Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 22 maja 2025 15:42
  • Data zakończenia: 22 maja 2025 16:05

Egzamin zdany!

Wynik: 38/40 punktów (95,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Zgodnie z regulacjami Prawa Zamówień Publicznych, oferent składa propozycję na realizację robót budowlanych w trybie

A. przetargu
B. dialogu konkurencyjnego
C. zapytania o cenę
D. negocjacji
Wybór trybu przetargu na wykonanie robót budowlanych jest zgodny z Prawem Zamówień Publicznych, które stanowi fundament dla przejrzystości i konkurencyjności w procesach zakupowych w Polsce. Przetarg jest najczęściej stosowaną procedurą, która zapewnia równe szanse dla wszystkich wykonawców, a także umożliwia zamawiającemu uzyskanie najlepszej oferty, zarówno pod względem ceny, jak i jakości. W praktyce, przetargi mogą być przeprowadzane w formie przetargu nieograniczonego, co oznacza, że każdy zainteresowany wykonawca ma prawo złożyć ofertę, lub przetargu ograniczonego, gdzie zaprasza się jedynie wybrane podmioty. To standardowe podejście w branży budowlanej jest zgodne z najlepszymi praktykami i regulacjami, co sprawia, że jest powszechnie stosowane w projektach publicznych oraz dużych inwestycjach. Ponadto, przetargi są objęte szczegółowymi regulacjami, które chronią przed korupcją oraz nieprawidłowościami, co dodatkowo podkreśla ich ważność w zarządzaniu zamówieniami publicznymi.

Pytanie 2

Jakim symbolem określa się przetwornicę, która zmienia napięcie stałe na zmienne?

A. AC/DC
B. AC/AC
C. DC/DC
D. DC/AC
Odpowiedź DC/AC jest poprawna, ponieważ przetwornice DC/AC, znane również jako inwertery, są urządzeniami elektronicznymi, które konwertują napięcie stałe (DC) na napięcie zmienne (AC). Takie przetwornice są kluczowe w systemach, gdzie napięcie stałe, na przykład z baterii, musi być przekształcone do formy zmiennej do zasilania urządzeń elektrycznych, które wymagają AC. Przykładem zastosowania inwerterów są systemy fotowoltaiczne, gdzie energia słoneczna, przetwarzana na energię elektryczną w postaci DC, jest następnie konwertowana na AC, aby mogła być używana w domowych instalacjach elektrycznych lub wprowadzana do sieci energetycznej. Dobre praktyki w projektowaniu systemów z inwerterami obejmują wybór odpowiednich komponentów, takich jak tranzystory i układy scalone, które zapewniają wysoką sprawność konwersji oraz minimalizację zakłóceń w sieci elektrycznej. Zrozumienie zasady działania przetwornic DC/AC jest istotne dla inżynierów zajmujących się energią odnawialną oraz automatyzacją przemysłową.

Pytanie 3

Podczas realizacji próby szczelności systemu solarnego ciśnienie kontrolne w każdym punkcie instalacji powinno być wyższe od ciśnienia atmosferycznego o minimum

A. 3 bary
B. 4 bary
C. 1 bar
D. 2 bary
Odpowiedź 1 bar jest poprawna, ponieważ podczas przeprowadzania próby szczelności obiegu solarnego, ciśnienie kontrolne musi być wyższe od ciśnienia atmosferycznego o co najmniej 1 bar. Takie wymaganie ma na celu zapewnienie, że w instalacji nie występują nieszczelności, które mogłyby prowadzić do wycieków płynu solarnego. Praktyka ta jest zgodna z normami branżowymi, które podkreślają znaczenie utrzymania odpowiedniego ciśnienia, aby zminimalizować ryzyko awarii systemu. Na przykład, w przypadku instalacji z niskotemperaturowymi kolektorami słonecznymi, utrzymanie ciśnienia na poziomie co najmniej 1 bara pomaga również w ochronie przed zjawiskiem kawitacji, które może uszkodzić pompy i inne elementy systemu. Dodatkowo, w trakcie długoterminowej eksploatacji, regularne kontrole ciśnienia i działania profilaktyczne zapewniają dłuższą żywotność i efektywność całego systemu solarnym.

Pytanie 4

Który z poniższych rodzajów zbiorników nie powinien być używany do przechowywania biogazu?

A. Membranowego dachowego
B. Suchego stalowego wysokociśnieniowego
C. Suchego tłokowego niskociśnieniowego
D. Sferycznego membranowego
Odpowiedź 'Suchego stalowego wysokociśnieniowego' jest poprawna, gdyż zbiorniki te nie są odpowiednie do magazynowania biogazu, który jest mieszaniną gazów o zróżnicowanej kompozycji, w tym metanu i dwutlenku węgla. Biogaz jest zwykle przechowywany w warunkach niskiego ciśnienia, co zapewnia bezpieczeństwo oraz minimalizuje ryzyko eksplozji. Zbiorniki membranowe dachowe i sferyczne membranowe są projektowane z myślą o takich wymaganiach, gdyż potrafią dostosować swoją objętość do zmieniającej się ilości gazu oraz regulować ciśnienie wewnętrzne, umożliwiając efektywne zarządzanie biogazem. Na przykład, w systemach biogazowych wykorzystywanych w rolnictwie, stosowanie zbiorników niskociśnieniowych pozwala na efektywne przechowywanie oraz późniejsze wykorzystanie biogazu jako źródła energii, co jest zgodne ze standardami dotyczącymi zrównoważonego rozwoju. Wybór odpowiedniego zbiornika w kontekście bezpieczeństwa i efektywności energetycznej jest kluczowy dla skutecznego funkcjonowania systemów wykorzystujących biogaz.

Pytanie 5

Czujnik pływakowy, który powinien być zamontowany, stanowi zabezpieczenie przed zbyt niskim poziomem wody w kotłach na biomasę?

A. na zasilaniu instalacji c.o. 10 cm powyżej najwyższego punktu kotła
B. na powrocie z instalacji c.o. 10 cm poniżej najwyższego punktu kotła
C. na zasilaniu instalacji c.o. 10 cm poniżej najwyższego punktu kotła
D. na powrocie z instalacji c.o. 10 cm powyżej najwyższego punktu kotła
Czujnik pływakowy jest kluczowym elementem zabezpieczającym kotły na biomasę przed niskim poziomem wody. Jego prawidłowe umiejscowienie ma znaczący wpływ na efektywność działania systemu grzewczego. Montaż czujnika na zasilaniu instalacji c.o. 10 cm powyżej najwyższej części kotła pozwala na wczesne wykrywanie spadku poziomu wody, co jest istotne dla zapobiegania uszkodzeniom kotła oraz niebezpieczeństwom związanym z pracą na sucho. W przypadku, gdy poziom wody w kotle spadnie poniżej poziomu czujnika, urządzenie może automatycznie wyłączyć system, co zapobiega dalszym szkodom. Dodatkowo, przestrzeganie zasady montażu czujnika powyżej najwyższej części kotła jest zgodne z dobrą praktyką inżynieryjną oraz normami bezpieczeństwa, takimi jak PN-EN 12952, które określają wymagania dotyczące bezpieczeństwa kotłów. Przykładem zastosowania czujnika pływakowego może być system zasilania biomasą, gdzie efektywne zarządzanie wodą w kotle wpływa na optymalizację zużycia paliwa oraz wydajność energetyczną całego układu.

Pytanie 6

W jakich urządzeniach wykorzystuje się rurkę ciepła?

A. Biogazowych fermentatorach
B. Kolektorach słonecznych powietrznych
C. Modułach fotowoltaicznych
D. Kolektorach słonecznych cieczowych
Cieczowe kolektory słoneczne wykorzystują rurki ciepła jako efektywny element transferu ciepła. Te urządzenia są zaprojektowane do absorpcji energii słonecznej, a rurki ciepła działają na zasadzie efektywnej wymiany ciepła pomiędzy absorberem a czynnikiem roboczym, którym jest zazwyczaj woda lub inny płyn. Rurki ciepła działają na zasadzie zmiany stanu czynnika roboczego: ciecz w rurce odparowuje pod wpływem ciepła, co powoduje wzrost ciśnienia i przemieszczenie pary do części chłodnej rurki, gdzie skrapla się, oddając ciepło do obiegu. Dzięki temu mechanizmowi, rurki ciepła charakteryzują się wysoką efektywnością i szybkością odpowiedzi na zmiany poziomu nasłonecznienia. W praktyce oznacza to, że cieczowe kolektory słoneczne z rurkami ciepła mogą być stosowane do ogrzewania wody użytkowej, wspomagania systemów grzewczych w budynkach, a także w aplikacjach przemysłowych, takich jak ogrzewanie procesów technologicznych. Stosowanie rur ciepła w cieczowych kolektorach słonecznych jest rekomendowane przez takie organizacje jak Solar Energy Industries Association, co potwierdza ich niezawodność i wydajność w zastosowaniach domowych i przemysłowych.

Pytanie 7

Czym charakteryzują się kolektory CPC?

A. mają dodatkowe zwierciadła skupiające promieniowanie
B. zawierają kanały do ogrzewania powietrza
C. są wyposażone w dodatkową izolację cieplną
D. posiadają podwójny absorber
Kolektory CPC (Compound Parabolic Concentrators) wykorzystują dodatkowe zwierciadła, które skupiają promieniowanie słoneczne na absorberach, co zwiększa efektywność konwersji energii słonecznej na ciepło. Dzięki zastosowaniu zwierciadeł, kolektory te mogą zbierać promieniowanie z szerszego kąta padania, co jest szczególnie korzystne w zmiennych warunkach atmosferycznych. Przykładem zastosowania kolektorów CPC jest ich użycie w instalacjach solarnych do podgrzewania wody użytkowej w budynkach mieszkalnych oraz w przemysłowych systemach grzewczych. W praktyce, zastosowanie tych kolektorów pozwala na zwiększenie wydajności energetycznej systemu grzewczego, co ma istotne znaczenie w kontekście zrównoważonego rozwoju i redukcji emisji CO2. Zgodnie z normami branżowymi, kolektory CPC są często wykorzystywane w połączeniu z innymi technologiami odnawialnymi, co sprzyja synergii i optymalizacji wydajności energetycznej.

Pytanie 8

Aby biogaz produkowany w biogazowni był odpowiedni do spalania, należy go wcześniej właściwie przystosować. Głównie usuwa się z niego szkodliwy

A. siarkowodoru
B. dwutlenek węgla
C. wodoru
D. tlenek węgla
Siarkowodór jest kluczowym zanieczyszczeniem, które musi być usunięte z biogazu przed jego spalaniem. Jego obecność w biogazie stanowi poważne zagrożenie dla efektywności i bezpieczeństwa procesów energetycznych. Siarkowodór jest związkiem o silnych właściwościach korozjogennych, co oznacza, że może powodować poważne uszkodzenia elementów metalowych, takich jak silniki, rury oraz komory spalania. W praktyce, oczyszczanie biogazu ze siarkowodoru odbywa się za pomocą różnych metod, takich jak absorpcja chemiczna, adsorpcja na węglu aktywnym, czy też wykorzystanie bioreaktorów, w których mikroorganizmy przetwarzają H2S na mniej szkodliwe substancje. Stosowanie odpowiednich technologii oczyszczania jest niezbędne, aby zapewnić długotrwałą i bezawaryjną pracę instalacji biogazowych. Dobre praktyki w branży podkreślają znaczenie regularnego monitorowania jakości biogazu oraz dostosowywania procesów oczyszczania w zależności od zmieniających się warunków operacyjnych. Efektywne usunięcie siarkowodoru nie tylko wydłuża żywotność urządzeń, ale również zwiększa efektywność energetyczną całego systemu.

Pytanie 9

W miarę zwiększania się temperatury ogniwa fotowoltaicznego o 1°C, jego sprawność spadnie o mniej więcej

A. 1,6%
B. 0,1%
C. 0,5%
D. 2,5%
Wiesz, sprawność ogniwa fotowoltaicznego spada o jakieś 0,5%, gdy temperatura wzrasta o 1 stopień Celsjusza. To dlatego wyższe temperatury wpływają na wydajność ogniw – po prostu zwiększa to opór wewnętrzny materiału, przez co mamy mniejsze napięcie i prąd. Dlatego w przypadku instalacji fotowoltaicznych warto dobierać moduły z niskim współczynnikiem temperaturowym. To pozwoli zaoszczędzić energię, szczególnie w cieplejszych miesiącach. Projektanci systemów PV powinni też brać pod uwagę lokalne warunki klimatyczne, żeby jak najlepiej zoptymalizować swoje instalacje. Przy wyborze komponentów, jak np. inwertery, dobrze jest zwrócić uwagę na ich wydajność w różnych temperaturach. Na ogół znajomość tego, jak temperatura wpływa na wydajność ogniw, jest mega ważna, żeby maksymalizować zyski z inwestycji w energię odnawialną.

Pytanie 10

Przy instalacji kolektorów słonecznych na dachu pokrytym dachówkami, do czego przykręca się stelaż?

A. murłat
B. krokwi
C. dachówek
D. łat
Odpowiedź "krokwi" jest poprawna, ponieważ to właśnie krokwi, będące elementami konstrukcyjnymi dachu, stanowią odpowiednie wsparcie dla stelaży kolektorów słonecznych. Krokwi mają dużą nośność i są zaprojektowane do przenoszenia obciążeń, co jest niezwykle istotne przy montażu cięższych systemów solarnych. Kiedy stelaż jest przykręcany do krokwi, zapewnia to stabilność i bezpieczeństwo całej konstrukcji, co jest kluczowe, zwłaszcza w przypadku silnych wiatrów czy opadów śniegu. Zgodnie z normami budowlanymi, należy stosować odpowiednie wkręty i mocowania, które są przystosowane do materiału krokwi, aby uniknąć uszkodzenia drewna. Dobrą praktyką jest również dokonanie oceny stanu technicznego krokwi przed montażem, aby upewnić się, że nie są one osłabione przez czynniki zewnętrzne, takie jak owady czy wilgoć. Poprawny montaż nie tylko zapewnia efektywność systemu, ale także wydłuża jego żywotność.

Pytanie 11

Uchwyt PV bezpiecznika powinien być zamontowany na szynie DIN przy użyciu

A. kołków montażowych
B. śrub
C. zatrzasków
D. nitów
Zatrzaski są preferowanym rozwiązaniem montażowym dla uchwytów PV bezpieczników na szynach DIN, ponieważ zapewniają szybki i łatwy sposób instalacji bez konieczności użycia narzędzi. Dzięki nim można szybko zamocować elementy, co jest szczególnie istotne w środowisku przemysłowym, gdzie efektywność czasowa ma kluczowe znaczenie. Zatrzaski umożliwiają również łatwe demontowanie, co jest przydatne w przypadku konserwacji lub wymiany elementów. W kontekście standardów, montaż za pomocą zatrzasków jest zgodny z normami IEC 60715, które określają wymagania dla systemów montażowych. Prawidłowe użycie zatrzasków gwarantuje stabilność i bezpieczeństwo instalacji, co wpływa na niezawodność całego systemu. W praktyce, podczas instalacji systemów fotowoltaicznych, zastosowanie zatrzasków przyczynia się do obniżenia kosztów pracy oraz skrócenia czasu realizacji projektów, co czyni je optymalnym rozwiązaniem w branży elektroenergetycznej.

Pytanie 12

W trakcie przeglądu technicznego komponentu chłodniczego w pompie ciepła nie wykonuje się analizy

A. stanu przewodów rurowych i połączeń
B. ciśnienia wejściowego w naczyniu wzbiorczym
C. szczelności w obiegu roboczym
D. parametrów cieczy roboczej
Odpowiedź, że przegląd techniczny części chłodniczej pompy ciepła nie obejmuje kontroli ciśnienia wejściowego w naczyniu wzbiorczym, jest prawidłowa. Podczas standardowych przeglądów technicznych skupiamy się na elementach, które mają bezpośredni wpływ na wydajność i bezpieczeństwo systemu chłodzenia. Kontrola szczelności w obiegu roboczym jest kluczowa, ponieważ nieszczelności mogą prowadzić do utraty czynnika chłodniczego, co bezpośrednio wpływa na efektywność pracy pompy ciepła. Stan przewodów rurowych i połączeń również wymaga szczególnej uwagi, gdyż ich uszkodzenia mogą skutkować wyciekami lub ograniczeniem przepływu czynnika. Parametry cieczy roboczej, takie jak temperatura i ciśnienie czynnika, są krytyczne dla prawidłowego działania układu. Naczynie wzbiorcze natomiast działa na zasadzie kompensacji ciśnienia w systemie hydraulicznym, co oznacza, że jego ciśnienie nie jest bezpośrednio związane z efektywnością pracy części chłodniczej. Zrozumienie tych różnic jest kluczowe dla prawidłowej eksploatacji i konserwacji pomp ciepła.

Pytanie 13

Jakim kolorem jest wyłącznie oznaczony przewód ochronny PE?

A. brązowy
B. czerwony
C. żółto-zielony
D. niebieski
Przewód ochronny PE (Protective Earth) jest oznaczony kolorem żółto-zielonym zgodnie z międzynarodowymi normami, takimi jak IEC 60446 oraz PN-EN 60446. Oznaczenie to ma na celu jednoznaczne rozróżnienie przewodów ochronnych od przewodów zasilających oraz innych przewodów w instalacjach elektrycznych. Przewód PE pełni kluczową funkcję w zapewnieniu bezpieczeństwa użytkowników urządzeń elektrycznych poprzez odprowadzenie prądu doziemnego w przypadku awarii, co minimalizuje ryzyko porażenia prądem. Użycie koloru żółto-zielonego jest standaryzowane na całym świecie, co ułatwia rozpoznawanie przewodów ochronnych, niezależnie od kraju. W praktyce, przewody PE są stosowane w instalacjach domowych i przemysłowych, w tym w urządzeniach takich jak gniazdka, maszyny przemysłowe, a także w instalacjach fotowoltaicznych. Dzięki jednoznacznemu oznaczeniu, technicy i elektrycy mogą szybko zidentyfikować przewody ochronne, co jest kluczowe dla bezpieczeństwa podczas prac serwisowych.

Pytanie 14

Pod jakim kątem powinny być ustawione na stałe kolektory słoneczne, aby zapewnić im optymalne nasłonecznienie przez cały rok?

A. 30 - 40 stopni
B. 45 - 50 stopni
C. 60 - 70 stopni
D. 75 - 80 stopni
Ustawienie kolektorów słonecznych pod kątem 45-50 stopni jest uznawane za optymalne dla ich efektywności w ciągu całego roku. Taki kąt zapewnia najlepszą ekspozycję na promieniowanie słoneczne, zarówno w okresie letnim, gdy słońce jest wyżej na niebie, jak i w zimie, kiedy znajduje się niżej. Poziom naświetlenia kolektorów jest kluczowy dla ich wydajności - odpowiedni kąt pozwala na maksymalne wykorzystanie energii słonecznej, co przekłada się na większą produkcję energii. W praktyce, wiele instalacji systemów solarnych na terenie Polski i innych krajów o podobnym klimacie stosuje właśnie ten kąt, aby zminimalizować straty związane z nieodpowiednim ustawieniem. Ponadto, zalecenia te są zgodne z wytycznymi branżowymi, które uwzględniają różne lokalizacje geograficzne oraz zmiany kątów padania promieni słonecznych w ciągu roku. Dobór odpowiedniego kąta nachylenia jest zatem kluczowym elementem projektowania systemów solarnych, wpływającym na ich efektywność i rentowność.

Pytanie 15

Aby zobrazować za pomocą symboli graficznych ogólny przebieg oraz wyposażenie instalacji grzewczej podczas jej funkcjonowania, należy skorzystać z rysunku

A. schematycznego
B. zasadniczego
C. szczegółowego
D. aksonometrycznego
Odpowiedź schematycznego rysunku jest poprawna, ponieważ takie rysunki są powszechnie stosowane do przedstawiania ogólnych przebiegów oraz wyposażenia instalacji grzewczych. Rysunki schematyczne umożliwiają zrozumienie ogólnej struktury systemu bez wchodzenia w szczegóły poszczególnych komponentów. Za pomocą symboli graficznych i uproszczonych przedstawień, schematy te ułatwiają identyfikację kluczowych elementów instalacji, takich jak kotły, pompy, grzejniki oraz ich wzajemne połączenia. Zastosowanie rysunków schematycznych jest zgodne z normami branżowymi, takimi jak PN-EN 13306, które podkreślają znaczenie jednolitych symboli i oznaczeń w dokumentacji technicznej. Dzięki nim zarówno inżynierowie, jak i technicy mają możliwość szybkiej analizy oraz komunikacji dotyczącej systemów grzewczych. Przykładem zastosowania takiego rysunku mogą być projekty instalacji w budynkach mieszkalnych, gdzie schematy pomagają w planowaniu i późniejszym serwisowaniu systemu grzewczego.

Pytanie 16

Kogenerator w trakcie spalania np. biogazu wytwarza energię

A. jedynie mechaniczną
B. wyłącznie energię cieplną
C. tylko energię elektryczną
D. elektryczną i cieplną
Kogenerator, znany również jako jednostka skojarzonej produkcji energii (CHP), jest urządzeniem, które jednocześnie produkuje energię elektryczną oraz cieplną podczas procesu spalania paliw, takich jak biogaz. Biogaz, będący odnawialnym źródłem energii, jest wykorzystywany w kogeneratorach ze względu na swoją niską emisję szkodliwych substancji oraz możliwość efektywnego przetwarzania odpadów organicznych. Kogeneratory działają na zasadzie wykorzystania ciepła odpadowego, które normalnie byłoby tracone w tradycyjnych systemach produkcji energii. Dzięki temu, uzyskują one wyższą efektywność energetyczną, często przekraczającą 80%. Przykładem zastosowania kogeneratorów jest wykorzystanie w zakładach przemysłowych, które potrzebują zarówno prądu, jak i ciepła do procesów produkcyjnych. Tego rodzaju systemy przyczyniają się do obniżenia kosztów energetycznych oraz zmniejszenia śladu węglowego, co jest zgodne z trendami zrównoważonego rozwoju i najlepszymi praktykami w zarządzaniu energią.

Pytanie 17

W porowatych skałach o niskiej wilgotności znajdują się zasoby zmagazynowanej energii

A. konwencjonalnie nieodnawialnej
B. hydrotermalnej
C. petrotermalnej
D. nieodnawialnej
Odpowiedź 'petrotermicznej' jest jak najbardziej trafna, bo chodzi o energię, która jest przechowywana w suchych skałach z porami, a te często mają złoża węglowodorów, takich jak ropa czy gaz. W petrofizyce bada się, jakie właściwości mają te skały, a ich porowatość i przepuszczalność to kluczowe rzeczy, które wpływają na wydobycie tych surowców. Jeśli mówimy o wydobyciu, to istotne jest, żeby rozumieć, jakie są warunki geologiczne i właściwości skał, bo to pomaga w projektowaniu odwiertów i systemów wydobywczych. Dobrym przykładem może być szczelinowanie hydrauliczne, które znacznie zwiększa możliwości wydobycia ropy i gazu z miejsc, gdzie jest ciężej dotrzeć. Standardy jak te od SPE (Society of Petroleum Engineers) podkreślają, jak ważne są badania geologiczne i technologia w ocenie tego, co możemy wydobyć, co w pełni potwierdza sens tej odpowiedzi o energii petrotermicznej.

Pytanie 18

Podczas wymiany separatora powietrza w grupie solarnej należy go zamontować na

A. zasilaniu kolektora przed pompą
B. zasilaniu kolektora za pompą
C. powrocie z kolektora za zaworem odcinającym
D. powrocie z kolektora przed zaworem odcinającym
Montaż separatora powietrza w niewłaściwych miejscach, takich jak zasilanie kolektora przed pompą, może prowadzić do poważnych problemów z wydajnością systemu grzewczego. Umiejscowienie separatora na zasilaniu przed pompą oznacza, że woda z kolektora, która może zawierać powietrze, będzie napotykać na dodatkowy opór, co może skutkować zmniejszoną efektywnością przepływu. W takiej konfiguracji powietrze może pozostawać w instalacji, co zwiększa ryzyko awarii oraz obniża wydajność całego systemu. Podobnie, montaż separatora na powrocie z kolektora przed zaworem odcinającym jest błędem, ponieważ w sytuacji, gdy zachodzi potrzeba konserwacji, nie można odciąć przepływu wody, co uniemożliwia bezpieczne wyjęcie separatora z instalacji. Z kolei umiejscowienie separatora na zasilaniu kolektora za pompą nie jest zalecane, ponieważ może to prowadzić do problemów z usuwaniem powietrza, gdyż separator nie będzie w stanie efektywnie działać w obecności wody pod ciśnieniem. Dlatego kluczowe jest zrozumienie, że miejsce montażu separatora powietrza ma zasadnicze znaczenie dla całego systemu i powinno być zgodne z zaleceniami producentów oraz praktykami branżowymi w celu zapewnienia optymalnej wydajności oraz trwałości instalacji.

Pytanie 19

Aby chronić instalację centralnego ogrzewania przed nadmiernym wzrostem ciśnienia czynnika grzewczego spowodowanym temperaturą i związanym ze wzrostem objętości, należy zastosować

A. naczynie wzbiorcze
B. zawór bezpieczeństwa
C. zawór zwrotny
D. grupę pompową
Naczynie wzbiorcze to naprawdę istotny element w systemie centralnego ogrzewania. Jego głównym zadaniem jest ochrona instalacji przed zbyt wysokim ciśnieniem czynnika grzewczego. Kiedy temperatura rośnie, to wiadomo - objętość wody też się zwiększa, a to prowadzi do podwyższenia ciśnienia. I tu właśnie wchodzi naczynie wzbiorcze, które działa jak bufor, czyli tłumi te zmiany. Jeśli odpowiednio je dobierzemy, nadmiar wody zostaje skierowany do zbiornika, co sprawia, że ciśnienie w instalacji jest stabilne. To ważne szczególnie w instalacjach z kotłami gazowymi czy olejowymi – naczynie nie tylko zapobiega uszkodzeniom samej instalacji, ale też urządzeń grzewczych. Ważne, żeby naczynie miało odpowiednią pojemność i ciśnienie wstępne, bo to wynika z norm EN 12828 i PN-EN 12831. W praktyce, dzięki naczyniu wzbiorczemu można uniknąć niebezpiecznych sytuacji, jak awarie czy wręcz eksplozje, które mogą się zdarzyć przy dużym wzroście ciśnienia. Więc można powiedzieć, że to obowiązkowy, ale też kluczowy element, żeby cała instalacja grzewcza działała bezproblemowo.

Pytanie 20

Aby zabezpieczyć się przed niepełnym spalaniem w kotłach opalanych biomasą, powinno się zainstalować tzw. sondę lambda

A. w przewodzie kominowym
B. na wentylatorze podmuchu
C. w komorze paleniskowej
D. w podajniku paliwa
Sonda lambda jest kluczowym elementem systemu kontroli spalania w kotłach na biomasę, ponieważ jej zadaniem jest monitorowanie stężenia tlenu w spalinach. Montaż sondy w przewodzie kominowym pozwala na precyzyjne pomiary, które są niezbędne do optymalizacji procesu spalania. Dzięki tym pomiarom system może dostosować ilość powietrza dostarczanego do kotła, co z kolei wpływa na efektywność spalania oraz redukcję emisji szkodliwych substancji. Przykładowo, w przypadku, gdy sonda wykrywa zbyt niskie stężenie tlenu, system automatycznie zwiększa podmuch powietrza, co pozwala na uzyskanie pełniejszego spalania paliwa. W praktyce, zastosowanie sondy lambda w odpowiednim miejscu, jakim jest przewód kominowy, przyczynia się do poprawy efektywności energetycznej całego systemu grzewczego oraz spełnienia norm środowiskowych, co jest zgodne z najlepszymi praktykami branżowymi. Rekomendacje dotyczące instalacji sondy lambda w przewodach kominowych są również zgodne z wytycznymi wielu organizacji zajmujących się ochroną środowiska.

Pytanie 21

Jakie narzędzia należy zastosować do łączenia rur PE Ø 32 mm podczas instalacji poziomego kolektora, obok gratownika zewnętrznego i wewnętrznego oraz nożyc do cięcia rur?

A. klucza łańcuchowego 1"
B. pilnika w kształcie trójkąta
C. kształtek zaciskowych 11/4"
D. piły metalowej
Kształtki zaciskowe 11/4" są kluczowym elementem w montażu rur PE, zwłaszcza przy instalacji kolektorów poziomych. Te kształtki umożliwiają solidne i szczelne połączenie rur, co jest niezbędne w systemach hydraulicznych i instalacjach wodociągowych. Wykorzystanie kształtek zaciskowych pozwala na łatwe i efektywne złączenie rur, minimalizując ryzyko wycieków, które mogą prowadzić do poważnych uszkodzeń oraz kosztownych napraw. Stosowanie tych kształtek jest zgodne z normami branżowymi, które zalecają użycie komponentów kompatybilnych z materiałem rur, co w przypadku PE jest kluczowe dla zapewnienia długotrwałości i wytrzymałości instalacji. Przykładem zastosowania kształtek zaciskowych 11/4" może być ich użycie w systemach nawadniania, gdzie efektywne połączenia są niezbędne do utrzymania odpowiedniego ciśnienia i przepływu wody. Przed przystąpieniem do montażu warto również zwrócić uwagę na odpowiednie przygotowanie rur, takie jak ich odtłuszczenie oraz użycie gratownika do wygładzenia krawędzi, co dodatkowo zwiększa szczelność połączenia.

Pytanie 22

Kotły z paleniskiem są odpowiednie do spalania materiałów charakteryzujących się wysoką zawartością żużla?

A. przednim
B. rusztowym
C. korytkowym
D. narzutowym
Kotły z paleniskiem rusztowym są najczęściej stosowane do spalania materiałów o wysokiej zawartości żużla, ponieważ ich konstrukcja umożliwia efektywne odprowadzanie popiołów oraz żużla powstającego podczas procesu spalania. Palenisko rusztowe charakteryzuje się dużą powierzchnią grzewczą, co pozwala na równomierne spalanie paliwa. Dzięki różnym typom rusztów, takim jak ruszty stałe czy ruchome, możliwe jest dostosowanie procesu spalania do specyficznych właściwości paliwa, co zwiększa efektywność energetyczną kotła. Przykładem zastosowania kotłów rusztowych mogą być elektrociepłownie, które wykorzystują węgiel o dużej zawartości popiołu. Dodatkowo, zgodnie z normami emisji, kotły te są zaprojektowane w taki sposób, aby minimalizować emisję zanieczyszczeń, co jest istotnym aspektem w kontekście ochrony środowiska. Warto także zauważyć, że wiele nowoczesnych kotłów rusztowych jest wyposażonych w systemy automatycznego podawania paliwa, co zwiększa komfort eksploatacji oraz efektywność procesu spalania.

Pytanie 23

Która metoda transportu kolektorów słonecznych na dach wysokiego budynku jest najbardziej efektywna?

A. Wciągarką linową
B. Wózkiem widłowym
C. Windą transportową
D. Ręcznie przez schody
Winda transportowa jest najefektywniejszym sposobem transportu kolektorów słonecznych na dach wysokiego budynku z kilku powodów. Po pierwsze, windy transportowe są projektowane do przewożenia ciężkich ładunków, co znacznie ułatwia operacje związane z instalacją, zmniejszając ryzyko uszkodzenia zarówno urządzeń, jak i samego budynku. Przykładowo, windy towarowe często mają większe wymiary i nośność, co pozwala na jednoczesne transportowanie kilku kolektorów, co przyspiesza cały proces. Po drugie, korzystanie z windy transportowej eliminować ryzyko kontuzji związanych z ręcznym transportem, szczególnie w przypadku dużych i nieporęcznych elementów, które mogą być trudne do przeniesienia. Standardy BHP i najlepsze praktyki branżowe, jak te zawarte w normach ISO, podkreślają znaczenie stosowania odpowiednich narzędzi i technologii w celu zapewnienia bezpieczeństwa pracowników. Dodatkowo, windy transportowe są często zaprojektowane z myślą o minimalnym wpływie na otoczenie, co sprawia, że są bardziej ekologicznym rozwiązaniem. W przypadku budynków o dużej wysokości, jak drapacze chmur, windy stanowią nie tylko praktyczne, ale i niezbędne rozwiązanie do sprawnego transportu materiałów budowlanych.

Pytanie 24

Dokumentacja robót budowlanych nie obejmuje

A. przypisów dokumentacji robót.
B. strony tytułowej.
C. wykazów działów dokumentacji robót.
D. cen jednostkowych.
Cen jednostkowych nie zawiera się w przedmiarze robót budowlanych, ponieważ jest to dokument, który ma na celu jedynie przedstawienie szczegółowego zestawienia robót budowlanych. Przedmiar robót składa się z elementów takich jak spis działów przedmiaru, karta tytułowa oraz tabela przedmiaru, które zawierają opisy i ilości poszczególnych robót. Cena jednostkowa, natomiast, jest ustalana na etapie kosztorysowania i nie jest częścią samego przedmiaru. Praktyczne zastosowanie przedmiaru robót polega na umożliwieniu inwestorom oraz wykonawcom lepszego zrozumienia zakresu planowanych prac bez bezpośredniego odniesienia do kosztów. W standardach branżowych, takich jak normy PN-ISO oraz wytyczne dotyczące kosztorysowania, podkreśla się, że przedmiar powinien być neutralny pod względem finansowym, aby służył jako narzędzie do planowania i zarządzania projektem budowlanym, nie zaś do określania kosztów.

Pytanie 25

Jaki materiał posiada najwyższy współczynnik rozszerzalności liniowej?

A. Stal
B. Miedź
C. Polipropylen
D. Mosiądz
Polipropylen to materiał termoplastyczny, który cechuje się najwyższym współczynnikiem rozszerzalności liniowej spośród wymienionych opcji. Współczynnik rozszerzalności liniowej dla polipropylenu wynosi około 100-150 x 10^-6/K, co oznacza, że pod wpływem zmian temperatury, jego długość zmienia się znacznie bardziej niż w przypadku metali, takich jak stal czy miedź. Taka właściwość polipropylenu sprawia, że jest on często wykorzystywany w aplikacjach, gdzie występują znaczące zmiany temperatur. Na przykład, w przemyśle motoryzacyjnym polipropylen jest używany do produkcji elementów wnętrz samochodów, które muszą być odporne na wysokie temperatury oraz zmiany wielkości. W konstrukcjach budowlanych polipropylen jest wykorzystywany w systemach rur, gdzie jego elastyczność i zdolność do rozszerzania się bez pękania są kluczowe. Zgodnie z normami PN-EN, materiały termoplastyczne muszą spełniać określone parametry, aby zapewnić bezpieczeństwo i trwałość w zastosowaniach przemysłowych. Polipropylen jest więc doskonałym przykładem materiału, który łączy w sobie właściwości mechaniczne i termiczne, co czyni go popularnym wyborem w wielu branżach.

Pytanie 26

Jakiego elementu należy użyć, aby połączyć dwie stalowe rury o tej samej średnicy z gwintem zewnętrznym?

A. odpowietrznika
B. mufy
C. redukcji
D. nypla
Mufa jest kluczowym elementem stosowanym do łączenia stalowych rur o tej samej średnicy z gwintem zewnętrznym. Działa jako połączenie, które zapewnia ścisłość i bezpieczeństwo w systemach rurnych. Mufy są dostępne w różnych materiałach, ale stalowe mufy są powszechnie stosowane w instalacjach przemysłowych i budowlanych, gdzie wymagana jest wysoka odporność na ciśnienie i korozję. W praktyce, podczas instalacji, dwa końce rur z gwintem zewnętrznym są wkręcane w mufe, co tworzy solidne połączenie. Warto zauważyć, że użycie mufy jest zgodne z normami, takimi jak PN-EN 10241, które określają wymagania dotyczące materiałów i metod połączeń w instalacjach rurowych. Odpowiednie dobieranie mufy do średnicy rur oraz ich gwintu jest kluczowe dla zapewnienia długotrwałej i szczelnej instalacji, co jest istotne w kontekście bezpieczeństwa i efektywności systemów transportujących różne media.

Pytanie 27

Najlepiej poprowadzić przewody łączące płaski kolektor, usytuowany na dachu, z zasobnikiem ciepła znajdującym się w piwnicy

A. po wewnętrznej elewacji budynku
B. po zewnętrznej elewacji budynku
C. w kanale wentylacyjnym komina
D. w kanale spalinowym komina
Wybór odpowiedzi dotyczącej prowadzenia przewodów w kanale spalinowym komina jest uzasadniony ze względu na kilka kluczowych aspektów związanych z efektywnością systemu grzewczego oraz bezpieczeństwem. Przewody te transportują ciepło z kolektora słonecznego umieszczonego na dachu do zasobnika ciepła w piwnicy. Kanał spalinowy komina zazwyczaj zapewnia skuteczną izolację termiczną, co pozwala na minimalizację strat ciepła w trakcie transportu energii. Dodatkowo, kanał komina jest zaprojektowany tak, aby poradzić sobie z ewentualnymi kondensatami, co jest szczególnie istotne w przypadku przewodów transportujących ciepło. W praktyce, umieszczając przewody w kanale spalinowym, można również uniknąć problemów związanych z narażeniem na działanie warunków atmosferycznych, co przyczynia się do dłuższej żywotności systemu. Ważne jest również, aby spełniać normy budowlane oraz instalacyjne, które zalecają stosowanie odpowiednich materiałów odpornych na wysoką temperaturę oraz działanie spalin.

Pytanie 28

Na podstawie cech przewodnictwa cieplnego, wybierz materiał szeroko wykorzystywany do ociepleń budynków?

A. Cement.
B. Miedź.
C. Styropian.
D. Pustak ceramiczny.
Styropian, znany także jako polistyren ekspandowany (EPS), jest jednym z najczęściej stosowanych materiałów izolacyjnych w budownictwie, zwłaszcza do dociepleń budynków. Jego niska przewodność cieplna, wynosząca około 0,035-0,040 W/mK, sprawia, że jest on bardzo skuteczny w ograniczaniu strat ciepła. Styropian jest lekki, odporny na wilgoć, a także charakteryzuje się dobrą odpornością na działanie chemikaliów. Dla przykładu, powszechnie stosuje się go w systemach ociepleń ścian zewnętrznych (ETICS), gdzie przyklejany jest do powierzchni budynku, a następnie pokrywany tynkiem. W zgodzie z normami budowlanymi, takimi jak PN-EN 13163, styropian spełnia wymagania dotyczące trwałości i efektywności energetycznej, co czyni go podstawowym materiałem w praktykach budowlanych dotyczących izolacji termicznej. Dodatkowo, jego zdolność do recyklingu przyczynia się do zrównoważonego rozwoju w budownictwie.

Pytanie 29

Jakie rodzaje kolektorów słonecznych są najbardziej odpowiednie do montażu w orientacji pionowej?

A. Próżniowe o bezpośrednim przepływie przez absorber.
B. Z przykryciem ze szkła antyrefleksyjnego.
C. Płaskie.
D. Z selektywną powłoką absorbera.
Próżniowe kolektory słoneczne o bezpośrednim przepływie przez absorber są najbardziej efektywne w montażu w pozycji pionowej, ze względu na swoją konstrukcję, która minimalizuje straty ciepła. Próżniowe kolektory składają się z dwóch warstw szklanych, tworzących próżnię, co ogranicza przewodnictwo cieplne i konwekcję. Przy pionowym montażu, te urządzenia mogą efektywnie zbierać energię słoneczną nawet przy niskim kącie padania promieni słonecznych, co jest kluczowe w okresach zimowych lub w regionach o ograniczonej ilości słońca. Dzięki bezpośredniemu przepływowi przez absorber, woda lub inny czynnik roboczy szybko nagrzewają się, co zwiększa efektywność systemu. Przykładem zastosowania mogą być budynki, gdzie przestrzeń na dachach jest ograniczona, a pionowy montaż pozwala na maksymalne wykorzystanie dostępnej powierzchni. Dobre praktyki branżowe wskazują, że instalacja takich kolektorów powinna uwzględniać lokalne warunki atmosferyczne oraz kąt nachylenia, aby zoptymalizować ich wydajność.

Pytanie 30

Podstawą do stworzenia kosztorysu szczegółowego są

A. katalogi producentów
B. wytyczne organizacji budowy
C. katalogi nakładów rzeczowych
D. harmonogramy robót
Katalogi nakładów rzeczowych stanowią fundamentalne źródło informacji w procesie opracowywania kosztorysów szczegółowych, ponieważ zawierają szczegółowe dane dotyczące kosztów materiałów, robocizny oraz innych nakładów związanych z realizacją projektu budowlanego. Dzięki tym katalogom wykonawcy mogą precyzyjnie ocenić, jakie zasoby będą potrzebne do realizacji zadania oraz jakie będą ich koszty. Na przykład, w przypadku budowy budynku mieszkalnego, katalogi te pozwalają na oszacowanie ilości i kosztów materiałów budowlanych, takich jak cegły, cement czy stal. W praktyce, korzystając z obowiązujących standardów kosztorysowania, takich jak KNR (Katalogi Nakładów Rzeczowych), wykonawcy mogą dokonać analizy kosztów na etapie planowania, co jest kluczowe dla efektywnego zarządzania budżetem projektu. Zastosowanie katalogów nakładów rzeczowych poprawia dokładność kosztorysów, co z kolei wpływa na lepsze zarządzanie ryzykiem finansowym związanym z realizacją inwestycji.

Pytanie 31

Aby zainstalować system rur PP, jakie narzędzia są potrzebne?

A. obcinaki do rur, kalibrator oraz zaciskarka
B. nożyce do rur, gratownik i zgrzewarka
C. nożyce do rur, gratownik oraz zestaw kluczy płaskich
D. obcinaki do rur, gratownik oraz klej
Odpowiedź, że do montażu instalacji w systemie rur PP należy dysponować nożycami do rur, gratownikiem i zgrzewarką, jest prawidłowa ze względu na specyfikę materiału i metody łączenia. Nożyce do rur umożliwiają precyzyjne cięcie rur PP, co jest kluczowe dla zachowania integralności połączeń. Gratownik służy do wygładzania krawędzi, co zapobiega uszkodzeniom materiału i zapewnia lepszą jakość połączenia. Zgrzewarka, natomiast, jest niezbędna do efektywnego łączenia rur PP poprzez zgrzewanie, co jest jedną z najlepszych praktyk w instalacjach wodno-kanalizacyjnych. Zgrzewanie rur PP pozwala na uzyskanie trwałego, szczelnego połączenia, które wytrzymuje wysokie ciśnienie oraz zmiany temperatury. Stosowanie tych narzędzi jest zgodne z normami branżowymi, które kładą nacisk na bezpieczeństwo oraz efektywność instalacji. Dobrze przeprowadzony montaż nie tylko przedłuża żywotność instalacji, ale również minimalizuje ryzyko awarii.

Pytanie 32

Ile wynosi współczynnik wydajności pompy ciepła COP, obliczony na podstawie danych technicznych urządzenia zamieszczonych w tabeli, dla temperatury otoczenia 7°C i temperatury wody 50°C?

Dane techniczne
Warunki pomiaruOpisJednostkaWartość
Temp. otoczenia 7°C
Temp. wody 50°C
Moc grzewczakW3,0
Moc elektryczna doprowadzona
do sprężarki
kW1,0
Pobór prąduA4,5
Temp. otoczenia 2°C
Temp. wody 30°C
Moc grzewczakW3,2
Moc elektryczna doprowadzona
do sprężarki
kW0,98
Pobór prąduA4,45
Zasilanie elektryczneV/Hz230/50
Temperatura maksymalna°C60

A. 4,5
B. 3,0
C. 4,0
D. 1,0
Współczynnik wydajności pompy ciepła (COP) jest kluczowym wskaźnikiem efektywności energetycznej tych urządzeń. Odpowiedź 3,0 jest poprawna, ponieważ wskazuje na relację między mocą grzewczą a mocą elektryczną potrzebną do jej wytworzenia. W przypadku podanych wartości, moc grzewcza wynosi 3,0 kW, a moc elektryczna 1,0 kW. Obliczenie COP polega na podzieleniu mocy grzewczej przez moc elektryczną: COP = 3,0 kW / 1,0 kW = 3,0. Taki współczynnik oznacza, że pompa ciepła dostarcza trzy razy więcej energii cieplnej niż zużywa energii elektrycznej, co jest korzystne z perspektywy ekonomicznej oraz ekologicznej. W praktyce, wysoki współczynnik COP wskazuje na lepszą wydajność urządzenia, co jest szczególnie istotne przy obliczaniu kosztów eksploatacji systemów ogrzewania. W branży pomp ciepła zaleca się dążenie do COP na poziomie co najmniej 3,0, aby zapewnić opłacalność inwestycji.

Pytanie 33

Jaką wartość odpowiada 3,3 MPa?

A. 33 kPa
B. 3,3 bar
C. 33 bar
D. 33 000 Pa
Wartość 3,3 MPa rzeczywiście odpowiada 33 barom, ponieważ przeliczenie między tymi jednostkami opiera się na standardowym przeliczniku, w którym 1 MPa jest równy 10 barom. Dlatego aby uzyskać wartość w barach, należy pomnożyć ilość megapaskali przez 10. W praktyce, znajomość tych jednostek jest niezbędna w różnych dziedzinach inżynierii, szczególnie w hydraulice i pneumatyce, gdzie ciśnienie odgrywa kluczową rolę. W zastosowaniach przemysłowych, takich jak systemy hydrauliczne, ważne jest, aby być w stanie szybko i precyzyjnie przeliczać wartości ciśnienia. Wartości ciśnienia mogą być wyrażane w różnych jednostkach, a ich poprawne konwertowanie jest istotne dla utrzymania bezpieczeństwa i efektywności systemów. Ponadto, zgodność z normami międzynarodowymi oraz zrozumienie jednostek SI (Systemu Jednostek Międzynarodowych) jest kluczowe w każdej dziedzinie techniki, co podkreśla znaczenie znajomości jednostek ciśnienia.

Pytanie 34

Z jakiego rodzaju materiału można zrealizować instalację łączącą kolektory słoneczne z zasobnikiem na ciepłą wodę użytkową?

A. Polipropylen.
B. Poliamid.
C. Polietylen.
D. Stal stopowa.
Wybór materiału do budowy instalacji łączącej kolektory słoneczne z zasobnikiem ciepłej wody użytkowej jest kluczowy dla efektywności i trwałości całego systemu. Polipropylen, polietylen oraz poliamid, pomimo że są popularnymi materiałami używanymi w różnych instalacjach, nie są odpowiednie do tego typu zastosowań. Polipropylen i polietylen, będąc tworzywami sztucznymi, mają ograniczoną odporność na wysokie temperatury. W systemach solarnych, gdzie temperatura wody może sięgać nawet 95 stopni Celsjusza, te materiały mogą ulegać deformacjom, co prowadzi do nieszczelności i utraty efektywności systemu. Poliamid, chociaż bardziej odporny na temperaturę niż polipropylen czy polietylen, ma problem z odpornością na działanie wody gorącej, co w dłuższym czasie może prowadzić do degradacji materiału. W kontekście instalacji słonecznych ważne jest, aby zastosowane materiały były zgodne z normami i wymaganiami, jak np. EN 10088 dla stali, które zapewniają odpowiednią jakość i trwałość. Często popełnianym błędem jest mylenie materiałów kompozytowych z metalowymi, co prowadzi do przekonania, że wszystkie tworzywa sztuczne mogą zastąpić stal w wymagających aplikacjach. Dlatego kluczowe jest, aby przy wyborze materiałów kierować się ich właściwościami fizycznymi oraz warunkami, w jakich będą stosowane, unikając pułapek wynikających z niedoinformowania o właściwościach materiałów.

Pytanie 35

Jaką funkcję pełni zbiornik buforowy?

A. wyrównywać ciśnienie w systemie centralnego ogrzewania
B. wyrównywać ciśnienie w systemie solarnym
C. przechowywać nadmiar ciepłej wody
D. przechowywać biopaliwo
Zbiornik buforowy pełni kluczową rolę w systemach ogrzewania, szczególnie w instalacjach solarnych oraz centralnego ogrzewania. Jego głównym zadaniem jest magazynowanie nadmiaru ciepłej wody, co umożliwia efektywne wykorzystanie energii, a także stabilizację pracy systemu. Przykładowo, w instalacjach solarnych, w ciągu dnia, kiedy produkcja ciepła jest wysoka, zbiornik buforowy gromadzi nadmiar ciepłej wody. Dzięki temu, w godzinach wieczornych, gdy zapotrzebowanie na ciepło wzrasta, możliwe jest wykorzystanie zgromadzonej energii, co przekłada się na oszczędności oraz efektywność energetyczną. Zgodnie z normami branżowymi, odpowiednie zaprojektowanie i umiejscowienie zbiornika buforowego pozwala na optymalizację pracy całego systemu grzewczego i zwiększa jego żywotność. W praktyce, niezależnie od typu źródła ciepła, użycie zbiornika buforowego jest standardem, który przyczynia się do bardziej zrównoważonego i ekologicznego podejścia do ogrzewania budynków.

Pytanie 36

Pierwszym zadaniem po zakończeniu montażu instalacji solarnej do ogrzewania jest

A. jej odpowietrzenie
B. izolacja jej przewodów
C. napełnianie jej czynnikiem
D. jej próba ciśnieniowa
Próba ciśnieniowa jest kluczowym etapem po zakończeniu montażu instalacji grzewczej, w tym instalacji solarnych. Jej celem jest wykrycie ewentualnych nieszczelności w systemie, co jest fundamentalne dla zapewnienia jego efektywności oraz bezpieczeństwa użytkowania. Procedura ta polega na napełnieniu systemu wodą lub innym czynnikiem roboczym pod określonym ciśnieniem i obserwowaniu, czy ciśnienie nie spada, co mogłoby wskazywać na nieszczelności. Pomiar ciśnienia powinien być przeprowadzany zgodnie z normami, takimi jak PN-EN 12828 oraz PN-EN 12976, które określają wymagania dotyczące systemów grzewczych. Przykładem zastosowania tej procedury jest instalacja, w której przed pierwszym uruchomieniem systemu słonecznego sprawdza się, czy wszystkie połączenia są szczelne, co zapobiega awariom oraz kosztownym naprawom w przyszłości. Regularne przeprowadzanie prób ciśnieniowych jest także zalecane w ramach konserwacji instalacji, aby zapewnić jej długowieczność oraz efektywność operacyjną.

Pytanie 37

W trakcie użytkowania systemu grzewczego opartego na energii słonecznej zauważono, że pompa solarna włącza się regularnie w porze nocnej. Możliwą przyczyną tego zjawiska może być

A. uszkodzona pompa solarna
B. niski poziom cieczy solarnej
C. zbyt mała histereza na regulatorze
D. aktywowany tryb urlop na kontrolerze solarnym
Ustawiony tryb urlop na sterowniku solarnym to najczęstsza przyczyna, dla której pompa solarna może włączać się w godzinach nocnych. Tryb urlopowy jest zaprojektowany w taki sposób, aby w razie nieobecności użytkownika system pozostawał aktywny, co może obejmować włączanie pompy, aby uniknąć zamarzania płynu solarnego w instalacji. W praktyce, podczas gdy pompa działa, system może nie być w stanie skutecznie utrzymać odpowiedniej temperatury, co prowadzi do niepotrzebnego zużycia energii. W celu minimalizacji takich sytuacji, zaleca się regularne sprawdzanie ustawień sterownika oraz zrozumienie jego funkcji. Nawet w trakcie dłuższej nieobecności użytkownik powinien rozważyć ustanowienie bardziej ekonomicznego trybu pracy, takiego jak tryb oszczędnościowy, jeśli jego system to umożliwia. Zrozumienie działania sterowników i ich ustawień jest kluczowe dla efektywności i oszczędności energetycznej systemów solarnych. Znajomość tych mechanizmów jest podstawą prawidłowej eksploatacji.

Pytanie 38

Instalacja kolektora próżniowego na płaskim podłożu zaczyna się od zamontowania

A. kolektora zbiorczego do stelaża
B. rury zasilającej i powrotnej do stelaża kolektora
C. konstrukcji stelaża
D. rur próżniowych do kolektora zbiorczego
Montaż kolektora próżniowego na podłożu płaskim zaczyna się od konstrukcji stelaża, ponieważ stanowi on podstawę dla całego systemu kolektorów. Stelaż musi być odpowiednio zaprojektowany, aby zapewnić stabilność i bezpieczeństwo instalacji. Właściwe umiejscowienie stelaża jest kluczowe dla efektywności kolektorów, gdyż odpowiedni kąt nachylenia wpływa na wydajność pozyskiwania energii słonecznej. Przykładem może być zastosowanie stelaży regulowanych, które pozwalają na dostosowanie kąta nachylenia w zależności od pory roku. Dobrą praktyką jest także używanie materiałów odpornych na korozję, co zapewnia długotrwałość i minimalizuje konieczność konserwacji. W kontekście norm budowlanych, stelaże powinny spełniać wymagania dotyczące nośności oraz odporności na działanie warunków atmosferycznych, co jest istotne dla bezpieczeństwa całej instalacji.

Pytanie 39

Skraplacz to urządzenie

A. przekształcające energię cieplną na elektryczną.
B. pobierające ciepło z otoczenia.
C. oddające ciepło do systemu.
D. przekształcające energię elektryczną na cieplną.
Skraplacz jest kluczowym elementem systemów chłodniczych i klimatyzacyjnych, którego podstawową funkcją jest oddawanie energii cieplnej do otoczenia. Działa na zasadzie kondensacji, która zachodzi, gdy gaz chłodniczy, przechodząc z fazy gazowej do ciekłej, oddaje ciepło. Przykładowo, w systemach klimatyzacyjnych, skraplacz odprowadza ciepło z wnętrza budynku na zewnątrz, co pozwala na utrzymanie komfortowej temperatury wewnętrznej. Z perspektywy inżynieryjnej, dobrze zaprojektowany skraplacz powinien charakteryzować się wysoką efektywnością wymiany ciepła oraz niskim oporem przepływu. W praktyce oznacza to zastosowanie odpowiednich materiałów i technologii, takich jak stosowanie rur miedzianych lub aluminium, które dobrze przewodzą ciepło. Warto również wspomnieć o standardach branżowych, takich jak ASHRAE, które określają najlepsze praktyki w projektowaniu i użytkowaniu systemów chłodniczych, w tym skraplaczy.

Pytanie 40

Aby ochronić kocioł na biomasę przed niską temperaturą czynnika powracającego z systemu c.o., należy zainstalować zawór

A. termostatyczny na powrocie z systemu c.o.
B. termostatyczny przed grzejnikami c.o.
C. mieszający na powrocie z systemu.
D. mieszający na zasilaniu systemu.
Zastosowanie zaworu mieszającego na powrocie z instalacji c.o. jest kluczowym rozwiązaniem w utrzymaniu odpowiednich temperatur w instalacji grzewczej. Zawór ten pozwala na mieszanie wody powracającej z instalacji c.o. z wodą zasilającą, co pozwala na podniesienie temperatury wody wracającej do kotła na biomasę. Dzięki temu zabezpieczamy kocioł przed niską temperaturą, która mogłaby doprowadzić do kondensacji i korozji, a tym samym wydłużyć jego żywotność. W praktyce, zastosowanie zaworu mieszającego w instalacjach grzewczych zwiększa efektywność energetyczną. W standardach branżowych, takich jak normy EN 12828 i EN 15316, podkreślono znaczenie stosowania takich rozwiązań dla optymalizacji pracy układów grzewczych. Przykładem zastosowania może być instalacja w budynku jednorodzinnym, gdzie po zainstalowaniu zaworu mieszającego użytkownik zauważył znaczne obniżenie kosztów ogrzewania oraz poprawę komfortu cieplnego.