Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 17 maja 2025 01:31
  • Data zakończenia: 17 maja 2025 01:46

Egzamin zdany!

Wynik: 33/40 punktów (82,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Spośród wymienionych zjawisk fizycznych, w urządzeniach przekształcających liniowe przemieszczenie na sygnał elektryczny, najczęściej stosowane jest zjawisko

A. zwane efektem Dopplera
B. magnetooptyczne (Faradaya)
C. piezoelektryczne
D. magnotorezystancji (Gaussa)
Zjawisko magnotorezystancji (Gaussa) jest szeroko stosowane w czujnikach przekształcających przemieszczenie liniowe na sygnał elektryczny ze względu na swoją wysoką czułość i precyzję. Magnotorezystancja polega na zmianie oporu elektrycznego materiału w wyniku działania pola magnetycznego. W praktyce, czujniki te mogą być wykorzystane w różnych aplikacjach, takich jak automatyka przemysłowa, robotyka oraz systemy pomiarowe. W standardach branżowych, takich jak IEC 61131, podkreśla się znaczenie precyzyjnych pomiarów w systemach automatyzacji, co czyni rozwiązania bazujące na magnotorezystancji preferowanym wyborem. Przykładem może być zastosowanie w czujnikach położenia w silnikach elektrycznych, gdzie dokładne informacje o przemieszczeniu są kluczowe dla efektywności i bezpieczeństwa operacji. Ponadto, magnotorezystancyjne czujniki są odporne na zakłócenia elektromagnetyczne, co zwiększa ich niezawodność w trudnych warunkach przemysłowych. Z tego względu, ich wykorzystanie w nowoczesnych systemach pomiarowych stanowi standard w wielu branżach.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Jakie urządzenie jest używane do mierzenia prędkości obrotowej wału silnika?

A. mostek tensometryczny
B. prądnica tachometryczna
C. czujnik termoelektryczny
D. potencjometr obrotowy
Prądnica tachometryczna jest urządzeniem wykorzystywanym do pomiaru prędkości obrotowej wału silnika, które działa na zasadzie indukcji elektromagnetycznej. Jej działanie opiera się na generacji napięcia proporcjonalnego do prędkości obrotowej, co czyni ją niezwykle przydatną w monitorowaniu pracy maszyn. Prądnice tachometryczne znajdują zastosowanie w różnych dziedzinach, takich jak automatyka przemysłowa, kontrola procesów technologicznych oraz systemy napędowe. Dzięki nim można dokładnie kontrolować prędkość obrotową silników, co jest kluczowe dla utrzymania stabilności pracy urządzeń oraz minimalizacji zużycia energii. Współczesne prądnice tachometryczne są często zintegrowane z systemami sterowania, co pozwala na automatyzację procesów i zwiększenie efektywności produkcji. Używane są także w aplikacjach wymagających precyzyjnego pomiaru, takich jak robotyka czy systemy CNC, gdzie dokładność i niezawodność pomiarów są krytyczne.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Po wykonaniu otworów w płaskowniku, które są potrzebne do zrealizowania połączenia śrubowego, należy pozbyć się metalowych zadziorów. Jak się nazywa ta czynność?

A. Wygładzanie
B. Szlifowanie
C. Gratowanie
D. Powiercanie
Gratowanie to proces, który ma na celu usunięcie ostrych krawędzi oraz resztek metalu powstałych podczas wiercenia otworów. Jest to kluczowy etap obróbki, który zapewnia dalsze bezpieczeństwo oraz precyzję w wykonaniu połączeń śrubowych. Proces ten polega na mechanicznej obróbce krawędzi otworów, co pozwala na wygładzenie powierzchni oraz eliminację wszelkich zadziorów, które mogą negatywnie wpływać na jakość połączenia. Gratowanie jest nie tylko zalecane, ale w wielu przypadkach wymagane przez normy branżowe, takie jak ISO 2768, które określają tolerancje i wymagania dotyczące obróbki mechanicznej. Przykładem zastosowania gratowania jest przemysł motoryzacyjny, gdzie połączenia śrubowe muszą być nie tylko mocne, ale także estetyczne i bezpieczne dla użytkowników. Poprawne gratowanie zmniejsza ryzyko uszkodzeń śrub oraz podzespołów, co przekłada się na dłuższą żywotność całej konstrukcji. Warto zatem stosować odpowiednie narzędzia, takie jak gratowniki ręczne lub automatyczne, które zapewniają efektywność i powtarzalność procesu.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Jak można zmierzyć moc pobieraną przez urządzenie zasilane napięciem 24 V DC?

A. mostkiem Wheatstone'a
B. woltomierzem i amperomierzem
C. mostkiem Thompsona
D. watomierzem w układzie Arona
Pomiar mocy pobieranej przez urządzenie zasilane napięciem 24 V DC można zrealizować poprzez zastosowanie woltomierza oraz amperomierza. Woltomierz umożliwia zmierzenie napięcia w obwodzie, natomiast amperomierz mierzy natężenie prądu. Moc (P) można obliczyć korzystając z równania P = U * I, gdzie U to napięcie, a I to natężenie prądu. Przykładowo, jeśli woltomierz wskazuje 24 V, a amperomierz 2 A, moc wynosi 48 W. Takie podejście jest zgodne z najlepszymi praktykami pomiarowymi, gdzie dokładność pomiarów jest kluczowa. Używanie woltomierza i amperomierza jest standardową metodą w wielu zastosowaniach, w tym w inżynierii elektrycznej i automatyce przemysłowej, co zapewnia wiarygodne i precyzyjne wyniki. Warto również pamiętać o prawidłowej kalibracji urządzeń pomiarowych, co wpływa na jakość wyników.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Jakim skrótem literowym określa się język drabinkowy?

A. LD
B. STL
C. FBD
D. IL
Język drabinkowy, znany jako LD, to jeden z najpopularniejszych języków w automatyce przemysłowej. Używa się go często do programowania sterowników PLC. Struktura tego języka wygląda jak drabinka, gdzie po bokach są zasilania, a w środku masz linie, które pokazują logikę działania. To strasznie ułatwia wszystko, bo dzięki temu operatorzy mogą szybko zrozumieć, co się dzieje w systemie. Przykładowo, jeśli chcemy, żeby silnik ruszał w zależności od czujnika, to właśnie w diagramie drabinkowym można to zobaczyć i łatwo poprawić, gdy coś nie działa. W praktyce LD jest zgodny z normą IEC 61131-3, która ustala zasady dla różnych języków programowania w automatyce, dlatego jest w zasadzie standardem w tej branży. W moim zdaniu to naprawdę dobry wybór do prostszych układów.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Urządzenia elektroniczne, które gwarantują stabilność napięcia prądu elektrycznego na wyjściu, niezależnie od obciążeń oraz zmian w napięciu w sieci, określamy mianem

A. prostowników
B. zasilaczy
C. generatorów
D. stabilizatorów
Stabilizatory to urządzenia elektroniczne, które zapewniają stałe napięcie na wyjściu, niezależnie od zmian napięcia zasilania oraz obciążenia podłączonego do nich układu. Ich kluczową funkcją jest ochrona urządzeń elektronicznych przed niekorzystnymi skutkami wahań napięcia, co jest szczególnie istotne w zastosowaniach wymagających wysokiej niezawodności, jak w urządzeniach medycznych, systemach komputerowych czy automatyce przemysłowej. Stabilizatory można podzielić na liniowe i impulsowe, z których każdy typ ma swoje unikalne zalety i zastosowania. Stabilizatory liniowe są proste w konstrukcji i oferują niewielkie zniekształcenia, ale ich wydajność energetyczna jest niższa, co sprawia, że w zastosowaniach wymagających dużych prądów lepiej sprawdzają się stabilizatory impulsowe. W standardach branżowych, takich jak IEC 61000, uwzględnia się wymagania dotyczące stabilności napięcia w kontekście kompatybilności elektromagnetycznej, co czyni stabilizatory niezbędnym elementem w projektowaniu nowoczesnych systemów elektronicznych.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Aby zweryfikować ciągłość układów elektrycznych, wykorzystuje się

A. watomierz
B. amperomierz
C. omomierz
D. woltomierz
Omomierz jest urządzeniem pomiarowym, które służy do pomiaru rezystancji elektrycznej, a jego zastosowanie w zakresie sprawdzania ciągłości połączeń elektrycznych jest kluczowe. W praktyce, omomierz jest wykorzystywany do wykrywania ewentualnych przerw w obwodach oraz oceny jakości połączeń. Na przykład, w instalacjach elektrycznych, przed oddaniem do użytkowania, ważne jest, aby sprawdzić, czy wszystkie połączenia są prawidłowo wykonane i czy nie występują utraty kontaktu. Normy takie jak PN-IEC 60364-6 podkreślają znaczenie przeprowadzania pomiarów ciągłości przewodów ochronnych, co można zrealizować właśnie przy pomocy omomierza. Warto również zauważyć, że pomiar ciągłości powinien być wykonywany w stanie nieenergetycznym instalacji, co zapewnia bezpieczeństwo oraz dokładność pomiarów. Umiejętność posługiwania się omomierzem w kontekście sprawdzania połączeń elektrycznych jest istotna dla każdego elektryka, a także dla osób zajmujących się konserwacją i przeglądami instalacji elektrycznych.

Pytanie 24

Który z wymienionych materiałów znajduje zastosowanie w konstrukcjach spawanych?

A. Stal niskowęglowa
B. Żeliwo szare
C. Żeliwo białe
D. Stal wysokowęglowa
Stal niskowęglowa jest materiałem, który jest powszechnie stosowany w konstrukcjach spawanych, ponieważ charakteryzuje się dobrą spawalnością oraz wystarczającą wytrzymałością, co czyni ją idealnym wyborem do różnorodnych zastosowań inżynieryjnych. Zawartość węgla w stali niskowęglowej nie przekracza 0,3%, co zapewnia jej dużą plastyczność i łatwość w obróbce. Materiały te są często stosowane w budowie konstrukcji stalowych, takich jak wieże, mosty oraz różne elementy przemysłowe. Dodatkowo, stal niskowęglowa może być poddawana różnym procesom, takim jak hartowanie czy odpuszczanie, co pozwala dostosować jej właściwości do specyficznych wymagań projektu. W praktyce, zgodnie z normą EN 10025, stal niskowęglowa łączy w sobie zdolności do spawania z dobrą odpornością na zmęczenie, co czyni ją niezastąpionym materiałem w inżynierii konstrukcyjnej i mechanice. Przykłady zastosowań obejmują budowę ram samochodowych, elementów maszyn oraz innych konstrukcji narażonych na dynamiczne obciążenia.

Pytanie 25

Układy cyfrowe realizowane w technologii TTL potrzebują zasilania napięciem stałym o wartości

A. 25 V
B. 10 V
C. 5 V
D. 15 V
Scalone układy cyfrowe wykonane w technologii TTL (Transistor-Transistor Logic) są zaprojektowane do pracy z napięciem zasilania wynoszącym 5 V. To napięcie jest standardem w branży, zapewniającym stabilną i niezawodną pracę tych układów. Dzięki temu, że TTL operuje na niskim napięciu, układy te charakteryzują się mniejszym zużyciem energii, co jest korzystne w zastosowaniach mobilnych oraz w systemach zasilanych z baterii. W praktyce, układy TTL są powszechnie wykorzystywane w różnych aplikacjach, takich jak obliczenia cyfrowe, sterowanie procesami oraz w systemach automatyki. Dobre praktyki w projektowaniu obwodów cyfrowych zalecają używanie stabilnych źródeł zasilania, aby zminimalizować ryzyko zakłóceń oraz błędów w działaniu układów. Dodatkowo, w niektórych zastosowaniach, takich jak komunikacja szeregowa, dokładne napięcie zasilania jest kluczowe do zapewnienia odpowiedniej wydajności i zgodności z innymi komponentami systemu. Warto również pamiętać, że nieprzestrzeganie tych specyfikacji może prowadzić do uszkodzenia układów oraz obniżenia ich żywotności.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Wartość sygnału binarnego (11100111)2 na wyjściu ośmiobitowego przetwornika A/C w urządzeniu mechatronicznym odpowiada liczbie dziesiętnej

A. (230)10
B. (255)10
C. (254)10
D. (231)10
Sygnał binarny (11100111)2 odpowiada liczbie dziesiętnej (231)10 ze względu na konwersję z systemu binarnego na dziesiętny. Aby to przeliczyć, możemy rozłożyć wartość binarną na poszczególne bity: 1*27 + 1*26 + 1*25 + 0*24 + 0*23 + 1*22 + 1*21 + 1*20, co daje 128 + 64 + 32 + 0 + 0 + 4 + 2 + 1 = 231. Tego typu przetwarzanie sygnałów jest kluczowe w systemach mechatronicznych, gdzie przetworniki analogowo-cyfrowe (A/C) umożliwiają digitalizację sygnałów w celu dalszej obróbki. Przykład zastosowania to systemy pomiarowe, gdzie wartości analogowe, takie jak napięcie, są przetwarzane na formę cyfrową umożliwiającą ich analizę przez procesory. Zrozumienie konwersji binarnej jest fundamentalne dla inżynierów zajmujących się automatyką oraz elektroniką, a znajomość tych procesów przyczynia się do poprawnej konstrukcji oraz interpretacji danych w systemach przetwarzania informacji.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Potrojenie natężenia prądu przepływającego przez rezystor o niezmiennej rezystancji spowoduje, że ilość ciepła wydzielającego się w nim wzrośnie

A. dwukrotnie
B. dziewięciokrotnie
C. trzykrotnie
D. sześciokrotnie
Odpowiedź "dziewięciokrotnie" jest poprawna, ponieważ zgodnie z prawem Joule'a, moc wydzielająca się w rezystorze jest proporcjonalna do kwadratu natężenia prądu płynącego przez ten rezystor. Prawo to można zapisać jako P = I²R, gdzie P to moc, I to natężenie prądu, a R to rezystancja. Jeśli natężenie prądu wzrasta trzykrotnie (I -> 3I), moc wydzielająca się w rezystorze staje się P' = (3I)²R = 9I²R, co oznacza, że moc wzrasta dziewięciokrotnie. W praktyce, takie zjawisko ma kluczowe znaczenie w projektowaniu obwodów elektrycznych i systemów grzewczych, gdzie kontrola wydzielanego ciepła jest istotna dla bezpieczeństwa i efektywności energetycznej. Zrozumienie tej zależności pozwala inżynierom na odpowiednie dobieranie wartości rezystancji oraz zabezpieczeń, aby uniknąć przegrzewania się elementów w obwodach elektronicznych, co może prowadzić do awarii lub uszkodzeń sprzętu. W branży elektronicznej i elektrycznej, przestrzeganie tych zasad jest niezbędne dla zapewnienia niezawodności i trwałości urządzeń.

Pytanie 30

Rezystancja którego z podanych czujników zmniejsza się w miarę wzrostu temperatury?

A. Termistora NTC
B. Termistora PTC
C. Termopary K
D. Termopary J
Termopary J i K to typy czujników temperatury, które działają na zasadzie efektu Seebecka. Oznacza to, że w wyniku różnicy temperatur pomiędzy dwoma różnymi metalami generowany jest napięcie, które można przekształcić na wartość temperatury. W przypadku tych czujników ich rezystancja nie zmienia się w sposób znaczący w odpowiedzi na zmiany temperatury, co prowadzi do mylnych wniosków dotyczących ich działania. Ponadto termistory PTC (Positive Temperature Coefficient) zachowują się odwrotnie niż termistory NTC – ich rezystancja wzrasta wraz ze wzrostem temperatury. Zrozumienie różnicy między tymi technologiami jest kluczowe, ponieważ może to prowadzić do błędnych wyborów w projektowaniu systemów pomiarowych. Wybór niewłaściwego czujnika do aplikacji może skutkować nieprawidłowymi pomiarami, co z kolei może prowadzić do awarii systemów lub obniżenia ich efektywności. Istotne jest, aby przed podjęciem decyzji o wyborze określonego czujnika, przeanalizować wymagania aplikacji, a także zrozumieć zasady działania stosowanych technologii. Dobrze dobrany czujnik wpływa na jakość i niezawodność systemu, co jest zgodne z najlepszymi praktykami branżowymi w zakresie automatyzacji i monitorowania procesów.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Skrót THT (Through-Hole Technology) odnosi się do metody montażu

A. skręcanego
B. przewlekanego
C. powierzchniowego
D. zaciskowego
Skrót THT (Through-Hole Technology) odnosi się do technologii montażu komponentów elektronicznych, w której elementy są umieszczane w otworach wykonanych w płytce drukowanej. Ta technika montażu jest szczególnie popularna w przypadku komponentów o większych rozmiarach, takich jak kondensatory elektrolityczne, złącza czy elementy pasywne. Przykładem zastosowania THT są urządzenia elektroniczne, które wymagają wysokiej wytrzymałości mechanicznej, takie jak zasilacze czy moduły czołowe w systemach audio. W praktyce, podczas montażu THT, komponenty są najpierw wstawiane do otworów, a następnie lutowane od spodu płytki, co zapewnia trwałe i solidne połączenie. W branży stosuje się standardy IPC (Institute for Interconnecting and Packaging Electronic Circuits), które określają zasady dotyczące jakości i trwałości takich połączeń. Technologia THT, mimo rosnącej popularności montażu powierzchniowego (SMT), pozostaje kluczowa w wielu aplikacjach, gdzie wymagane są wytrzymałe połączenia oraz łatwość naprawy lub wymiany komponentów.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Funkcją czujnika hallotronowego w urządzeniach do monitorowania i pomiarów jest detekcja

A. oporu przepływu płynów
B. zmian wartości parametrów pola magnetycznego
C. zmian wartości momentów skręcających
D. wewnętrznych naprężeń
Czujniki hallotronowe są specyficznymi urządzeniami wykrywającymi pola magnetyczne, a nie zmiany oporów cieczy, naprężeń wewnętrznych czy sił skręcających. W przypadku oporów przepływu cieczy, używane są zazwyczaj czujniki oparte na pomiarach hydraulicznych lub elektrycznych, które analizują zmiany w oporze elektrycznym w zależności od przepływu cieczy. To podejście jest całkowicie odmienne od zasad działania czujników hallotronowych, które nie mogą bezpośrednio mierzyć takich parametrów. Z kolei naprężenia wewnętrzne w materiałach są zazwyczaj badane przy użyciu tensometrów, które działają na zasadzie pomiaru deformacji materiału pod wpływem obciążenia. Zastosowanie czujników hallotronowych do tego celu jest nieadekwatne, ponieważ ich konstrukcja nie umożliwia pomiaru mechanicznych właściwości materiałów. Zmiany wartości sił skręcających również nie są wykrywane przez czujniki hallotronowe. W tym przypadku konieczne jest zastosowanie specjalistycznych urządzeń, takich jak czujniki momentu obrotowego, które są zaprojektowane do pomiaru skręcania. Zrozumienie różnic pomiędzy tymi technologiami jest kluczowe dla efektywnego projektowania systemów pomiarowych oraz doboru odpowiednich czujników do konkretnej aplikacji, aby uniknąć błędów w interpretacji danych oraz zapewnić wiarygodne wyniki pomiarów.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Jakiego typu przewód jest zalecany do komunikacji w magistrali CAN?

A. Przewodu dziewięciożyłowego
B. Przewodu koncentrycznego
C. Skrętki czteroparowej, ekranowanej
D. Skrętki dwuprzewodowej
Wybór nieodpowiedniego przewodu do komunikacji w magistrali CAN może prowadzić do licznych problemów, takich jak zakłócenia sygnału, błędy w transmisji oraz obniżona wydajność całego systemu. Skrętka czteroparowa, mimo że jest popularna w sieciach Ethernet i innych systemach komunikacyjnych, nie jest zoptymalizowana pod kątem wymagań magistrali CAN. System ten wymaga przewodu o specyficznych właściwościach, takich jak niska impedancja i efektywna ochrona przed zakłóceniami, co skrętka czteroparowa nie zapewnia. Przewód koncentryczny stosowany jest w telekomunikacji i nie nadaje się do zastosowania w magistrali CAN, ponieważ jego konstrukcja nie wspiera metod różnicowych, które są kluczowe dla stabilnej komunikacji w tym standardzie. Ponadto, przewód dziewięciożyłowy jest zbyt skomplikowany i nieefektywny do implementacji w systemach CAN, które wykorzystują jedynie dwa przewody do komunikacji. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków często opierają się na mylnej interpretacji zastosowania różnych typów przewodów bez uwzględnienia specyfikacji technicznych i wymagań dotyczących sygnałów CAN. Rekomendacje branżowe jasno wskazują, że dla magistrali CAN najlepszym wyborem jest skrętka dwuprzewodowa, co zapewnia efektywność i niezawodność całego systemu.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.