Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 25 maja 2025 15:42
  • Data zakończenia: 25 maja 2025 15:56

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Gęstość cieczy w próbce określa się bezpośrednio za pomocą

A. areometru
B. potencjometru
C. konduktometru
D. kolorymetru
Konduktometr jest urządzeniem służącym do pomiaru przewodności elektrycznej cieczy, a nie jej gęstości. W praktyce, konduktometry są używane do oceny stężenia jonów w wodzie, co jest kluczowe w analizach chemicznych i środowiskowych. Użytkownicy mogą mylnie sądzić, że przewodnictwo jest bezpośrednio związane z gęstością, jednak te dwa parametry są odrębne. Kolorymetr natomiast służy do pomiaru intensywności koloru cieczy i jest wykorzystywany głównie w analizie jakościowej substancji chemicznych. Jego zastosowanie nie ma związku z gęstością, co może prowadzić do mylnych interpretacji wyników. Potencjometr to narzędzie do pomiaru napięcia elektrycznego, które również nie ma zastosowania w określaniu gęstości cieczy. W kontekście analizy próbek, istotne jest rozróżnienie pomiędzy różnymi typami urządzeń pomiarowych, gdyż niepoprawne ich zastosowanie może prowadzić do błędnych wniosków. Zrozumienie właściwego zastosowania narzędzi pomiarowych jest kluczowe dla uzyskania dokładnych i wiarygodnych wyników, a także dla przestrzegania standardów laboratoryjnych.

Pytanie 2

Czułość bezwzględna wagi definiuje się jako

A. najmniejszą masę, która powoduje wyraźne wychylenie wskazówki
B. największą masę, która powoduje wyraźne wychylenie wskazówki
C. największe dozwolone obciążenie wagi
D. najmniejsze dozwolone obciążenie wagi
Zrozumienie czułości bezwzględnej wagi wymaga analizy kilku aspektów jej funkcjonowania. Największe dopuszczalne obciążenie wagi to maksymalna masa, jaką waga może zmierzyć bez ryzyka uszkodzenia, co różni się całkowicie od pojęcia czułości. Ustalanie tego parametru opiera się na wytrzymałości mechanicznej urządzenia, a nie na jego zdolności do wykrywania małych zmian. Z kolei najmniejsze dopuszczalne obciążenie wagi odnosi się do najniższej masy, jaką waga może zmierzyć, zanim pomiar stanie się nieprecyzyjny. To również jest inny aspekt, który nie dotyczy bezpośrednio czułości, lecz granic operacyjnych wagi. W kontekście największej masy, która powoduje zauważalne wychylenie wskazówki, pojawia się mylne przekonanie, że czułość odnosi się do maksymalnych wartości, co jest błędnym założeniem. Czułość bezwzględna jest definiowana przez najniższą masę, która wywołuje reaktywne zachowanie wagi. Pojmowanie czułości poprzez pryzmat maksymalnych wartości prowadzi do nieporozumień i może skutkować błędnymi wynikami w laboratoriach czy procesach przemysłowych, gdzie precyzyjne pomiary mają kluczowe znaczenie dla jakości produktów i badań. Kluczowym błędem jest także mylenie parametru czułości z innymi aspektami funkcjonowania urządzeń pomiarowych, co może prowadzić do niewłaściwego doboru wag do konkretnych zadań pomiarowych.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Na podstawie zamieszczonych w tabeli opisów metod rozdzielania mieszanin, dobierz odpowiadające im nazwy.

Tabela. Metody rozdzielania mieszanin
Lp.Opis metody
I.Zlewanie cieczy znad osadu.
II.Przeprowadzenie ciekłego rozpuszczalnika w stan pary.
III.Wyodrębnianie z mieszaniny ciał stałych lub cieczy składnika przy pomocy rozpuszczalnika tak dobranego, aby rozpuszczał żądany związek chemiczny.
IV.Powolne opadanie cząstek substancji stałej w cieczy pod wpływem własnego ciężaru.

A. I – sedymentacja II– krystalizacja, III – ekstrakcja, IV – dekantacja.
B. I – dekantacja, II – odparowanie, III – ekstrakcja, IV – sedymentacja.
C. I – dekantacja, II – sublimacja, III – filtracja, IV – sedymentacja.
D. I – sedymentacja, II – sublimacja, III – destylacja, IV – dekantacja.
Dekantacja, odparowanie, ekstrakcja oraz sedymentacja to metody wykorzystywane w laboratoriach chemicznych oraz procesach przemysłowych do separacji substancji. Dekantacja polega na oddzieleniu cieczy od osadu poprzez zlanie cieczy znad osadu, co jest powszechną praktyką w procesach oczyszczania. Odparowanie to proces, w którym ciecz zostaje przekształcona w parę, co pozwala na oddzielenie substancji rozpuszczonych. Jest to często stosowane w przemyśle spożywczym, jak na przykład w koncentracji soków. Ekstrakcja polega na wydobywaniu substancji rozpuszczalnych z mieszaniny za pomocą odpowiednich rozpuszczalników, co jest kluczowe w produkcji leków oraz w laboratoriach chemicznych. Sedymentacja natomiast, polegająca na osadzaniu się ciał stałych w cieczy pod wpływem grawitacji, jest powszechnie stosowana w oczyszczaniu wód. Zrozumienie tych metod i ich zastosowania jest kluczowe dla efektywnego przeprowadzania procesów chemicznych i technologicznych w różnych dziedzinach.

Pytanie 6

Jak nazywa się proces, w którym następuje wytrącenie ciała stałego z przesyconego roztworu w wyniku spadku temperatury?

A. krystalizacja
B. odparowanie
C. dekantacja
D. sedymentacja
Krystalizacja to proces, w którym substancja stała wydziela się z roztworu, gdy jego stężenie przekracza punkt nasycenia, co może być wynikiem obniżenia temperatury lub odparowania rozpuszczalnika. W praktycznych zastosowaniach, krystalizacja jest kluczowa w przemysłach chemicznym i farmaceutycznym, gdzie czystość i jakość produktu końcowego są niezwykle istotne. Dobrze przeprowadzony proces krystalizacji pozwala na uzyskanie czystych kryształów, które można łatwo oddzielić od roztworu, co jest zgodne z najlepszymi praktykami w zakresie kontroli jakości. Dodatkowo, krystalizacja może być stosowana w technologii separacji i oczyszczania związków chemicznych, gdzie proces ten jest wykorzystywany do wyodrębniania substancji aktywnych z surowców naturalnych. Warto również zauważyć, że krystalizacja jest częścią wielu procesów naturalnych i technologicznych, takich jak formowanie lodu w przyrodzie czy produkcja cukru z soku buraczanego.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Oddzielanie płynnej mieszanki poprzez jej odparowanie, a potem skroplenie poszczególnych składników to

A. chromatografia cieczowa
B. adsorpcja
C. destylacja
D. ekstrakcja w systemie ciecz - ciecz
Destylacja to proces rozdzielania składników cieczy, który polega na odparowaniu cieczy i następnie skropleniu pary. W praktyce, destylacja wykorzystuje różnice w temperaturach wrzenia poszczególnych składników. Na przykład w przemyśle petrochemicznym destylacja jest kluczowym etapem w produkcji benzyny, gdzie surowa ropa naftowa jest poddawana destylacji frakcyjnej, co pozwala na uzyskanie różnych frakcji, takich jak nafta, benzen czy olej napędowy. Ważnym standardem w destylacji jest stosowanie kolumn destylacyjnych, które zwiększają efektywność rozdzielania dzięki wielokrotnemu parowaniu i skraplaniu. W praktyce, destylacja znajduje zastosowanie również w winiarstwie, gdzie alkohol jest oddzielany od innych składników, oraz w produkcji wody destylowanej. Dobre praktyki w tym zakresie obejmują kontrolowanie temperatury oraz ciśnienia, co może znacznie poprawić wydajność procesu oraz jakość uzyskiwanego produktu.

Pytanie 9

Sód powinien być przechowywany

A. w szczelnie zamkniętym pojemniku pod warstwą chloroformu
B. w szczelnie zamkniętym pojemniku pod warstwą nafty
C. w pojemniku z dowolnym zamknięciem pod warstwą chloroformu
D. w pojemniku z dowolnym zamknięciem pod warstwą nafty
Przechowywanie sodu pod warstwą chloroformu czy nafty w pojemnikach o dowolnym zamknięciu jest niewłaściwe i może prowadzić do niebezpiecznych sytuacji. Chloroform, jako rozpuszczalnik organiczny, ma zdolność do interakcji z metalami alkalicznymi, co może wywołać niepożądane reakcje chemiczne. W przypadku sodu, kontakt z chloroformem może prowadzić do powstawania niebezpiecznych produktów, co stwarza ryzyko eksplozji lub pożaru. Ponadto, przechowywanie w pojemniku o dowolnym zamknięciu nie zapewnia odpowiedniego zabezpieczenia przed wilgocią czy powietrzem, co jest kluczowe dla reaktywnych metali. Zastosowanie niewłaściwego pojemnika może doprowadzić do uwolnienia substancji niebezpiecznych do otoczenia, co narusza standardy BHP i regulacje dotyczące składowania substancji chemicznych. Warto zauważyć, że dla metali alkalicznych, takich jak sód, stosowanie odpowiednich pojemników w połączeniu z substancjami ochronnymi jest nie tylko wymaganiem prawnym, ale także kluczowym elementem zapewniającym bezpieczeństwo w laboratoriach i przemyśle. Niezrozumienie tych zasad może prowadzić do poważnych konsekwencji zdrowotnych i środowiskowych.

Pytanie 10

Roztwór, który jest dodawany z biurety w formie kropli do roztworu substancji, którą analizujemy, określamy mianem

A. analitem
B. substratem
C. produktem
D. titrantem
Termin 'titant' odnosi się do substancji, która jest dodawana z biurety do roztworu analizowanej substancji, czyli analitu, w trakcie procesu titracji. Titracja jest kluczową techniką analityczną wykorzystywaną w chemii do określenia stężenia substancji w roztworze poprzez stopniowe dodawanie titranta do analitu aż do osiągnięcia punktu końcowego, który zwykle jest sygnalizowany poprzez zmianę koloru lub inny wskaźnik. Przykładem może być titracja kwasu solnego (HCl) w celu określenia jego stężenia poprzez dodawanie roztworu wodorotlenku sodu (NaOH) jako titranta. W praktyce, zgodnie z zaleceniami norm ISO oraz metodami opisanymi w dokumentach takich jak ASTM, ważne jest, aby dokładnie znać stężenie titranta oraz stosować odpowiednie wskaźniki, co zapewnia uzyskanie dokładnych i powtarzalnych wyników. Znajomość tego pojęcia jest niezbędna dla chemików zajmujących się analizą chemiczną, co podkreśla jego praktyczne zastosowanie w laboratoriach analitycznych.

Pytanie 11

W celu uzyskania 500 g mieszaniny oziębiającej o temperaturze -18oC należy zmieszać

Tabela. Mieszaniny oziębiające
Temperatura
mieszaniny [°C]
Skład mieszaninyStosunek
masowy
-2Woda + chlorek amonu10 : 3
-15Woda + rodanek amonu10 : 13
-18Lód + chlorek amonu10 : 3
-21Lód + chlorek sodu3 : 1
-22Lód + chlorek amonu + azotan(V) amonu25 : 5 : 11
-25Lód + azotan(V) amonu1 : 1

A. 384,6 g wody i 115,4 g chlorku amonu.
B. 384,6 g lodu i 115,4 g chlorku amonu.
C. 375,0 g lodu i 125,0 g chlorku sodu.
D. 250,0 g wody i 250,0 g rodanku amonu.
Aby uzyskać mieszaninę oziębiającą o temperaturze -18°C, kluczowe jest zrozumienie zasad termodynamiki i reakcji chemicznych zachodzących podczas mieszania substancji. W przypadku lodu i chlorku amonu, lód służy jako substancja o niskiej temperaturze, a chlorek amonu działa jako solwat, który wpływa na obniżenie temperatury roztworu. Stosunek masowy 10:3, w którym należy zmieszać te dwie substancje, zapewnia optymalne warunki do osiągnięcia pożądanej temperatury. Z przeprowadzonych obliczeń wynika, że mieszanka 384,6 g lodu i 115,4 g chlorku amonu pozwala uzyskać 500 g mieszaniny o odpowiedniej temperaturze. Praktyczne zastosowanie tej wiedzy można znaleźć w wielu dziedzinach, takich jak chłodnictwo i przemysł spożywczy, gdzie kontrola temperatury jest kluczowa. Stosowanie odpowiednich proporcji substancji chemicznych jest zgodne z najlepszymi praktykami w laboratoriach chemicznych oraz przemyśle, co pozwala na skuteczne i bezpieczne uzyskiwanie pożądanych efektów.

Pytanie 12

Jaka minimalna pojemność powinna mieć miarka, aby jednorazowo zmierzyć 60,0 cm3 wody?

A. 100 cm3
B. 50 cm3
C. 250 cm3
D. 25 cm3
Żeby dobrze odpowiedzieć na to pytanie, warto zrozumieć, jak to jest z pomiarem objętości cieczy. Cylinder miarowy powinien mieć pojemność, która jest większa lub równa tej, którą chcemy zmierzyć, czyli w tym przypadku 60,0 cm³. Najlepiej użyć cylindra o pojemności 100 cm³. Dlaczego? Bo to zapewnia dokładność pomiaru i daje odpowiednią przestrzeń na ewentualne błędy oraz na nabieranie cieczy. W laboratoriach chemicznych to dosyć istotne, bo źle dobrana pojemność może prowadzić do przelania albo niedokładnych pomiarów. Takie rzeczy lepiej omijać, żeby mieć pewność, że pracujemy zgodnie z dobrymi praktykami. Dlatego wybór cylindra 100 cm³ to nie tylko spełnienie wymogów, ale i zadbanie o bezpieczeństwo i dokładność podczas eksperymentów.

Pytanie 13

Rozpuszczalnik stosowany w procesie krystalizacji powinien

A. doskonale rozpuszczać zanieczyszczenia lub w niewielkim stopniu
B. wchodzić w reakcję z substancją krystalizowaną
C. być substancją łatwopalną
D. rozpuszczać zanieczyszczenia w przeciętnym zakresie
Wybór niewłaściwego rozpuszczalnika w procesie krystalizacji może prowadzić do wielu problemów. Propozycja, by rozpuszczalnik reagował z substancją krystalizowaną, jest fundamentalnie błędna, ponieważ takie reakcje chemiczne mogą prowadzić do zanieczyszczenia produktu końcowego, a nawet do jego degradacji. W kontekście krystalizacji, celem jest uzyskanie czystych kryształów, co wymaga, aby rozpuszczalnik nie reagował z substancją, lecz jedynie umożliwiał jej rozpuszczenie. Kolejną niepoprawną koncepcją jest pomysł, że rozpuszczalnik powinien rozpuszczać zanieczyszczenia w stopniu średnim. Taka sytuacja może prowadzić do powstania mieszaniny, która nie pozwoli na uzyskanie czystych kryształów, gdyż zanieczyszczenia będą wprowadzać dodatkowe substancje do struktury kryształów. Rozpuszczalniki łatwopalne są również niewłaściwym wyborem, gdyż ich stosowanie zwiększa ryzyko pożaru i stanowi zagrożenie w laboratoriach. Właściwy dobór rozpuszczalnika powinien być oparty na jego zdolności do selektywnego rozpuszczania i zapewnienia bezpiecznych warunków pracy, zgodnych z normami BHP oraz standardami przemysłowymi. Typowe błędy myślowe, które prowadzą do takich nieprawidłowych wniosków, często wynikają z braku zrozumienia podstawowych zasad chemii i krystalizacji. Zrozumienie tych zagadnień jest niezbędne dla skutecznego przeprowadzenia procesu krystalizacji oraz uzyskania wysokiej jakości produktów chemicznych.

Pytanie 14

Wybierz poprawny zapis jonowy spośród podanych reakcji, w których otrzymywany jest siarczan(VI) baru.

A. Ba2+ + 2Cl- + 2H+ + SO42- → BaSO4 + 2H+ + Cl-
B. BaCl2 + H2SO4 → BaSO4 + 2HCl
C. Ba2+ + 2Cl- + 2H+ + SO42- → BaSO4 + 2H+ + 2Cl-
D. BaCl2 + 2H+ + SO42- → BaSO4 + 2H+ + 2Cl-
Wybór niepoprawnych odpowiedzi wynika często z niepełnego zrozumienia procesu reakcji chemicznych oraz zasad tworzenia zapisów jonowych. Wiele z tych odpowiedzi zawiera nieprawidłowe reprezentacje reagentów i produktów reakcji, co prowadzi do zamieszania w ich interpretacji. Przykładowo, wybór BaCl2 + H2SO4 → BaSO4 + 2HCl błędnie przedstawia fizyczną rzeczywistość zachodzącej reakcji. Nie uwzględnia on stanu jonowego reagentów, co jest kluczowe w analizie reakcji kwas-zasada. W tym przypadku, BaCl2, będący solą, nie jest odpowiednio przetworzony do formy jonowej. Takie błędy prowadzą do nieporozumień, zwłaszcza w kontekście rozróżniania reagentów od produktów, co jest istotnym aspektem w chemii teoretycznej i praktycznej. Dodatkowo, odpowiedzi sugerujące, że jony H+ i Cl- są traktowane jako produkty, wskazują na niewłaściwe zrozumienie równowagi reakcji oraz zachowania jonów w roztworze. Często studenci mylą jony, które reagują, z tymi, które pozostają w roztworze, co może prowadzić do błędnych wniosków w bardziej złożonych reakcjach chemicznych. Konieczne jest, aby zrozumieć różnicę pomiędzy zapisami reakcji cząsteczkowej a zapisem jonowym, który jednoznacznie pokazuje, jakie jony biorą udział w reakcji, eliminując te, które nie zmieniają się i nie wpływają na produkty końcowe.

Pytanie 15

Zgłębniki o konstrukcji przypominającej świder są wykorzystywane do pobierania próbek różnych materiałów

A. płynnych
B. sypkich
C. ciastowatych
D. półpłynnych
Zgłębniki w kształcie świdra, także znane jako świdry próbne, są specjalistycznymi narzędziami przeznaczonymi do pobierania próbek materiałów o konsystencji ciastowatej. Ich konstrukcja, przypominająca świdry, pozwala na efektywne wwiercanie się w bardziej gęste i lepkie substancje, co jest kluczowe w wielu dziedzinach, takich jak geologia, inżynieria materiałowa oraz nauki przyrodnicze. Przykładem zastosowania zgłębnika świdrowego jest badanie gruntów w celu określenia ich nośności lub składu, co jest istotne podczas projektowania fundamentów budynków. W praktyce, pobieranie próbek ciastowatych materiałów, jak np. gliny czy osady, jest trudne, dlatego użycie zgłębnika w kształcie świdra znacząco zwiększa precyzję i efektywność tego procesu. W standardach branżowych, takich jak ASTM D1586, opisane są metody pobierania próbek gruntów, które uwzględniają użycie takich narzędzi, co podkreśla ich fundamentalne znaczenie dla rzetelności badań geotechnicznych.

Pytanie 16

Zgodnie z zasadami BHP w laboratorium, po zakończeniu pracy z odczynnikami chemicznymi należy:

A. Zamknąć szczelnie pojemniki z odczynnikami, posegregować odpady chemiczne zgodnie z instrukcjami i dokładnie umyć stanowisko pracy.
B. Zostawić otwarte pojemniki i natychmiast opuścić laboratorium.
C. Wylać pozostałości odczynników do zlewu niezależnie od ich rodzaju.
D. Wszystkie nieużyte odczynniki pozostawić na stole roboczym.
Prawidłowe postępowanie po zakończeniu pracy z odczynnikami chemicznymi w laboratorium opiera się na kilku kluczowych zasadach bezpieczeństwa i higieny pracy. Po pierwsze, zawsze należy szczelnie zamknąć pojemniki z używanymi chemikaliami, aby uniknąć parowania, przypadkowego kontaktu oraz zanieczyszczenia powietrza szkodliwymi substancjami. To ważne nie tylko dla zdrowia pracowników, ale też dla ochrony środowiska. Następnie wszelkie odpady chemiczne muszą być posegregowane i zutylizowane zgodnie z obowiązującymi przepisami – nie wolno ich wylewać do zlewu czy pozostawiać na stanowisku. Wreszcie, dokładne umycie stanowiska pracy to nie tylko kwestia estetyki, ale też bezpieczeństwa: resztki substancji mogą powodować nieprzewidywalne reakcje lub narazić kolejne osoby korzystające z tego miejsca. Moim zdaniem, takie podejście minimalizuje ryzyko wypadków i sprawia, że praca w laboratorium jest bardziej przewidywalna. W praktyce, nawet jeśli jesteśmy zmęczeni po długim dniu eksperymentów, warto poświęcić te kilka minut na sprzątnięcie, bo to się po prostu opłaca – dla nas i dla innych. To standard nie tylko w szkołach i uczelniach, ale też w profesjonalnych laboratoriach chemicznych na całym świecie.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Aby uzyskać Cr2O3, dichromian(VI) amonu został poddany rozkładowi. Po rozpoczęciu, egzotermiczna reakcja rozkładu przebiega samorzutnie.
(NH4)2Cr2O7 → Cr2O3 + 4 H2O + N2 Jak oceniasz zakończenie tej reakcji?

A. Woda, po dodaniu szczypty uzyskanego preparatu, nie zabarwi się na pomarańczowo niewykorzystanym dichromianem (VI)
B. Ocena nie jest potrzebna, ponieważ wytworzone produkty są w stanie gazowym w temperaturze reakcji
C. W otrzymanym zielonym proszku Cr2O3 nie powinny być widoczne pomarańczowe kryształy substratu
D. Ocena nie jest potrzebna, ponieważ tego typu reakcja zawsze zachodzi do końca
Odpowiedź wskazująca, że woda po wrzuceniu szczypty otrzymanego preparatu nie będzie się barwić na pomarańczowo nieprzereagowanym dichromianem (VI) jest prawidłowa, ponieważ świadczy o tym, że reakcja rozkładu dichromianu (VI) amonu zakończyła się pomyślnie. Po zakończonej reakcji, w której powstaje Cr2O3, nie powinny pozostać żadne resztki surowców ani pośrednich produktów, co potwierdza brak doboru barwy wody. Praktycznie, takie podejście można zastosować w laboratoriach analitycznych, gdzie kontrola końca reakcji jest kluczowa dla uzyskania czystych produktów. Przy badaniach jakościowych, wykorzystanie takiego testu barwnego jest standardową procedurą, aby zweryfikować obecność niepożądanych substancji. Tego typu reakcje są typowe w chemii nieorganicznej i pomogą w zrozumieniu zachowań związków chromu, a także ich zastosowań w różnych dziedzinach, takich jak przemysł chemiczny czy materiałowy.

Pytanie 19

W jakiej standardowej temperaturze są kalibrowane szklane naczynia pomiarowe?

A. 25°C
B. 19°C
C. 20°C
D. 21°C
Szklane naczynia miarowe, takie jak pipety, kolby czy cylinder miarowy, są kalibrowane w standardowej temperaturze 20°C. Kalibracja w tej temperaturze jest uznawana za normę, ponieważ zmiany temperatury mogą wpływać na objętość cieczy oraz na precyzję pomiarów. Przykładowo, w laboratoriach chemicznych, gdzie dokładność pomiarów jest kluczowa, naczynia miarowe są używane przy tej temperaturze, aby zapewnić wiarygodność wyników eksperymentów. W praktyce oznacza to, że przy pomiarach z użyciem tych naczyń, operatorzy powinni dążyć do utrzymania temperatury 20°C, aby uniknąć błędów wynikających z rozszerzalności cieczy oraz materiałów, z których wykonane są naczynia. Ponadto, zgodnie z międzynarodowymi standardami ISO i zaleceniami PTB (Physikalisch-Technische Bundesanstalt), kalibracja powinna być przeprowadzana w 20°C dla wszystkich podstawowych pomiarów objętości, co wzmacnia znaczenie tej wartości w praktyce laboratoryjnej.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Proces oddzielania mieszaniny niejednorodnej, który zachodzi w wyniku opadania cząstek pod działaniem grawitacji, nazywamy

A. dekantacja
B. sedymentacja
C. hydratacja
D. absorpcja
Hydratacja, absorpcja i dekantacja to procesy, które różnią się zasadniczo od sedymentacji, co może prowadzić do nieporozumień. Hydratacja odnosi się do procesu, w którym cząsteczki wody wchodzą w interakcje z innymi substancjami, często prowadząc do ich rozpuszczenia lub zmiany stanu skupienia. Nie jest to więc proces związany z opadaniem cząstek ani ich separacją przez grawitację. Absorpcja z kolei dotyczy wchłaniania substancji przez inne materiały, co również nie ma związku z grawitacyjnym oddzielaniem cząstek. W kontekście chemii i technologii materiałowej absorpcja ma zastosowanie w procesach takich jak filtracja, gdzie substancje są wchłaniane przez porowate materiały, ale nie jest to tożsame z sedymentacją. Dekantacja to metoda polegająca na oddzielaniu cieczy od osadu, jednak wymaga wcześniejszej sedymentacji, aby cząstki mogły opaść na dno. Dekantacja jest bardziej zaawansowanym procesem, który nie odbywa się wyłącznie pod wpływem siły grawitacji, lecz również zakłada manualne lub mechaniczne oddzielenie faz. Dlatego zrozumienie różnic między tymi procesami jest kluczowe w naukach przyrodniczych i inżynieryjnych, a niepoprawne przypisanie cech jednego procesu do drugiego może prowadzić do błędnych wniosków oraz nieefektywności w praktycznych zastosowaniach.

Pytanie 23

Przykładem piany stałej jest

faza rozproszonafaza rozpraszająca
gazcieczciało stałe
gaz-pianapiana stała
cieczaerozol ciekłyemulsjaemulsja stała
ciało stałeaerozol stałyzolzol stały

A. mgła.
B. masło.
C. pumeks.
D. bite białko.
Pumeks jest doskonałym przykładem piany stałej, co wynika z jego unikalnej struktury porowatej. W tej strukturze pęcherze gazu są uwięzione w ciele stałym, co tworzy materiał o niskiej gęstości i wysokiej wytrzymałości. Pumeks, jako skała wulkaniczna, powstaje w wyniku szybkiego schłodzenia lawy, co prowadzi do powstawania licznych pęcherzyków gazu. Zastosowanie pumeksu jest szerokie. W budownictwie wykorzystuje się go jako materiał izolacyjny oraz lekki agregat do betonu. Dodatkowo, pumeks jest stosowany w kosmetykach jako naturalny środek peelingujący oraz w przemyśle rekreacyjnym, w produkcji akcesoriów do pielęgnacji stóp. Zrozumienie właściwości pumeksu jako piany stałej pozwala na lepsze dobieranie materiałów do odpowiednich zastosowań, co jest zgodne z najlepszymi praktykami inżynieryjnymi. W kontekście naukowym, klasyfikacja materiałów na podstawie ich struktury i właściwości jest kluczowa, co potwierdzają standardy dotyczące materiałoznawstwa.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Rozpuszczalność siarczanu(VI) potasu przy temperaturze 30oC wynosi 13 g na 100 g wody. Jaką masę tego związku należy dodać do wody, aby uzyskać 500 g roztworu nasyconego?

A. 57,5 g
B. 74,4 g
C. 65,0 g
D. 52,0 g
Wybór innej odpowiedzi może wynikać z nieporozumienia w zakresie obliczeń dotyczących rozpuszczalności oraz stężenia roztworu. Zrozumienie tego zagadnienia wymaga uwzględnienia kluczowych zasad chemii, a zwłaszcza proporcji, które rządzą rozpuszczalnością substancji. Na przykład, jeżeli ktoś wybrał masę 65,0 g, mógł błędnie założyć, że całkowita masa roztworu równa się sumie masy rozpuszczonego solutu i masy wody, ale nie uwzględnił faktu, że masa wody musi być większa, aby osiągnąć nasycenie. Osoby, które wybierają 52,0 g, mogą myśleć, że wystarczająca ilość soli została dodana, nie zdając sobie sprawy z tego, że nie osiągną one wymaganej nasycenia roztworu. Dodatkowo, wybór 74,4 g jest również niepoprawny, ponieważ przekracza to ilość siarczanu, która mogłaby rozpuścić się w 500 g roztworu w temp. 30°C, co prowadzi do nadmiaru substancji rozpuszczonej, a tym samym do błędnych wniosków dotyczących stężenia. W związku z tym, kluczowe jest zrozumienie proporcji w kontekście rozpuszczalności oraz umiejętność przeprowadzania obliczeń, aby prawidłowo obliczać ilości składników potrzebnych do uzyskania właściwego roztworu nasyconego. Edukacja w obszarze chemii jest kluczowa, aby unikać typowych błędów i wprowadzać precyzyjne dane do praktyki laboratoryjnej.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Które z poniższych równań ilustruje reakcję, w której powstają produkty gazowe?

A. AgNO3 + KBr —> AgBr↓ + KNO3
B. Fe + S —> FeS
C. Fe(CN)2 + 4KCN —> K4[Fe(CN)6]
D. 2HgO —> 2Hg + O2
Reakcja przedstawiona w równaniu 2HgO —> 2Hg + O2 jest klasycznym przykładem reakcji rozkładu, która skutkuje wydzieleniem produktów gazowych. W tym przypadku, pod wpływem ciepła, woda utleniona (HgO) rozkłada się na rtęć metaliczną (Hg) oraz tlen (O2), który jest gazem. Proces ten ilustruje zasady termodynamiki oraz mechanizm reakcji chemicznych. W praktyce rozkład wody utlenionej jest ważny w różnych dziedzinach, w tym w chemii analitycznej, gdzie tlen jest wykorzystywany w reakcjach utleniających. Tego typu reakcje są również istotne w kontekście bezpieczeństwa, gdyż uwolnienie gazów może mieć wpływ na warunki pracy w laboratoriach. Dobrą praktyką w chemii jest stosowanie zasad BHP w obecności gazów, które mogą być wybuchowe lub toksyczne. W związku z tym, zrozumienie reakcji gazowych jest niezbędne do prowadzenia bezpiecznych eksperymentów chemicznych oraz skutecznego zarządzania ryzykiem.

Pytanie 28

Do narzędzi pomiarowych zalicza się

A. naczynko wagowe
B. kolbę stożkową
C. cylinder
D. zlewkę
Cylinder miarowy to naprawdę fajne narzędzie, które znajdziesz w każdym laboratorium. Używa się go do dokładnego mierzenia objętości cieczy, co jest mega ważne podczas różnych eksperymentów chemicznych czy fizycznych. W przeciwieństwie do zlewki, cylinder ma wyraźne podziałki i prostokątną formę, co naprawdę ułatwia odczytywanie wartości. Dzięki temu błąd pomiarowy jest znacznie mniejszy. Osobiście uważam, że korzystanie z cylindra to podstawa, gdy przychodzi do przygotowywania roztworów, gdzie musisz mieć pewność, że wszystko jest dokładnie odmierzone. Oczywiście, pamiętaj, żeby cylinder był odpowiednio skalibrowany, bo to pozwala na powtarzalność wyników, a to chyba każdy chce mieć w swoich eksperymentach.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Substancje pomocnicze wykorzystywane do realizacji podstawowych analiz jakościowych i ilościowych, które nie wymagają wysokiej czystości, są oznaczane na opakowaniach symbolem

A. cz.
B. cz.ch.
C. cz.d.a.
D. techn.
Odpowiedź "cz." jest właściwa, ponieważ oznacza substancje pomocnicze, które są stosowane w analizach jakościowych i ilościowych, gdzie nie jest wymagana wysoka czystość chemiczna. Termin ten jest często używany w laboratoriach analitycznych oraz w procesach produkcyjnych, gdzie substancje te mogą służyć jako rozpuszczalniki, czy też reagenty w reakcjach chemicznych, ale nie muszą spełniać rygorystycznych norm czystości. Przykładem może być użycie substancji pomocniczych w analizach spektroskopowych, gdzie ich obecność nie wpływa negatywnie na wyniki analizy. W praktyce, korzystanie z takich substancji pozwala na oszczędności kosztów oraz uproszczenie procedur laboratoryjnych, co jest szczególnie ważne w laboratoriach zajmujących się rutynowymi analizami. Warto również zauważyć, że w kontekście dobrych praktyk laboratoryjnych, stosowanie substancji oznaczonych jako "cz." jest zgodne z wytycznymi dotyczącymi jakości w laboratoriach, które sugerują, aby dobierać materiały w zależności od wymagań jakościowych danej analizy.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Oddzielanie płynnej mieszaniny wieloskładnikowej poprzez odparowanie, a następnie skraplanie jej komponentów, to proces

A. koagulacji
B. destylacji
C. krystalizacji
D. filtracji
Destylacja to proces, który polega na rozdzielaniu składników cieczy poprzez ich odparowanie i następne skroplenie. Jest to technika szeroko stosowana w różnych gałęziach przemysłu, takich jak petrochemia, przemysł spożywczy, a także w laboratoriach chemicznych. Przykładem zastosowania destylacji w przemyśle jest produkcja alkoholi, gdzie poprzez destylację fermentowanych surowców uzyskuje się wysokoprocentowe napoje. Proces destylacji wykorzystuje różnice w temperaturach wrzenia poszczególnych składników, co pozwala na ich selektywne odparowanie i kondensację. W praktyce, w destylacji frakcyjnej, stosuje się kolumny destylacyjne, które umożliwiają wielokrotne skraplanie i odparowywanie, co zwiększa efektywność rozdziału. Warto również znać standardy takie jak ASTM D86, które określają metody przeprowadzania destylacji w przemyśle naftowym, gwarantując wysoką jakość oraz powtarzalność procesów.

Pytanie 33

Instrukcja dotycząca przygotowania wzorcowego roztworu NaCl
0,8242 g NaCl, które wcześniej wysuszono w temperaturze 140 °C do stałej masy, należy rozpuścić w kolbie miarowej o pojemności 1 dm3 w wodzie podwójnie destylowanej, a następnie uzupełnić do kreski tym samym rodzajem wody.
Z treści instrukcji wynika, że odpowiednio skompletowany sprzęt wymagany do sporządzenia wzorcowego roztworu NaCl, oprócz naczynia wagowego, powinien zawierać

A. wagę analityczną o precyzji ważenia 0,0001 g oraz kolbę miarową o pojemności 1000 cm3
B. wagę analityczną o precyzji ważenia 0,0001 g oraz kolbę miarową o pojemności 100 cm3
C. wagę laboratoryjną o precyzji ważenia 0,001 g oraz kolbę miarową o pojemności 100 cm3
D. wagę laboratoryjną o precyzji ważenia 0,001 g oraz kolbę miarową o pojemności 1000 cm3
Odpowiedzi, które wskazują na wagę laboratoryjną o dokładności 0,001 g oraz kolby miarowej o pojemności 100 cm³, nie są odpowiednie w kontekście przygotowania wzorcowego roztworu NaCl. Użycie wagi laboratoryjnej, zamiast wagi analitycznej, ogranicza precyzję pomiaru masy substancji, co jest nieakceptowalne w standardowych procedurach przygotowania roztworów wzorcowych. Precyzyjne ważenie jest kluczowe, ponieważ błędy w odważaniu mogą prowadzić do znacznych odchyleń w ostatecznej koncentracji roztworu, co z kolei wpływa na wyniki dalszych analiz. Ponadto, kolba miarowa o pojemności 100 cm³ nie jest odpowiednia, gdyż nie pozwala na rozpuszczenie całej masy NaCl w wymaganej objętości. Przygotowanie roztworu w mniejszych pojemnikach może być wygodne w niektórych zastosowaniach, jednak w przypadku wzorcowych roztworów, które mają służyć jako standardy do kalibracji i analizy, konieczne jest stosowanie większych pojemników. Należy również pamiętać, że zgodnie z dobrymi praktykami laboratoryjnymi, wszystkie pomiary powinny być realizowane z zachowaniem odpowiednich standardów i metod, aby zapewnić wiarygodność wyników.

Pytanie 34

Po przeprowadzeniu krystalizacji z 120 g kwasu szczawiowego uzyskano 105 g produktu o wysokiej czystości. Jaki był poziom zanieczyszczeń w kwasie szczawiowym?

A. 87,5%
B. 12,5%
C. 20%
D. 15%
Aby zrozumieć, dlaczego pozostałe odpowiedzi są błędne, należy przyjrzeć się podstawowym zasadom obliczeń związanych z zawartością zanieczyszczeń. Odpowiedzi takie jak 20%, 15% i 87,5% opierają się na nieprawidłowych wyliczeniach lub błędnych założeniach. Przykładowo, jeśli ktoś wyliczałby 20%, mógłby mylnie pomyśleć, że zanieczyszczenia stanowią znacznie większy udział masy początkowej. Może to wynikać z pomyłki w obliczeniach lub braku zrozumienia, że zanieczyszczenia są obliczane na podstawie masy uzyskanego czystego produktu, a nie samej masy początkowej. Odpowiedź 15% również jest wynikiem nieprawidłowego obliczenia. Osoba udzielająca takiej odpowiedzi mogła pomylić się, przyjmując, że zanieczyszczenia to po prostu 15 g z 120 g, co nie uwzględnia odpowiedniego podziału przez masę początkową i pomnożenia przez 100%. Z kolei odpowiedź 87,5% jest szczególnie myląca, ponieważ sugeruje, że niemal cała masa kwasu szczawiowego była zanieczyszczona, co jest niezgodne z danymi przedstawionymi w pytaniu. Takie podejście może prowadzić do dramatycznych nieporozumień w analizie danych chemicznych i w przemyśle, gdzie dokładność pomiarów jest kluczowa. Dlatego ważne jest, aby stosować jednoznaczne metody obliczeń oraz zrozumieć, jakie wartości są istotne w kontekście danej analizy chemicznej.

Pytanie 35

Aby uzyskać wodorotlenek wapnia, odważono 30 g węglanu wapnia, który następnie wyprażono. Powstały tlenek wapnia dodano do 100 cm3 wody, a otrzymany osad wysuszono i zważono, uzyskując 18,5 g wodorotlenku wapnia. Jaką wydajność miała ta reakcja?

Ca – 40 g/mol; O – 16 g/mol; C – 12 g/mol; H – 1 g/mol

A. 80%
B. 75%
C. 83%
D. 93%
Wydajność reakcji to kluczowy parametr, który często mylony jest z innymi pojęciami, takimi jak sprawność czy konwersja. Wybór błędnych odpowiedzi może wynikać z niezrozumienia właściwego sposobu obliczania wydajności, co prowadzi do chaosu w analizie wyników reakcji chemicznych. Na przykład, wiele osób może pomylić teoretyczną masę produktu z masą rzeczywiście uzyskaną. Obliczając wydajność, istotne jest posługiwanie się poprawnymi jednostkami i jednostkowym podejściem do obliczeń. Do obliczenia wydajności należy wyjść od teorii reakcji, w której określamy możliwą masę produktu, a następnie porównujemy ją z masą rzeczywistą. Może się zdarzyć, że wyliczenia prowadzą do wartości 75%, 80% czy nawet 93%, co jest wynikiem pomyłek w obliczeniach lub niewłaściwego rozumienia masy molowej użytych reagentów. Istotnym błędem jest również pominięcie wpływu czynników zewnętrznych, takich jak temperatura czy ciśnienie, które mogą wpływać na wydajność reakcji. W praktyce, dokładność w obliczeniach oraz znajomość teorii reakcji chemicznych są kluczowe dla osiągnięcia jak najwyższej wydajności procesów chemicznych, co jest szczególnie ważne w przemyśle oraz laboratoriach badawczych.

Pytanie 36

Nie należy używać gorącej wody do mycia

A. zlewki
B. kolby miarowej
C. kolby stożkowej
D. szkiełka zegarkowego
Kolba miarowa jest szklanym naczyniem laboratoryjnym, które służy do dokładnego pomiaru objętości cieczy. Z uwagi na jej konstrukcję, nagłe zmiany temperatury mogą prowadzić do uszkodzeń, takich jak pęknięcia czy odkształcenia. Gorąca woda może powodować, że szkło stanie się bardziej podatne na stres termiczny, co jest niebezpieczne, zwłaszcza w przypadku kolb miarowych, które są projektowane z myślą o precyzyjnych pomiarach. W standardach laboratoryjnych, takich jak normy ISO, zaleca się, aby naczynia wykonane ze szkła boro-krzemowego, wykorzystywane w laboratoriach, nie były narażane na nagłe zmiany temperatury. Dobrą praktyką jest mycie ich w letniej wodzie z detergentem, a następnie dokładne płukanie w wodzie destylowanej, aby zminimalizować ryzyko uszkodzenia i zapewnić dokładność pomiarów. Przy odpowiedniej konserwacji, kolby miarowe mogą służyć przez wiele lat, jednak ich właściwe użytkowanie jest kluczowe dla utrzymania ich funkcjonalności.

Pytanie 37

Fosfor biały, z uwagi na swoje właściwości, powinien być przechowywany

A. w benzenie
B. w wodzie
C. w nafcie
D. w benzynie
Przechowywanie fosforu białego w nafcie, benzynie lub innym rozpuszczalniku organicznym jest nie tylko nieefektywne, ale także bardzo niebezpieczne. Te substancje charakteryzują się łatwopalnością, co w połączeniu z właściwościami fosforu białego stwarza wysokie ryzyko pożaru. Fosfor biały w kontakcie z naftą może prowadzić do nieprzewidywalnych reakcji chemicznych, w tym zapłonu, co stanowi poważne zagrożenie dla zdrowia i bezpieczeństwa. Często występującym błędem jest mylenie nafty z wodą, co wynika z niewłaściwego zrozumienia właściwości chemicznych tych substancji. Woda jest substancją niepalną, która stabilizuje fosfor biały, podczas gdy nafta jest substancją łatwopalną, która mogłaby spowodować pożar. Podobnie, zarówno benzyna, jak i benzen są substancjami organicznymi, które mogą sprzyjać wybuchom oraz są szkodliwe dla zdrowia. W kontekście najlepszych praktyk, takie podejście do przechowywania fosforu białego jest absolutnie niewłaściwe i sprzeczne z zaleceniami instytucji zajmujących się bezpieczeństwem chemicznym. W przemyśle chemicznym oraz laboratoriach stosowane są ściśle określone procedury, które eliminują możliwość przechowywania substancji niebezpiecznych w niewłaściwy sposób, co dodatkowo podkreśla nieodpowiedzialność takich wyborów.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Do szklanych narzędzi laboratoryjnych wielomiarowych używanych w analizach ilościowych należy

A. pipeta Mohra
B. cylinder z podziałką
C. zlewka
D. kolba stożkowa
Pipeta Mohra, zlewka i kolbka stożkowa to narzędzia laboratoryjne, ale nie są one odpowiednie do precyzyjnej analizy ilościowej w tym kontekście. Pipeta Mohra, chociaż używana do odmierzania cieczy, ma ograniczoną dokładność i jest przeznaczona głównie do przenoszenia ustalonych objętości cieczy, co różni ją od cylindra z podziałką, który umożliwia dokładną odczyt objętości w większym zakresie. Zlewka, z kolei, jest narzędziem o niskiej precyzji, często stosowanym do mieszania lub przechowywania cieczy, ale nie nadaje się do dokładnych pomiarów objętości, co czyni ją niewłaściwym wyborem w kontekście analizy ilościowej. Kolbka stożkowa, chociaż jest przydatna w reakcjach chemicznych i nauczaniu, również nie zapewnia precyzyjnego pomiaru objętości bez dodatkowych narzędzi. Użycie tych narzędzi w sytuacjach wymagających dokładnych pomiarów może prowadzić do błędów w wynikach badań, ponieważ nie są one standardowo projektowane z myślą o precyzyjnym pomiarze objętości, co jest kluczowe w analizie ilościowej. Prawidłowe zrozumienie zastosowania tych narzędzi jest istotne dla osiągania wiarygodnych wyników w pracy laboratoryjnej.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.