Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 17 maja 2025 19:41
  • Data zakończenia: 17 maja 2025 20:17

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na podstawie zapotrzebowania do budowy ścian obiektu potrzeba 500 sztuk bloczków gazobetonowych. Cena jednej palety tych bloczków wynosi 1200,00 zł. Jakie będą całkowite koszty zakupu, jeśli w każdej palecie jest 24 bloczki, a sprzedaż odbywa się tylko w pełnych paletach?

A. 24 200,00 zł
B. 25 000,00 zł
C. 24 000,00 zł
D. 25 200,00 zł
W analizie błędnych odpowiedzi, kluczowe jest zrozumienie, dlaczego błędne podejścia prowadzą do niewłaściwych wyników. Wiele osób może błędnie obliczyć liczbę potrzebnych palet, co jest najczęstszą pułapką. Na przykład, wybierając odpowiadające liczby, takie jak 24 000,00 zł, można mylnie przyjąć, że wystarczy 20 palet, przy założeniu, że 20 palet * 1200 zł = 24 000 zł. Jednakże, takie podejście zignoruje rzeczywiste zapotrzebowanie na bloczki, które w tym przypadku wynosi 21 palet. Inne odpowiedzi, takie jak 24 200,00 zł czy 25 000,00 zł, mogą wynikać z podobnych błędów obliczeniowych lub zaokrągleń, które nie są zgodne z rzeczywistą logiką tej decyzji zakupowej. W praktyce, niepełne palety nie są sprzedawane, co wymusza na kupującym konieczność zakupu pełnej palety nawet, jeśli w danym przypadku potrzebna jest mniejsza ilość bloczków. Takie błędne kalkulacje są często wynikiem nieprecyzyjnego podejścia do liczenia jednostek oraz nieuwzględnienia zasadności zakupu hurtowego. Aby uniknąć tego rodzaju błędów, należy stosować systematyczne metody obliczeniowe oraz dokładnie analizować specyfikację materiałową i wymagania projektu.

Pytanie 2

Tynk dekoracyjny o wielu warstwach i różnorodnych kolorach, w którym barwę wzoru uzyskuje się poprzez skrobanie lub wycinanie odpowiednich górnych warstw to

A. sztablatura
B. sgraffito
C. stiuk
D. sztukateria
Sgraffito to technika zdobnicza, która polega na tworzeniu wzorów w wielowarstwowym tynku poprzez wyskrobanie lub wycięcie wierzchniej warstwy, co pozwala na odsłonięcie dolnych, różnokolorowych warstw. Jest to metoda, która cieszy się dużą popularnością w architekturze i sztuce dekoracyjnej, szczególnie w regionach o bogatej tradycji rzemieślniczej, takich jak Włochy czy Hiszpania. Przykładem zastosowania sgraffito mogą być elewacje budynków, gdzie twórcy wykorzystują tę technikę, aby dodać unikalny charakter i głębię wizualną. Dzięki zastosowaniu różnych kolorów tynku, artyści mogą tworzyć skomplikowane wzory i kompozycje, które przyciągają uwagę przechodniów. Sgraffito może być wykorzystane nie tylko w architekturze, ale również w sztukach plastycznych, takich jak ceramika czy malarstwo, gdzie technika ta pozwala na osiągnięcie złożonych efektów wizualnych. W kontekście standardów budowlanych, ważne jest, aby stosować materiały o wysokiej jakości, co zapewnia trwałość i estetykę wykonania tego typu zdobień.

Pytanie 3

Można zmniejszyć chłonność podłoża przeznaczonego do tynkowania poprzez

A. wcześniejsze wysuszenie ściany
B. zastosowanie gruntów podkładowych
C. pomalowanie powierzchni farbą
D. wykonanie tynków dedykowanych
Zastosowanie substancji gruntujących to kluczowy krok w procesie tynkowania, który pozwala na zmniejszenie chłonności podłoża. Gruntowanie ma na celu przygotowanie powierzchni, na którą zostanie nałożony tynk, poprzez poprawę przyczepności oraz wyrównanie chłonności. Dzięki temu tynk nie wchłania wody zbyt szybko, co może prowadzić do problemów z jego wiązaniem i trwałością. Przykładem substancji gruntującej mogą być preparaty na bazie żywic syntetycznych, które tworzą cienką warstwę ochronną, a jednocześnie są przepuszczalne dla pary wodnej. Zastosowanie gruntów jest zgodne z normami i zaleceniami producentów tynków, co podkreśla ich znaczenie w budownictwie. W praktyce, przed nałożeniem tynku, należy nanieść grunt równomiernie na całą powierzchnię, co zapewnia optymalne warunki do dalszych prac. Dobre praktyki wskazują również na konieczność dostosowania rodzaju gruntu do konkretnego materiału podłoża, co zwiększa efektywność całego procesu.

Pytanie 4

Korzystając z danych zawartych w tabeli, wskaż najmniejszą dopuszczalną grubość jednowarstwowego tynku chroniącego przed wodą, wykonanego z fabrycznie suchej zaprawy.

Grubości tynkówŚrednia grubość
w [mm]
Dopuszczalna
najmniejsza
grubość
w [mm]
dla tynków zewnętrznych2015
dla tynków wewnętrznych1510
dla jednowarstwowych tynków
wewnętrznych z fabrycznie suchej
zaprawy
105
dla jednowarstwowych tynków
chroniących przed wodą z fabrycznie
suchej zaprawy
1510
dla tynków z izolacją termicznązależnie od
wymagań
20

A. 5 mm
B. 10 mm
C. 20 mm
D. 15 mm
Odpowiedź 10 mm jest poprawna, ponieważ zgodnie z obowiązującymi standardami budowlanymi oraz danymi zawartymi w tabeli, najmniejsza dopuszczalna grubość jednowarstwowego tynku, który ma chronić przed wodą, powinna wynosić właśnie 10 mm. Tego typu tynki są stosowane w budownictwie do ochrony elewacji przed działaniem wilgoci, co jest kluczowe dla zapewnienia długowieczności konstrukcji. Przy zbyt małej grubości, tynk nie wypełni swojej funkcji, co może prowadzić do wnikania wody, a w efekcie do uszkodzenia struktury budynku. W praktyce, stosowanie tynków o grubości minimum 10 mm jest zgodne z zasadami sztuki budowlanej oraz normami, co potwierdzają liczne badania i publikacje branżowe. Prawidłowe dobranie grubości tynku jest zatem kluczowe dla efektywności ochrony przed wilgocią.

Pytanie 5

Na podstawie danych zawartych w tabeli oblicz, ile worków zaprawy murarskiej będzie potrzebnych do wymurowania ściany o długości 4,0 m, wysokości 2,5 m i grubości 1 cegły.

Zużycie zaprawy z 25-kilogramowego worka
Rodzaj ścianyPowierzchnia ściany
dla grubości ściany (z cegły pełnej) 1/2 cok. 0,33 m²
grubości 1 cok.0,16 m²
grubości 1 ½cok. 0,11 m²
grubości 2 cok. 0,08 m²

A. 16 szt.
B. 40 szt.
C. 93 szt.
D. 63 szt.
Żeby policzyć, ile worków zaprawy murarskiej potrzebujemy do wymurowania ściany, najpierw musimy określić jej powierzchnię. Mamy ścianę, która ma 4,0 m długości i 2,5 m wysokości. Więc robimy obliczenia: 4,0 m * 2,5 m = 10 m². Następnie trzeba wiedzieć, ile m² pokryjemy z jednego worka zaprawy. Z reguły to około 0,16 m² z worka. Teraz dzielimy powierzchnię ściany przez to, co pokrywa jeden worek: 10 m² / 0,16 m², co daje 62,5. Ostatecznie zaokrąglamy to do 63 worków. To ważne, żeby dobrze to obliczyć, bo jak źle oszacujemy, to może być opóźnienie w pracy i dodatkowe koszty. Zastosowanie norm, jak PN-EN 998-2, daje pewność, że wszystko będzie solidne i trwałe. Wiedza o tym, jak obliczać materiały, jest ważna nie tylko dla wykonawców, ale także dla inwestorów, żeby dobrze planować budżet budowlany.

Pytanie 6

Na podstawie danych zawartych w tabeli określ maksymalną odległość, w której należy wykonać szczeliny dylatacyjne w ścianie jednowarstwowej wymurowanej z pustaków ceramicznych, o spoinach pionowych niewypełnionych.

Rodzaj muruOdległości Ld między szczelinami dylatacyjnymi (w metrach) w ścianach
szczelinowychjedno- lub dwuwarstwowych o spoinach pionowych
warstwa zewnętrznawarstwa wewnętrznawypełnionychniewypełnionych
Z elementów ceramicznych12403025
Z innych elementów murowych8302520

A. 20 metrów.
B. 12 metrów.
C. 25 metrów.
D. 30 metrów.
Wybór innej odległości, jak 20, 12, czy 30 metrów, może wynikać z nieporozumienia dotyczącego zasad projektowania konstrukcji z pustaków ceramicznych. Odległość 20 metrów, mimo że może wydawać się odpowiednia, nie uwzględnia faktu, że dylatacje mają na celu nie tylko kompensację rozszerzalności cieplnej, ale także kontrolę naprężeń, które mogą prowadzić do uszkodzeń. Z kolei odległość 12 metrów nie jest zalecana, ponieważ prowadziłaby do nadmiaru dylatacji, co może osłabić integralność strukturalną i zwiększyć koszty budowy. Zastosowanie odległości 30 metrów z kolei przekracza normy branżowe, co może skutkować poważnymi problemami konstrukcyjnymi, takimi jak pęknięcia i osiadanie. Ważne jest, aby w każdym projekcie uwzględnić specyfikę materiałów oraz warunki lokalne, zwracając uwagę na standardy takie jak PN-EN 1996-1-1, które jasno określają optymalne odległości dylatacyjne. Typowym błędem myślowym jest błędne zakładanie, że większa odległość zwiększa stabilność, podczas gdy w rzeczywistości może to prowadzić do przeciążenia konstrukcji i poważnych konsekwencji. Dlatego kluczowe jest oparcie się na danych zawartych w tabelach i normach, które są wynikiem badań i praktyki inżynierskiej.

Pytanie 7

Jeśli czas pracy potrzebny do wykonania 1 m2 ścianki działowej wynosi 1,4 r-g, a stawka godzinowa murarza to 15 zł, to jakie wynagrodzenie powinien otrzymać murarz za zrealizowanie 120 m2 ścianek działowych?

A. 2 520 zł
B. 1 800 zł
C. 3 600 zł
D. 1 680 zł
Aby obliczyć wynagrodzenie murarza za wykonanie 120 m2 ścianek działowych, najpierw musimy ustalić, ile roboczogodzin (r-g) jest potrzebnych do wykonania tej pracy. Ponieważ nakład robocizny na 1 m2 wynosi 1,4 r-g, to dla 120 m2 obliczamy: 120 m2 * 1,4 r-g/m2 = 168 r-g. Następnie, znając stawkę godzinową murarza wynoszącą 15 zł, obliczamy całkowite wynagrodzenie: 168 r-g * 15 zł/r-g = 2520 zł. Takie obliczenia są podstawą w branży budowlanej, gdzie precyzyjne planowanie robocizny oraz kosztów jest kluczowe dla efektywności projektów. Dobrą praktyką jest również stworzenie harmonogramu roboczego, który pozwoli na kontrolowanie postępów oraz kosztów, co minimalizuje ryzyko przekroczenia budżetu.

Pytanie 8

Do zbudowania 1 m2 ściany o grubości 25 cm z pełnych cegieł budowlanych potrzebne jest 0,084 m3 zaprawy cementowo-wapiennej. Jaką kwotę należy przeznaczyć na zaprawę do postawienia ściany o powierzchni 12 m2, jeśli cena jednostkowa zaprawy wynosi 250,00 zł/m3?

A. 252,00 zł
B. 2 420,00 zł
C. 242,00 zł
D. 2 520,00 zł
Aby obliczyć koszt zaprawy cementowo-wapiennej potrzebnej do wymurowania ściany o powierzchni 12 m2, należy najpierw ustalić, ile zaprawy potrzebujemy na tę powierzchnię. Z danych wynika, że do wymurowania 1 m2 ściany potrzeba 0,084 m3 zaprawy. Dlatego na 12 m2 ściany potrzebne będzie: 12 m2 * 0,084 m3/m2 = 1,008 m3 zaprawy. Następnie, mnożąc objętość zaprawy przez cenę jednostkową, otrzymujemy całkowity koszt: 1,008 m3 * 250,00 zł/m3 = 252,00 zł. Przykładowo, wiedza na temat kosztów materiałów budowlanych jest kluczowa w procesie budowy, ponieważ pozwala na odpowiednie planowanie budżetu oraz unikanie nieprzewidzianych wydatków. Również zrozumienie ilości materiałów potrzebnych do realizacji projektu budowlanego pomaga w efektywnym zarządzaniu czasem i zasobami, co jest istotne dla przekroczenia standardów branżowych w zakresie efektywności i oszczędności.

Pytanie 9

Zadaniem jest zbudowanie ścianki działowej z cegły pełnej o grubości ½ cegły. Jeśli zużycie zaprawy na 1 m2 tej ścianki wynosi 0,030 m3, to ile zaprawy będzie potrzebne do zrealizowania 25 m2?

A. 0,625 m3
B. 0,50 m3
C. 0,75 m3
D. 0,375 m3
Aby obliczyć ilość zaprawy potrzebnej do wykonania 25 m² ściany działowej z cegły pełnej, należy pomnożyć zapotrzebowanie na zaprawę na 1 m² przez całkowitą powierzchnię ściany. W tym przypadku, zużycie zaprawy wynosi 0,030 m³ na 1 m². Zatem, dla 25 m² zaprawa wynosi: 0,030 m³/m² * 25 m² = 0,75 m³. W praktyce, znajomość takich obliczeń jest niezbędna dla odpowiedniego planowania materiałów budowlanych i kosztorysowania. Pozwala to na uniknięcie sytuacji, w której zabraknie materiału w trakcie budowy, co może prowadzić do opóźnień. W branży budowlanej obowiązują normy, które zalecają uwzględnianie nie tylko podstawowego zapotrzebowania, ale również ewentualnych strat podczas transportu i aplikacji materiałów. Dobrą praktyką jest również zawsze uwzględniać dodatkowy procent materiału na ewentualne poprawki lub błędy, co zwiększa efektywność wykorzystania surowców.

Pytanie 10

Izolację pionową przeciwwilgociową lekkiego typu na ścianach fundamentowych należy zrealizować

A. z dwóch warstw lepiku asfaltowego
B. z dwóch warstw papy termozgrzewalnej
C. z jednej warstwy emulsji asfaltowej
D. z jednej warstwy folii kubełkowej
Izolacja przeciwwilgociowa na ścianach fundamentowych jest kluczowym elementem, który zapobiega przenikaniu wilgoci do wnętrza budynku. Wybór niewłaściwego materiału lub technologii izolacyjnej prowadzi do poważnych problemów, takich jak zawilgocenie ścian, rozwój pleśni oraz osłabienie struktury budynku. Odpowiedzi sugerujące zastosowanie jednej warstwy emulsji asfaltowej lub folii kubełkowej są nieefektywne z perspektywy długoterminowej ochrony przed wilgocią. Emulsja asfaltowa, choć stosunkowo łatwa w aplikacji, nie oferuje takiej samej trwałości i odporności na działanie wód gruntowych jak lepik asfaltowy, co może prowadzić do jej degradacji z czasem. Z kolei folia kubełkowa, mimo że jest używana w izolacjach, nie pełni funkcji pełnoprawnej izolacji przeciwwilgociowej, a raczej wspomaga odprowadzanie wody opadowej. Jej zastosowanie w kontekście fundamentów może być mylące, ponieważ nie tworzy ona dostatecznej bariery dla wilgoci, co stwarza ryzyko jej przenikania do wnętrza budynku. Również pomysł używania jednej warstwy papy termozgrzewalnej jest błędny, ponieważ wymaga to przynajmniej dwóch warstw, aby zapewnić odpowiedni poziom szczelności. Tego rodzaju błędne założenia mogą wynikać z niepełnego zrozumienia mechanizmów działania izolacji przeciwwilgociowych oraz ich wpływu na trwałość i bezpieczeństwo konstrukcji budowlanej.

Pytanie 11

Jakie narzędzia są przeznaczone do demontażu ścian?

A. Kilof, oskard, młot pneumatyczny
B. Przecinak, kielnia, młotek do murowania
C. Strug, szpachla, wiertarka o niskich obrotach
D. Paca, młotek z gumowym zakończeniem
Kilof, oskard i młot pneumatyczny to jakby must-have w rozbiórce ścian, zwłaszcza jak robisz coś w budowlance czy remoncie. Kilof to takie mocne narzędzie, które świetnie sobie radzi z twardymi materiałami jak beton czy cegła. Z kolei oskard ma szersze ostrze i jest super do zdzierania tynku albo rozdzielania konstrukcji. Młot pneumatyczny to już technologia, bo używa sprężonego powietrza, żeby zrobić duże uderzenie i to naprawdę przyspiesza rozbiórkę, zwłaszcza jak mamy do czynienia z grubymi ściankami. Ważne jest, żeby używać tych narzędzi mądrze, czyli dbać o bezpieczeństwo, zakładać odpowiednią odzież ochronną i ogólnie trzymać porządek w miejscu pracy. Dobrze zaplanowana rozbiórka, z właściwymi narzędziami w ręku, może znacznie zmniejszyć ryzyko uszkodzeń i sprawi, że wszystko pójdzie sprawniej.

Pytanie 12

Oblicz wydatki związane z zaprawą niezbędną do budowy ścian o powierzchni 50 m2 z ceramicznych pustaków, jeśli cena 1 m3 zaprawy wynosi 146,00 zł, a do stworzenia 1 m2 ściany potrzeba 0,046 m3 zaprawy?

A. 230,00 zł
B. 335,80 zł
C. 671,80 zł
D. 730,00 zł
Aby obliczyć koszt zaprawy potrzebnej do wykonania ścian o powierzchni 50 m², musimy najpierw określić, ile m³ zaprawy jest wymagane na tę powierzchnię. Z danych wynika, że do wykonania 1 m² ściany potrzeba 0,046 m³ zaprawy. Zatem, dla 50 m² zaprawy potrzebujemy: 50 m² * 0,046 m³/m² = 2,3 m³ zaprawy. Koszt 1 m³ zaprawy wynosi 146,00 zł, więc całkowity koszt zaprawy to: 2,3 m³ * 146,00 zł/m³ = 335,80 zł. Taki sposób obliczania kosztów materiałów budowlanych jest powszechnie stosowany w branży budowlanej, gdzie precyzyjne obliczenia pozwalają na efektywne planowanie budżetu oraz minimalizację strat materiałowych. Używanie dokładnych danych dotyczących zużycia materiałów jest kluczowe dla oszacowania całkowitych kosztów projektu, co jest zgodne z najlepszymi praktykami w budownictwie.

Pytanie 13

Analizę odchylenia tynku oraz jego brzegów od poziomu i pionu wykonuje się w tynkach klasy

A. 0
B. II
C. Ia
D. I

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Badanie odchylenia powierzchni tynku i jego krawędzi od kierunku poziomego i pionowego jest kluczowe w tynkach kategorii II. Tynki te charakteryzują się większymi wymaganiami w zakresie estetyki i jakości wykonania, co wiąże się z koniecznością zachowania precyzyjnych wymiarów i kątów. W praktyce, podczas realizacji prac wykończeniowych, istotne jest, aby powierzchnie były idealnie równe oraz aby krawędzie były prawidłowo ustawione względem poziomu i pionu. W przypadku tynków kategorii II, tolerancje odchylenia są znacznie mniejsze niż w innych kategoriach, co oznacza, że ekipy budowlane muszą wykorzystywać narzędzia pomiarowe o wysokiej precyzji, takie jak poziomice laserowe czy tachymetry. Przykładem zastosowania tej wiedzy jest kontrola jakości tynków w budynkach użyteczności publicznej, gdzie estetyka ma kluczowe znaczenie dla odbioru wnętrz przez użytkowników. Dobre praktyki w branży budowlanej zalecają regularne przeprowadzanie pomiarów oraz wdrażanie procedur kontroli jakości, aby zminimalizować błędy wykonawcze i zapewnić trwałość oraz atrakcyjność wykończeń.

Pytanie 14

Jaką ilość zaprawy tynkarskiej należy przygotować do nałożenia tynku o grubości 1,5 cm na powierzchni 20 m2, jeśli norma zużycia wynosi 5 kg na 1 m2 tynku o grubości 15 mm?

A. 100 kg
B. 50 kg
C. 15 kg
D. 30 kg
Aby obliczyć ilość zaprawy tynkarskiej potrzebnej do wykonania tynku o grubości 1,5 cm na powierzchni 20 m2, należy zastosować normę zużycia wynoszącą 5 kg na 1 m2 dla tynku o grubości 15 mm. Grubość 1,5 cm jest równoważna 15 mm, co oznacza, że norma zużycia jest bezpośrednio stosowana do obliczeń. Dlatego dla powierzchni 20 m2 zużycie zaprawy wyniesie: 5 kg/m2 * 20 m2 = 100 kg. Jest to praktyczne podejście do planowania prac tynkarskich, które powinno być zawsze uwzględnione na etapie przygotowania. W branży budowlanej znajomość norm zużycia materiałów jest kluczowa nie tylko dla efektywności kosztowej, ale także dla jakości wykonania. Zastosowanie odpowiedniej ilości zaprawy tynkarskiej zapewnia stabilność i estetykę tynku, a także wpływa na jego trwałość w dłuższym okresie eksploatacji. Warto zaznaczyć, że w przypadku różnych rodzajów tynków lub zmian w grubości, obliczenia te mogą się zmienić, dlatego zawsze należy odnosić się do aktualnych norm i wytycznych branżowych.

Pytanie 15

Aby sprawdzić precyzję poziomego ustawienia kolejnych warstw cegieł, należy użyć

A. poziomicy.
B. łaty.
C. warstwomierza.
D. sznura murarskiego.
Poziomica to narzędzie niezbędne do zapewnienia, że warstwy cegieł są ułożone w poziomie, co jest kluczowe dla trwałości i estetyki budowli. Użycie poziomicy pozwala na dokładne pomiary, które wskazują, czy trzymana powierzchnia jest idealnie równa. Jest to szczególnie ważne w przypadku konstrukcji, gdzie nawet niewielkie odchylenia mogą prowadzić do problemów strukturalnych. Standardy budowlane zalecają używanie poziomicy do kontroli poziomu podłoża przed rozpoczęciem murowania oraz podczas układania kolejnych warstw. Przykładem zastosowania poziomicy może być postawienie pierwszej warstwy cegieł na fundamentach, gdzie jej użycie pozwala na uzyskanie idealnego poziomu, co jest podstawą dla kolejnych etapów budowy. Warto również pamiętać, że poziomica może być wykorzystana w różnych sytuacjach budowlanych, takich jak montaż okien czy drzwi, gdzie precyzyjne ułożenie ma kluczowe znaczenie dla funkcjonalności i wyglądu. W związku z tym, posługiwanie się poziomicą jest nie tylko dobrą praktyką, ale także niezbędnym standardem w branży budowlanej.

Pytanie 16

W hurtowni "Bud-kom" sprzedaż bloczków z betonu komórkowego odbywa się wyłącznie w pełnych paletach. Zgodnie z potrzebami do budowy ścian budynku wymagane jest 375 sztuk bloczków o wymiarach 480×199×599 mm. Na jednej palecie mieści się 24 bloczki o tych rozmiarach. Cena tych bloczków wynosi 631,00 zł za paletę. Jakie będą całkowite koszty zakupu bloczków w tej hurtowni zgodnie z wymaganiami?

A. 9 750,00 zł
B. 9 465,00 zł
C. 10 125,00 zł
D. 10 096,00 zł
Aby obliczyć koszty zakupu bloczków z betonu komórkowego w hurtowni 'Bud-kom', musimy najpierw ustalić, ile palet bloczków jest potrzebnych do zaspokojenia zapotrzebowania. Potrzebujemy 375 bloczków, a na jednej palecie mieszczą się 24 bloczki. Dlatego liczba potrzebnych palet wynosi: 375 podzielić przez 24, co daje 15,625. Ponieważ sprzedaż w hurtowni jest realizowana wyłącznie w pełnych paletach, zaokrąglamy tę liczbę w górę do 16 palet. Koszt jednej palety wynosi 631,00 zł, więc całkowity koszt zakupu będzie wynosił 16 palet pomnożone przez 631,00 zł, co daje 10 096,00 zł. Dzięki tej metodzie można szybko ocenić koszty materiałów budowlanych, co jest kluczowe dla harmonogramu i budżetu projektu budowlanego. W praktyce wiedza ta jest niezbędna do planowania zakupów i zarządzania finansami projektu budowlanego, a także do wspierania negocjacji z dostawcami, co może pozwolić na uzyskanie korzystniejszych warunków handlowych.

Pytanie 17

Podczas renowacji oraz wzmocnienia spękanego gzymsu nadokiennego, znajdującego się na wysokości 5 m nad poziomem gruntu, konieczne jest wykorzystanie rusztowania

A. na wysuwnicach
B. na stojakach teleskopowych
C. kozłowe
D. stolikowe
Odpowiedź 'na wysuwnicach' jest prawidłowa, ponieważ rusztowania wysuwnicze są zaprojektowane do pracy na dużych wysokościach, co czyni je idealnym rozwiązaniem dla prac budowlanych i konserwacyjnych, takich jak wzmacnianie gzymsu nadokiennego. Tego typu rusztowanie zapewnia stabilność i bezpieczeństwo, a jego teleskopowa konstrukcja pozwala na łatwe dopasowanie wysokości do wymagań konkretnej pracy. W przypadku gzymsów umiejscowionych na wysokości 5 m, zastosowanie wysuwnicy umożliwia wygodny dostęp do miejsca pracy bez konieczności wykonywania skomplikowanych operacji związanych z montażem i demontażem tradycyjnych rusztowań. Standardy BHP oraz normy budowlane, takie jak PN-EN 12811, wskazują na konieczność stosowania rusztowań przystosowanych do wysokości pracy oraz zapewniających bezpieczeństwo pracowników. Praktyczne przykłady zastosowania rusztowania wysuwniczego obejmują zarówno prace remontowe, jak i nowe konstrukcje, co czyni je wszechstronnym narzędziem w branży budowlanej.

Pytanie 18

Rozbiórkę ręczną stropu ceglanego wspieranego na belkach stalowych należy zacząć od

A. przycięcia belek wzdłuż ścian
B. usunięcia tynku z powierzchni stropu, czyli sufitu
C. demontażu wierzchniej warstwy stropu, czyli podłogi
D. usunąć wypełnienie stropu
Rozpoczęcie ręcznej rozbiórki stropu ceglanego od wycięcia belek przy ścianach jest podejściem niebezpiecznym i niezgodnym z zasadami dobrej praktyki budowlanej. Tego rodzaju działanie może prowadzić do destabilizacji konstrukcji, co stwarza poważne ryzyko zawalenia się stropu. Belek nie powinno się wycinać przed dokładnym zbadaniem i przygotowaniem całej konstrukcji, ponieważ belek stalowych nie można traktować jako elementów, które można usuwać w pierwszej kolejności w procesie demontażu. Ponadto, rozebranie wierzchu stropu przed usunięciem tynku prowadzi do wielu komplikacji, w tym do niekontrolowanego opadania luźnych materiałów i zwiększonego ryzyka dla pracowników. Prace demontażowe powinny być prowadzone w odwrotnej kolejności do ich konstrukcji, co oznacza, że najpierw należy zająć się warstwą tynku, następnie ewentualnymi wypełnieniami, a na końcu elementami nośnymi, takimi jak belki. Ignorowanie tej zasady może skutkować nie tylko uszkodzeniem konstrukcji, ale także zwiększeniem kosztów związanych z naprawą ewentualnych szkód. Oprócz tego, skucie wypełnienia stropu przed usunięciem tynku także może prowadzić do sytuacji, w której nie da się skutecznie ocenić stanu belek, co w perspektywie czasowej może przełożyć się na konieczność wykonania kosztownych napraw. Dlatego kluczowe jest przestrzeganie ustalonych procedur oraz norm bezpieczeństwa podczas rozbiórki, aby uniknąć poważnych konsekwencji.

Pytanie 19

Jakie narzędzie powinno się zastosować do usunięcia nadmiaru zaprawy podczas ręcznego tynkowania?

A. Pacy
B. Łaty
C. Czerpaka tynkarskiego
D. Kielni murarskiej
Łata jest kluczowym narzędziem używanym podczas tynkowania ręcznego, ponieważ umożliwia równomierne i precyzyjne ściągnięcie nadmiaru zaprawy. Dzięki jej długości oraz prostokątnej budowie, łatwiej jest uzyskać gładką powierzchnię, co jest niezbędne dla estetyki i jakości tynku. Użycie łaty pozwala na jednoczesne kontrolowanie grubości nałożonej zaprawy oraz eliminację nierówności, co jest zgodne z najlepszymi praktykami w budownictwie. W praktyce, po nałożeniu zaprawy, łatę należy przesunąć w poziomie, przesuwając ją wzdłuż ściany, co powoduje usunięcie nadmiaru materiału i formowanie gładkiej powierzchni. Warto również pamiętać, że wybór odpowiedniej długości łaty powinien być uzależniony od wymiarów tynku oraz stopnia skomplikowania powierzchni. W standardach budowlanych zwraca się uwagę na konieczność zachowania równych krawędzi tynku, co jest możliwe dzięki umiejętnemu posługiwaniu się tym narzędziem.

Pytanie 20

Do budowy elementów konstrukcyjnych budynków przenoszących znaczne obciążenia, takich jak nadproża, słupy, filary oraz kominy, należy wykorzystywać zaprawę

A. cementową
B. wapienną
C. gipsową
D. wapienno-gipsową
Zaprawa cementowa jest właściwym materiałem do murowania elementów budowlanych przenoszących duże obciążenia, takich jak nadproża, słupy, filary oraz kominy. Charakteryzuje się wysoką wytrzymałością na ściskanie, co czyni ją idealnym rozwiązaniem w konstrukcjach, które muszą wytrzymać znaczne obciążenia statyczne oraz dynamiczne. Przykładem zastosowania zaprawy cementowej mogą być budynki użyteczności publicznej, gdzie nadproża muszą sprostać obciążeniom wynikającym z masy konstrukcji i dodatkowych obciążeń użytkowych. Ponadto, zaprawa cementowa jest odporna na działanie wody oraz warunków atmosferycznych, co zapewnia trwałość i stabilność konstrukcji w dłuższym okresie. W polskich normach budowlanych, takich jak PN-EN 1996, podkreśla się znaczenie właściwego doboru materiałów do konkretnych zastosowań konstrukcyjnych, a zaprawa cementowa jest rekomendowana do wszelkich elementów nośnych, gdzie bezpieczeństwo oraz trwałość są kluczowe.

Pytanie 21

Tynk klasy 0, znany jako tynk rapowany, jest zaliczany do tynków

A. dwuwarstwowych
B. cienkowarstwowych
C. trójwarstwowych
D. jednowarstwowych
Tynk rapowany, zaliczany do kategorii 0, jest tynkiem jednowarstwowym, co oznacza, że jest aplikowany w jednej warstwie bez dodatkowych podkładów. Tynki jednowarstwowe charakteryzują się szybkim procesem aplikacji oraz wysoką efektywnością, co jest kluczowe w nowoczesnym budownictwie. Tynki tego typu są często stosowane na budynkach mieszkalnych i komercyjnych, gdzie ważne są zarówno walory estetyczne, jak i funkcjonalne. Do tynków rapowanych można stosować różne rodzaje materiałów, w tym produkty wykonane na bazie cementu, wapna czy gipsu. W praktyce, tynki jednowarstwowe zapewniają dobry poziom izolacji cieplnej oraz odporności na warunki atmosferyczne, co wpisuje się w aktualne standardy budowlane. Zastosowanie tynku rapowanego przyczynia się do redukcji kosztów robocizny oraz czasu realizacji budowy, co jest niezwykle istotne w kontekście współczesnych wymagań rynkowych. Dlatego znajomość tej kategorii tynków jest niezbędna dla profesjonalistów w branży budowlanej.

Pytanie 22

Do sporządzenia zaprawy cementowo-wapiennej odmiany E zaplanowano użycie 100 dm3 cementu. Korzystając z informacji zawartych w tabeli określ, ile pozostałych składników należy przygotować do jej wykonania.

Proporcje składników
(mierzone objętościowo)
Symbol
odmiany
Zaprawy cementoweodmiana 1 : 2A
odmiana 1 : 3B
odmiana 1 : 4C
Zaprawy cementowo-wapienneodmiana 1 : 0,25 : 3D
odmiana 1 : 0,5 : 4E
odmiana 1 : 1 : 6F
odmiana 1 : 2 : 9G
Zaprawy wapienneodmiana 1 : 1,5H
odmiana 1 : 2I
odmiana 1 : 4J

A. 50 dm3 piasku i 200 dm3 wapna.
B. 50 dm3 wapna i 200 dm3 piasku.
C. 50 dm3 wapna i 400 dm3 piasku.
D. 50 dm3 piasku i 400 dm3 wapna.
Poprawna odpowiedź to 50 dm3 wapna i 400 dm3 piasku, co jest zgodne z wymaganiami dla zaprawy cementowo-wapiennej odmiany E. W praktyce, proporcje składników w zaprawach cementowych mają kluczowe znaczenie dla uzyskania odpowiednich właściwości mechanicznych oraz wytrzymałości na czynniki zewnętrzne. W przypadku zaprawy E, stosunek cementu do wapna i piasku wynosi 1:0.5:4, co oznacza, że na każdą jednostkę cementu (100 dm3) przypada 50 dm3 wapna oraz 400 dm3 piasku. Proporcje te powinny być ściśle przestrzegane, aby zapewnić optymalną konsystencję i trwałość zaprawy. Prawidłowe użycie składników wpływa także na właściwości estetyczne, takie jak kolor i struktura powierzchni gotowego produktu. Warto zwrócić uwagę na jakość używanych materiałów, co również jest zgodne z dobrymi praktykami budowlanymi, ponieważ zanieczyszczenia mogą znacząco obniżyć wytrzymałość zaprawy. Przykładowo, w przypadku zastosowania niewłaściwych proporcji, możemy zaobserwować pęknięcia lub osłabienie strukturalne muru, co z kolei prowadzi do kosztownych napraw.

Pytanie 23

Jaką wytrzymałość ma klasa zaprawy na

A. przesuwanie
B. ściśnięcie
C. ugięcie
D. rozciąganie
Klasa zaprawy rzeczywiście odnosi się do jej wytrzymałości na ściskanie. Wytrzymałość na ściskanie jest kluczowym parametrem, który określa zdolność materiału do przenoszenia obciążeń działających w kierunku osiowym, co jest szczególnie istotne w budownictwie i inżynierii lądowej. W praktyce, zaprawy murarskie są stosowane do łączenia elementów budowlanych, takich jak cegły czy bloczki, a ich wytrzymałość na ściskanie wpływa na trwałość całej konstrukcji. Zgodnie z normami PN-EN 1015-11, wytrzymałość na ściskanie zaprawy może być klasyfikowana według różnych klas, co pozwala inżynierom na dobór odpowiedniego materiału do danego zastosowania, np. w budynkach mieszkalnych czy obiektach użyteczności publicznej. Wytrzymałość na ściskanie zaprawy jest zatem kluczowym wskaźnikiem jakości, którego pomiar przeprowadza się w warunkach laboratoryjnych, a jej znajomość pozwala na optymalizację kosztów oraz zapewnienie bezpieczeństwa konstrukcji.

Pytanie 24

Aby połączyć kształtki ceramiczne narażone na wysokie temperatury, należy użyć zaprawy

A. krzemionkowej
B. żywiczej
C. cementowej
D. polimerowej
Krzemionkowa zaprawa jest najodpowiedniejszym wyborem do łączenia kształtek kamionkowych narażonych na działanie wysokiej temperatury ze względu na swoje właściwości termiczne i chemiczne. Krzemionka, jako główny składnik, wykazuje doskonałą odporność na wysokie temperatury, co czyni ją idealnym materiałem do stosowania w piecach, kominkach oraz innych instalacjach, gdzie wymagana jest trwałość w ekstremalnych warunkach. W praktyce, zaprawa krzemionkowa nie tylko łączy elementy, ale także zapewnia ich stabilność oraz odporność na szoki termiczne. W budownictwie ceramicznym i piekarskim, stosowanie zaprawy krzemionkowej zgodnie z normami PN-EN 998-2 pozwala na uzyskanie trwałych i odpornych na działanie wysokich temperatur połączeń. Dlatego w kontekście zastosowania w warunkach wysokotemperaturowych, krzemionkowa zaprawa jest najlepszym wyborem, co potwierdzają standardy branżowe oraz praktyki inżynieryjne.

Pytanie 25

Jaką cegłę należy zastosować do budowy murowanych ścianek działowych o grubości do 12 cm, aby uzyskać jak najniższy ciężar objętościowy?

A. klinkierową
B. ceramiczną pełną
C. dziurawki
D. wapienno-piaskową pełną
Dziurawki, czyli cegły ceramiczne o dużej liczbie otworów, charakteryzują się niskim ciężarem objętościowym, co czyni je idealnym materiałem do budowy ścianek działowych o grubości do 12 cm. Dzięki swojej strukturze, dziurawki nie tylko obniżają całkowity ciężar konstrukcji, ale również zapewniają dobrą izolacyjność akustyczną i termiczną. W praktyce, zastosowanie dziurek w budownictwie pozwala na optymalizację kosztów transportu oraz ułatwia prace murarskie, ponieważ są one lżejsze od cegły pełnej. Zgodnie z normami budowlanymi, cegły te powinny być używane tam, gdzie priorytetem jest redukcja masy konstrukcyjnej, a jednocześnie zachowanie wymagań dotyczących wytrzymałości i izolacji. Przykłady zastosowania obejmują budowę ścianek działowych w biurach, domach mieszkalnych oraz innych obiektach, gdzie ograniczenie ciężaru konstrukcji jest kluczowe.

Pytanie 26

Na podstawie fragmentu instrukcji producenta oblicz, ile palet pustaków potrzeba do wymurowania dwóch ścian wysokości 4 m, długości 8,5 m i grubości 19 cm każda.

Fragment instrukcji producenta
Wymiary pustaka250×188×220 mm
Masa pustakaok. 8,5 kg
Zużyciegrubość ściany - 25 cm22 szt/m²
grubość ściany - 19 cm17 szt./m²
Liczba pustaków na palecie120 szt.

A. 10 palet
B. 13 palet
C. 9 palet
D. 12 palet
Odpowiedź 10 palet jest poprawna, ponieważ wymagała od nas precyzyjnego obliczenia całkowitej powierzchni dwóch ścian, co stanowi kluczowy element w procesie budowlanym. Obliczając powierzchnię jednej ściany o wysokości 4 m i długości 8,5 m, otrzymujemy 34 m². Dla dwóch ścian daje to łącznie 68 m². Następnie, biorąc pod uwagę, że grubość każdej ściany wynosi 19 cm, musimy uwzględnić odpowiednią ilość pustaków, które potrzebujemy na każdy metr kwadratowy. Przyjmując standardową wartość zużycia pustaków, powinniśmy obliczyć całkowitą liczbę pustaków potrzebnych do wymurowania ścian. Po podzieleniu tej liczby przez ilość pustaków na palecie (zwykle około 6-7 pustaków na paletę), otrzymujemy wynik około 9,63 palety, który zaokrąglamy do 10. Takie podejście zgodne jest z praktykami branżowymi, które podkreślają znaczenie precyzyjnych obliczeń w planowaniu materiałów budowlanych, co pozwala uniknąć niedoborów i opóźnień w realizacji projektu budowlanego.

Pytanie 27

W odnawianym obiekcie należy zamurować otwór o powierzchni 1,5 m2, usytuowany w ściance działowej o grubości 1/2 cegły, wykonanej na zaprawie cementowo-wapiennej. Jeśli czas pracy przy zamurowywaniu 1 m2 otworu wynosi 2,5 r-g, a stawka za robociznę wynosi 12 zł/r-g, to jakie będzie wynagrodzenie murarza za zrealizowanie tej czynności?

A. 30 zł
B. 60 zł
C. 45 zł
D. 48 zł
Aby obliczyć wynagrodzenie murarza za zamurowanie otworu o powierzchni 1,5 m2, należy najpierw ustalić nakład robocizny. W przypadku zamurowania 1 m2 otworu, nakład wynosi 2,5 r-g, co oznacza, że dla otworu o powierzchni 1,5 m2, całkowity nakład robocizny wyniesie: 1,5 m2 x 2,5 r-g/m2 = 3,75 r-g. Następnie, aby obliczyć wynagrodzenie, należy pomnożyć całkowity nakład robocizny przez stawkę robocizny, która wynosi 12 zł/r-g. Zatem wynagrodzenie murarza wynosi: 3,75 r-g x 12 zł/r-g = 45 zł. Tego rodzaju obliczenia są standardową praktyką w branży budowlanej, gdzie dokładne oszacowanie kosztów pracy jest kluczowe dla efektywnego zarządzania budżetem projektu. Przykład ten ilustruje, jak ważne jest umiejętne przeliczanie nakładów robocizny oraz kosztów pracy, co przyczynia się do lepszego planowania i realizacji inwestycji budowlanych.

Pytanie 28

Jakie składniki mieszanki betonowej można podgrzać w trakcie jej przygotowywania w temperaturze poniżej +5 °C?

A. Cement oraz wodę
B. Wapno oraz piasek
C. Cement i wapno
D. Piasek i wodę
Wybór składników, takich jak cement i wodę, wapno i piasek, czy cement i wapno, nie jest właściwy w kontekście podgrzewania mieszanki betonowej w niskich temperaturach. Cement, będący kluczowym składnikiem mieszanki, nie powinien być podgrzewany, ponieważ wysoka temperatura może zmienić jego właściwości fizykochemiczne, co może prowadzić do osłabienia struktury betonu oraz zmniejszenia jego wytrzymałości. W przypadku zastosowania wapna, podobnie jak w przypadku cementu, jego podgrzewanie może prowadzić do niepożądanych reakcji, które wpływają na długoterminową stabilność materiału. Wiele osób myśli, że podgrzewanie cementu lub wapna pomoże w uzyskaniu lepszej jakości betonu, jednak w rzeczywistości nie jest to praktyka zalecana w branży budowlanej. Zamiast tego, kluczowe jest podgrzewanie piasku i wody, co pomaga utrzymać odpowiednią temperaturę mieszanki i umożliwia prawidłowy proces hydratacji. Niezrozumienie tych zasad prowadzi do typowych błędów, takich jak niewłaściwe przygotowanie mieszanki betonowej w trudnych warunkach atmosferycznych, co może skutkować słabszą jakością finalnych konstrukcji. Dlatego tak ważne jest, aby stosować się do zaleceń dotyczących temperatury i rodzaju podgrzewanych składników, aby uniknąć problemów z jakością i trwałością betonu.

Pytanie 29

Aby zmniejszyć ilość wody w betonie przy temperaturze otoczenia od +5°C do +10°C, warto zastosować dodatek

A. uplastyczniającą
B. przeciwmrozową
C. napowietrzającą
D. uszczelniającą
Odpowiedzi "uszczelniającą", "przeciwmrozową" i "napowietrzającą" mogą wydawać się odpowiednie, jednak każda z nich odnosi się do innych celów i właściwości materiałów budowlanych. Domieszki uszczelniające mają na celu poprawę szczelności betonu, co jest ważne w kontekście ochrony przed wodą, ale nie wpływają na redukcję ilości wody w mieszance. W przypadku domieszek przeciwmrozowych, ich główną rolą jest ochrona betonu przed uszkodzeniem w wyniku zamarzania i rozmarzania, co jest szczególnie istotne w niskich temperaturach, ale nie dotyczą one bezpośrednio zmniejszenia wody w mieszance. Z kolei domieszki napowietrzające wprowadzają powietrze do mieszanki, co zwiększa jej odporność na cykle mrozowe, lecz również nie prowadzą do redukcji wody. Typowym błędem myślowym jest zakładanie, że wszystkie domieszki mają podobne działanie, podczas gdy ich funkcje są zróżnicowane i związane z wymaganiami technologicznymi. Właściwe zastosowanie domieszek wymaga zrozumienia ich specyficznych właściwości oraz wpływu na zachowanie betonu w różnych warunkach, co jest kluczowe dla zapewnienia jakości i trwałości konstrukcji budowlanych.

Pytanie 30

Na podstawie fragmentu instrukcji producenta oblicz, ile bloczków gazobetonowych o wymiarach
240×240×590 mm potrzeba do wymurowania ściany grubości 24 cm, długości 12 m i wysokości 4 m.

Fragment instrukcji producenta
Wymiary bloczków
[mm]
Zużycie bloczków
[szt./m²]
240×240×5907
120×240×5907

A. 672 szt.
B. 336 szt.
C. 8064 szt.
D. 80 szt.
Dobrze, że obliczyłeś ilość bloczków gazobetonowych, które potrzebujesz na ścianę. Z tego co widzę, wykorzystałeś dane wymiary ściany i bloczków. Ściana 12 m długości i 4 m wysokości daje nam 48 m² powierzchni. Potem ładnie obliczyłeś powierzchnię bloczka, która wynosi 0,0576 m². Jeżeli podzielisz 1 m² przez tę wartość, otrzymasz coś koło 17,36 bloczków na m². To oznacza, że do pokrycia całej ściany potrzebujesz około 833 bloczków. Ale pamiętaj, że zazwyczaj warto doliczyć trochę więcej na wszelki wypadek, żeby uniknąć problemów na budowie. W końcu w praktyce budowlanej to nie tylko liczby, ale też umiejętność przewidywania strat materiałowych, więc dobrze, że wziąłeś to pod uwagę!

Pytanie 31

Jakie składniki należy podgrzać podczas przygotowywania zaprawy murarskiej w chłodnych miesiącach, gdy temperatura otoczenia spada poniżej +5°C?

A. Piasek i wodę przed ich wymieszaniem
B. Wodę i piasek po ich wymieszaniu
C. Piasek i cement przed ich wymieszaniem
D. Wodę i cement po ich wymieszaniu
Tu pojawił się błąd! Podgrzewanie wody i cementu po ich zmieszaniu nie jest zgodne z tym, co mówi technologia wiązania zaprawy. Cement potrzebuje dokładnej ilości wody, żeby dobrze działać. Jak dodasz wodę do już wymieszanej zaprawy, to może obniżyć efekt wiązania. A woda, która była podgrzana po zmieszaniu, nie pomoże, bo nie będzie miała odpowiedniego wpływu na proces hydratacji. Może to prowadzić do osłabionej wytrzymałości zaprawy. Poza tym, podgrzewanie piasku i cementu przed wymieszaniem może zmieniać ich właściwości przez niepożądane reakcje chemiczne. Cement nie powinien być poddawany wysokim temperaturom, bo traci swoją zdolność do wiązania z wodą. Generalnie, każdy etap przygotowania zaprawy powinien być przemyślany, a jak coś pójdzie nie tak, to może osłabić cały budynek i kosztować później dodatkowo. Lepiej trzymać się zalecanych procedur, które mówią o podgrzewaniu składników przed połączeniem.

Pytanie 32

Zaprawa murarska powstaje z połączenia wody, dodatków lub domieszek oraz spoiwa

A. organicznym i kruszywa grubego
B. nieorganicznym i kruszywa grubego
C. nieorganicznego i kruszywa drobnego
D. organicznym i kruszywa drobnego
Zaprawa murarska to tak naprawdę mieszanka kilku rzeczy – wody, spoiwa i czasami różnych dodatków. Kluczowe tutaj jest spoiwo nieorganiczne, na przykład cement albo wapno. Do tego dodajemy kruszywo drobne, przeważnie piasek, które działa jako wypełniacz – dzięki temu zaprawa ma lepsze właściwości mechaniczne. W budownictwie używamy zaprawy murarskiej głównie do łączenia cegieł czy bloczków betonowych. Ważne, żeby dobrać odpowiednią klasę zaprawy, bo to zależy od obciążeń i warunków, w jakich będzie używana. Są normy, jak PN-EN 998-1, które wskazują, jakie zaprawy można stosować w konkretnych sytuacjach, a to wpływa na ich trwałość i odporność na różne warunki atmosferyczne. Na przykład, jeśli budynek będzie miał dużo wilgoci, lepiej sięgnąć po zaprawy o wyższej klasie wytrzymałości. Dobrze dobrana zaprawa to naprawdę podstawa, bo wpływa na stabilność i bezpieczeństwo całej budowli.

Pytanie 33

Jakie materiały wykorzystuje się do realizacji izolacji przeciwwilgociowych?

A. pasty asfaltowe i płyty wiórowe
B. płyty pilśniowe i emulsje asfaltowe
C. roztwory asfaltowe oraz włókna celulozowe
D. folie izolacyjne i lepiki asfaltowe
Izolacja przeciwwilgociowa jest kluczowym aspektem w budownictwie, który ma na celu ochronę obiektów przed negatywnym wpływem wilgoci. Folie izolacyjne oraz lepiki asfaltowe to sprawdzone materiały, które skutecznie zapobiegają przenikaniu wilgoci do wnętrza budynków. Folie izolacyjne są często stosowane w fundamentach, gdzie zabezpieczają przed wodą gruntową, a ich właściwości paroprzepuszczalne pozwalają na odprowadzanie nadmiaru wilgoci. Lepiki asfaltowe, z kolei, służą do uszczelniania różnorodnych powierzchni budowlanych, takich jak dachy, tarasy czy fundamenty. Dzięki elastyczności i odporności na zmiany temperatury, lepiki te zachowują swoje właściwości w różnorodnych warunkach atmosferycznych. W branży budowlanej standardami stosowanymi przy izolacji przeciwwilgociowej są normy PN-B-03020 oraz PN-EN 15814, które określają wymagania oraz metody badań dla materiałów izolacyjnych. Przykładem praktycznego zastosowania tych materiałów może być budowa piwnic, gdzie odpowiednia izolacja przeciwwilgociowa jest kluczowa dla zapewnienia komfortu i trwałości budynku.

Pytanie 34

Czym są zaczyny cementowe?

A. cementem, piaskiem oraz wodą
B. cementem i wodą
C. cementem i piaskiem
D. cementem, wapnem oraz wodą
Cement to kluczowy składnik w procesie produkcji zaczynów cementowych. Właściwa proporcja cementu i wody jest niezbędna do uzyskania optymalnej konsystencji oraz wytrzymałości. Zaczyny cementowe, będące mieszaniną cementu i wody, tworzą tzw. pastę cementową, która po hydratacji staje się twardym i trwałym materiałem. W praktyce, gdy cement reaguje z wodą, zachodzi reakcja chemiczna, w wyniku której powstają nowe związki chemiczne, odpowiedzialne za utwardzanie mieszanki. Standardy budowlane, takie jak normy PN-EN, zalecają użycie cementu w odpowiednich proporcjach, aby zapewnić nie tylko trwałość, ale także odporność na czynniki atmosferyczne, co jest szczególnie istotne w budownictwie infrastrukturalnym. Przykłady zastosowania zaczynów cementowych obejmują zarówno budowę fundamentów, jak i produkcję prefabrykatów betonowych, gdzie właściwe proporcje cementu i wody mają kluczowe znaczenie dla uzyskania wymaganego standardu wytrzymałości. Przykładowo, w konstrukcji mostów i budynków wysokościowych, nieodpowiednia mieszanka mogłaby prowadzić do poważnych problemów strukturalnych.

Pytanie 35

Na podstawie przedstawionej instrukcji producenta zaprawy murarskiej oblicz, ile wody należy użyć do wymieszania 200 kg suchej mieszanki.

Instrukcja producenta zaprawy murarskiej (fragment)
Gęstość nasypowa (suchej mieszanki)ok. 1,5 kg/dm³
Gęstość w stanie suchym (po związaniu)ok. 2,0 kg/dm³
Proporcje mieszania woda/sucha mieszanka3,5 l/25 kg
Min./max. grubość warstwy zaprawy6 mm/40 mm
Czas gotowości zaprawy do pracyok. 4 godzin

A. 28 litrów.
B. 35 litrów.
C. 21 litrów.
D. 14 litrów.
Odpowiedź 28 litrów jest prawidłowa, ponieważ zgodnie z instrukcją producenta, do przygotowania 25 kg suchej mieszanki zaprawy murarskiej należy dodać 3,5 litra wody. Aby obliczyć odpowiednią ilość wody dla 200 kg suchej mieszanki, można zastosować proporcję. 200 kg to 8 razy więcej niż 25 kg, dlatego też 3,5 litra wody należy pomnożyć przez 8, co daje 28 litrów. W praktyce, odpowiednie dobranie ilości wody jest kluczowe dla uzyskania właściwej konsystencji zaprawy, co wpływa na jej przyczepność i wytrzymałość. W branży budowlanej stosowanie się do instrukcji producentów materiałów budowlanych jest niezbędne, aby zapewnić trwałość konstrukcji oraz maksymalną efektywność materiałów. Pamiętaj, że zbyt mała ilość wody może prowadzić do trudności w aplikacji zaprawy, podczas gdy nadmiar wody może osłabić jej właściwości mechaniczne.

Pytanie 36

Do budowy ścian fundamentowych, które są narażone na wilgoć, należy używać zaprawy

A. wapienno-gipsowej
B. gipsowej
C. cementowej
D. wapiennej
Zaprawa cementowa jest najczęściej stosowanym materiałem do wykonywania ścian fundamentowych oraz elementów narażonych na zawilgocenie, ze względu na swoje właściwości mechaniczne i odporność na wodę. Cement, jako główny składnik zaprawy, zapewnia wysoką wytrzymałość na ściskanie, co jest kluczowe w konstrukcjach budowlanych, które muszą przenosić duże obciążenia. Ponadto, zaprawa cementowa jest odporna na działanie czynników atmosferycznych oraz wilgoci, co czyni ją idealnym rozwiązaniem w przypadku fundamentów, które są bezpośrednio narażone na wodę gruntową. W praktyce, zaprawy cementowe używane do budowy fundamentów często zawierają dodatki, takie jak plastyfikatory, które poprawiają ich właściwości robocze i zwiększają trwałość. W polskich normach budowlanych, takich jak PN-EN 206, określone są wymagania dotyczące jakości zapraw cementowych, co dodatkowo podkreśla znaczenie ich stosowania w budownictwie. Przykładem praktycznego zastosowania może być budowa piwnic, gdzie odpowiednia izolacja i użycie zaprawy cementowej są kluczowe dla zapewnienia długotrwałej funkcjonalności struktury.

Pytanie 37

Jaką grubość powinny mieć spoiny wsporcze (poziome) w tradycyjnych murach wykonanych z cegły ceramicznej?

A. 15 - 20 mm
B. 10 - 17 mm
C. 6 - 9 mm
D. 3 - 5 mm
Spoiny wsporne w murach tradycyjnych z cegły ceramicznej powinny mieć grubość od 10 do 17 mm, co wynika z różnych standardów budowlanych oraz praktycznych aspektów konstrukcyjnych. Grubość spoiny ma kluczowe znaczenie dla właściwego łączenia elementów murarskich, co wpływa na stabilność i wytrzymałość całej konstrukcji. Między innymi, każda spoiny powinny być wystarczająco szerokie, aby umożliwić odpowiednią aplikację zaprawy, co z kolei zapewnia solidne połączenie pomiędzy cegłami. W praktyce, zbyt wąskie spoiny mogą prowadzić do nieprawidłowego wypełnienia, co skutkuje słabszą jakością murów oraz zwiększoną podatnością na uszkodzenia. Standardy branżowe, takie jak PN-EN 1996-1-1 dotyczący projektowania murów, wskazują, że optymalna grubość spoiny wspornych zapewnia nie tylko funkcjonalność, ale także estetykę, co jest istotne w kontekście końcowego wykończenia budynków. W związku z tym, należy przestrzegać zalecanych wartości, aby uzyskać odpowiednią jakość i trwałość konstrukcji.

Pytanie 38

Zalecana ilość domieszki napowietrzającej wynosi 0,5 kg na 1 m3 mieszanki betonowej. Jaką ilość domieszki trzeba dodać do 750 dm3 mieszanki betonowej?

A. 0,250 kg
B. 0,550 kg
C. 0,375 kg
D. 0,750 kg
Zdaje się, że przy wyborze odpowiedzi coś poszło nie tak. Może wynika to z błędnych założeń co do objętości mieszanki i proporcji domieszki. Odpowiedzi takie jak 0,250 kg, 0,550 kg czy 0,750 kg pokazują, że mogłeś nie do końca zrozumieć, jak przeliczać jednostki czy objętość. Z mojej perspektywy, 750 dm³ to 0,75 m³, a nie 0,25 m³, jak mogło się wydawać przy błędnym przeliczeniu. Często też ludzie myślą, że domieszki dodaje się po prostu w określonych proporcjach, a to wcale nie jest takie proste. Na przykład, błędem może być pomysł, że wystarczy podzielić ilość mieszanki przez ilość kilogramów na metr sześcienny, a tak naprawdę trzeba patrzeć na całkowitą objętość. Ważne, żeby pamiętać, że zbyt mała lub zbyt duża ilość domieszki może bardzo wpłynąć na właściwości gotowego betonu, co jest kluczowe, biorąc pod uwagę normy budowlane. Dlatego warto znać te przeliczniki i zalecenia producentów materiałów budowlanych.

Pytanie 39

Który z rodzajów tynków dekoracyjnych charakteryzuje się twardą, gładką i lśniącą strukturą, przypominającą polerowany kamień?

A. Sztukateria
B. Sgraffito
C. Stiuk
D. Sztablatura
Stiuk to tynk szlachetny, który charakteryzuje się twardą, gładką i lśniącą powierzchnią, co sprawia, że imituje polerowany kamień. Jest stosowany w architekturze zarówno wewnętrznej, jak i zewnętrznej, często w eleganckich wnętrzach lub jako element dekoracyjny fasad budynków. Proces jego aplikacji wymaga dużej precyzji i doświadczenia, ponieważ polega na nakładaniu wielu warstw specjalnie przygotowanej masy tynkarskiej, która po wyschnięciu jest szlifowana i polerowana. Przykładowo, stiuk często spotyka się w klasycznych pałacach oraz kościołach, gdzie elewacje lub wnętrza mają naśladować drogie materiały kamienne, co podnosi prestiż budowli. Dobrze wykonany stiuk nie tylko nadaje estetyczny wygląd, ale również zapewnia trwałość i odporność na różne czynniki atmosferyczne, co czyni go popularnym wyborem wśród architektów i projektantów.

Pytanie 40

Z jakiego materiału można budować przewody dymowe i wentylacyjne?

A. cegły pełnej
B. pustaków żużlobetonowych
C. cegły dziurawki
D. cegły wapienno-piaskowej
Cegła pełna jest materiałem budowlanym o wysokiej odporności na działanie wysokich temperatur oraz agresywnych substancji chemicznych, co czyni ją idealnym wyborem do budowy przewodów dymowych i wentylacyjnych. Dzięki swojej gęstości i jednorodnej strukturze, cegła ta skutecznie izoluje oraz chroni przed rozprzestrzenianiem się ognia. W praktyce, przewody dymowe wykonane z cegły pełnej zapewniają nie tylko bezpieczeństwo, ale także długotrwałość, co jest kluczowe w kontekście przepisów budowlanych i norm bezpieczeństwa. Cegła pełna może być również stosowana w miejscach narażonych na intensywne działanie spalin, zapewniając ich prawidłowe odprowadzanie. W wielu krajach, zastosowanie cegły pełnej w takich konstrukcjach jest zgodne z obowiązującymi normami budowlanymi oraz zaleceniami, co dodatkowo podkreśla jej przydatność w budownictwie.