. ks20
B. ks200
C. ksP200
D. ksB20
Odpowiedź ks200 jest poprawna, ponieważ zgodnie z obowiązującymi normami w inżynierii lądowej i wodnej, oznaczenia dla przewodów kanalizacyjnych sanitarno-ściekowych o średnicy 20 cm wskazują na ich średnicę w milimetrach. W przypadku przewodów sanitarnych, standardowe oznaczenie składa się z prefiksu 'ks' (kanalizacja sanitarna), a następnie z liczby wskazującej średnicę w mm. Oznaczenie ks200 odnosi się więc bezpośrednio do przewodu o średnicy 200 mm, co jest zgodne z powszechnie uznawanymi praktykami w branży. W praktyce, takie oznaczenie ułatwia zarówno projektowanie, jak i realizację inwestycji budowlanych, ponieważ inżynierowie i projektanci mogą łatwo identyfikować konkretne elementy systemu kanalizacyjnego. Warto również przypomnieć, że stosowanie jednolitych oznaczeń zgodnych z normami europejskimi poprawia komunikację między różnymi uczestnikami procesu budowlanego.

Pytanie 6

Jeśli odcinek o długości 1 cm na mapie odpowiada rzeczywistej odległości 50 m w terenie, to w jakiej skali została stworzona ta mapa?

A. 1:10 000
B. 1:1000
C. 1:5000
D. 1:500
Odpowiedź 1:5000 jest jak najbardziej trafna. Skala mapy to taki ważny temat, bo mówi nam, jak długości na mapie mają się do tych prawdziwych w terenie. Tu mamy 1 cm na mapie, co odpowiada 50 m w rzeczywistości. Jak to przeliczymy, to 50 m to 5000 cm. To znaczy, że 1 cm na mapie to 5000 cm w terenie, co zapisujemy jako 1:5000. Taka informacja jest super ważna przy robieniu map, bo pozwala dobrze oddać to, co mamy w realu. Kiedy korzystasz z mapy w skali 1:5000, łatwo możesz planować różne rzeczy, na przykład budowę czy nawigację. Tego typu mapy są często wykorzystywane w sprawach takich jak urbanistyka czy geodezja, gdzie potrzebujemy przedstawienia terenu w szczegółowy sposób. Rozumienie skali mapy pozwala lepiej czytać dane przestrzenne i podejmować mądrzejsze decyzje na bazie tego, co widzimy na mapie.

Pytanie 7

Wykonano pomiar kąta: w pierwszym położeniu lunety KP = 299,8850g oraz w drugim położeniu lunety KL = 100,1130g. Oblicz wartość mo

A. +0,0020g
B. +0,0010g
C. -0,0010g
D. -0,0020g
Wybór odpowiedzi innych niż -0,0010g często wynika z nieporozumienia dotyczącego właściwego obliczania różnicy kątów, a także z niewłaściwego zrozumienia konwencji stosowanych w geodezji. Często błędne podejścia opierają się na pomyłkach przy odejmowaniu wartości kątowych, gdzie zamiast prawidłowego obliczenia różnicy, użytkownicy mogą mylnie utożsamiać wartości bez uwzględnienia ich kontekstu. Na przykład, obliczenia takie jak -0,0020g lub +0,0010g pojawiają się, gdy ktoś niepoprawnie interpretuje wzory lub wprowadza nieprawidłowe założenia dotyczące kierunku pomiaru. Dodatkowo, w geodezyjnych odczytach, ważne jest, aby pamiętać o kierunku pomiaru i standardowych korekcjach, które mogą wpłynąć na ostateczne wyniki. Użytkownicy mogą również nie dostrzegać, że pomiary kątowe są relatywne, a ich interpretacja wymaga uwzględnienia pełnego obiegu kątowego, co prowadzi do typowych błędów przy zliczaniu kątów przekraczających 360 stopni. Ostatecznie, kluczowe jest, aby przy obliczeniach kątów stosować zasady obowiązujące w danym kontekście geodezyjnym, co pozwala na dokładne i zgodne z normami wyniki.

Pytanie 8

Jakie informacje nie są uwzględniane w szkicu polowym przy pomiarze szczegółów terenowych metodą ortogonalną?

A. Numery obiektów
B. Domiary prostokątne
C. Sytuacyjne szczegóły terenowe
D. Wysokości punktów terenu
Wysokości punktów terenu nie są zazwyczaj umieszczane na szkicu polowym z pomiaru szczegółów terenowych metodą ortogonalną, ponieważ ten typ szkicu koncentruje się głównie na przedstawieniu układu przestrzennego obiektów oraz ich relacji do siebie. Metoda ortogonalna zazwyczaj wykorzystywana jest do pomiaru szczegółów sytuacyjnych i domiarów prostokątnych, które są kluczowe dla dokładnego odwzorowania terenu na mapie. Wysokości punktów terenu, mimo że są ważnym aspektem w geodezji, są zazwyczaj dokumentowane oddzielnie, na przykład w postaci profili wysokościowych lub na innych rodzajach dokumentów, które bardziej skupiają się na aspektach terenowych. W praktyce oznacza to, że inżynierowie i geodeci muszą być świadomi, jakie informacje są dla nich kluczowe na różnych etapach projektowania, aby odpowiednio dobierać metody pomiarowe i dokumentacyjne.

Pytanie 9

Plan zagospodarowania terenu powinien być wykonany na podstawie aktualnej mapy

A. topograficznej
B. zasadniczej
C. branżowej
D. inwentaryzacyjnej
Odpowiedź "zasadnicza" jest poprawna, ponieważ projekt zagospodarowania działki lub terenu należy sporządzić na podstawie mapy zasadniczej, która jest oficjalnym dokumentem zawierającym szczegółowe informacje o terenach, w tym granice działek, infrastrukturę oraz istniejące zagospodarowanie. Mapa zasadnicza jest kluczowym narzędziem w procesie planowania przestrzennego, ponieważ odzwierciedla aktualny stan zagospodarowania przestrzennego oraz umożliwia analizę i projektowanie nowych rozwiązań. W praktyce, architekci i planiści często korzystają z map zasadniczych w celu oceny potencjału działki, identyfikacji ograniczeń (np. strefy ochrony środowiska) oraz planowania przyszłego zagospodarowania. Dobre praktyki w zakresie sporządzania projektów uwzględniają również aktualizację mapy zasadniczej, aby zapewnić zgodność z obowiązującymi przepisami prawa budowlanego i lokalnymi planami zagospodarowania przestrzennego. Dodatkowo, znajomość mapy zasadniczej jest niezbędna w kontekście pozyskiwania pozwoleń na budowę oraz w procesach inwestycyjnych.

Pytanie 10

Jaką metodą powinno się ustalić wysokość stanowiska instrumentu w niwelacji punktów rozrzuconych?

A. Niwelacji reperów
B. Niwelacji siatkowej
C. Ortogonalną
D. Biegunową
Wybór innych metod, takich jak niwelacja siatkowa, biegunowa czy ortogonalna, w kontekście wyznaczania wysokości stanowiska instrumentu w niwelacji punktów rozproszonych, może prowadzić do wielu nieporozumień i błędów. Niwelacja siatkowa, choć użyteczna w pracach terenowych, nie koncentruje się na precyzyjnym wyznaczeniu wysokości instrumentu, lecz na rozkładzie danych pomiarowych w siatce, co nie zawsze zapewnia wymagany poziom dokładności w lokalizacji punktów. Z kolei niwelacja biegunowa skupia się na pomiarach kątów i odległości, co jest efektywne w innych aspektach geodezji, lecz nie dostarcza informacji dotyczących wysokości bezpośrednio związanych z punktem pomiarowym. Metoda ortogonalna, z kolei, polega na stosowaniu prostych kątów do ustalenia odniesienia, co w kontekście niwelacji może być zbyt uproszczonym podejściem, prowadzącym do błędów w pomiarach wysokości. W praktyce, te metody nie są przystosowane do dokładnego wyznaczania wysokości stanowiska instrumentów, co jest kluczowym krokiem w procesie niwelacji, a ich niewłaściwe zastosowanie może skutkować znacznymi różnicami w wynikach pomiarowych. Dlatego tak ważne jest stosowanie odpowiednich procedur i metod, aby zapewnić wiarygodność i precyzję wyników w geodezyjnych badaniach terenowych.

Pytanie 11

Przybliżone wartości azymutu dla punktu węzłowego W to: 54,2333g, 54,2331g, 54,2329g. Jakia jest najbardziej prawdopodobna wartość azymutu punktu węzłowego W, zakładając, że w każdym z ciągów poligonowych wykonano tę samą liczbę pomiarów kątów, a punkt węzłowy jest ostatnim punktem w każdym z trzech ciągów?

A. 108,4664g
B. 54,2329g
C. 54,2331g
D. 162,6993g
Tak, odpowiedź 54,2331g jest tą, której szukaliśmy! To jest wartość, która najlepiej pasuje do średnich wyników pomiarów azymutu punktu węzłowego W. Jak wiadomo, przy obliczaniu azymutu w geodezji, ważne jest, by mieć na uwadze błędy pomiarowe. Chodzi o to, żeby uzyskać jak najdokładniejszy wynik. Mamy tutaj trzy różne pomiary: 54,2333g, 54,2331g i 54,2329g. Z tych pomiarów środkowa wartość, czyli 54,2331g, jest najbardziej prawdopodobna, bo jest najbliżej średniej arytmetycznej. W geodezji staramy się tak robić, bo to pomaga zredukować wpływ przypadkowych błędów. Tego typu podejście znajduje zastosowanie w różnych dziedzinach, jak np. inżynieria lądowa czy kartografia, gdzie precyzyjne ustalenie kierunków jest mega istotne w projektowaniu i realizacji prac geodezyjnych.

Pytanie 12

Jaką wartość ma kąt, o który trzeba obrócić alidadę przy precyzyjnym poziomowaniu teodolitu, po ustawieniu libelli równolegle do osi dwóch śrub regulacyjnych oraz ustawieniu pęcherzyka w pozycji centralnej?

A. 360°
B. 180°
C. 200°
D. 90°
Odpowiedź 90° jest poprawna, ponieważ podczas dokładnego poziomowania teodolitu, alidade musi być obrócona o kąt prosty względem linii ustawczych, aby uzyskać odpowiednią orientację. Obrót o 90° umożliwia precyzyjne sprawdzenie poziomu w kierunku prostopadłym do linii, na której zainstalowano teodolit. W praktyce, obrócenie alidade o ten kąt umożliwia wykonanie pomiarów w dwóch prostopadłych kierunkach, co jest istotne dla uzyskania dokładnych wyników. W standardach branżowych, takich jak normy ISO dotyczące pomiarów geodezyjnych, wskazuje się na znaczenie precyzyjnego poziomowania i wykorzystania alidady do potwierdzenia poprawności ustawienia urządzenia. W przypadku pomiarów budowlanych lub inżynieryjnych, prawidłowe poziomowanie teodolitu jest kluczowe, aby uniknąć błędów, które mogą prowadzić do kosztownych poprawek i opóźnień. Dlatego znajomość technik obrotu alidade oraz ich zastosowanie w praktyce jest niezbędna dla każdego geodety.

Pytanie 13

Wykonanie mapy zasadniczej dla obszarów z istotnym obecnym lub prognozowanym zainwestowaniem powinno odbywać się w skali

A. 1:500
B. 1:1000
C. 1:2000
D. 1:5000
Odpowiedź 1:2000 jest prawidłowa, ponieważ opracowanie mapy zasadniczej dla terenów o znacznym obecnym lub przewidywanym zainwestowaniu wymaga szczegółowego przedstawienia lokalizacji, granic i charakterystyki terenu. Skala 1:2000 pozwala na dokładne przedstawienie elementów urbanistycznych, takich jak ulice, budynki oraz infrastruktura techniczna. W praktyce, mapy w tej skali stosowane są do projektowania i planowania przestrzennego, co jest kluczowe w kontekście uchwał planistycznych i decyzji administracyjnych. W standardach branżowych, takich jak normy dotyczące geodezji i kartografii, podkreśla się znaczenie precyzyjnych odwzorowań w przypadkach intensywnej zabudowy. Przykładem zastosowania może być przygotowanie dokumentacji do wydania pozwolenia na budowę, gdzie konieczne jest uwzględnienie wszystkich detali infrastrukturalnych i istniejących obiektów, co jest możliwe tylko w takiej skali.

Pytanie 14

Który z podanych wzorów powinien być wykorzystany do obliczenia teoretycznej sumy kątów lewych w otwartym ciągu poligonowym, dowiązanym z dwóch stron?

A. [α] = AK + AP - n × 200g
B. [α] = AK – AP + n × 200g
C. [β] = AP – AK + n × 200g
D. [β] = AP + AK - n × 200g
Wzór [α] = AK – AP + n × 200g jest prawidłowy do obliczania sumy teoretycznej kątów lewych w ciągu poligonowym otwartym, dwustronnie dowiązanym. Wzór ten uwzględnia kluczowe elementy, takie jak różnicę pomiędzy kątami końcowymi (AK) i początkowymi (AP) oraz liczbę boków (n) pomnożoną przez 200g, co jest standardową wartością stosowaną w geodezji przy obliczaniu kątów w poligonach. Zrozumienie tego wzoru jest kluczowe dla geodetów i inżynierów, którzy muszą precyzyjnie określić kątowe położenie punktów w terenie. Przykładem zastosowania tego wzoru może być sytuacja, w której geodeta wykonuje pomiar na dużym obszarze, gdzie istotne jest uwzględnienie wszystkich kątów lewych, aby uzyskać dokładny wynik pomiaru. Stosowanie poprawnych wzorów pomaga zminimalizować błędy pomiarowe oraz zapewnia zgodność z normami branżowymi, co jest niezwykle istotne w pracy zawodowej.

Pytanie 15

Wyznacz wysokość punktu HP, mając dane:
- wysokość stanowiska pomiarowego Hst = 200,66 m,
- wysokość instrumentu i = 1,55 m,
- pomiar kreski środkowej na łacie s = 1150.

A. HP = 203,36 m
B. HP = 201,06 m
C. HP = 197,96 m
D. HP = 200,26 m
Aby obliczyć wysokość punktu HP, należy zastosować wzór: HP = Hst - i + s, gdzie Hst to wysokość stanowiska pomiarowego, i to wysokość instrumentu, a s to odczyt kreski środkowej na łacie. W naszym przypadku mamy: Hst = 200,66 m, i = 1,55 m oraz s = 1150 mm (czyli 1,150 m). Podstawiając wartości do wzoru, otrzymujemy: HP = 200,66 m - 1,55 m + 1,150 m = 201,06 m. Ta metoda jest fundamentalna w geodezji, szczególnie w pomiarach wysokościowych, gdzie precyzyjne ustalenie wysokości punktu odniesienia jest kluczowe dla dokładności dalszych pomiarów. W praktyce, szczególnie w inżynierii lądowej i budowlanej, umiejętność poprawnego stosowania takich obliczeń jest niezbędna, aby zapewnić zgodność z zasadami i standardami branżowymi. Zrozumienie podstawowych zasad obliczeń wysokości jest również przydatne w kontekście projektowania i analizy terenu, gdzie precyzyjne dane wysokościowe są wykorzystywane do oceny ukształtowania terenu oraz planowania infrastruktur takich jak drogi czy mosty.

Pytanie 16

Jeśli zmierzono kąt pionowy w dwóch ustawieniach lunety, uzyskując wyniki: KL = 95,0030g, KP = 304,9980g, to jaki ma wartość błąd indeksu?

A. +20cc
B. +10cc
C. +5cc
D. +15cc
Rozważając inne możliwe odpowiedzi, warto zauważyć, że pomyłki w obliczeniach wartości błędu indeksu często wynikają z niezrozumienia relacji pomiędzy kątami pomierzonymi a teoretycznymi wartościami. Na przykład, wybór +10cc mógłby sugerować, że pomiar został zinterpretowany jako mniejszy błąd, co jest mylnym wnioskiem przy skomplikowanej analizie kątów. Inne opcje, takie jak +20cc, +15cc, także mogą wynikać z błędnego założenia o pełnym obrocie lunety. Zrozumienie podstaw metody pomiarowej oraz znajomość geodezyjnych norm i praktyk jest kluczowe. Kiedy luneta jest nieodpowiednio skalibrowana, pomiary mogą przynieść zafałszowane wyniki. Należy pamiętać, że błąd indeksu jest istotny dla precyzyjnych pomiarów w geodezji, a jego właściwe obliczenie ma kluczowe znaczenie dla dokładności całego procesu pomiarowego. Dlatego też każdy, kto pracuje z instrumentami geodezyjnymi, powinien być świadomy potencjalnych źródeł błędów oraz regularnie dokonywać kalibracji sprzętu.

Pytanie 17

Jakie grupy lub grupy dokładnościowe obejmują detale terenowe, których pomiar można zrealizować za pomocą limy pomiarowej, opierając się z jednej strony na narożniku budynku, a z drugiej na latarni?

A. Do I i II grupy
B. Tylko do I grupy
C. Tylko do II grupy
D. Do II i III grupy
Odpowiedź wskazująca na przynależność szczegółów terenowych do II i III grupy jest poprawna, ponieważ obie te grupy obejmują pomiary, które można wykonać za pomocą limy pomiarowej. Grupa II odnosi się do pomiarów, które wymagają większej dokładności, typowych dla prac geodezyjnych związanych z inżynierią lądową i budownictwem, gdzie precyzyjne ustalenie lokalizacji elementów budowlanych jest kluczowe. Z kolei grupa III to pomiary o niższej precyzji, jednak nadal akceptowalne w kontekście podstawowych prac terenowych. W praktyce, dokładne pomiary związane z narożnikami budynków oraz ich relacją do latarni mogą mieć zastosowanie w różnych projektach budowlanych, takich jak planowanie i kontrola robót budowlanych, a także w geodezyjnych kontrolach jakości. Standardy, takie jak normy ISO 17123 dotyczące metod pomiarów w geodezji, podkreślają znaczenie stosowania odpowiednich narzędzi, jak lima pomiarowa, w celu zapewnienia wymaganej dokładności i powtarzalności pomiarów.

Pytanie 18

Na podstawie przedstawionego raportu z wyrównania współrzędnych punktów osnowy realizacyjnej określ, ile wynosi błąd średni położenia punktu 1005.

Lp.Nr PX [m]Y [m]Mx [m]My [m]Mp [m]KL
11000843729.5930255814.63260.00790.01820.0198
21004843905.8055255769.88160.01440.01830.0233
31003843923.6493255717.15190.01660.01850.0248
41002843906.0657255712.58920.01790.01860.0258
51005843936.8654255729.41120.01580.01850.0243
61221843726.5500255606.63000.00000.00000.0000
7767845301.9800255940.35000.00000.00000.0000s
81336845312.2400255012.03000.00000.00000.0000s
91228844953.2000257194.25000.00000.00000.0000s

A. 18,5 mm
B. 23,4 mm
C. 15,8 mm
D. 24,3 mm
Poprawna odpowiedź to 24,3 mm, co odpowiada wartości 0,0243 m przedstawionej w raporcie z wyrównania współrzędnych punktów osnowy realizacyjnej. Błąd średni położenia punktu jest kluczowym parametrem w geodezji, ponieważ odzwierciedla precyzję i dokładność pomiarów. W praktyce, błąd średni pokazuje, jak daleko średnio zmierzone punkty odchylają się od rzeczywistej pozycji. Wartość 24,3 mm mieści się w akceptowalnym zakresie błędów dla pomiarów geodezyjnych, co jest zgodne z normami przyjętymi w branży, takimi jak ISO 17123. W przypadku pomiarów terenowych, odpowiedni błąd średni jest istotny, aby zapewnić wiarygodność i użyteczność danych geodezyjnych, które są wykorzystywane w projektach budowlanych, mapowaniu, a także w systemach informacji geograficznej (GIS). Dlatego umiejętność poprawnego odczytywania raportów z wyrównania i interpretacji błędów jest niezwykle cenna dla każdego geodety.

Pytanie 19

Który wzór powinien być użyty do obliczenia łącznej sumy kątów wewnętrznych w zamkniętym wielokącie?

A. [β] = (n+2)∙200g
B. [β] = Ak − Ap + n∙200g
C. [β] = (n−2)∙200g
D. [β] = Ap − Ak + n∙200g
Poprawna odpowiedź to wzór [β] = (n−2)∙200g, który służy do obliczania sumy kątów wewnętrznych w poligonie zamkniętym. Wzór ten opiera się na podstawowej zasadzie geometrii, zgodnie z którą suma kątów wewnętrznych w n-kącie (poligonie o n bokach) wynosi (n−2) razy 180 stopni. W praktyce, aby dostosować jednostki do typowego zapisu w geodezji, wprowadza się przelicznik 200g, co odpowiada 180 stopniom (200g = 180°). W związku z tym, dla trójkąta (n=3) suma kątów wynosi (3−2)∙200g = 200g, co jest zgodne z klasycznym wynikiem 180°. Dla czworokąta (n=4) mamy (4−2)∙200g = 400g, co odpowiada 360°. Taki sposób obliczeń jest powszechnie stosowany w inżynierii i architekturze, gdzie precyzyjne określenie kątów jest kluczowe do prawidłowego projektowania i realizacji budowli. Wiedza ta jest także istotna w kontekście standardów geodezyjnych oraz przy tworzeniu map i projektów przestrzennych.

Pytanie 20

Południkiem osiowym w odwzorowaniu Gaussa-Krügera dla układu współrzędnych PL-2000 jest południk

A. 21°
B. 22°
C. 20°
D. 19°
Odpowiedź 21° jest poprawna, ponieważ w układzie współrzędnych PL-2000 południkiem osiowym odwzorowania Gaussa-Krügera dla strefy, w której mieści się Polska, jest właśnie południk 21°. Układ PL-2000 jest oparty na odwzorowaniu Gaussa-Krügera, które jest używane do precyzyjnego odwzorowywania powierzchni ziemi na płaszczyznach. Południki osiowe są kluczowe, ponieważ definiują strefy odwzorowań, co jest istotne w kontekście dokładności geodezyjnej oraz kartograficznej. Użycie południka 21° pozwala na minimalizację zniekształceń w obszarze, co jest przydatne w praktyce, na przykład w geodezji czy podczas tworzenia map topograficznych. Dobór odpowiednich południków jest zgodny z normami, takimi jak PN-EN ISO 19111, które określają zasady klasyfikacji i odwzorowań strefowych. Wiedza na temat południków osiowych jest kluczowa dla profesjonalistów zajmujących się kartografią i geodezją, ponieważ wpływa na jakość i dokładność realizowanych projektów.

Pytanie 21

Punkty pomiarowe osnowy sytuacyjnej powinny być stabilizowane w sposób gwarantujący ich jednoznaczne oznakowanie w terenie, podczas

A. inwentaryzacji po zakończeniu budowy obiektu
B. pracy w trakcie już rozpoczętego lub planowanego procesu inwestycyjnego
C. inwentaryzacji po zakończeniu budowy sieci uzbrojenia terenu
D. aktualizacji danych w bazie obiektów topograficznych
Prac w rozpoczętym lub przewidywanym procesie inwestycyjnym są kluczowe dla stabilizacji punktów pomiarowej osnowy sytuacyjnej, gdyż w tym kontekście zapewnia się nie tylko ich dokładność, ale i trwałość w terenie. Stabilizacja punktów pomiarowych ma na celu umożliwienie ich jednoznacznego oznaczenia i pomiaru w obszarach, gdzie prowadzone są działania budowlane lub infrastrukturalne. W procesie inwestycyjnym należy zastosować odpowiednie metody geodezyjne oraz techniki weryfikacji, takie jak pomiary GPS, które umożliwiają precyzyjne ustalenie lokalizacji punktów osnowy. Zgodnie z normami branżowymi, takie jak PN-EN ISO 17123-1, stabilizacja punktów powinna być przeprowadzana zgodnie z określonymi procedurami zapewniającymi ich ochronę przed zniszczeniem lub przemieszczeniem. Przykładami zastosowania mogą być projekty drogowe, budowy budynków, gdzie punkty osnowy stanowią fundament dla dalszych pomiarów geodezyjnych i inwentaryzacyjnych, co podkreśla ich znaczenie dla całego procesu inwestycyjnego.

Pytanie 22

Nieosiągnięcie warunku, który mówi o prostopadłości osi obrotu lunety "h" do pionowej osi obrotu instrumentu "v", określane jest jako błąd

A. libeli pudełkowej
B. inklinacji
C. kolimacji
D. libeli rurkowej
Odpowiedź "inklinacji" jest poprawna, ponieważ odnosi się do błędu, który występuje, gdy oś obrotu lunety nie jest prostopadła do pionowej osi obrotu instrumentu pomiarowego. W praktyce, błąd ten może prowadzić do nieprawidłowych odczytów i wpływać na dokładność pomiarów. Przykładowo, w geodezji oraz budownictwie, niewłaściwa inklinacja może skutkować błędami w pomiarach wysokości lub odległości, co może prowadzić do nieprawidłowego usytuowania budynków czy elementów infrastruktury. W celu minimalizacji błędu inklinacji, należy regularnie kalibrować instrumenty oraz upewnić się, że są one stabilnie zamocowane na odpowiednich podstawach. Ponadto, stosowanie wysokiej jakości poziomów oraz technik pomiarowych zgodnych z normami, takimi jak ISO 17123, może znacznie poprawić precyzję pomiarów oraz ograniczyć wpływ błędów inklinacji na wyniki w praktyce.

Pytanie 23

Jaki zapis, używany na mapie zasadniczej, odnosi się do przewodu kanalizacyjnego sanitarnego o średnicy 20 cm, zmierzonego na osnowę?

A. ks200
B. ksP200
C. ks20
D. ksB20
Odpowiedź ks200 jest jak najbardziej trafna. Tutaj literka 'k' oznacza, że mówimy o przewodach kanalizacyjnych, a 's' wskazuje na ich rodzaj, czyli sanitarny. Liczba '200' to nic innego jak średnica przewodu podana w milimetrach, co oznacza, że mamy do czynienia z przewodem o średnicy 20 cm. Moim zdaniem, takie oznaczenia są super ważne, bo inżynierowie muszą mieć jasność, jak rozróżnić różne rodzaje przewodów w kanalizacji. Dzięki temu możemy lepiej zaprojektować i zrealizować instalacje. Odpowiednie oznaczenie przewodów jest kluczowe, żeby wszystko działało jak należy i było zgodne z normami budowlanymi. Fajnie, że mamy ustalone konwencje, bo to podnosi jakość projektów i ułatwia późniejszą konserwację.

Pytanie 24

Wysokość anteny odbiorczej przed oraz po zakończeniu sesji pomiarowej przy użyciu metody precyzyjnego pozycjonowania z zastosowaniem GNSS powinna być określona z dokładnością wynoszącą

A. 0,02 m
B. 0,004 m
C. 0,01 m
D. 0,001 m
Odpowiedź 0,01 m jest prawidłowa, ponieważ w kontekście precyzyjnego pozycjonowania GNSS, precyzja ustaleń dotyczących wysokości anteny odbiornika jest kluczowa dla uzyskania dokładnych wyników. Standardy pomiarowe, takie jak te określone przez IGS (International GNSS Service), wskazują, że dokładność pomiarów wysokości powinna wynosić co najmniej 0,01 m w przypadku dokładnych aplikacji, takich jak geodezja czy monitoring deformacji terenu. Przykładowo, w projektach budowlanych, gdzie precyzyjne pomiary wysokości mają kluczowe znaczenie dla stabilności konstrukcji, ustalanie wysokości anteny z dokładnością 0,01 m pozwala na minimalizację błędów, co przekłada się na wyższą jakość wykonania oraz bezpieczeństwo obiektów. Tego typu precyzja jest również kluczowa w aplikacjach związanych z systemami nawigacyjnymi oraz w badaniach geofizycznych, gdzie nawet najdrobniejsze różnice w wysokości mogą wpływać na wyniki analiz. Zatem, 0,01 m jest standardem, który zapewnia wystarczającą dokładność dla większości zastosowań związanych z GNSS.

Pytanie 25

Gdzie umieszczane są punkty odniesienia do pomiaru przemieszczeń w kierunku pionowym?

A. na monitorowanym obiekcie
B. w sąsiedztwie monitorowanego obiektu
C. poza obszarem wpływu monitorowanego obiektu
D. w obszarze wpływu monitorowanego obiektu
Prawidłowa odpowiedź, czyli lokalizacja punktów odniesienia poza strefą oddziaływania monitorowanego obiektu, jest kluczowa dla poprawności pomiarów przemieszczeń pionowych. Punkty odniesienia powinny być umiejscowione w obszarze, który nie jest narażony na wpływ czynników wywołujących ruch monitorowanego obiektu, takich jak drgania, osiadanie lub przemieszczenia. Dzięki temu uzyskujemy stabilne i wiarygodne dane, które można wykorzystać do analizy zmian w długim okresie. Na przykład, w inżynierii lądowej, standardy takie jak Eurokod 7 zalecają, aby punkty odniesienia były umieszczone w lokalizacjach, które są z dala od wszelkich potencjalnych zakłóceń. Przykładem może być monitorowanie osiadania budynków; jeśli punkty referencyjne znajdują się w pobliżu, mogą być poddawane tym samym wpływom co obiekt, co zafałszuje wyniki pomiarów. W kontekście geodezji, takie podejście jest kluczowe do uzyskania precyzyjnych wyników, które są podstawą do podejmowania decyzji inżynieryjnych.

Pytanie 26

Jaką maksymalną liczbę boków może mieć jednostronnie nawiązany wielokąt?

A. 5 boków
B. 3 boki
C. 4 boki
D. 2 boki
Odpowiedź 2 boki jest prawidłowa, ponieważ w kontekście poligonów jednostronnie nawiązanych rozumiemy, że taki poligon to figura geometryczna, która jest zbudowana z segmentów prostych, gdzie każdy z wierzchołków łączy się tylko z dwoma innymi wierzchołkami. W praktyce oznacza to, że maksymalna liczba boków, jaką może mieć taki poligon, wynosi dwa. Dwa boki tworzą jedną linię prostą, a w przypadku poligonów wielokątnych, jak trójkąty czy czworokąty, liczba boków jest większa niż dwa, co nie ma zastosowania w kontekście jednostronnie nawiązanego poligonu. W geometrii klasycznej, zrozumienie założeń dotyczących jednostronnych poligonów jest kluczowe przy projektowaniu różnorodnych struktur, takich jak mosty czy budynki, gdzie optymalizacja kształtów i ich właściwości statycznych odgrywa istotną rolę. Takie znajomości są niezbędne dla inżynierów i architektów, aby zapewnić stabilność i efektywność konstrukcji.

Pytanie 27

Mapy zasadniczej nie sporządza się w skali

A. 1:2000
B. 1:10000
C. 1:1000
D. 1:5000
Odpowiedź 1:10000 jest prawidłowa, ponieważ mapy zasadnicze są tworzone w skali 1:10000, co jest zgodne ze standardami określonymi w przepisach dotyczących geodezji i kartografii. Ta skala jest optymalna dla prezentacji lokalnych szczegółów w terenie, co czyni ją niezwykle przydatną w działaniach związanych z urbanistyką, planowaniem przestrzennym oraz w procesach inwestycyjnych. Właściwe odwzorowanie terenu w tej skali umożliwia dokładne pomiary i analizy, które są niezbędne w planowaniu budynków, dróg oraz infrastruktury. Mapy w tej skali są zazwyczaj wykorzystywane w projektach budowlanych, gdzie precyzyjne odwzorowanie elementów terenu, takich jak granice działek, sieci uzbrojenia terenu oraz istniejące obiekty, jest kluczowe dla skutecznego zarządzania inwestycją. Zgodność z normami, takimi jak PN-ISO 19110, podkreśla znaczenie jakości danych w procesach geoinformacyjnych, co sprawia, że skala 1:10000 jest szeroko uznawana jako standardowa w polskiej geodezji.

Pytanie 28

Która z metod niwelacji opiera się na określaniu różnic w wysokości pomiędzy punktami terenu za pomocą zmierzonych kątów pionowych oraz odległości poziomych między tymi punktami?

A. Geometryczna
B. Punktów rozproszonych
C. Reperów
D. Trygonometryczna
Metoda niwelacji trygonometrycznej opiera się na wyznaczaniu różnic wysokości pomiędzy punktami terenowymi przy użyciu pomiarów kątów pionowych oraz odległości poziomych. Ta technika jest szczególnie przydatna w sytuacjach, gdzie bezpośredni dostęp do punktów jest utrudniony lub niemożliwy. W praktyce, inżynierowie często wykorzystują niwelację trygonometryczną do tworzenia bardziej skomplikowanych projektów budowlanych, takich jak mosty czy drogi, gdzie precyzyjne określenie różnic wysokości jest kluczowe. Zastosowanie tej metody pozwala na obliczenia przy użyciu wzorów trygonometrycznych, co zwiększa efektywność pomiarów. Standardy branżowe, takie jak normy ISO dotyczące geodezji, wskazują na niwelację trygonometryczną jako jedną z zalecanych metod w skomplikowanych projektach geodezyjnych, co świadczy o jej uznawanej wartości i praktyczności w dziedzinie inżynierii i geodezji.

Pytanie 29

Na mapach naturalne formy rzeźby terenu zaznacza się kolorem

A. żółtym
B. czarnym
C. brązowym
D. szarym
Naturalne formy rzeźby terenu, takie jak góry, doliny, wzgórza czy inne ukształtowania, są na mapach topograficznych zazwyczaj przedstawiane kolorem brązowym. To ustalenie wynika z międzynarodowych standardów kartograficznych, które wskazują, że brąz jest najbardziej adekwatnym kolorem do reprezentacji ukształtowania terenu, ponieważ kojarzy się z ziemią oraz jest najlepiej widoczny na tle innych kolorów używanych do oznaczania wód (niebieski) oraz terenów zabudowanych (czarny). Przykładowo, w przypadku analiz geograficznych i ekologicznych, używanie brązowych odcieni na mapach pozwala nie tylko na łatwiejszą interpretację rzeźby terenu, ale również na identyfikację obszarów potencjalnego zagrożenia erozją czy osuwiskami. Dodatkowo, w kontekście planowania przestrzennego, zrozumienie ukształtowania terenu jest kluczowe dla podejmowania decyzji o lokalizacji infrastruktury, co czyni znajomość zasad przedstawiania rzeźby terenu niezbędną umiejętnością w wielu dziedzinach związanych z geografią i urbanistyką.

Pytanie 30

W jakiej skali sporządza się mapy zasadnicze dla niewielkich miejscowości, obszarów metropolitalnych i stref przemysłowych?

A. 1 : 5000
B. 1 : 2000
C. 1 : 1000
D. 1 : 500
Mapy zasadnicze małych miast, aglomeracji miejskich i obszarów przemysłowych nie są sporządzane w skali 1 : 2000, 1 : 500 ani 1 : 5000, ponieważ każda z tych skal nie odpowiada wymaganiom dokładności, jakie stawiane są tego typu dokumentacji. Skala 1 : 2000 jest zbyt mało szczegółowa dla obszarów, gdzie konieczna jest dokładna analiza urbanistyczna. Przykładowo, przy takiej skali, każdy centymetr na mapie odpowiada 20 metrów w rzeczywistości, co czyni mapę niepraktyczną do zadań takich jak planowanie nowych budynków czy infrastruktury. Z kolei skala 1 : 500 jest zbyt dużą szczegółowością dla mapy zasadniczej, co może prowadzić do nieprzydatności w codziennym użytkowaniu, ponieważ w takich przypadkach trudne staje się obejmowanie szerszych obszarów. Natomiast skala 1 : 5000, chociaż w niektórych sytuacjach może być użyteczna dla bardziej ogólnych analiz, nie dostarcza wystarczającej dokładności niezbędnej dla lokalnych planów zagospodarowania przestrzennego. Niezrozumienie zasadności doboru skali w kontekście potrzeby szczegółowości w dokumentacji przestrzennej prowadzi do powszechnych błędów w interpretacji danych geograficznych i urbanistycznych. W praktyce, wybór odpowiedniej skali powinien być oparty na analizie potrzeb użytkowych oraz zagadnień związanych z planowaniem przestrzennym, co pozwala zoptymalizować wykorzystanie przestrzeni oraz inwestycji.

Pytanie 31

Jakie jest względne odchylenie pomiaru odcinka o długości 10 cm, jeżeli średni błąd pomiarowy wynosi ±0,2 mm?

A. 1:100
B. 1:50
C. 1:200
D. 1:500
Błąd względny pomiaru to stosunek błędu bezwzględnego do wartości rzeczywistej pomiaru. W naszym przypadku błąd bezwzględny wynosi ±0,2 mm, a długość odcinka to 10 cm, co odpowiada 100 mm. Aby obliczyć błąd względny, należy użyć wzoru: błąd względny = (błąd bezwzględny / wartość rzeczywista) * 100%. Podstawiając wartości, otrzymujemy: (0,2 mm / 100 mm) * 100% = 0,2%. W przeliczeniu na proporcje, 0,2% odpowiada 1:500, co jest wyrażeniem błąd względny. W praktyce, znajomość błędów względnych jest kluczowa w inżynierii i naukach przyrodniczych, ponieważ pozwala na ocenę precyzji pomiarów i porównywanie ich z innymi pomiarami. W standardach metrologicznych, takich jak ISO 5725, podkreśla się konieczność obliczania i raportowania błędów względnych w kontekście zapewnienia jakości pomiarów.

Pytanie 32

Do trwałych metod stabilizacji punktów osnowy poziomej nie zaliczają się

A. trzpienie metalowe
B. paliki drewniane
C. słupy betonowe
D. rurki stalowe
Paliki drewniane nie są odpowiednie do trwałego sposobu stabilizacji punktów osnowy poziomej z kilku powodów. Przede wszystkim, drewno jako materiał jest podatne na degradację, zwłaszcza w warunkach atmosferycznych, co prowadzi do utraty stabilności i dokładności pomiarów geodezyjnych. Z czasem paliki mogą gnić, ulegać deformacji lub przesuwać się w wyniku zmian wilgotności i temperatury. W praktyce geodezyjnej preferuje się materiały o wysokiej trwałości i odporności na czynniki zewnętrzne, takie jak metale i beton, które zapewniają długoterminową stabilność punktów osnowy. Na przykład, trzpienie metalowe i rurki stalowe, wykorzystywane w stabilizacji punktów, są odporne na korozję i mechaniczne uszkodzenia, co czyni je bardziej niezawodnymi w długim okresie. Zgodnie z normami geodezyjnymi, zastosowanie stałych punktów o wysokiej trwałości jest niezbędne do zapewnienia dokładności pomiarów i ich powtarzalności w czasie, co jest kluczowe w projektowaniu i realizacji inwestycji budowlanych oraz infrastrukturalnych.

Pytanie 33

Który z dokumentów jest konieczny do zlokalizowania w terenie punktu osnowy geodezyjnej?

A. Opis topograficzny punktu
B. Szkic polowy osnowy
C. Dziennik pomiaru kątów osnowy
D. Dziennik pomiaru długości boków osnowy
Opis topograficzny punktu jest kluczowym dokumentem w geodezji, ponieważ zawiera szczegółowe informacje o lokalizacji i charakterystyce punktu osnowy geodezyjnej. Zazwyczaj obejmuje takie elementy jak współrzędne geograficzne, wysokość, otoczenie punktu oraz dostępność do niego. Dzięki temu geodeta, przebywając w terenie, może szybko zlokalizować punkt osnowy, co jest istotne przy wykonywaniu pomiarów. Przykładowo, w przypadku prowadzenia pomiarów dla celów projektowych, posiadanie opisu topograficznego pozwala na efektywne planowanie prac w terenie oraz minimalizowanie ryzyk związanych z błędami lokalizacyjnymi. W branży geodezyjnej stosuje się standardy, które wymagają, aby wszystkie punkty osnowy miały odpowiednio przygotowaną dokumentację, co podnosi jakość i dokładność przeprowadzanych pomiarów.

Pytanie 34

W jakim dokumencie powinny zostać zapisane wyniki pomiarów liniowych, które nie zostały uwzględnione w dzienniku pomiarowym?

A. Szkicu polowym
B. Raporcie technicznym
C. Mapie zasadniczej
D. Dokumencie topograficznym
Zarządzanie dokumentacją pomiarową w geodezji jest kluczowym aspektem, jednak wybór niewłaściwego dokumentu do rejestracji wyników pomiarów liniowych może prowadzić do nieporozumień i problemów w dalszych pracach. Sprawozdanie techniczne jest bardziej kompleksowym dokumentem, który zazwyczaj obejmuje podsumowanie prac geodezyjnych, wyniki badań, analizy oraz wnioski. Umieszczanie wyników pomiarów liniowych, które nie zostały uwzględnione w dzienniku pomiarowym w sprawozdaniu technicznym, może skutkować ich zniekształceniem, gdyż sprawozdanie to powinno być oparte na pełnych i rzetelnych danych, a nie na przypadkowych zapisach. Mapa zasadnicza, z kolei, jest oficjalnym dokumentem geodezyjnym, który przedstawia szczegółowe informacje o zagospodarowaniu terenu, granicach działek oraz infrastrukturze, a dodawanie nieudokumentowanych wyników pomiarów mogłoby zafałszować jej dane i wprowadzić w błąd użytkowników. Opis topograficzny, choć również istotny, dotyczy bardziej ogólnego opisu ukształtowania terenu, a nie szczegółowych wyników pomiarów. W związku z tym, kluczowe jest zrozumienie, że każdy z tych dokumentów spełnia inną rolę i nie każdy nadaje się do rejestrowania nieudokumentowanych pomiarów liniowych. Odpowiednie podejście do dokumentacji pomiarowej zapewnia integralność i użyteczność danych w przyszłych analizach i projektach.

Pytanie 35

Mapa zasadnicza to rodzaj map

A. gospodarczych
B. społecznych
C. fizjologicznych
D. sozologicznych
Mapa zasadnicza to, krótko mówiąc, bardzo ważny element, jak chodzi o systemy informacji geograficznej. Jest to mapa, która pokazuje najistotniejsze cechy terenu, takie jak granice administracyjne, różne rodzaje dróg czy nawet ukształtowanie powierzchni. Moim zdaniem, to niesamowite, jak wiele zastosowań ma ta mapa. Od planowania miast po rolnictwo – wszędzie się przydaje. Dla inwestycji infrastrukturalnych to wręcz niezbędne narzędzie, bo pomaga zrozumieć, gdzie i jakie tereny są dostępne. Warto też wiedzieć, że takie standardy jak ISO 19101 i wytyczne GUGIK podkreślają znaczenie map zasadniczych. One są jak fundament dla innych, bardziej szczegółowych map. Bez nich trudno by było mówić o jakiejkolwiek mapie w kontekście gospodarczym.

Pytanie 36

W trakcie stabilizacji punktu poziomej osnowy 1 klasy, w jego otoczeniu oraz jako jego ochrona, utworzono cztery punkty

A. kierunkowe
B. poboczniki
C. przeniesienia
D. podcentra
Poboczniki to dodatkowe punkty pomiarowe, które są zakładane w pobliżu punktu osnowy, aby zapewnić stabilność i precyzję w pomiarach geodezyjnych. Wszechstronność poboczników jest szczególnie ważna podczas stabilizacji punktów osnowy 1 klasy, gdzie kluczowe znaczenie ma dokładność i niezawodność danych. W praktyce, poboczniki mogą być używane do weryfikacji i korekty błędów pomiarowych, a także do minimalizowania wpływu zjawisk atmosferycznych, które mogą zakłócać wyniki. Na przykład, w przypadku pomiarów w trudnych warunkach terenowych, takie jak obszary górzyste, użycie poboczników pozwala na uzyskanie dodatkowych danych, które mogą być wykorzystane do kalibracji głównych punktów osnowy. W branży geodezyjnej standardy takie jak norma PN-EN ISO 17123-1 określają wytyczne dotyczące zakładania i użytkowania poboczników, co czyni je niezbędnym elementem w realizacji zadań geodezyjnych.

Pytanie 37

Jaką długość ma odcinek na mapie o skali 1:40 000, jeśli na mapie w skali 1:20 000 jego długość wynosi 50 cm?

A. 5 cm
B. 2,5 cm
C. 25 cm
D. 50 cm
Odpowiedź 25 cm jest poprawna, ponieważ aby przeliczyć długość odcinka na mapie w nowej skali, należy uwzględnić relację między skalami. W skali 1:20 000, 50 cm na mapie odpowiada 10 000 m w rzeczywistości (50 cm * 20 000). W skali 1:40 000 ten sam 10 000 m w rzeczywistości odpowiada 25 cm na mapie (10 000 m / 40 000). Dlatego długość odcinka w skali 1:40 000 wynosi 25 cm. Praktycznym zastosowaniem tej wiedzy jest umiejętność przeliczania długości odcinków na mapach w różnych skalach, co jest kluczowe w geodezji, kartografii i planowaniu przestrzennym. W wielu zastosowaniach, takich jak projektowanie infrastruktury lub analiza lokalizacji, precyzyjne przeliczenie długości i powierzchni w różnych skalach jest niezbędne, aby zapewnić zgodność z rzeczywistością i precyzję planów. Warto również dodać, że znajomość konwersji skali jest istotna dla osób pracujących z mapami, które muszą interpretować dane w kontekście różnych zastosowań terenowych.

Pytanie 38

Co wpływa na wysokości opisów w mapie głównej?

A. Od wartości skalarnej mapy
B. Od typu i stylu pisma
C. Od metody wykonania opisu
D. Od opisywanej treści i skali mapy
Wysokości opisów na mapie zasadniczej zależą w pierwszej kolejności od opisywanej treści oraz skali mapy. Skala mapy definiuje, w jakim stopniu rzeczywista powierzchnia została odwzorowana na mapie, co wpływa na sposób przedstawiania informacji. W praktyce oznacza to, że w przypadku map o dużej skali, które reprezentują mały obszar, opisy mogą być bardziej szczegółowe i tym samym wyższe, aby oddać specyfikę terenu. Na przykład, w mapie, która przedstawia obszar miejski, opisy budynków, ulic czy parków będą miały większą wysokość, aby były czytelne i zrozumiałe dla użytkowników. Dodatkowo, treść opisu, jak np. nazwy ulic czy obiektów, również ma wpływ na ich wysokość, gdyż dłuższe nazwy wymagają więcej miejsca. W branży kartograficznej ważne jest przestrzeganie standardów, takich jak Ustawodawstwo o geoinformacji oraz normy ISO, które określają zasady projektowania map, w tym sposoby przedstawiania opisów. Właściwe zrozumienie tych zasad pozwala tworzyć czytelne i funkcjonalne mapy.

Pytanie 39

Długość odcinka zmierzonego na mapie o skali 1:500 wynosi 11,1 cm. Jaka jest rzeczywista długość tego odcinka w terenie?

A. 22,20 m
B. 55,50 m
C. 2,22 m
D. 5,55 m
Odpowiedź 55,50 m to dobry wybór. Jeśli popatrzysz na scale 1:500, to każdy centymetr na mapie oznacza 500 centymetrów w rzeczywistości. Czyli, żeby znaleźć długość w terenie, wystarczy pomnożyć długość na mapie, czyli 11,1 cm przez 500. Jak to zrobimy, to wychodzi 11,1 cm * 500 = 5550 cm, co daje nam 55,50 m. Rozumienie, jak działa skala, jest mega ważne w geodezji i kartografii, bo precyzyjne pomiary to podstawa przy wszelkich projektach budowlanych czy drogowych. Na przykład, przy projektowaniu jakiejś infrastruktury miejskiej, znajomość skali mapy pozwala lepiej przenieść to, co zaplanowaliśmy na rzeczywistość. To ma spore znaczenie, żeby wszystko było zgodne z planami zagospodarowania i innymi standardami, jak normy geodezyjne. Generalnie, umiejętność przeliczania wymiarów z map na rzeczywiste odległości to coś, co powinien umieć każdy inżynier czy geodeta.

Pytanie 40

Jakie jest odchylenie zamkniętego ciągu niwelacyjnego, jeśli wysokości reperu początkowego i końcowego są równe, a suma różnic zmierzonych przewyższeń na tym samym odcinku wynosi [∆h]p= -8 mm?

A. f∆h = -8 mm
B. f∆h = 0 mm
C. f∆h = -16 mm
D. f∆h = 8 mm
Odpowiedź f∆h = -8 mm jest prawidłowa, ponieważ odchyłka zamkniętego ciągu niwelacyjnego oblicza się na podstawie różnicy pomierzonych przewyższeń w stosunku do różnicy wysokości reperów. W przypadku, gdy wysokość reperu początkowego i końcowego jest taka sama, oczekiwalibyśmy, że suma różnic pomierzonych przewyższeń (∆hp) powinna wynosić zero. Jednak w tym przypadku mamy do czynienia z wartością ∆hp równą -8 mm, co oznacza, że pomiary wskazują na ujemne odchylenie. Aby uzyskać odchyłkę zamkniętego ciągu, weźmiemy pod uwagę tę wartość i podzielimy przez 2, co daje -8 mm. W praktyce oznacza to, że podczas pomiarów wystąpił błąd systematyczny, który może być spowodowany np. różnicami w poziomie terenu lub błędami instrumentu. Zrozumienie tego procesu jest kluczowe w geodezji, ponieważ pozwala na korekcję pomiarów i zwiększenie dokładności wyników, co jest zgodne z najlepszymi praktykami w branży.