Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 24 kwietnia 2025 18:19
  • Data zakończenia: 24 kwietnia 2025 18:19

Egzamin niezdany

Wynik: 0/40 punktów (0,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Wzmacniacz charakteryzuje się pasmem przepustowym wynoszącym w = 12 750 Hz oraz częstotliwością górną fg= 13 500 Hz. Jaką minimalną wartość częstotliwości fd w zakresie przenoszenia sygnałów należy osiągnąć, aby były one wzmacniane?

A. Od 350 Hz
B. Od 6 375 Hz
C. Od 6 750 Hz
D. Od 750 Hz
Wybór wartości z zakresu 6 375 Hz, 6 750 Hz lub 350 Hz jako minimalnej częstotliwości dolnej może wynikać z nieporozumienia dotyczącego definicji szerokości pasma przepustowego oraz sposobu obliczania częstotliwości dolnej. Często w praktyce błędnie przyjmuje się, że częstotliwość dolna jest obliczana na podstawie jedynie jednostkowych wartości, co może prowadzić do rozbieżności w wynikach. Szerokość pasma dla wzmacniacza określa, jakie pasmo częstotliwości sygnałów będzie wzmacniane i jest obliczana jako różnica między częstotliwością górną a dolną. W tym przypadku, mając szerokość pasma 12 750 Hz i częstotliwość górną 13 500 Hz, poprawne obliczenie częstotliwości dolnej prowadzi do 750 Hz. Wybór wyższych wartości, jak 6 375 Hz czy 6 750 Hz, ignoruje fakt, że wzmacniacz nie będzie aktywowany w tym zakresie, co prowadzi do pominięcia istotnych sygnałów. Natomiast wybór 350 Hz także jest błędny, ponieważ nie uwzględnia, że częstotliwość dolna jest zawsze wyższa niż zero w kontekście wzmacniaczy, które operują na rzeczywistych sygnałach. Takie błędne podejście często prowadzi do nieprawidłowego doboru sprzętu audio lub telekomunikacyjnego, co w rezultacie może obniżyć jakość sygnału i wydajność systemu. Zrozumienie tych koncepcji jest kluczowe dla skutecznego projektowania systemów elektronicznych oraz ich odpowiednich zastosowań w praktyce.

Pytanie 2

Osoba, która doświadczyła porażenia prądem elektrycznym, nie oddycha, natomiast krążenie krwi jest prawidłowe. Jakie czynności należy wykonać w odpowiedniej kolejności podczas udzielania pierwszej pomocy?

A. udrożnienie dróg oddechowych, wykonanie sztucznego oddychania
B. sztuczne oddychanie oraz masaż serca
C. udrożnienie dróg oddechowych, wykonanie sztucznego oddychania i masaż serca
D. ustawienie na boku, sztuczne oddychanie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "udrożnienie dróg oddechowych, sztuczne oddychanie" jest prawidłowa, ponieważ w sytuacji, gdy osoba porażona prądem elektrycznym nie oddycha, ale krążenie jest zachowane, priorytetem jest zapewnienie prawidłowego przepływu powietrza do płuc. Procedura ta jest zgodna z wytycznymi Europejskiej Rady Resuscytacji, które podkreślają znaczenie udrożnienia dróg oddechowych jako pierwszego kroku w każdym przypadku zatrzymania oddechu. Udrożnienie dróg oddechowych można osiągnąć poprzez odpowiednią pozycję ciała poszkodowanego (np. metoda odchylenia głowy do tyłu, unieś podbródek) oraz usunięcie ewentualnych przeszkód, takich jak ciała obce. Następnie, sztuczne oddychanie powinno być przeprowadzane w celu dostarczenia tlenu do płuc poszkodowanego, co jest kluczowe dla uniknięcia niedotlenienia mózgu. Wsparcie w tej sytuacji może być realizowane poprzez metody takie jak wentylacja ustami ust lub przy użyciu urządzeń wentylacyjnych, jeśli są dostępne. W przypadku dalszego braku samodzielnego oddechu, konieczne może być wprowadzenie resuscytacji krążeniowo-oddechowej, jednak najpierw trzeba zająć się zapewnieniem drożności dróg oddechowych i wentylacji, co zgodne jest z zasadami w pierwszej pomocy.

Pytanie 3

Jaki instrument pomiarowy powinno się użyć do określenia amplitudy, częstotliwości oraz kształtu sygnałów w instalowanych urządzeniach mechatronicznych?

A. Częstościomierz
B. Oscyloskop
C. Mostek RLC
D. Multimetr

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oscyloskop to zaawansowane narzędzie pomiarowe, które umożliwia wizualizację kształtu sygnałów elektronicznych w czasie rzeczywistym. Działa na zasadzie przetwarzania napięcia, które jest przedstawiane na ekranie w formie wykresu, gdzie oś X reprezentuje czas, a oś Y napięcie. Dzięki oscyloskopowi inżynierowie mogą analizować zarówno amplitudę, jak i częstotliwość sygnałów, co jest niezbędne przy projektowaniu i testowaniu urządzeń mechatronicznych. W praktyce oscyloskop jest wykorzystywany do badania układów elektronicznych, diagnostyki usterek czy oceny jakości sygnału. Na przykład, podczas analizy sygnałów z czujników w systemach automatyki przemysłowej, oscyloskop pozwala na szybkie wychwycenie anomalii w komunikacji czy nieprawidłowości w działaniu układów przetwarzających dane. W branży mechatronicznej standardem jest korzystanie z oscyloskopów, które spełniają normy IEC 61010, zapewniając bezpieczeństwo i dokładność pomiarów. Używanie oscyloskopu to nie tylko praktyka, ale i dobra praktyka, umożliwiająca skuteczną analizę skomplikowanych sygnałów.

Pytanie 4

Proces oceny stanu technicznego elementu mechanicznego zaczyna się od

A. oględzin
B. obróbki
C. montażu
D. pomiarów

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oględziny są pierwszym krokiem w ocenie stanu technicznego podzespołów mechanicznych, ponieważ pozwalają na wstępną identyfikację ewentualnych uszkodzeń, zużycia czy nieprawidłowości. W trakcie oględzin należy zwrócić uwagę na widoczne oznaki uszkodzeń, takie jak pęknięcia, wgniecenia, korozja czy nieszczelności. Dobrą praktyką jest stosowanie standardów takich jak ISO 9001, które podkreślają znaczenie systematycznego podejścia do oceny stanu technicznego. W praktyce inżynierskiej, oględziny są często wspierane narzędziami wizualnymi, takimi jak mikroskopy, kamery inspekcyjne czy oświetlenie UV, co umożliwia dokładniejsze zidentyfikowanie problemów. Na przykład, w przypadku oceny stanu łożysk, oględziny mogą ujawnić wyciek smaru lub oznaki przegrzania, co jest kluczowe dla dalszych działań, takich jak pomiary czy planowanie konserwacji.

Pytanie 5

Urządzenia elektroniczne, które gwarantują stabilność napięcia prądu elektrycznego na wyjściu, niezależnie od obciążeń oraz zmian w napięciu w sieci, określamy mianem

A. zasilaczy
B. prostowników
C. generatorów
D. stabilizatorów

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Stabilizatory to urządzenia elektroniczne, które zapewniają stałe napięcie na wyjściu, niezależnie od zmian napięcia zasilania oraz obciążenia podłączonego do nich układu. Ich kluczową funkcją jest ochrona urządzeń elektronicznych przed niekorzystnymi skutkami wahań napięcia, co jest szczególnie istotne w zastosowaniach wymagających wysokiej niezawodności, jak w urządzeniach medycznych, systemach komputerowych czy automatyce przemysłowej. Stabilizatory można podzielić na liniowe i impulsowe, z których każdy typ ma swoje unikalne zalety i zastosowania. Stabilizatory liniowe są proste w konstrukcji i oferują niewielkie zniekształcenia, ale ich wydajność energetyczna jest niższa, co sprawia, że w zastosowaniach wymagających dużych prądów lepiej sprawdzają się stabilizatory impulsowe. W standardach branżowych, takich jak IEC 61000, uwzględnia się wymagania dotyczące stabilności napięcia w kontekście kompatybilności elektromagnetycznej, co czyni stabilizatory niezbędnym elementem w projektowaniu nowoczesnych systemów elektronicznych.

Pytanie 6

Siłownik, zasilany sprężonym powietrzem o ciśnieniu roboczym 8 bar, ma maksymalną liczbę cykli nmax = 50/min oraz zużywa 1,4 litra powietrza w trakcie jednego cyklu. Jakie parametry powinna mieć sprężarka tłokowa do zasilania tego siłownika?

A. wydajność 5,3 m3/h, ciśnienie maksymalne 0,7 MPa
B. wydajność 3,6 m3/h, ciśnienie maksymalne 0,7 MPa
C. wydajność 3,6 m3/h, ciśnienie maksymalne 1,0 MPa
D. wydajność 5,3 m3/h, ciśnienie maksymalne 1,0 MPa

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybrana odpowiedź jest poprawna, ponieważ wymagana wydajność sprężarki tłokowej wynosi co najmniej 5,3 m3/h, aby sprostać zapotrzebowaniu siłownika. Siłownik wykonuje 50 cykli na minutę, zużywając 1,4 litra powietrza na cykl. Łączne zużycie powietrza wynosi 50 cykli/min x 1,4 litra/cykl = 70 litrów/minutę, co przelicza się na 4,2 m3/h. Wybór sprężarki o wydajności 5,3 m3/h zapewnia odpowiedni zapas, co jest zgodne z praktykami inżynieryjnymi, które zalecają uwzględnienie marginesu zapasu wydajności dla osiągnięcia stabilnej pracy. Dodatkowo, maksymalne ciśnienie 1,0 MPa (10 bar) spełnia wymagania robocze siłownika, który działa przy ciśnieniu 8 bar. Użycie sprężarki z wyższym ciśnieniem pozwoli również na ewentualne straty ciśnienia w systemie oraz wzmożone zapotrzebowanie w przypadku intensywnej pracy siłownika, co jest istotne w aplikacjach przemysłowych, takich jak automatyzacja produkcji oraz systemy transportu pneumatycznego.

Pytanie 7

Wprowadzenie przewodu do zacisku, delikatne wygięcia oraz wykonanie oczka na końcu przewodu z żyłą z drutu miedzianego, realizuje się cęgami

A. do cięcia czołowymi
B. do cięcia bocznymi
C. uniwersalnymi
D. spiczastymi

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Cęgi spiczaste, znane też jako cęgi z długimi końcówkami, to narzędzie, które świetnie sprawdza się przy precyzyjnym wkładaniu przewodów do zacisków i robieniu oczek na końcówkach. Ich budowa pozwala na łatwe manewrowanie w ciasnych miejscach, co naprawdę jest ważne, gdy pracujesz z małymi elementami elektronicznymi. W praktyce, dzięki użyciu cęgów spiczastych, możesz dokładnie wygiąć przewody, co zapobiegnie ich uszkodzeniu i sprawi, że połączenia będą nie tylko estetyczne, ale i funkcjonalne. W branży często podkreśla się, jak istotne jest dobieranie odpowiednich narzędzi do konkretnych zadań, a cęgi spiczaste pasują tutaj idealnie. A jeśli chodzi o robienie oczek, to też zwiększa bezpieczeństwo połączeń, bo dobrze zrobione oczka zmniejszają ryzyko przetarcia izolacji i zwarć. Pamiętaj, że przy pracy z miedzianymi przewodami warto stosować właściwe techniki, żeby nie wykrzywiać ich i zapewnić trwałość połączeń.

Pytanie 8

Które z poniższych urządzeń nie należy do kategorii mechatronicznych?

A. silnik indukcyjny klatkowy
B. odtwarzacz płyt CD oraz DVD
C. chłodziarko-zamrażarka z cyfrowym sterowaniem
D. drukarka laserowa

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Silnik indukcyjny klatkowy to nie to samo, co urządzenie mechatroniczne. Głównie dlatego, że jest to po prostu element maszyny elektrycznej, posługujący się zasadą elektromagnetyzmu. Mechatronika natomiast łączy w sobie różne dziedziny – mechanikę, elektronikę i informatykę, skupiając się na tym, jak te elementy współpracują w różnych urządzeniach. Silniki indukcyjne są ważne w automatyzacji i w robotyce, ale raczej nie mają w sobie cyfrowych komponentów czy systemów sterujących, które charakterystyczne dla mechatroniki. Przykładami mechatronics mogą być różnego rodzaju roboty przemysłowe, inteligentne systemy transportowe, a nawet automatyczne systemy kontroli jakości. Te wszystkie wykorzystują czujniki, aktuatory i algorytmy komputerowe, żeby działać. W skrócie, zrozumienie różnicy pomiędzy tradycyjnymi elementami elektromechanicznymi a nowoczesnymi urządzeniami mechatronicznymi jest mega ważne, jeśli chcesz projektować i wdrażać skomplikowane systemy automatyzacji, które mogą poprawić wydajność i precyzję produkcji.

Pytanie 9

Podczas inspekcji urządzenia mechatronicznego zauważono - w trakcie ruchu przewodu - nieszczelność w miejscu przyłącza wtykowego w siłowniku pneumatycznym. Jaką metodę naprawy należy zastosować?

A. wymiana uszczelki pomiędzy przyłączem a siłownikiem
B. wymiana przyłącza
C. dokręcenie przyłącza kluczem dynamometrycznym
D. uszczelnienie przyłącza taśmą teflonową

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wydaje mi się, że wybór wymiany przyłącza to naprawdę dobry pomysł, szczególnie gdy zauważasz nieszczelności. Często to zużycie lub uszkodzenia połączeń sprawiają, że te problemy się pojawiają. Przyłącza, zwłaszcza w systemach pneumatycznych, są poddawane różnym czynnikom, jak ciśnienie, wibracje, a nawet korozja, co może wpływać na ich stan. Wymieniając przyłącze, masz pewność, że uzyskasz długotrwałe i solidne uszczelnienie, co jest mega ważne dla prawidłowego działania siłowników pneumatycznych. Z mojego doświadczenia, używanie uszczelnienia taśmą teflonową albo dokręcanie to często tylko chwilowe rozwiązanie, które nie eliminuje sedna problemu nieszczelności. Dlatego lepiej postawić na nowe, certyfikowane przyłącze, które spełnia normy branżowe – to najlepsza droga, żeby zapewnić efektywność i bezpieczeństwo systemu. Regularne sprawdzanie i wymiana krytycznych części to naprawdę dobre praktyki, które mogą uchronić cię przed poważniejszymi awariami i drogimi naprawami w przyszłości.

Pytanie 10

Wyłącznik silnikowy może zadziałać na skutek

A. połączenia uzwojeń silnika w gwiazdę zamiast w trójkąt
B. braku jednej fazy zasilającej silnik
C. uruchomienia silnika przy niewielkim obciążeniu
D. użycia stałego napięcia w obwodzie sterowania silnika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Brak jednej fazy zasilającej silnik jest jedną z najczęstszych przyczyn zadziałania wyłącznika silnikowego. Silniki asynchroniczne, zwłaszcza te zasilane prądem trójfazowym, są zaprojektowane do pracy w równowadze, co oznacza, że każda z faz dostarcza równą część energii. Gdy jedna z faz przestaje działać, silnik może zacząć pracować w trybie niepełnym, co prowadzi do nadmiernych prądów w pozostałych fazach. W stanach awaryjnych silnik nie ma wystarczającej mocy do rozpoczęcia pracy lub może się przegrzewać, co skutkuje zadziałaniem wyłącznika silnikowego w celu ochrony samego silnika oraz systemu zasilającego. W praktyce, zapobieganie takim sytuacjom jest kluczowe i wymaga stosowania odpowiednich przekaźników zabezpieczających, które wykrywają brak fazy i automatycznie wyłączają silnik. Dobre praktyki obejmują regularne monitorowanie stanu zasilania oraz instalację systemów alarmowych, które informują o ewentualnych przerwach w zasilaniu.

Pytanie 11

Konserwacja układu stycznikowo-przekaźnikowego nie obejmuje

A. wprowadzania regulacji
B. usuwania kurzu
C. sprawdzania dokręcenia śrub zacisków
D. analizy zużycia styków

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dokonywanie regulacji w układzie stycznikowo-przekaźnikowym nie jest elementem konserwacji, ponieważ tego typu układy mają z góry ustalone parametry pracy, które powinny być stałe i stabilne. Konserwacja polega raczej na zapewnieniu ich prawidłowego działania poprzez kontrolę i ewentualne czyszczenie, a nie na wprowadzaniu jakichkolwiek zmian w ich ustawieniach. Przykładem dobrej praktyki w zakresie konserwacji jest regularne czyszczenie styków styczników, które zapewnia ich dłuższą żywotność oraz minimalizuje ryzyko awarii. W kontekście standardów, normy IEC dotyczące konserwacji urządzeń elektrycznych podkreślają znaczenie utrzymania ich w stanie gotowości, co jest osiągane poprzez systematyczne kontrole i monitorowanie stanu technicznego, a nie przez zmianę parametrów pracy.

Pytanie 12

Ciecze hydrauliczne, które przekazują energię, lecz nie oferują ochrony przed korozją ani smarowania, to ciecze klasy

A. HL
B. HR
C. HG
D. HH

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ciecze hydrauliczne typu HH to tak naprawdę te, które przenoszą energię, ale nie chronią przed korozją ani się nie smarują. Używa się ich głównie w hydraulice, gdzie priorytetem jest efektywne przenoszenie mocy, bez potrzeby dodatkowej ochrony. Przykłady? Proste układy hydrauliczne w maszynach budowlanych, które raczej nie są narażone na dużą korozję czy duże obciążenia. W takich sytuacjach można zbudować układ hydrauliczny z materiałów odpornych na rdzewienie, więc nie ma potrzeby dodawania dodatkowych środków ochronnych do płynów. W branży można spotkać standardy jak ISO 6743, które definiują różne klasy cieczy hydraulicznych na podstawie ich cech. Zrozumienie klasyfikacji cieczy hydraulicznych, w tym typu HH, to klucz do tego, by inżynierowie i technicy mogli wybierać odpowiednie materiały do konkretnych zastosowań, co jest ważne, żeby systemy hydrauliczne działały efektywnie i były niezawodne.

Pytanie 13

Środek gaśniczy, który może być zastosowany do likwidacji wszystkich kategorii pożarów i nie powoduje znacznych, nieodwracalnych uszkodzeń, na przykład w przypadku gaszenia sprzętu komputerowego, to

A. proszek gaśniczy
B. piana gaśnicza
C. woda
D. dwutlenek węgla

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Proszek gaśniczy to uniwersalny środek gaśniczy, który jest skuteczny w gaszeniu pożarów różnych grup, w tym grup A (materiały stałe), B (cieczy palnych) i C (gazy palne). Jego działanie polega na obniżeniu temperatury oraz odcięciu dopływu tlenu do ognia. Proszki gaśnicze, takie jak proszek ABC, są szczególnie polecane w miejscach, gdzie występuje ryzyko pożaru sprzętu elektronicznego, jak komputery czy serwery, ponieważ ich użycie nie powoduje uszkodzenia sprzętu przez wodę. Dodatkowo, proszki są wybierane w obiektach przemysłowych i magazynach, gdzie występuje wiele materiałów łatwopalnych. Warto zaznaczyć, że stosowanie proszków gaśniczych powinno odbywać się zgodnie z odpowiednimi normami, takimi jak PN-EN 2 dotycząca gaśnic przenośnych. Przykładem praktycznego zastosowania proszku gaśniczego może być akcja gaśnicza w serwerowni, gdzie zastosowanie wody mogłoby prowadzić do poważnych uszkodzeń sprzętu. Dlatego proszek gaśniczy jest rekomendowany jako najbezpieczniejsza opcja w takich sytuacjach.

Pytanie 14

Silnik elektryczny o mocy 4 kW generuje na wale moment obrotowy 13,1 Nm przy jakiej prędkości obrotowej?

A. 524 obr/min
B. 5487 obr/min
C. 2916 obr/min
D. 305 obr/min

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Jak chcesz obliczyć prędkość obrotową silnika elektrycznego, to możesz skorzystać z takiego wzoru: P = M * ω. Tu P to moc w watach, M to moment obrotowy w niutonometrach, a ω to prędkość kątowa w radianach na sekundę. Jak przekształcisz ten wzór, to dostaniesz ω = P / M. Dla tego silnika mamy: P = 4000 W i M = 13,1 Nm. Jak to obliczysz, to wyjdzie ω = 4000 W / 13,1 Nm, co daje jakieś 305,34 rad/s. Żeby przeliczyć na prędkość obrotową w obr/min, używamy przelicznika: 1 rad/s = 9,5493 obr/min. Więc 305,34 rad/s * 9,5493 to około 2916 obr/min. To pokazuje, że silniki elektryczne, mając daną moc i moment obrotowy, mogą naprawdę kręcić się szybko, co jest super ważne w różnych miejscach, gdzie potrzebna jest precyzyjna kontrola prędkości, jak w maszynach. Zrozumienie tych obliczeń jest istotne, żeby dobrze dobierać silniki do konkretnych zadań i optymalizować procesy mechaniczne w różnych branżach.

Pytanie 15

W jakim urządzeniu dochodzi do przemiany energii promieniowania słonecznego na energię elektryczną?

A. Fotorezystorze
B. Fotoogniwie
C. Fotodiodzie
D. Fototranzystorze

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Fotoogniwo jest urządzeniem, które przekształca energię promieniowania słonecznego na energię elektryczną poprzez zjawisko fotowoltaiczne. Proces ten polega na generowaniu par elektron-dziura w materiale półprzewodnikowym, takim jak krzem, w wyniku absorpcji fotonów. Kiedy foton uderza w atom w strukturze półprzewodnika, przekazuje swoją energię elektronowi, co prowadzi do jego wzbudzenia i możliwości swobodnego poruszania się w strukturze materiału. W rezultacie tego procesu powstaje prąd elektryczny. Fotoogniwa są szeroko stosowane w systemach energii odnawialnej, takich jak panele słoneczne montowane na dachach budynków czy farmach fotowoltaicznych, przyczyniając się do zrównoważonego rozwoju i redukcji emisji CO2. W branży energetycznej fotoogniwa zgodne są z normami IEC 61215 i IEC 61730, które dotyczą testowania modułów słonecznych, zapewniając ich jakość i bezpieczeństwo w eksploatacji.

Pytanie 16

Jaką metodę należy wykorzystać do pomiaru prędkości obrotowej wirnika silnika napędzającego system mechatroniczny?

A. Ultradźwiękową
B. Stroboskopową
C. Termoluminescencyjną
D. Radiometryczną

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź stroboskopowa jest prawidłowa, ponieważ technika ta jest powszechnie stosowana do pomiaru prędkości obrotowej wirujących elementów, takich jak wały silników. Stroboskopowe pomiary opierają się na zjawisku stroboskopowym, które wykorzystuje krótkie impulsy światła emitowane przez stroboskop do oświetlania wirującego obiektu. W momencie, gdy częstotliwość błysków stroboskopu jest zsynchronizowana z prędkością obrotową wału, obiekt wydaje się zatrzymany, co pozwala dokładnie określić jego prędkość obrotową. Przykładem zastosowania tej metody mogą być sytuacje w przemyśle, gdzie konieczne jest monitorowanie prędkości wałów w maszynach produkcyjnych. Metoda stroboskopowa jest również preferowana w badaniach laboratoryjnych, ponieważ nie wpływa na działanie mierzonych elementów, co jest zgodne z najlepszymi praktykami w inżynierii. Dodatkowo, ta metoda jest szeroko opisana w normach takich jak ISO 24410, które określają wymagania dotyczące pomiarów prędkości obrotowej.

Pytanie 17

Po wymianie łożysk należy przykręcić pokrywę łożyska śrubami metrycznymi M6x80. Wskaż na podstawie tabeli, jaka powinna być wartość momentu dociągającego.

Nazwa elementuMoment dociągający dla śrub [Nm]
M5M6M8M10M12M16M20
Tabliczka łożyska--254575170275
Pokrywa łożyska58152020--
Skrzynka zaciskowa-47,512,5-20-

A. 4 Nm
B. 25 Nm
C. 15 Nm
D. 8 Nm

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Moment dociągający śrub M6x80 wynoszący 8 Nm jest zgodny z normami branżowymi dotyczącymi montażu łożysk. Właściwie dobrany moment pozwala na odpowiednie przyleganie elementów oraz zapobiega ich luzowaniu się w trakcie eksploatacji. Przykręcanie pokrywy łożyska z właściwym momentem jest kluczowe dla zapewnienia trwałości i stabilności całej konstrukcji. Zbyt niski moment dociągający może prowadzić do luzów, co w konsekwencji może powodować uszkodzenia łożysk oraz innych komponentów. Z kolei zbyt wysoki moment może prowadzić do uszkodzenia gwintów lub deformacji elementów, co również wpływa negatywnie na funkcjonowanie maszyny. Dlatego ważne jest, aby stosować się do zaleceń producenta oraz norm technicznych przy dokręcaniu elementów. Przykłady zastosowania tej wiedzy obejmują montaż łożysk w silnikach, skrzyniach biegów oraz innych mechanizmach, gdzie precyzyjne dociąganie śrub ma kluczowe znaczenie dla bezpieczeństwa i wydajności.

Pytanie 18

Do połączeń spoczynkowych trwałych nie wlicza się

A. nitowania
B. klejenia
C. spawania
D. kołkowania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kołkowanie to technika łączenia elementów, która nie tworzy połączeń spoczynkowych nierozłącznych. W przeciwieństwie do spawania, klejenia czy nitowania, kołkowanie polega na wprowadzeniu kołków w otwory w elementach, co pozwala na ich łatwe zdemontowanie. To podejście jest często stosowane w konstrukcjach, gdzie wymagana jest możliwość demontażu w przyszłości, jak na przykład w budownictwie modułowym. W praktyce oznacza to, że kołkowane połączenia mogą być używane w miejscach, gdzie zachodzi potrzeba konserwacji lub wymiany komponentów bez konieczności uszkadzania całej struktury. Zgodnie z normami ISO oraz PN, kołkowanie odbywa się z zachowaniem odpowiednich tolerancji wymiarowych i materiałowych, co zapewnia ich niezawodność i bezpieczeństwo. Warto również zauważyć, że kołkowanie jest jedną z metod stosowanych w różnych branżach, w tym w motoryzacji i konstrukcjach stalowych, gdzie elastyczność w montażu jest kluczowa.

Pytanie 19

Jakie urządzenie jest używane do pomiaru temperatury płynów?

A. termoelement
B. termostat
C. czujnik termiczny
D. urządzenie do regulacji temperatury z cyfrowym wyświetlaczem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Termoelement to naprawdę fajne urządzenie do pomiaru temperatury. Działa na zasadzie efektu Seebecka, co oznacza, że generuje napięcie, gdy są różnice temperatur między dwoma różnymi przewodnikami. Jest super dokładny i szybko reaguje na zmiany temperatury, co czyni go idealnym w różnych branżach, takich jak chemia czy przemysł spożywczy. Można go też spotkać w laboratoriach badawczych. Na przykład, w przemyśle monitoruje się dzięki niemu temperaturę, co jest kluczowe, żeby produkt był dobrej jakości. Co ciekawe, w zależności od użytych materiałów, termoelementy mogą działać w różnych zakresach temperatur, a ich właściwości spełniają międzynarodowe standardy, jak na przykład IEC 60584. Dzięki tym cechom są bardzo popularne w systemach automatyki oraz kontroli procesów.

Pytanie 20

W maszynach wirujących można zdiagnozować nieosiowe położenie wałów, niewyważenie mas wirujących lub ugięcie wałów

A. rejestratorem prądu
B. tachometrem
C. analizatorem drgań
D. testerem izolacji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Analizator drgań jest kluczowym narzędziem w diagnostyce maszyn wirujących, ponieważ umożliwia szczegółową analizę drgań generowanych przez maszyny, co pozwala na wykrycie nieprawidłowości związanych z ich ustawieniem, wyważeniem czy ugięciem wałów. Pomiar drgań jest istotnym elementem monitorowania stanu technicznego maszyn, zgodnie z normami ISO 10816 dotyczącymi oceny stanu maszyn na podstawie pomiarów drgań. Analizator drgań może wykryć różne rodzaje nieprawidłowości, takie jak niewyważenie, które prowadzi do nadmiernych drgań i może skutkować uszkodzeniami łożysk czy innych komponentów. Przykładowo, w przypadku silników elektrycznych, analiza drgań może pomóc w ocenie ich wyważenia oraz identyfikacji problemów z łożyskami, co pozwala na wczesne podjęcie działań serwisowych. W praktyce, regularne monitorowanie drgań może znacznie wydłużyć żywotność maszyn, a także zredukować koszty związane z nieplanowanymi przestojami i naprawami.

Pytanie 21

Jakie jest przeznaczenie przyłącza oznaczonego literą T na zaworze hydraulicznym 4/2, które ma oznaczenia A, B, P oraz T?

A. Zbiornika sprężonego powietrza
B. Siłownika jednostronnego działania
C. Siłownika dwustronnego działania
D. Zbiornika oleju hydraulicznego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Podłączenie przyłącza oznaczonego literą T do zbiornika oleju hydraulicznego jest kluczowe dla prawidłowego funkcjonowania systemu hydraulicznego. Przyłącze T, znane również jako przyłącze powrotne, służy do odprowadzania oleju hydraulicznego po jego przejściu przez układ. W standardowych zaworach hydraulicznych 4/2, przyłącze T łączy się z zbiornikiem, umożliwiając powrót oleju do obiegu, co zapobiega nadciśnieniu i pozwala na efektywne zarządzanie ciśnieniem w systemie. W praktyce, gdy ciśnienie w systemie wzrasta, olej jest kierowany do zbiornika, gdzie może być schłodzony i ponownie wykorzystywany. Zgodnie z dobrymi praktykami, ważne jest, aby przyłącze T było właściwie zabezpieczone i miało odpowiednią średnicę, aby uniknąć zatorów, co mogłoby prowadzić do uszkodzeń systemu hydraulicznego. Wiele aplikacji przemysłowych, takich jak maszyny budowlane czy linie produkcyjne, korzysta z tego rozwiązania, co potwierdza jego znaczenie w hydraulice.

Pytanie 22

Wskaż jednostkę głównego parametru prądnicy tachometrycznej (stałej prądnicy)?

A. obr./min
B. V/(obr./min)
C. Hz
D. V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź V/(obr./min) jest poprawna, ponieważ jednostka ta odzwierciedla zależność napięcia wyjściowego prądnicy tachometrycznej od prędkości obrotowej. Prądnice tachometryczne to urządzenia, które przekształcają ruch obrotowy w sygnał elektryczny, a ich zastosowanie jest kluczowe w systemach automatyki i kontroli procesów. Wartość wyjściowa, mierzona w woltach, jest proporcjonalna do prędkości obrotowej wyrażonej w obrotach na minutę. Dlatego stosunek V/(obr./min) idealnie charakteryzuje tę zależność. Na przykład, w aplikacjach takich jak regulacja prędkości silników elektrycznych, prądnice tachometryczne dostarczają istotnych informacji o prędkości obrotowej, co pozwala na precyzyjne sterowanie i monitorowanie systemów. W branży inżynieryjnej wykorzystuje się standardy, takie jak ISO 9001, które zapewniają jakość i niezawodność urządzeń pomiarowych, w tym prądnic tachometrycznych.

Pytanie 23

Do czego służy klucz dynamometryczny?

A. do odkręcania zardzewiałych śrub
B. do ułatwienia odkręcania i dokręcania śrub
C. do dokręcania śrub w trudno dostępnych miejscach
D. do dokręcania śrub z określonym momentem obrotowym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Klucz dynamometryczny jest niezbędnym narzędziem w sytuacjach, gdzie precyzyjne dokręcanie śrub jest kluczowe dla bezpieczeństwa i funkcjonalności konstrukcji. Umożliwia on osiągnięcie określonego momentu siły, co jest istotne w wielu zastosowaniach, takich jak montaż elementów w silnikach, układach zawieszenia czy też w budowie maszyn. Dobrze dobrany moment dokręcania wpływa na złącza śrubowe, zapobiegając ich poluzowaniu lub uszkodzeniu. W praktyce, na przykład w branży motoryzacyjnej, wiele specyfikacji producentów wyraźnie określa wymagany moment dokręcania dla poszczególnych śrub. Użycie klucza dynamometrycznego zgodnie z tymi specyfikacjami jest kluczowe dla zapewnienia długowieczności i niezawodności elementów, a także uniknięcia niebezpiecznych awarii. Stosowanie klucza dynamometrycznego jest zatem zgodne z dobrymi praktykami i standardami branżowymi, które kładą nacisk na bezpieczeństwo i jakość wykonania.

Pytanie 24

Do czego służy stabilizator napięcia?

A. do konwersji napięcia przemiennego na napięcie przemienne o innej częstotliwości oraz innej wartości skutecznej
B. do wygładzania napięcia po prostowaniu przez prostownik
C. do utrzymywania stałego napięcia niezależnie od zmian natężenia prądu obciążenia oraz zmian napięcia wejściowego
D. do przekształcania napięcia przemiennego w napięcie stałe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Stabilizator napięcia jest urządzeniem, które ma za zadanie utrzymywanie stałego napięcia na wyjściu, niezależnie od zmian natężenia prądu obciążenia oraz fluktuacji napięcia wejściowego. W praktyce oznacza to, że gdy obciążenie zmienia się, a także gdy napięcie zasilające ulega zmianie (na przykład w wyniku wahań w sieci energetycznej), stabilizator zapewnia, że napięcie na wyjściu pozostaje na pożądanym poziomie. Przykładem zastosowania stabilizatorów napięcia są zasilacze do urządzeń elektronicznych, takich jak komputery czy telewizory, które wymagają stałego napięcia do prawidłowego działania. W branży elektronicznej oraz elektrycznej, stosowanie stabilizatorów napięcia jest zgodne z dobrymi praktykami, które mają na celu zapewnienie niezawodności i bezpieczeństwa urządzeń. Stabilizatory mogą również chronić sprzęt przed uszkodzeniami spowodowanymi nadmiernym wzrostem napięcia lub jego spadkiem. Warto zaznaczyć, że stabilizatory mogą działać w różnych trybach, w tym jako liniowe lub impulsowe, w zależności od zastosowania i wymagań dotyczących efektywności energetycznej.

Pytanie 25

Efektor zainstalowany na końcu ramienia robota przede wszystkim pełni funkcję

A. chronienia ramienia robota przed przeciążeniem
B. ochrony ramienia robota przed kolizjami z operatorem
C. chwytania obiektu z odpowiednią siłą
D. przemieszczania obiektu w przestrzeni

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Efektor, umieszczony na końcu ramienia robota, odgrywa kluczową rolę w jego funkcjonowaniu, zwłaszcza w kontekście automatyzacji procesów produkcyjnych. Jego głównym zadaniem jest chwytanie elementów z odpowiednią siłą, co jest istotne w wielu zastosowaniach przemysłowych, takich jak montaż, pakowanie czy transport materiałów. Efektory mogą mieć różne formy – od prostych chwytaków pneumatycznych, po zaawansowane systemy z czujnikami siły, które umożliwiają precyzyjne dostosowanie siły chwytu do rodzaju i wagi chwytanego obiektu. Dzięki tym technologiom możliwe jest minimalizowanie uszkodzeń delikatnych komponentów oraz zwiększenie efektywności produkcji. Dobre praktyki w zakresie projektowania efektorów obejmują uwzględnienie materiałów, które zapewniają odpowiednią przyczepność i trwałość, a także zastosowanie systemów kontroli, które pozwalają na monitorowanie siły chwytu w czasie rzeczywistym, co może być zgodne z normami ISO 10218 dotyczącymi robotów przemysłowych.

Pytanie 26

Podaj możliwą przyczynę osłabienia siły nacisku generowanej przez tłoczysko siłownika hydraulicznego?

A. Nieszczelność instalacji
B. Zablokowany zawór przelewowy
C. Niewystarczające smarowanie tłoczyska
D. Otwarty odpowietrznik filtra wlewowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Nieszczelność w instalacji to chyba jeden z głównych powodów, dla których siłownik hydrauliczny nie działa tak, jak powinien. Jak system ma nieszczelności, to traci ciśnienie i przez to siłownik nie ma tej mocy, której potrzebuje. W praktyce, to sprawia, że sprzęt, w którym go zainstalowaliśmy, może działać gorzej, co jest dość problematyczne. Zwykle te nieszczelności pojawiają się w miejscach złącz czy uszczelek, a ich znalezienie wymaga czasami użycia specjalistycznych narzędzi, np. detektorów nieszczelności. Z tego, co pamiętam, normy takie jak ISO 4413 mocno podkreślają, jak ważne jest dobre uszczelnienie i regularne przeglądy. Warto monitorować ciśnienie w hydraulice i wdrożyć różne procedury, żeby wcześniej wyłapać takie nieszczelności. Dzięki temu można uniknąć kosztownych napraw i przestojów w produkcji, co zawsze jest na plus.

Pytanie 27

Wartość natężenia oświetlenia podczas wykonywania precyzyjnych zadań powinna wynosić

A. 600 lx
B. 100 lx
C. 800 lx
D. 300 lx

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Natężenie oświetlenia na poziomie 800 lx jest zalecane w miejscach, gdzie wykonywane są precyzyjne prace, takich jak laboratoria, warsztaty czy strefy montażowe. Tego rodzaju oświetlenie zapewnia wystarczającą ilość światła, co jest kluczowe dla dokładności i jakości wykonania zadań. Zbyt niskie natężenie oświetlenia może prowadzić do zmęczenia wzroku, obniżenia wydajności i zwiększonego ryzyka błędów. Przykład zastosowania tej zasady można zaobserwować w branży elektronicznej, gdzie montaż drobnych komponentów wymaga wyjątkowej precyzji. Zgodnie z normami takimi jak PN-EN 12464-1, specyfikującymi wymagania dotyczące oświetlenia miejsc pracy, natężenie oświetlenia na poziomie 800 lx jest odpowiednie dla miejsc wymagających koncentracji oraz dokładności. Należy również pamiętać o równomiernym rozkładzie światła, co jest równie istotne dla eliminacji cieni, które mogą utrudniać widoczność detali. Wysokiej jakości oświetlenie to klucz do efektywności i bezpieczeństwa w miejscu pracy.

Pytanie 28

Jakie wymiary biorą pod uwagę dopuszczalne odchylenia w wykonaniu elementu mechanicznego?

A. Nominalne
B. Graniczne
C. Rzeczywiste
D. Jednostronne

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'Graniczne' jest prawidłowa, ponieważ wymiary graniczne definiują dopuszczalne zakresy odchyleń od wymiarów nominalnych, które są kluczowe w inżynierii mechanicznej. Wymiary te określają maksymalne i minimalne wartości, w ramach których element mechaniczny może być wykonany, aby zapewnić jego funkcjonalność i interoperacyjność z innymi komponentami. Przykładowo, w produkcji wałów, wymiary graniczne pozwalają na określenie, jak blisko rzeczywiste wymiary mogą być do wartości nominalnych, a jednocześnie nie wpłyną na działanie maszyny. W praktyce, normy takie jak ISO 286 określają zasady tolerancji wymiarowych, co jest niezbędne do zapewnienia odpowiedniej jakości i wymienności części. Wiedza na temat wymiarów granicznych jest kluczowa, ponieważ niewłaściwe ich zdefiniowanie może prowadzić do wadliwego działania całego układu mechanicznego lub nawet do jego awarii. Dlatego inżynierowie muszą dokładnie analizować te parametry podczas projektowania i produkcji.

Pytanie 29

Wskaż, który rodzaj siłownika można wykorzystać w układzie zasilanym sprężonym powietrzem o ciśnieniu p = 0,8 MPa, jeśli wymagana jest siła teoretyczna 50 daN oraz przemieszczenie 10 cm?

A. D25, pmax = 10 bar, skok standardowy: 16, 32, 50, 80, 125, 200
B. D32, pmax = 10 bar, skok standardowy: 16, 32, 50, 80, 125, 200
C. D32, pmax = 10 bar, skok standardowy: 25, 50, 80, 100,125, 160, 200
D. D12, pmax = 10 bar, skok standardowy: 25, 50, 80, 100,125, 160, 200

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybrany siłownik D32 o maksymalnym ciśnieniu 10 bar (0,8 MPa) jest odpowiedni do zastosowania w opisanym układzie ze względu na wymagania dotyczące siły teoretycznej oraz skoku. Siła teoretyczna siłownika jest obliczana jako iloczyn ciśnienia roboczego i powierzchni tłoka. W przypadku siłownika D32, przy maksymalnym ciśnieniu 10 bar, można uzyskać wystarczającą siłę, która spełnia wymóg 50 daN. Dodatkowo, skok standardowy 25, 50, 80, 100, 125, 160, 200 mm zapewnia elastyczność w doborze odpowiedniego przemieszczenia, w tym przypadku 10 cm (100 mm). W praktyce, siłowniki pneumatyczne D32 znajdują zastosowanie w automatyzacji przemysłowej, w systemach transportowych oraz w maszynach roboczych, gdzie wymagana jest wysoka precyzja i niezawodność. Wybór odpowiedniego siłownika zgodnego z wymaganymi parametrami jest kluczowy dla efektywności całego układu, co potwierdzają standardy branżowe dotyczące doboru komponentów w pneumatyce.

Pytanie 30

System napędowy, który składa się z silnika prądu przemiennego zasilanego przez falownik, działa poprawnie, gdy wzrost częstotliwości napięcia zasilającego prowadzi do

A. wzrostu obrotów silnika
B. zmniejszenia reaktancji uzwojeń silnika
C. obniżenia wartości napięcia zasilania
D. spadku obrotów silnika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wzrost obrotów silnika w układzie napędowym z silnikiem prądu przemiennego zasilanym z falownika jest zgodny z zasadą, że zmiana częstotliwości napięcia zasilającego wpływa na prędkość obrotową silnika. Zgodnie z równaniem: n = (120 × f) / p, gdzie n to prędkość obrotowa w obrotach na minutę (RPM), f to częstotliwość zasilania, a p to liczba par biegunów silnika, możemy zauważyć, że zgodnie z tym równaniem, zwiększenie częstotliwości f prowadzi do proporcjonalnego wzrostu prędkości obrotowej n. Przykładowo, w zastosowaniach przemysłowych, takich jak napęd wentylatorów, pomp, czy taśmociągów, wykorzystuje się falowniki do precyzyjnego sterowania prędkością obrotową, co pozwala na oszczędność energii oraz zwiększenie efektywności procesów technologicznych. Warto także zwrócić uwagę na standardy takie jak IEC 60034, które definiują normy dla maszyn elektrycznych, w tym dla silników elektrycznych, co jest istotne dla zapewnienia ich prawidłowej pracy i bezpieczeństwa użytkowania. Zrozumienie tej zasady jest kluczowe dla inżynierów automatyków oraz techników zajmujących się systemami napędowymi.

Pytanie 31

Z wykorzystaniem równania F_u = η ∙ S ∙ p oblicz powierzchnię S tłoka siłownika, w przypadku gdy siłownik generuje siłę czynną F_u = 1,6 kN przy ciśnieniu p = 1 MPa oraz współczynniku sprawności η = 0,8.

A. 1500 mm2
B. 3000 mm2
C. 2000 mm2
D. 1000 mm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć powierzchnię S tłoka siłownika, możemy skorzystać z podanej zależności Fu = η ∙ S ∙ p. Wstawiając znane wartości: Fu = 1,6 kN (co odpowiada 1600 N), p = 1 MPa (co odpowiada 1 000 000 Pa) oraz η = 0,8, możemy przekształcić równanie, aby znaleźć S. Wyrażenie przyjmuje postać S = Fu / (η ∙ p). Podstawiając wartości, otrzymujemy S = 1600 N / (0,8 ∙ 1 000 000 Pa) = 0,002 m2, co odpowiada 2000 mm2. Tak obliczona powierzchnia tłoka jest zgodna z praktykami inżynieryjnymi i standardami branżowymi, które podkreślają znaczenie precyzyjnych obliczeń w projektowaniu siłowników hydraulicznych. W praktyce, takie obliczenia są kluczowe dla zapewnienia efektywności i bezpieczeństwa działania maszyn, w których używane są siłowniki. Przykładem zastosowania może być projektowanie systemów hydraulicznych w maszynach budowlanych, gdzie odpowiednia powierzchnia tłoka bezpośrednio wpływa na osiąganą siłę i efektywność działania siłownika.

Pytanie 32

Olej mineralny wzbogacony składnikami, które poprawiają właściwości antykorozyjne oraz odporność na starzenie, a także z dodatkami zwiększającymi smarność, oznaczany jest jakim symbolem?

A. HLP
B. HVLP
C. HL
D. H

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź HLP jest jak najbardziej na miejscu, bo chodzi tu o oleje mineralne, które mają różne dodatki, żeby lepiej działały w kwestii antykorozyjnej i smarności. HLP to oznaczenie, które mówi, że olej jest stworzony do hydrauliki, a w jego składzie znajdują się dodatki przeciwdziałające utlenianiu i zużyciu. Dzięki temu świetnie sprawdza się w systemach hydraulicznych, gdzie potrzebujemy czegoś naprawdę wydajnego. Na przykład, oleje HLP są często używane w maszynach przemysłowych czy hydraulice w pojazdach, bo są niezawodne i dobrze chronią przed korozją. W praktyce, te oleje trzymają się norm takich jak DIN 51524, co potwierdza ich jakość oraz odpowiednie właściwości. Wybierając olej HLP, zyskujemy nie tylko dłuższą żywotność maszyn, ale też mniejsze koszty eksploatacji i bardziej efektywną pracę.

Pytanie 33

Do metod oceny stanu łożysk tocznych nie zalicza się pomiaru

A. prędkości
B. hałasów
C. wibracji
D. ciepłoty

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar prędkości to nie najlepsza metoda do oceny stanu łożysk tocznych. W praktyce zazwyczaj korzysta się z analizy drgań, szumów i temperatury. Analiza drgań to fajna technika, bo monitorując drgania, można zauważyć, czy coś jest nie tak, na przykład, czy łożysko ma luz albo jest uszkodzone. Z kolei pomiar szumów daje nam dodatkowe info o stanie łożysk, bo zmieniające się dźwięki mogą wskazywać na problemy. A co do temperatury — jeśli zaczyna rosnąć, to może być znak, że coś się dzieje, jak na przykład zbyt duże tarcie lub słabe smarowanie. W przemyśle, na przykład motoryzacyjnym czy w transporcie kolejowym, regularne sprawdzanie drgań i temperatury łożysk jest mega ważne, żeby maszyny działały sprawnie i bezawaryjnie. Ustalenie norm dla tolerancji drgań i temperatur dla różnych typów łożysk to standardy, które pomagają w zarządzaniu utrzymaniem ruchu, co zresztą potwierdzają normy ISO 10816.

Pytanie 34

Prędkość ruchu tłoczyska w siłowniku hydraulicznym ma odwrotną zależność od

A. wydajności siłownika
B. natężenia przepływu medium roboczego do siłownika
C. powierzchni roboczej tłoka
D. efektywności siłownika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prędkość tłoczyska siłownika hydraulicznego jest odwrotnie proporcjonalna do powierzchni czynnej tłoka, co wynika z podstawowych zasad hydrauliki. W przypadku siłowników hydraulicznych, prędkość tłoczyska (v) obliczana jest na podstawie natężenia przepływu (Q) oraz powierzchni tłoka (A) według wzoru v = Q/A. Gdy powierzchnia tłoka wzrasta, prędkość tłoczyska maleje dla stałego natężenia przepływu, co ilustruje odwrotną proporcjonalność. Praktycznie oznacza to, że w aplikacjach, gdzie wymagane jest szybkie ruch tłoczyska, projektanci siłowników często stosują mniejsze średnice tłoków, aby zwiększyć prędkość przy zachowaniu odpowiedniego ciśnienia. Dobrą praktyką w branży jest także uwzględnianie tego związku podczas doboru siłowników do konkretnych zastosowań, co wpływa na efektywność całego systemu hydraulicznego. Również w kontekście oszczędności energii, dobór odpowiedniej powierzchni tłoka pozwala na optymalizację pracy układu hydraulicznego.

Pytanie 35

Który z zaworów pozwala na przepływ czynnika roboczego tylko w jednym kierunku?

A. Zwrotny
B. Odcinający
C. Rozdzielający
D. Przelotowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zawór zwrotny jest kluczowym elementem w systemach hydraulicznych i pneumatycznych, który umożliwia przepływ czynnika roboczego tylko w jednym, określonym kierunku. Działa on na zasadzie automatycznego zamykania, gdy ciśnienie w przeciwnym kierunku przekracza określony poziom. Dzięki temu zapobiega to cofaniu się płynów, co jest szczególnie ważne w układach, gdzie nieprzerwany przepływ w jednym kierunku jest krytyczny dla działania systemu. Przykładem zastosowania zaworu zwrotnego mogą być systemy hydrauliczne w maszynach budowlanych, gdzie konieczne jest, aby olej hydrauliczny nie wracał do zbiornika, gdy siłownik jest pod obciążeniem. Zawory zwrotne są również stosowane w instalacjach wodociągowych, aby zapobiegać cofaniu się wody, co mogłoby prowadzić do zanieczyszczenia systemu. W praktyce, dobór odpowiedniego zaworu zwrotnego powinien być zgodny z normą PN-EN ISO 4414, która definiuje zasady użytkowania urządzeń pneumatycznych, oraz z normą PN-EN 982, dotyczącą systemów hydraulicznych. Zrozumienie działania zaworów zwrotnych i ich zastosowania jest kluczowe dla inżynierów i techników pracujących w dziedzinach hydrauliki i pneumatyki.

Pytanie 36

Jakie narzędzie należy zastosować do pomiaru luzów pomiędzy powierzchniami elementów konstrukcyjnych?

A. szczelinomierz
B. mikrometr
C. suwmiarka
D. liniał

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Szczelinomierz to narzędzie pomiarowe, które jest szczególnie zaprojektowane do określania luzów i szczelin pomiędzy elementami konstrukcyjnymi. Jego konstrukcja umożliwia precyzyjne pomiary w trudnych warunkach pracy, gdzie inne narzędzia, takie jak suwmiarka czy mikrometr, mogą nie dostarczyć wystarczającej dokładności. Szczelinomierze są często stosowane w różnych branżach, w tym w mechanice precyzyjnej, motoryzacji i inżynierii lotniczej, gdzie kontrola luzów pomiędzy ruchomymi elementami jest kluczowa dla zapewnienia prawidłowego funkcjonowania maszyn. Na przykład, w silnikach spalinowych precyzyjne pomiary luzów między zaworami a gniazdami zaworowymi są niezbędne do zapewnienia optymalnej wydajności silnika oraz minimalizacji zużycia. W standardach branżowych, takich jak ISO, podkreśla się znaczenie stosowania odpowiednich narzędzi do pomiarów luzów, co czyni szczelinomierz najlepszym wyborem w tego typu aplikacjach.

Pytanie 37

Czujnik zbliżeniowy powinien być podłączony do cyfrowego wejścia sterownika PLC przy użyciu

A. wkrętaka
B. klucza
C. lutownicy
D. szczypiec

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "wkrętaka" jest poprawna, ponieważ narzędzie to jest niezbędne do dokręcania lub luzowania śrub, które często są używane do mocowania złączy i elementów w instalacjach elektrycznych, w tym w podłączaniu czujników do systemów PLC. W przypadku czujników zbliżeniowych, które mogą być montowane w różnych konfiguracjach, ważne jest, aby zapewnić solidne połączenie elektryczne. Użycie wkrętaka pozwala na precyzyjne i bezpieczne przymocowanie przewodów do zacisków sterownika PLC, co jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa i niezawodności połączeń elektrycznych. Niewłaściwe lub luźne połączenia mogą prowadzić do błędnych odczytów czujnika oraz innych problemów w systemie automatyki. W praktyce, często stosuje się wkrętaki o wymiennej końcówce, co umożliwia łatwe dostosowanie narzędzia do różnych typów śrub i zacisków, co zwiększa efektywność pracy na placu budowy czy w zakładzie produkcyjnym. Właściwa metoda podłączenia gwarantuje także dłuższą żywotność komponentów oraz ich prawidłowe działanie w różnych warunkach środowiskowych.

Pytanie 38

Co koniecznie trzeba skonfigurować w urządzeniu, aby mogło funkcjonować w sieci Ethernet?

A. Adres serwera DNS
B. Z szybkość przesyłania danych
C. Bity stopu
D. Niepowtarzalny adres IP

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby urządzenie mogło pracować w sieci Ethernet, konieczne jest przypisanie mu niepowtarzalnego adresu IP. Adres IP jest unikalnym identyfikatorem, który umożliwia komunikację pomiędzy urządzeniami w sieci. W kontekście protokołu TCP/IP, który jest fundamentem komunikacji w sieciach Ethernet, każdy host musi posiadać swój własny adres IP, aby móc wysyłać i odbierać dane. Przykładowo, w małej sieci lokalnej (LAN) adresy IP mogą być przydzielane dynamicznie przez serwer DHCP, ale każde urządzenie musi być w stanie zostać zidentyfikowane przez unikalny adres. W praktyce, ustawiając adres IP, administratorzy sieci muszą również upewnić się, że nie koliduje on z innymi adresami w sieci, co jest kluczowe dla prawidłowego funkcjonowania i unikania konfliktów. Warto również pamiętać, że adres IP może być w wersji IPv4 lub IPv6, a ich odpowiedni wybór jest istotny w kontekście rozwoju i przyszłości sieci. Dobre praktyki obejmują przydzielanie adresów z odpowiednich pul adresowych oraz dokumentowanie przydzielonych adresów, aby zminimalizować ryzyko błędów.

Pytanie 39

Jakie urządzenie chroni silnik przed zwarciem i przeciążeniem?

A. odgromnik
B. termistor
C. wyłącznik silnikowy
D. przekaźnik termiczny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik silnikowy to urządzenie zabezpieczające, które chroni silniki przed zwarciem oraz przeciążeniem. Jego działanie opiera się na wykrywaniu prądów, które przekraczają ustalone wartości graniczne, co może prowadzić do uszkodzenia silnika. W przypadku wykrycia przeciążenia, wyłącznik silnikowy automatycznie odcina zasilanie, co zapobiega przegrzaniu i potencjalnym uszkodzeniom mechanicznym. W praktycznych zastosowaniach wyłączniki silnikowe stosowane są w różnych aplikacjach, od przemysłowych do budowlanych, zapewniając bezpieczeństwo operacyjne. Zgodnie z normami IEC 60947-4-1, instalacja wyłączników silnikowych powinna być zgodna z zasadami ochrony przeciwporażeniowej oraz zabezpieczeń przed skutkami zwarć. Oprócz zabezpieczenia przed przeciążeniem, wiele modeli wyłączników silnikowych wyposażonych jest w dodatkowe funkcje, takie jak serwisowe wskaźniki błędów, które informują użytkowników o awariach, co zwiększa bezpieczeństwo i efektywność operacyjną.

Pytanie 40

Jaką wielkość fizyczną mierzy się w tensometrach foliowych?

A. Indukcji
B. Indukcyjności
C. Pojemności
D. Rezystancji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
W tensometrach foliowych wykorzystuje się zmianę rezystancji, co jest kluczowe dla pomiarów deformacji. Tensometry foliowe działają na zasadzie efektu piezoelektrycznego lub zmiany oporu elektrycznego materiału w odpowiedzi na naprężenia mechaniczne. Gdy materiał jest poddany deformacji, jego długość i przekrój poprzeczny ulegają zmianie, co wpływa na jego rezystancję. Przykładem zastosowania tensometrów foliowych jest monitorowanie obciążeń w konstrukcjach budowlanych oraz w systemach wagi. W praktyce, dzięki precyzyjnym pomiarom rezystancji, inżynierowie mogą ocenić, czy struktura jest bezpieczna i zgodna z normami budowlanymi. Warto zauważyć, że stosowanie tensometrów w różnych dziedzinach, takich jak mechanic, budownictwo czy automatyka, jest zgodne z międzynarodowymi standardami, co pozwala na wiarygodne i powtarzalne pomiary.