Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 22 maja 2025 12:33
  • Data zakończenia: 22 maja 2025 12:52

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W przypadku łączenia urządzeń audio na dużą odległość, jakie kable powinny być wykorzystane?

A. sygnalizacyjne YKSY
B. symetryczne (balanced)
C. sygnalizacyjne YKSwXs
D. niesymetryczne (unbalanced)
Kable symetryczne, znane również jako kable zbalansowane, są kluczowym elementem w połączeniach urządzeń akustycznych na większe odległości. Główna zaleta tych kabli polega na ich zdolności do redukcji zakłóceń elektromagnetycznych, co jest szczególnie ważne w kontekście długich tras sygnałowych. Dzięki zastosowaniu dwóch przewodów sygnałowych, które przesyłają sygnał w przeciwnych fazach, kable symetryczne eliminują wpływ zakłóceń zewnętrznych, co zapewnia czystość dźwięku i stabilność sygnału. Przykładem zastosowania mogą być instalacje nagłośnieniowe na koncertach, gdzie kable symetryczne są powszechnie używane do łączenia mikrofonów z mikserami audio, zwłaszcza w przypadku dużych odległości. W branży audio stosuje się standardy takie jak AES/EBU i XLR, które są typowymi złączami dla kabli symetrycznych. W praktyce, wybór kabli symetrycznych jest zgodny z najlepszymi praktykami, które zalecają ich stosowanie wszędzie tam, gdzie jakość sygnału i odporność na zakłócenia są kluczowe dla sukcesu technicznego występu lub nagrania.

Pytanie 2

Protokół internetowy, który pozwala na pobieranie wiadomości e-mail z serwera na komputer, to

A. DHCP
B. FTP
C. ARP
D. POP3
POP3, czyli Post Office Protocol version 3, to standardowy protokół używany do odbierania poczty elektronicznej z serwera do klienta e-mail. Jego głównym celem jest umożliwienie użytkownikom pobierania wiadomości e-mail z serwera, co jest kluczową funkcjonalnością w codziennej komunikacji elektronicznej. POP3 działa na zasadzie pobierania wiadomości na lokalny komputer, co oznacza, że po ich pobraniu z serwera, są one zazwyczaj usuwane z serwera (choć można skonfigurować klienta, aby pozostawiał je na serwerze). Przykładem zastosowania POP3 jest sytuacja, gdy użytkownik korzysta z klienta pocztowego, takiego jak Microsoft Outlook, aby zyskać dostęp do swojej poczty, jednocześnie umożliwiając odczyt wiadomości offline. Protokół działa głównie na porcie 110, a dla szyfrowanej wersji, czyli POP3S, na porcie 995. POP3 jest zgodny z normami IETF, co czyni go częścią zbioru protokołów standardowych, zapewniając interoperacyjność między różnymi systemami i aplikacjami pocztowymi.

Pytanie 3

W projekcie kabel oznakowano jako S/FTP, co to oznacza?

A. skrętka z każdą parą w oddzielnym ekranie z folii, dodatkowo w ekranie z folii
B. skrętka ekranowana zarówno folią, jak i siatką
C. skrętka z każdą parą foliowaną dodatkowo w ekranie z siatki
D. skrętka z każdą parą w oddzielnym ekranie z folii
Błędna interpretacja oznaczenia S/FTP często prowadzi do nieporozumień w zakresie konstrukcji i właściwości kabli. Wiele z niepoprawnych odpowiedzi koncentruje się na różnych formach ekranowania, jednak nie odnoszą się one do kluczowego aspektu, jakim jest dodatkowa osłona dla każdej pary. Na przykład, odpowiedzi sugerujące jedynie ekranowanie par w folii lub folię z siatką pomijają istotny fakt, że w przypadku S/FTP ekranowanie powinno być zastosowane zarówno dla poszczególnych par, jak i dla całego kabla. Kable bez odpowiedniego podziału ekranów mogą być bardziej narażone na interferencje, co negatywnie wpływa na jakość sygnału. W praktyce, nieprawidłowe zrozumienie tych zasad prowadzi do zastosowania niewłaściwych kabli w środowiskach, gdzie zakłócenia mogą być znaczące. Kluczowe jest, aby przy wyborze kabli kierować się nie tylko ich typem, ale także zrozumieniem ich konstrukcji i zastosowania w kontekście standardów komunikacyjnych, co podkreśla znaczenie dokładności w stosowaniu terminologii branżowej.

Pytanie 4

Wyłącznik, który chroni instalację elektryczną przed skutkami przeciążenia, to

A. czasowy
B. nadprądowy
C. podnapięciowy
D. różnicowoprądowy
Wyłącznik nadprądowy jest kluczowym elementem ochrony instalacji elektrycznej przed skutkami przeciążenia. Działa on na zasadzie detekcji prądu przekraczającego nominalną wartość, co może prowadzić do przegrzewania się przewodów, a w konsekwencji do pożaru lub uszkodzenia urządzeń elektrycznych. Wyłączniki nadprądowe są zaprojektowane zgodnie z normami IEC 60898 oraz IEC 60947, co zapewnia ich niezawodność w zastosowaniach domowych i przemysłowych. W praktyce, wyłącznik nadprądowy można spotkać w rozdzielniach elektrycznych budynków, gdzie zabezpiecza obwody zasilające gniazda i oświetlenie. Jego działanie jest szczególnie istotne w sytuacjach, gdy do obwodu podłączane są urządzenia o dużym poborze mocy, takie jak grzejniki elektryczne czy urządzenia AGD. Właściwe dobranie wyłącznika nadprądowego do charakterystyki obciążenia jest istotne dla zapewnienia bezpieczeństwa i efektywności instalacji elektrycznej.

Pytanie 5

Jakie oznaczenie mają terminale w urządzeniach systemów alarmowych, które służą do podłączenia obwodu sabotażowego?

A. KPD
B. COM
C. TMP
D. CLK
Zaciski CLK, COM oraz KPD nie są związane z obwodami sabotażowymi, co może wprowadzać w błąd osoby niewystarczająco zaznajomione z terminologią używaną w systemach alarmowych. Zaciski CLK (clock) często stosowane są w systemach komunikacji, gdzie synchronizacja czasowa jest kluczowa do prawidłowego funkcjonowania urządzeń. W kontekście systemów alarmowych, błędne przypisanie tego oznaczenia do obwodu sabotażowego może prowadzić do nieprawidłowych instalacji oraz, co gorsza, do braku detekcji manipulacji. Zaciski COM (common) mogą być używane jako wspólne połączenia w obwodach, ale nie mają one specyficznego zastosowania w kontekście obwodów sabotażowych. Zastosowanie tych zacisków w niewłaściwy sposób może prowadzić do obniżenia efektywności ochrony. Oznaczenie KPD (klawiatura podziału stref) odnosi się do urządzeń umożliwiających interakcję z systemem alarmowym, takich jak wprowadzanie kodów dostępu, a nie do obwodów sabotażowych. Prawidłowe zrozumienie funkcji i oznaczeń zacisków jest kluczowe w ich zastosowaniach, dlatego w kontekście systemów alarmowych istotne jest, aby nie mylić tych terminów, co może prowadzić do poważnych błędów w instalacji i programowaniu systemów zabezpieczeń.

Pytanie 6

Zaciski wyjściowe przekaźnika czujnika ruchu nie są oznaczone literami

A. NO
B. NC
C. COM
D. IN
Odpowiedź IN jest prawidłowa, ponieważ oznacza 'input', czyli wejście. W kontekście czujnika ruchu, przewód oznaczony jako IN jest przeznaczony do podłączenia zewnętrznego sygnału, który aktywuje urządzenie. W praktyce, czujniki ruchu wykorzystywane są w systemach automatyki budynkowej, gdzie detekcja ruchu uruchamia różne urządzenia, takie jak oświetlenie, alarmy czy systemy monitoringu. Prawidłowe zrozumienie oznaczeń zacisków jest kluczowe dla efektywnej instalacji i późniejszej konserwacji systemów. Stosowanie standardów, takich jak normy IEC, pozwala na jednoznaczne i spójne oznaczanie zacisków w różnych urządzeniach. Wiedza na temat właściwego podłączenia czujników oraz ich funkcji w systemach automatyki zwiększa bezpieczeństwo i komfort użytkowania.

Pytanie 7

Aby zabezpieczyć pracowników przed podwyższonym promieniowaniem fal elektromagnetycznych, wykorzystuje się

A. ekrany z uziemieniem
B. chodniki izolacyjne
C. fartuchy ochronne
D. kaski ochronne
Ekrany z uziemieniem są kluczowym elementem ochrony przed falami elektromagnetycznymi, które mogą być emitowane przez różne urządzenia elektryczne i elektroniczne. Uziemienie ekranów pozwala na odprowadzenie nadmiaru ładunku elektrycznego do ziemi, co skutecznie minimalizuje ryzyko narażenia pracowników na szkodliwe skutki promieniowania. W praktyce, ekrany te mogą być stosowane w pomieszczeniach biurowych, laboratoriach oraz wszędzie tam, gdzie występuje znaczna emisja fal elektromagnetycznych. Przykładem zastosowania są stanowiska pracy w laboratoriach analitycznych, gdzie sprzęt pomiarowy wymaga osłony przed zakłóceniami elektromagnetycznymi. Dobre praktyki w branży zalecają regularne kontrole poziomów promieniowania oraz stosowanie odpowiednich środków ochrony osobistej, co obejmuje także monitorowanie skuteczności ekranów z uziemieniem. Warto również podkreślić, że stosowanie takich rozwiązań jest zgodne z normami ochrony zdrowia i bezpieczeństwa w miejscu pracy, co jest kluczowe dla zapewnienia komfortowych warunków pracy.

Pytanie 8

Jak powinna przebiegać prawidłowa sekwencja uruchamiania instalacji telewizyjnej?

A. zaprogramować kanały, uruchomić odbiornik TV, podłączyć kabel antenowy
B. podłączyć kabel antenowy, uruchomić odbiornik TV, zaprogramować kanały
C. uruchomić odbiornik TV, zaprogramować kanały, podłączyć kabel antenowy
D. podłączyć kabel antenowy, zaprogramować kanały, uruchomić odbiornik TV
Wybierając inną kolejność czynności, można napotkać na szereg problemów. Rozpoczęcie od programowania kanałów bez wcześniejszego podłączenia kabla antenowego skutkuje brakiem sygnału, co uniemożliwi odbiornikowi wykonanie tego zadania. Odbiornik telewizyjny wymaga aktywnego źródła sygnału do zidentyfikowania dostępnych stacji, a więc każda próba zaprogramowania kanałów w takiej sytuacji jest skazana na niepowodzenie. Z kolei uruchomienie odbiornika przed podłączeniem kabla antenowego to podobny błąd, gdyż telewizor nie będzie miał dostępu do sygnału, co prowadzi do frustracji użytkownika i wydłuża czas potrzebny na skonfigurowanie urządzenia. Zwlekanie z podłączeniem kabla antenowego w ogóle, jak sugeruje niektóre z tych odpowiedzi, jest niezgodne z zasadami dobrych praktyk w instalacji sprzętu RTV. Oprócz tego, niepoprawna kolejność działań może prowadzić do nieefektywnego korzystania z urządzenia, co w dłuższym okresie może wpłynąć na jego wydajność. Kluczowe jest, aby każdy użytkownik zrozumiał, że przestrzeganie logicznej kolejności działań podczas instalacji telewizora nie tylko zwiększa komfort użytkowania, ale również wpływa na jego długoterminową wydajność i niezawodność. Prawidłowe podejście do instalacji urządzeń multimedialnych jest niezbędne dla ich optymalnego działania.

Pytanie 9

Jakie będzie całkowity koszt naprawy odbiornika telewizyjnego, jeżeli czas pracy wynosił 2 godziny, koszt materiałów to 100 zł, a stawka za godzinę pracy technika wynosi 80 zł?

A. 212 zł
B. 196 zł
C. 260 zł
D. 212 zł
Aby obliczyć całkowity koszt naprawy odbiornika telewizyjnego, należy zsumować koszt pracy serwisanta oraz koszt materiałów. W tym przypadku czas naprawy wynosił 2 godziny, a stawka godzinowa serwisanta to 80 zł. Zatem koszt pracy wynosi: 2 godziny * 80 zł/godz. = 160 zł. Koszt materiałów wynosi 100 zł. Całkowity koszt naprawy to: 160 zł (koszt pracy) + 100 zł (koszt materiałów) = 260 zł. Takie podejście jest zgodne z najlepszymi praktykami branżowymi, które zalecają szczegółowe rozliczenie kosztów robocizny oraz materiałów, aby klient miał pełną transparentność wydatków. W przypadku napraw sprzętu elektronicznego, istotne jest także uwzględnienie dodatkowych kosztów, takich jak dojazd serwisanta, jeśli jest to wymagane. Praktyka ta pomaga utrzymać zaufanie klientów oraz zapewnia rzetelność w rozliczeniach.

Pytanie 10

Które złącze jest przeznaczone do podłączenia sygnałów: zespolonego obrazu, koloru R, koloru G, koloru B, luminancji oraz chrominancji, a także sygnału audio dla lewego i prawego kanału?

A. JACK
B. DIN 5
C. S-VHS
D. EUROSCART
Odpowiedź EUROSCART to strzał w dziesiątkę! To złącze fajnie łączy sygnały wideo i audio w jednym kablu, co naprawdę ułatwia życie podczas oglądania filmów czy grania w gry. Obsługuje różne rodzaje sygnałów, takie jak R, G i B, co jest mega ważne dla jakości obrazu. Dodatkowo, EUROSCART przesyła dźwięk na dwa kanały – lewy i prawy, co sprawia, że można go znaleźć w wielu urządzeniach RTV, jak telewizory czy odtwarzacze DVD. Na przykład, kiedy podłączasz odtwarzacz DVD do telewizora, używając EUROSCART, nie musisz się martwić o bałagan z kablami. To złącze jest też zgodne z normą CENELEC EN 50049-1, co znaczy, że jest powszechnie uznawane w świecie elektroniki. Dobrze wiedzieć, że jest tak szeroko stosowane!

Pytanie 11

Przy inspekcji naprawianego urządzenia z aktywnym celownikiem laserowym technik serwisowy może być narażony na

A. wysuszenie skóry dłoni
B. poparzenie dłoni
C. uszkodzenie wzroku
D. krwawienie podskórne
Uszkodzenie wzroku to poważne zagrożenie w przypadku pracy z urządzeniami emitującymi lasery, które są powszechnie stosowane w serwisie technicznym. Promieniowanie laserowe o wysokiej intensywności może prowadzić do trwałych uszkodzeń siatkówki, co w wielu przypadkach kończy się utratą wzroku. Pracownicy serwisowi powinni stosować odpowiednie środki ochrony osobistej, takie jak okulary ochronne przystosowane do danych długości fal laserowych. Ważne jest również, aby przestrzegać standardów bezpieczeństwa, takich jak te określone przez Międzynarodową Organizację Normalizacyjną (ISO) oraz normy OSHA w zakresie bezpieczeństwa pracy z laserami. Użycie celowników laserowych powinno być zawsze poprzedzone oceną ryzyka oraz zapewnieniem odpowiednich warunków pracy, aby zminimalizować ryzyko uszkodzeń. Szkolenia z zakresu bezpieczeństwa pracy z laserami są kluczowe, aby pracownicy byli świadomi zagrożeń oraz umieli skutecznie reagować w sytuacjach awaryjnych. Przykłady zastosowań laserów w serwisie obejmują precyzyjne pomiary, spawanie i cięcie materiałów, gdzie bezpieczeństwo oczu powinno być priorytetem.

Pytanie 12

Aby podłączyć czujnik PIR do linii parametrycznej 2EOL (DEOL), co jest wymagane?

A. 6 żył przewodu i jeden rezystor
B. 4 żyły przewodu i dwa rezystory
C. 6 żył przewodu i dwa rezystory
D. 4 żyły przewodu i jeden rezystor
W przypadku podłączenia czujnika PIR do linii parametrycznej 2EOL (DEOL) pomyłki w zakresie liczby żył przewodu i zastosowanych rezystorów mogą prowadzić do nieprawidłowego działania systemu. Odpowiedź sugerująca cztery żyły przewodu oraz jednego rezystora jest nieadekwatna, ponieważ nie zapewnia odpowiednich warunków do stabilnej pracy czujnika. W praktyce, jedno rezystor nie jest wystarczające do uzyskania prawidłowego pomiaru rezystancji linii, co może skutkować fałszywymi alarmami lub brakiem reakcji na wykrycie ruchu. Ponadto, opcja z sześcioma żyłami przewodu również nie jest uzasadniona - zbyt duża liczba żył w tej konfiguracji może prowadzić do zbędnych komplikacji w instalacji oraz zwiększenia kosztów materiałowych, co jest niewłaściwe z perspektywy efektywności kosztowej. Istotnym błędem w myśleniu jest założenie, że więcej przewodów lub rezystorów automatycznie przekłada się na lepszą jakość systemu. W rzeczywistości kluczowa jest odpowiednia liczba żył i ich konfiguracja, co pozwala na osiągnięcie optymalnej wydajności i zgodności z normami bezpieczeństwa. Takie podejście do podłączenia czujników wymaga znajomości zasad działania systemów alarmowych oraz praktycznych aspektów ich instalacji, aby uniknąć typowych pułapek i zapewnić niezawodność systemu."

Pytanie 13

W każdej linii kodu, oprócz mnemonika instrukcji, można dodać po średniku sekwencję znaków, która zostanie zignorowana przez asembler. Co to jest?

A. znamie.
B. instrukcja.
C. komentarz.
D. argumenty.
W przypadku odpowiedzi, które wskazują na etykiety, operandy lub rozkaz, istnieje istotne nieporozumienie dotyczące ich roli w kodzie asemblera. Etykiety są używane do oznaczania miejsc w kodzie, do których można odwoływać się w instrukcjach skoku, jednak nie są one ignorowane przez asembler – wręcz przeciwnie, stanowią istotny element struktury programu. Operandy to z kolei wartości lub adresy, na których wykonuje się operacje w ramach instrukcji. Odpowiedzi te sugerują, że komentowanie kodu mogłoby być mylone z innymi elementami kodu, co może prowadzić do nieefektywnego lub nieczytelnego kodu. Rozkaz natomiast to konkretna instrukcja, którą asembler przetwarza. Mylenie tych pojęć z komentarzami może wynikać z braku zrozumienia ich funkcji. Programowanie w asemblerze wymaga precyzyjnego podejścia oraz dobrej znajomości struktury kodu, aby uniknąć typowych pułapek, takich jak złożoność w czytaniu kodu bez odpowiednich komentarzy, co może prowadzić do błędów w dalszym etapie rozwoju oprogramowania. Właściwe użycie komentarzy jest kluczem do efektywnej współpracy oraz redukcji błędów w projektach programistycznych.

Pytanie 14

Podłączenie telewizyjnej anteny lub odbiornika TV o wejściu symetrycznym przy użyciu przewodu współosiowego wymaga stosowania

A. symetryzatorów
B. linii rezonansowych równoległych
C. linii nierezonansowych typu delta
D. falowodów
Wybór falowodów jako metody połączenia anteny telewizyjnej lub odbiornika TV o wejściu symetrycznym jest nietrafiony, ponieważ falowody są stosowane głównie w wysokich częstotliwościach i wymagają specyficznych warunków do prawidłowego funkcjonowania. Falowody są skuteczne w przypadku komunikacji mikrofalowej i nie są przeznaczone do aplikacji niskoczęstotliwościowych, jak większość systemów telewizyjnych. Dodatkowo, linie rezonansowe równoległe oraz linie nierezonansowe typu delta również nie są odpowiednie do tego typu zastosowań. Linie rezonansowe są projektowane do pracy na określonych częstotliwościach rezonansowych, co w praktyce nie jest zgodne z wymaganiami dla sygnałów telewizyjnych, które muszą być odbierane w szerokim zakresie częstotliwości. Linie nierezonansowe typu delta z kolei są bardziej skomplikowane i mogą wprowadzać dodatkowe straty sygnału, co jest niepożądane w kontekście jakości odbioru telewizyjnego. Wybór niewłaściwych rozwiązań technologicznych może prowadzić do problemów z jakością sygnału, a także do zwiększenia kosztów instalacji, dlatego kluczowe jest zrozumienie i zastosowanie odpowiednich komponentów, takich jak symetryzatory, które są dostosowane do specyfiki systemów telewizyjnych.

Pytanie 15

Jakie urządzenie pozwala na łączenie się z Internetem poprzez sieć CATV?

A. modem
B. wzmacniacz
C. switch
D. hub
Wybór switcha, wzmacniacza czy huba jako urządzenia umożliwiającego dostęp do Internetu przez sieć CATV jest błędny, ponieważ każde z tych urządzeń ma inne funkcje i zastosowania. Switch to urządzenie, które łączy różne urządzenia w sieci lokalnej, umożliwiając im komunikację, ale sam w sobie nie jest w stanie nawiązać połączenia z Internetem. Jego rola polega na inteligentnym przesyłaniu danych w obrębie lokalnej sieci, co czyni go nieprzydatnym w kontekście dostępu do Internetu poprzez sieć telewizyjną. Wzmacniacz, z drugiej strony, jest używany do wzmocnienia sygnału telewizyjnego, ale nie ma zdolności do konwersji i przekazywania danych internetowych. Hub działa na podobnej zasadzie jak switch, ale jest mniej efektywny, ponieważ przesyła dane do wszystkich podłączonych urządzeń bez filtrowania, co zwiększa zatory sieciowe. Te urządzenia mogą być ważne w różnych kontekstach sieciowych, jednak ich funkcjonalność nie obejmuje dostępu do Internetu poprzez sieć CATV. Typowym błędem przy wyborze odpowiedniego sprzętu jest mylenie funkcji urządzeń oraz ich zastosowania w różnych architekturach sieciowych. Dla zapewnienia optymalnego dostępu do Internetu kluczowe jest korzystanie z dedykowanego modemu, który spełnia odpowiednie standardy techniczne, co pozwala na efektywne i stabilne połączenie z siecią.

Pytanie 16

Jak zwiększenie rezystancji obciążenia w układach wzmacniaczy rezystancyjnych wpłynie na

A. spadek mocy wyjściowej
B. wzrost mocy wyjściowej
C. zmniejszenie pasma przenoszenia
D. podwyższenie napięcia zasilającego
Wzrost rezystancji obciążenia we wzmacniaczach rezystancyjnych prowadzi do spadku mocy wyjściowej, co wynika z prawa Ohma oraz zasady zachowania energii. W praktyce, gdy rezystancja obciążenia rośnie, prąd przepływający przez obciążenie maleje, co z kolei przekłada się na spadek mocy, która jest definiowana jako iloczyn napięcia i prądu (P = U * I). Przykładem takiego zachowania może być wzmacniacz audio podłączony do głośnika. Jeśli głośnik ma wysoką impedancję (duża rezystancja), to z uwagi na ograniczenie prądu, moc wyjściowa wzmacniacza zmniejsza się. Dla zastosowań w audio, aby uzyskać optymalne wzmocnienie, zmiany rezystancji obciążenia powinny być kontrolowane, aby uniknąć niepożądanych efektów, takich jak zniekształcenia dźwięku. W praktyce inżynierowie często dostosowują parametry układów, aby zapewnić odpowiednią współpracę ze standardowymi obciążeniami, co jest zgodne z dobrymi praktykami branżowymi.

Pytanie 17

Co obejmuje schemat montażu?

A. metodę łączenia komponentów w urządzeniu oraz ich kolejność montażu
B. schematy blokowe ilustrujące współdziałanie części
C. spis elementów zamiennych oraz zasady użytkowania urządzenia
D. rysunki złożeniowe całości produktów z określonymi warunkami technicznymi
Odpowiedź wskazująca na sposób połączenia elementów w urządzeniu oraz kolejność ich montażu jest prawidłowa, ponieważ schemat montażowy ma kluczowe znaczenie dla poprawnego złożenia i działania urządzenia. W praktyce, schemat montażowy przedstawia szczegółowe instrukcje, które są niezbędne dla techników i inżynierów zajmujących się budową maszyn lub skomplikowanych systemów. Przykładem może być montaż zespołów w silnikach, gdzie precyzyjne ukazanie kolejności oraz sposobu połączenia elementów, takich jak wały, korbowody czy tłoki, jest niezbędne do zapewnienia ich prawidłowego działania oraz długowieczności. Standardy branżowe, takie jak ISO 9001, kładą duży nacisk na dokumentację procesów oraz formy wizualne, które wspierają zrozumienie i wykonywanie zadań montażowych. Zastosowanie schematu montażowego pozwala także na szybką identyfikację błędów oraz ułatwia szkolenie nowych pracowników w zakresie technik montażowych.

Pytanie 18

Element pasywny w sieciach telekomunikacyjnych oraz komputerowych, który posiada gniazda po stronie zewnętrznej oraz styki do montażu kabla od wewnątrz, określamy mianem

A. panelu krosowniczego
B. złączki
C. kanału kablowego
D. skréty
Panel krosowniczy to kluczowy pasywny element w infrastrukturze sieciowej, który pełni rolę centralnego punktu połączeń dla różnych segmentów sieci. Zewnętrzna strona panelu wyposażona jest w gniazda, które umożliwiają podłączenie kabli, natomiast wewnętrzna strona zawiera styki, do których przypina się przewody. Dzięki temu, panel krosowniczy umożliwia łatwe i elastyczne zarządzanie połączeniami w sieci, co jest niezwykle istotne w przypadku rozbudowy lub modyfikacji systemu. W praktyce, korzysta się z paneli krosowniczych w serwerowniach oraz w szafach rackowych, gdzie porządkowanie i organizacja kabli jest kluczowa dla efektywności operacyjnej. Zgodnie z normami TIA/EIA-568, zaleca się stosowanie paneli krosowniczych do zarządzania kablami z kategorii 5e, 6, a także wyższych, co zapewnia odpowiednią jakość połączeń oraz minimalizuje interferencje elektromagnetyczne. Dodatkowo, panele te pozwalają na zastosowanie technik takich jak „plug-and-play”, co znacząco ułatwia prace serwisowe i konserwacyjne.

Pytanie 19

Który z protokołów przesyłania danych umożliwia transmisję różnicową sygnałów?

A. I2C
B. GPIB
C. RS-232
D. RS-485
RS-485 to standard komunikacji szeregowej, który umożliwia różnicową transmisję sygnałów, co oznacza, że dane są przesyłane za pomocą dwóch przewodów, co pozwala na eliminację zakłóceń elektrycznych. W przeciwieństwie do RS-232, który przesyła sygnały jako pojedynczy sygnał względem masy, RS-485 wykorzystuje różnicę napięć pomiędzy dwoma przewodami, co zapewnia lepszą odporność na zakłócenia i możliwość dłuższych połączeń. Przykłady zastosowań RS-485 obejmują systemy automatyki przemysłowej, sieci czujników oraz kontrolę dostępu, gdzie wymagana jest komunikacja na dużych odległościach, nawet do 1200 metrów, oraz obsługa wielu urządzeń w jednej sieci. Standard RS-485 jest szczególnie ceniony w aplikacjach, gdzie istotne jest zachowanie integralności danych w trudnych warunkach elektromagnetycznych. Dobrą praktyką w projektowaniu systemów opartych na RS-485 jest stosowanie odpowiednich terminacji na końcach linii transmisyjnej, co minimalizuje odbicia sygnału i poprawia jakość komunikacji.

Pytanie 20

Dokładne umycie i odtłuszczenie powierzchni płytki przed instalacją elementów elektronicznych jest wykonywane w celu

A. zwiększenia adhezji lutowia do pola lutowniczego
B. zapobiegania pękaniu lutu
C. zapobiegania utlenianiu lutu
D. zwiększenia temperatury topnienia lutu
Staranne mycie i odtłuszczenie powierzchni płytki przed montażem elementów elektronicznych jest kluczowe dla zwiększenia adhezji lutowia z polem lutowniczym. Wysoka jakość lutowania zależy w dużej mierze od czystości powierzchni, na której będzie aplikowane lutowia. Zanieczyszczenia, takie jak oleje, smary czy pozostałości po produkcji, mogą znacząco obniżyć jakość połączenia, prowadząc do słabszej adhezji i zwiększonego ryzyka wystąpienia błędów w funkcjonowaniu urządzenia. Na przykład, przy lutowaniu powierzchniowym (SMD) niezbędne jest, aby powierzchnie lutownicze były wolne od wszelkich zanieczyszczeń, co zapewnia lepsze wetknięcie lutowia w pole lutownicze. Firmy stosujące standardy IPC-A-610 i IPC-J-STD-001 kładą szczególny nacisk na odpowiednie przygotowanie powierzchni do lutowania, co ma kluczowe znaczenie dla niezawodności i trwałości wytwarzanych produktów elektronicznych. Zastosowanie kontroli wizualnej i testów jakościowych po lutowaniu pozwala na wczesne wykrycie potencjalnych problemów, co jest niezbędne w procesach produkcyjnych.

Pytanie 21

Czym jest multiplekser w kontekście układów kombinacyjnych?

A. przekazywanie sygnału cyfrowego "1 z n" wybranego adresem na wyjście
B. liczenie oraz przechowywanie impulsów
C. sterowanie wskaźnikiem 7-segmentowym
D. konwersja kodu pierścieniowego "1 z n" na sygnał wyjściowy
Często jak nie wybierasz dobrej odpowiedzi, to może być przez to, że nie do końca rozumiesz, co robią układy kombinacyjne w systemach cyfrowych. Odpowiedź związana z konwersją kodu pierścieniowego na kod wyjściowy nie dotyczy multipleksera, bo to jest bardziej skomplikowane i zazwyczaj wymaga dekoderów lub konwerterów, które zmieniają dane z jednego formatu na inny. W przypadku liczenia impulsów mówimy o licznikach, a nie multiplekserach, które tylko wybierają sygnał do wysłania. A jeśli chodzi o wskaźniki 7-segmentowe, to potrzebujesz odpowiednich sterowników, które potrafią zinterpretować dane i pokazać je na wyświetlaczu. Takie podejście prowadzi do błędów w rozumieniu architektury systemów cyfrowych. Żeby dobrze korzystać z multiplekserów, trzeba zrozumieć, jak działają sygnały sterujące i logika wybierania sygnałów. Kluczowe jest tutaj umiejętne projektowanie i wdrażanie układów, co przychodzi z wiedzą na temat zasad projektowania oraz standardów, jak te od IEEE dla VHDL i Verilog, które są ważne w inżynierii cyfrowej.

Pytanie 22

Jakie urządzenia wykorzystuje się do pomiaru mocy czynnej?

A. woltomierze
B. waromierze
C. watomierze
D. wariometry
Woltomierze, waromierze i wariometry to urządzenia pomiarowe, które różnią się znacząco od watomierzy w zakresie funkcji i zastosowania. Woltomierz jest używany do pomiaru napięcia elektrycznego, co oznacza, że mierzy różnicę potencjałów w obwodzie, ale nie ocenia bezpośrednio mocy czynnej. W przypadku pomiarów mocy, woltomierz mógłby być użyty w połączeniu z innymi urządzeniami, ale samodzielnie nie dostarcza informacji o mocy czynnej. Waromierz, z drugiej strony, jest przeznaczony do pomiaru mocy biernej, czyli tej, która nie wykonuje żadnej pracy, lecz krąży w obwodzie. Wariometry natomiast służą do pomiaru różnicy mocy w obwodach prądu zmiennego, ale również nie są właściwym narzędziem do pomiaru mocy czynnej. Typowym błędem jest mylenie tych urządzeń z watomierzem, co prowadzi do nieporozumień w interpretacji wyników pomiarowych. Dobrze jest pamiętać, że dla prawidłowych pomiarów mocy czynnej w instalacjach elektrycznych kluczowe jest korzystanie z watomierzy, które uwzględniają zarówno napięcie, jak i prąd oraz ich fazę, co pozwala na dokładne określenie wykorzystania energii elektrycznej w danym czasie.

Pytanie 23

Aby połączyć przewody systemu domofonowego w kostce połączeniowej, należy wykorzystać

A. młotek
B. pilnik
C. wiertarkę
D. wkrętak
Użycie wkrętaka do podłączenia przewodów w kostce podłączeniowej systemu domofonowego jest najlepszym wyborem, ponieważ wkrętak umożliwia precyzyjne i pewne dokręcenie śrub, co jest kluczowe dla zapewnienia trwałego i stabilnego połączenia. Dobrze zaciśnięte przewody w kostce minimalizują ryzyko przypadkowego rozłączenia i zwiększają bezpieczeństwo całego systemu. Na przykład, w przypadku domofonów, które mogą być narażone na działanie warunków atmosferycznych, solidne połączenie przewodów jest niezbędne do utrzymania prawidłowego funkcjonowania. W branży elektrycznej oraz w instalacjach niskonapięciowych stosowanie wkrętaka jest standardem, który zapewnia zgodność z normami, takimi jak PN-IEC 60364, które określają zasady prawidłowego podłączania elementów elektronicznych. Praktycznie rzecz biorąc, użycie wkrętaka odpowiedniego do typu śrub w kostce podłączeniowej zwiększa efektywność pracy oraz bezpieczeństwo instalacji.

Pytanie 24

Korzystając z tabeli wskaż parametry pracy, przy których kamera nie może być uruchomiona?

Parametr pracy kamery IPWartość
Zasilanie12 VDC ±10%
Wilgotność5÷75%
Temperatura−25÷50°C

A. Temperatura 30°C, wilgotność 45%.
B. Zasilanie 13 V, wilgotność 65%.
C. Temperatura -10°C, wilgotność 40%.
D. Zasilanie 10 V, temperatura 45°C.
Zasilanie 10 V, temperatura 45°C to parametry, przy których kamera nie może być uruchomiona. Standardy branżowe określają, że kamery powinny być zasilane napięciem w zakresie 10,8 V - 13,2 V, co oznacza, że zasilanie 10 V jest poniżej minimalnego wymaganego napięcia. Taka sytuacja może prowadzić do niestabilnej pracy urządzenia, a w skrajnych przypadkach do jego uszkodzenia. Ponadto, temperatura 45°C, chociaż nie przekracza górnej granicy tolerancji, w połączeniu z zasilaniem na dolnej granicy może prowadzić do przegrzania elementów elektronicznych, co z kolei wpływa na żywotność kamery. W praktyce, przed uruchomieniem kamery należy zawsze sprawdzić, czy wszystkie parametry pracy mieszczą się w zalecanych zakresach, co jest kluczowe dla zapewnienia jej prawidłowej i długotrwałej eksploatacji.

Pytanie 25

Czym jest przerwanie w procesorze?

A. zatrzymanie działania programu po wystąpieniu błędu w oprogramowaniu
B. wstrzymanie aktualnie obsługiwanego programu, aby zrealizować zadanie o wyższym priorytecie
C. zmiana aktualnie obsługiwanego programu na inny o tym samym priorytecie
D. przejście procesora w tryb uśpienia po zidentyfikowaniu błędnych danych wejściowych
Pojęcie przerwania w systemach komputerowych jest często mylone z innymi koncepcjami, co prowadzi do nieporozumień. Wiele osób może intuicyjnie sądzić, że przerwanie to zatrzymanie działania programu w wyniku napotkania błędu. Jednakże, takie podejście ignoruje kluczową rolę przerwań jako mechanizmów umożliwiających dynamiczne zarządzanie zasobami, co odzwierciedla ich główną funkcję. Zatrzymanie działania programu po napotkaniu błędu, choć istotne w kontekście zarządzania wyjątkiem, nie jest równoznaczne z przerwaniem. Jest to raczej reakcja na nieprawidłowe działanie, a nie strukturalna decyzja o zawieszeniu jednego programu na rzecz innego. Inny błąd myślowy polega na myleniu przerwań z przełączaniem kontekstu w systemie wielozadaniowym, co jest procesem bardziej złożonym i nie dotyczy wyłącznie priorytetów. Podobnie, niektóre odpowiedzi sugerują, że przerwania mogą powodować uśpienie procesora po wykryciu błędnych danych. To również jest błędne, ponieważ przerwania są zaprojektowane do natychmiastowego przerywania programów w celu ich obsługi, a nie do wprowadzenia procesora w stan uśpienia. Dobrą praktyką jest zrozumienie, że przerwania w świecie komputerów są niezbędne dla efektywnego działania systemów operacyjnych i ich zdolności do zarządzania wieloma zadaniami jednocześnie, co podkreśla ich kluczowe znaczenie w architekturze komputerowej.

Pytanie 26

Zastosowanie uszkodzonych bezpieczników, zastępując je bezpiecznikami o większej wartości prądu znamionowego, może prowadzić do

A. większego zużycia energii
B. wzrostu napięcia źródła zasilania
C. przeciążenia oraz zniszczenia instalacji
D. większego zużycia mocy
Wiesz, wymiana uszkodzonych bezpieczników na te o wyższej wartości prądu może przynieść sporo problemów w instalacji elektrycznej. Bezpieczniki mają swoją rolę, chronią obwody przed przeciążeniem i zwarciami. Ich wartość znamionowa mówi, ile maksymalnie prądu można puścić przez obwód bez ryzyka uszkodzenia. Jak włożysz bezpiecznik o wyższej wartości, to obwód zacznie tolerować większy prąd, co może spalić przewody lub zepsuć urządzenia, które nie są na to gotowe. Przykład? Wyobraź sobie, że masz sprzęt, który jest stworzony do pracy z określonym prądem, a potem zmieniasz bezpiecznik. Dajesz mu więcej prądu i nagle urządzenie się przegrzewa, a w rezultacie kończy w śmietniku. W branży są normy, jak PN-IEC 60364, które podkreślają, jak ważne jest dobranie odpowiednich zabezpieczeń, żeby wszystko działało sprawnie i bezpiecznie.

Pytanie 27

Jakiego typu czujkę powinno się wykorzystać w pomieszczeniu, gdzie występują intensywne ruchy powietrza spowodowane działaniem pieca lub klimatyzatora?

A. Dualną czujkę ruchu
B. Bezprzewodową pasywną czujkę podczerwieni
C. Przewodową pasywną czujkę podczerwieni typu PET
D. Przewodową pasywną czujkę podczerwieni
Czujki dualne to naprawdę ciekawe rozwiązanie do wykrywania ruchu. Łączą w sobie technologię podczerwieni i mikrofalową, co sprawia, że są dużo lepsze w trudnych warunkach. W pomieszczeniach, gdzie powietrze krąży szybko, jak przy klimatyzacji, te czujki są o wiele bardziej odporne na zakłócenia niż te pasywne. Ich działanie polega na jednoczesnym analizowaniu sygnałów z obu technologii, co pozwala lepiej rozpoznać rzeczywisty ruch i zredukować fałszywe alarmy. Przykładem ich użycia mogą być biura, gdzie tak dużo się dzieje i precyzyjna detekcja jest super ważna. Fajnie też podkreślić, że ważne jest, aby wybierać odpowiednie czujki w zależności od warunków w pomieszczeniu, bo to naprawdę wpływa na skuteczność systemu alarmowego.

Pytanie 28

Która modulacja jest stosowana w zakresie fal długich?

A. Częstotliwości
B. Amplitudy
C. Fazy
D. Impulsowa
Modulacja amplitudy (AM) jest powszechnie stosowana w paśmie fal długich, głównie ze względu na jej zdolność do efektywnego przesyłania informacji na dużych odległościach. W modulacji amplitudy, amplituda fali nośnej jest zmieniana w zależności od sygnału informacyjnego, co sprawia, że AM jest odpowiednia do transmisji radiowych w warunkach, gdzie fale radiowe mogą być mocno zakłócane przez różne przeszkody. W praktyce, stacje radiowe nadające w paśmie fal długich wykorzystują modulację amplitudy, aby umożliwić odbiorcom słuchanie programów radiowych z dużą jakością dźwięku na dużych dystansach. Standardy takie jak CCIR 493-7 określają parametry techniczne dla transmisji AM w paśmie fal długich. Dodatkowo, modulacja amplitudy jest stosunkowo prosta do zrealizowania, co sprawia, że jest często wykorzystywana w aplikacjach komercyjnych i amatorskich.

Pytanie 29

Jaką maksymalną liczbę urządzeń sieciowych da się podłączyć do komputerowej sieci, której maska podsieci wynosi 255.255.255.248?

A. 6 urządzeń
B. 8 urządzeń
C. 2 urządzenia
D. 4 urządzenia
Adres maski podsieci 255.255.255.248 oznacza, że mamy do czynienia z maską o długości 29 bitów. W systemie CIDR (Classless Inter-Domain Routing) każda z wartości w masce podsieci 255.255.255.248 odpowiada 8 bitom dla każdego z pierwszych trzech oktetów (255), a ostatni oktet (248) to 11111000 w systemie binarnym. Z tego wynika, że w ostatnim oktetcie mamy 3 bity przeznaczone na adresy hostów. Zasada obliczania liczby dostępnych adresów hostów w danej podsieci jest następująca: 2^n - 2, gdzie n to liczba bitów przeznaczonych na hosty. W naszym przypadku mamy 3 bity, więc obliczamy 2^3 - 2 = 8 - 2 = 6. Odejmujemy dwa adresy, ponieważ jeden adres jest przeznaczony na adres sieci, a drugi na adres rozgłoszeniowy. Taka konfiguracja pozwala na wykorzystanie 6 adresów IP dla urządzeń w tej podsieci, co jest zgodne z praktykami stosowanymi w projektowaniu sieci.

Pytanie 30

Stabilizator o symbolu LM7812 charakteryzuje się

A. nieregulowanym ujemnym napięciem na wyjściu
B. nieregulowanym dodatnim napięciem na wyjściu
C. regulowanym dodatnim napięciem na wyjściu
D. regulowanym ujemnym napięciem na wyjściu
Wybór odpowiedzi dotyczącej regulowanego napięcia wyjściowego wskazuje na nieporozumienie w zrozumieniu funkcji stabilizatorów. Stabilizatory, takie jak LM7812, zostały zaprojektowane z myślą o dostarczaniu stałego napięcia, a nie regulowanego, co oznacza, że nie są przeznaczone do zmiany napięcia wyjściowego w zależności od potrzeb użytkownika. Typowe błędy myślowe prowadzące do takich wniosków mogą wynikać z pomylenia stabilizatora napięcia z regulatorem, który może dostosować wyjście do zmieniających się warunków obciążenia. Odpowiedź o nieregulowanym ujemnym napięciu jest również błędna, ponieważ LM7812 dostarcza napięcia dodatniego. Stabilizatory ujemne, takie jak LM7912, mają zastosowanie w sytuacjach wymagających zasilania ujemnego, jednak LM7812 nie jest ich odpowiednikiem. Niezrozumienie różnic między stabilizatorami dodatnimi i ujemnymi oraz ich regulowalnymi i nieregulowalnymi wersjami może prowadzić do nieprawidłowego doboru komponentów w projektach elektronicznych, co z kolei wpływa na nieprawidłowe działanie całego układu. Dlatego tak ważne jest, aby rozumieć specyfikacje i zastosowania poszczególnych stabilizatorów, co z pewnością przyczyni się do efektywniejszego projektowania i realizacji systemów elektronicznych.

Pytanie 31

Czego można dokonać za pomocą cęgów bocznych?

A. ciąć żyły przewodów elektrycznych
B. formować końcówki żył przewodów elektrycznych
C. skręcać żyły przewodów elektrycznych
D. usuwać izolację z żył przewodów elektrycznych
Odpowiedzi, które wskazują na formowanie końcówek, skręcanie lub usuwanie izolacji z żył przewodów elektrycznych, na pierwszy rzut oka mogą wydawać się logiczne, jednak w rzeczywistości nie są one właściwym zastosowaniem cęgów bocznych. Formowanie końcówek żył wymaga narzędzi takich jak szczypce do końcówek, które są zaprojektowane do tego celu, wykorzystując inną zasadę działania. Skręcanie żył przewodów elektrycznych to proces, który wymaga zastosowania odpowiednich narzędzi, takich jak szczypce do skręcania, co zapewnia prawidłowe połączenie elektryczne, w przeciwieństwie do cęgów bocznych, które nie są przeznaczone do tego działania. Usuwanie izolacji to także zadanie dla narzędzi takich jak nożyce do izolacji, które precyzyjnie odcinają izolację, nie uszkadzając samej żyły. W kontekście tej analizy, omyłkowe przypisanie funkcji do cęgów bocznych może prowadzić do nieefektywności i potencjalnych uszkodzeń przewodów, co jest sprzeczne z najlepszymi praktykami w zakresie bezpieczeństwa i efektywności pracy w elektrotechnice. Używanie niewłaściwych narzędzi może również stwarzać ryzyko błędów w instalacjach, co może skutkować awarią urządzeń, a nawet zagrożeniem dla zdrowia i życia ludzi. Dlatego ważne jest zrozumienie, jakie narzędzia są przeznaczone do konkretnych zadań w pracy z przewodami elektrycznymi.

Pytanie 32

Aby zidentyfikować brak ciągłości obwodu w instalacjach elektrycznych, należy użyć

A. oscyloskopu
B. omomierza
C. woltomierza
D. wobulatora
Wykorzystanie oscyloskopu, wobulatora lub woltomierza do lokalizowania braków ciągłości obwodu w instalacjach elektrycznych jest podejściem nieadekwatnym do specyfiki problemu. Oscyloskop jest narzędziem analitycznym, które służy do obserwacji zmian sygnałów elektrycznych w czasie rzeczywistym. Użycie oscyloskopu może być pomocne w analizie sygnałów w obwodach wysokiej częstotliwości, ale nie dostarcza informacji o ciągłości obwodu elektrycznego, co jest kluczowe w celu wykrycia uszkodzeń. Wobulator, z drugiej strony, jest narzędziem do generowania i analizy sygnałów, jednak jego zastosowanie w lokalizacji braków ciągłości nie jest praktyczne, ponieważ koncentruje się na modulacji sygnałów, a nie na pomiarze rezystancji. Woltomierz, choć przydatny do pomiaru napięcia, nie informuje o ciągłości obwodu; może jedynie wykazać, czy na końcu obwodu jest napięcie, ale nie określi, czy przewód jest uszkodzony lub przerwany. Typowe błędy myślowe, które prowadzą do wyboru tych urządzeń, wynikają z niepełnego zrozumienia specyfiki pomiarów elektrycznych oraz z braku wiedzy o dostępnych narzędziach i ich funkcjonalności. Aby skutecznie diagnozować problemy w obwodach elektrycznych, kluczowe jest stosowanie odpowiednich przyrządów, jak omomierz, który jest stworzony do pomiaru oporu i weryfikacji ciągłości instalacji.

Pytanie 33

Jakiego rodzaju układ scalony jest oznaczany symbolem UCY7400?

A. Analogowy wykonany w technologii CMOS
B. Cyfrowy wykonany w technologii TTL
C. Analogowy wykonany w technologii TTL
D. Cyfrowy wykonany w technologii CMOS
Odpowiedzi związane z technologią CMOS lub analogowymi układami scalonymi są błędne i wynikają z częstych nieporozumień na temat klasyfikacji układów scalonych. CMOS jest znany przede wszystkim z tego, że zużywa mało energii i często wykorzystuje się go w miejscach, gdzie potrzeba dużo bramek i bardziej złożonych układów, jak mikroprocesory czy układy pamięci. Niektórzy mogą mylić układy TTL z CMOS, bo obie technologie mogą występować w nowoczesnych systemach cyfrowych. Ale UCY7400 to jednoznacznie układ TTL, więc nie korzysta on z zalet CMOS. Dodatkowo, pomylenie układów analogowych z cyfrowymi, gdy mówimy o UCY7400, prowadzi do poważnych błędów w zrozumieniu ich funkcji. Układy analogowe pracują na sygnałach ciągłych i służą do amplifikacji sygnałów czy obróbki różnych sygnałów. UCY7400, jako układ cyfrowy, po prostu nie pasuje do tych zastosowań. Ważne jest, żeby znać różnice między tymi technologiami oraz ich zastosowaniami, szczególnie przy projektowaniu układów elektronicznych. Dlatego dobrze jest zapoznać się z ich właściwościami, żeby w przyszłości nie popełniać takich pomyłek.

Pytanie 34

Sprawdzanie działania elektronicznego wzmacniacza akustycznego nie obejmuje

A. pomiaru parametrów
B. kontroli temperatury elementów
C. znajdowania anomalii w działaniu urządzenia
D. uaktualniania oprogramowania
Odpowiedź "uaktualnianie oprogramowania" jest poprawna, ponieważ testowanie elektronicznego wzmacniacza akustycznego koncentruje się głównie na aspektach związanych z jego wydajnością i funkcjonalnością w kontekście audio. W procesie testowania, kluczowe jest przeprowadzenie pomiaru parametrów, takich jak zniekształcenia harmoniczne, pasmo przenoszenia, czy moc wyjściowa, co pozwala na ocenę jakości dźwięku generowanego przez wzmacniacz. Kontrola temperatury elementów jest również istotna, aby zapewnić, że urządzenie nie przegrzewa się podczas pracy, co mogłoby prowadzić do uszkodzeń lub obniżenia jakości dźwięku. Dodatkowo, identyfikacja anomalii w działaniu urządzenia jest kluczowa w utrzymaniu jakości i niezawodności sprzętu. Uaktualnianie oprogramowania może być istotne w kontekście poprawy funkcjonalności, ale nie jest to kluczowy element testowania samego wzmacniacza akustycznego. Przykłady dobrych praktyk w tej dziedzinie obejmują korzystanie z analizatorów widma i oscyloskopów do dokładnej analizy parametrów akustycznych.

Pytanie 35

Podczas pomiaru rezystancji przy użyciu metody technicznej, woltomierz oraz amperomierz wskazują odpowiednio 40 V i 20 mA. Jaką wartość ma mierzona rezystancja?

A. 2 kΩ
B. 0,2 kΩ
C. 20 kΩ
D. 200 kΩ
Wartość mierzonej rezystancji można obliczyć korzystając z prawa Ohma, które stanowi, że rezystancja (R) jest równa napięciu (U) podzielonemu przez natężenie prądu (I). W naszym przypadku napięcie wynosi 40 V, a natężenie prądu 20 mA (co odpowiada 0,02 A). Zatem, stosując wzór R = U / I, otrzymujemy R = 40 V / 0,02 A = 2000 Ω, co można przeliczyć na kiloomy: 2000 Ω = 2 kΩ. Ta metoda pomiaru rezystancji jest szeroko stosowana w praktyce, zwłaszcza w elektronice i elektrotechnice, gdzie precyzyjne pomiary są kluczowe dla prawidłowego działania obwodów. Przykładowe zastosowanie można znaleźć w diagnostyce układów elektronicznych, gdzie pomiar rezystancji pozwala na identyfikację uszkodzeń komponentów. W branży stosuje się również tę technikę w różnych standardach pomiarowych, podkreślając jej znaczenie i niezawodność w praktyce.

Pytanie 36

Jaką rolę odgrywa urządzenie kontrolno-pomiarowe w systemie automatyki przemysłowej?

A. zawór regulacyjny
B. kontroler
C. zawór elektromagnetyczny
D. przetwornik
Przepustnica, będąca urządzeniem stosowanym w systemach wentylacyjnych i cieplnych, pełni funkcję regulacji przepływu powietrza lub cieczy. Choć istotna w kontekście zarządzania mediami, nie ma ona zdolności pomiarowych, co czyni ją niewłaściwym wyborem w kontekście funkcji kontrolno-pomiarowych. Sterownik, będący centralnym elementem systemów automatyki, działa na podstawie dostarczanych mu sygnałów, jednak jego rola nie polega na bezpośrednim pomiarze parametrów fizycznych. Zamiast tego, sterownik interpretuje dane z przetworników i podejmuje decyzje operacyjne w oparciu o algorytmy. Elektrozawór, z drugiej strony, steruje przepływem cieczy lub gazów w systemach, ale również nie zajmuje się bezpośrednim pomiarem. Typowym błędem myślowym jest mylenie funkcji urządzeń pomiarowych z urządzeniami wykonawczymi i regulacyjnymi. W kontekście automatyki przemysłowej kluczowe jest rozróżnienie pomiędzy pomiarem a kontrolą, ponieważ każde z tych urządzeń pełni odmienną rolę w systemie. Aby systemy były efektywne, konieczne jest zastosowanie przetworników, które dostarczają dokładne dane, niezbędne dla prawidłowego funkcjonowania sterowników oraz elementów wykonawczych.

Pytanie 37

Który z poniższych przyrządów jest używany do pomiaru oporności izolacji przewodów?

A. IMI-341
B. UM-112B
C. Mostek Wiena
D. Mostek Thomsona
Mostek Thomsona, Mostek Wiena oraz UM-112B to urządzenia pomiarowe, które nie są przeznaczone do pomiaru rezystancji izolacji kabli, co może prowadzić do nieporozumień. Mostek Thomsona jest wykorzystywany głównie do pomiaru niewielkich różnic napięć, co sprawia, że nie jest naturalnym wyborem do oceny izolacji, która wymaga znacznie wyższych napięć pomiarowych. Z kolei Mostek Wiena, stosowany głównie w analizie częstotliwościowej, jest narzędziem do pomiaru impedancji, co również nie odpowiada specyfice pomiarów izolacyjnych. UM-112B, jako multimeter, jest bardziej uniwersalnym narzędziem do pomiarów napięcia, prądu i rezystancji, ale nie jest optymalnym rozwiązaniem do oceny stanu izolacji kabel, ponieważ nie oferuje odpowiednich napięć testowych, które są kluczowe dla tej aplikacji. Prawidłowe zrozumienie funkcji poszczególnych przyrządów jest istotne, aby unikać nieefektywnego lub niebezpiecznego korzystania z nieodpowiednich urządzeń w kontekście pomiarów elektrycznych. Dlatego ważne jest, aby stosować dedykowane mierniki, takie jak IMI-341, które są zaprojektowane zgodnie z normami branżowymi, co zapewnia nie tylko dokładność pomiarów, ale także bezpieczeństwo użytkowników.

Pytanie 38

Aby dostosować wartość temperatury w danym obiekcie, należy użyć

A. termometru
B. termopary
C. termowizora
D. termostatu
Termometr jest urządzeniem służącym do pomiaru temperatury, ale nie ma zdolności do regulacji temperatury w obiekcie. W praktyce, jego głównym zastosowaniem jest monitorowanie i wskazywanie aktualnej wartości temperatury, co jest istotne w wielu dziedzinach, ale nie umożliwia aktywnej kontroli warunków panujących w danym pomieszczeniu czy systemie. Z kolei termopara, będąca czujnikiem temperatury, działa na zasadzie pomiaru różnicy potencjałów elektrycznych wytwarzanych przez dwa różne metale, a jej funkcją jest tylko rejestrowanie temperatury, a nie jej regulacja. W kontekście utrzymania określonej wartości temperatury, termopara także nie spełnia tej roli. Termowizor, to urządzenie służące do detekcji promieniowania podczerwonego, umożliwiające wizualizację rozkładu temperatury w obiekcie, ale nie ma funkcji regulacyjnej. Tego rodzaju błędne rozumienie polega często na mylnym założeniu, że urządzenia pomiarowe mogą pełnić funkcje kontrolne, co jest nieprawidłowe. W kontekście profesjonalnych standardów zarządzania temperaturą, takich jak normy ISO czy HACCP, kluczowym jest rozróżnienie między pomiarem a regulacją, co jest istotne dla zapewnienia jakości i bezpieczeństwa procesów. Odpowiednia regulacja temperatury w obiektach przemysłowych czy mieszkalnych powinna opierać się na wydajnych termostatach, które są zaprojektowane specjalnie do zarządzania tymi parametrami.

Pytanie 39

Podczas wykonywania montażu kabla krosowego w złączach gniazd należy unikać rozkręcania par przewodów na długości przekraczającej 13 mm, ponieważ

A. kabel będzie generował silniejsze pole elektromagnetyczne
B. zwiększy się impedancja kabla
C. dojdzie do zmniejszenia impedancji kabla
D. może to prowadzić do obniżenia odporności na zakłócenia
Przekonania zawarte w błędnych odpowiedziach opierają się na nieprawidłowym zrozumieniu zasad działania kabli krosowych. Zmiana impedancji kabla, co sugeruje jedna z odpowiedzi, nie jest bezpośrednio związana z długością odcinka rozkręcenia. Zmniejszenie impedancji w rzeczywistości może prowadzić do problemów z dopasowaniem impedancji w sieci, jednak nie jest to główny problem związany z rozkręceniem par przewodów. W kontekście pól elektromagnetycznych, kabel krosowy nie stanie się źródłem większego pola elektromagnetycznego jedynie z powodu rozkręcenia par, o ile nie przekroczymy określonych wartości w standardzie. Ważne jest zrozumienie, że kluczowym czynnikiem jest odporność na zakłócenia, a nie tylko pole elektromagnetyczne. W przypadku zwiększenia impedancji, warto zauważyć, że nie jest to możliwe poprzez samo rozkręcenie par przewodów. Problemy z zakłóceniami, które mogą powstać w wyniku niewłaściwego montażu, są bardziej złożone, ale ich głównym efektem jest właśnie spadek jakości sygnału. W praktyce, aby uniknąć tych błędów, ważne jest przestrzeganie standardów montażu i zapewnienie, by długość rozkręcenia nie przekraczała 13 mm, co jest istotne dla utrzymania wysokiej jakości transmisji danych.

Pytanie 40

Jakie złącze służy do podłączenia projektora multimedialnego do komputera PC?

A. SATA
B. VGA
C. PS-2
D. LPT
Złącze VGA (Video Graphics Array) jest standardowym interfejsem stosowanym do przesyłania sygnału wideo z komputera do projektora multimedialnego. To złącze, wprowadzone w 1987 roku, stało się powszechnie stosowanym rozwiązaniem w branży komputerowej i audiowizualnej. Jego główną zaletą jest możliwość przesyłania analogowego sygnału wideo w rozdzielczości do 640x480 pikseli, co w praktyce wystarcza do wyświetlania obrazu w wielu zastosowaniach, w tym prezentacjach czy wykładach. VGA korzysta z 15-pinowego złącza D-sub, które umożliwia łatwe podłączenie do różnych urządzeń. Warto również zwrócić uwagę, że wiele nowoczesnych projektorów i monitorów nadal obsługuje standard VGA, co czyni go kompatybilnym rozwiązaniem w wielu środowiskach. Chociaż technologia ta zaczyna ustępować miejsca nowocześniejszym standardom, takim jak HDMI czy DisplayPort, to VGA wciąż odgrywa istotną rolę w wielu sytuacjach, gdzie wymagana jest prostota i łatwość podłączenia.