Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 11 maja 2025 18:46
  • Data zakończenia: 11 maja 2025 19:02

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Proces osuszania polega na absorbowaniu wilgoci oraz oleju ze sprężonego powietrza przez środek osuszający

A. absorcyjny
B. adsorpcyjny
C. poprzez podgrzewanie
D. poprzez schładzanie
Wybór odpowiedzi 'przez ogrzewanie' odnosi się do innego typu procesów, gdzie ciepło jest wykorzystywane do zwiększenia zdolności powietrza do wchłaniania wilgoci. Ogrzewanie powietrza upraszcza jego właściwości, ale nie eliminuje wilgoci, a jedynie zmienia jej stan. Z kolei 'przez oziębianie' to metoda, która polega na obniżeniu temperatury powietrza, co skutkuje skraplaniem wilgoci, ale nie jest to proces osuszania na poziomie absorpcyjnym. Oziębianie może prowadzić do kondensacji pary wodnej, ale wymaga dodatkowych środków, by ta skondensowana woda została usunięta. Wreszcie, 'adsorpcyjne' odnosi się do procesu, w którym cząsteczki wody przylegają do powierzchni materiału osuszającego, co jest różne od absorpcji, gdzie woda jest wchłaniana do wnętrza materiału. Zrozumienie różnicy między tymi procesami jest kluczowe dla efektywnego projektowania systemów osuszających. Typowe błędy myślowe, które prowadzą do wyboru niewłaściwych odpowiedzi, obejmują mylenie terminologii oraz niedostateczne zrozumienie mechanizmów działania środków osuszających.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Watomierz jest urządzeniem do pomiaru mocy

A. biernej
B. chwilowej
C. czynnej
D. pozornej
Watomierz, jako urządzenie pomiarowe, jest kluczowym narzędziem w dziedzinie elektroenergetyki, służącym do pomiaru mocy czynnej. Moc czynna, wyrażana w watach (W), to ta część mocy, która jest rzeczywiście wykorzystywana do wykonywania pracy, na przykład zasilania urządzeń elektrycznych. Watomierze znajdują zastosowanie zarówno w przemyśle, jak i w domowych instalacjach elektrycznych, umożliwiając monitorowanie zużycia energii i optymalizację procesów. Dzięki kilku typom watomierzy, w tym analogowym i cyfrowym, możemy dokładnie określić, ile energii zostaje przekształcone w pracę użyteczną, co jest kluczowe dla oceny efektywności energetycznej systemów elektrycznych. W praktyce, pomiar mocy czynnej pozwala na oszacowanie kosztów zużycia energii oraz wykrywanie niesprawności w urządzeniach, co jest zgodne z najlepszymi praktykami w zarządzaniu energią, w tym normami ISO 50001.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Jakie jest zastosowanie transoptora?

A. galwanicznej izolacji obwodów
B. galwanicznego połączenia obwodów
C. sygnalizacji transmisji
D. zamiany impulsów elektrycznych na promieniowanie świetlne
Wybór odpowiedzi dotyczącej sygnalizacji transmisji, galwanicznego połączenia obwodów lub zamiany impulsów elektrycznych na promieniowanie świetlne odzwierciedla zrozumienie, które pomija fundamentalne zasady działania transoptorów. Transoptory, jako urządzenia przeznaczone do izolacji galwanicznej, nie mają zastosowania w sygnalizacji transmisji, co sugeruje, że mogą one pośredniczyć w przesyłaniu sygnałów bez izolacji, co jest błędne. Galwaniczne połączenie obwodów jest sprzeczne z główną funkcją transoptora, ponieważ jego celem jest stworzenie izolacji, a nie bezpośredniego połączenia, co może prowadzić do uszkodzeń sprzętu. Ponadto, transoptory nie zamieniają impulsów elektrycznych na promieniowanie świetlne w kontekście ich funkcji; zamiast tego przekształcają sygnały elektryczne w sygnały optyczne, ale nie pełnią roli w generowaniu promieniowania świetlnego. Takie nieporozumienia mogą wynikać z niewłaściwego zrozumienia podstawowych funkcji tych komponentów. Kluczowe jest zrozumienie, że transoptory są projektowane z myślą o ochronie obwodów przed niepożądanymi wpływami zewnętrznymi, co czyni je niezastąpionymi w nowoczesnych aplikacjach elektronicznych.

Pytanie 14

Układ mechatroniczny jest zbudowany z elementu wykonawczego funkcjonującego w specjalnej osłonie, pod wysokim ciśnieniem roboczym, oraz z komponentów sterujących połączonych wzmocnionymi przewodami pneumatycznymi, które są mocowane za pomocą złączy wtykowych. Osoba obsługująca ten układ może być szczególnie narażona na uderzenie

A. siłownikiem
B. tłoczyskiem siłownika
C. przerwanym przewodem pneumatycznym
D. nieprawidłowo zamocowanym przewodem pneumatycznym
Odpowiedź "źle zamocowanym przewodem pneumatycznym" jest prawidłowa, ponieważ nieprawidłowe mocowanie przewodów pneumatycznych może prowadzić do sytuacji, w której przewód może się odłączyć lub spowodować niekontrolowane ruchy elementów wykonawczych. Zgodnie z normami bezpieczeństwa w przemyśle, takimi jak ISO 4414, kluczowe jest, aby przewody pneumatyczne były prawidłowo zamocowane i zabezpieczone przed wszelkimi uszkodzeniami mechanicznymi. Przykładem może być zastosowanie złączy wtykowych, które powinny być regularnie kontrolowane pod kątem ich stanu technicznego. W praktyce, w systemach mechatronicznych, należy także stosować odpowiednie uchwyty i prowadnice, które minimalizują ryzyko przypadkowego usunięcia przewodu. Niezapewnienie prawidłowego mocowania przewodu pneumatycznego może prowadzić do poważnych wypadków, w tym do uderzeń osób pracujących w pobliżu układów mechatronicznych. Dlatego szkolenia dla personelu eksploatującego takie systemy powinny kłaść duży nacisk na techniki prawidłowego mocowania i kontroli stanu przewodów pneumatycznych.

Pytanie 15

Kiedy w układzie hydraulicznym, w którym nie ma elementów dławiących, w normalnych warunkach roboczych występuje wolna reakcja oraz znaczne opory przepływu, należy zastąpić olej olejem

A. o wyższej gęstości
B. o niższej lepkości
C. odpornym na proces starzenia
D. tworzącym emulsję z wodą
Wybór oleju o większej gęstości jest nieprawidłowy, ponieważ gęstość oleju nie wpływa bezpośrednio na lepkość i nie rozwiązuje problemu wysokich oporów przepływu. W układach hydraulicznych, gdzie wymagane jest szybkie działanie, kluczowym parametrem jest lepkość, a nie gęstość. Zastosowanie oleju o większej gęstości może dodatkowo zwiększyć opory, co prowadzi do jeszcze wolniejszej reakcji systemu. Podobnie, wybór oleju odpornego na starzenie się nie adresuje problemu lepkości. Choć oleje odporne na starzenie się są istotne dla długoterminowej stabilności, nie mają one wpływu na poprawę przepływu oleju, co jest kluczowe w przypadku układów hydraulicznych z dużymi oporami. Co więcej, olej tworzący emulsję z wodą jest całkowicie niewłaściwy, gdyż emulsje mogą prowadzić do korozji i osadów w układzie hydraulicznym. Takie podejście może prowadzić do poważnych awarii i degradacji systemu. Zrozumienie różnicy między lepkością a gęstością oraz ich wpływu na wydajność hydrauliki jest kluczowe dla efektywnego zarządzania układami hydraulicznymi. Właściwe dobieranie olejów na podstawie specyfikacji technicznych oraz analizy warunków pracy pozwala unikać typowych błędów i zapewnia niezawodność komponentów hydraulicznych.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Czy panewka stanowi część składową?

A. łożyska ślizgowego
B. łożyska kulkowego
C. sprzęgła sztywnego tulejowego
D. zaworu pneumatycznego
Wybór łożyska kulkowego, zaworu pneumatycznego lub sprzęgła sztywnego tulejowego jako elementów składowych panewki jest niepoprawny i wynika z nieporozumień dotyczących funkcji i konstrukcji tych komponentów. Łożyska kulkowe, bazujące na kulkach jako elementach tocznych, działają na zasadzie redukcji tarcia dzięki rozdzieleniu powierzchni kontaktowych, co różni się od funkcji panewki w łożyskach ślizgowych, które polegają na bezpośrednim kontakcie między powierzchniami, ale przy zastosowaniu odpowiednich materiałów redukujących tarcie. Zawory pneumatyczne to zupełnie inna kategoria podzespołów, które służą do kontrolowania przepływu powietrza w systemach pneumatycznych, co nie ma związku z funkcją panewki. Sprzęgła sztywne, z kolei, są używane do łączenia wałów w taki sposób, że nie absorbują drgań, co również nie dotyczy panewki, która ma na celu umożliwienie ruchu wału w sposób kontrolowany. Te nieprawidłowe odpowiedzi pokazują typowe błędy myślowe wynikające z braku zrozumienia podstawowych zasad działania mechanizmów w maszynach oraz specyfiki poszczególnych komponentów. Kluczowe jest zrozumienie, że każdy element ma swoją unikalną funkcję i zastosowanie, a ich zrozumienie jest fundamentem inżynierii mechanicznej. W branży inżynieryjnej a także w codziennej praktyce technicznej, znajomość charakterystyki i zastosowania poszczególnych elementów jest niezbędna do prawidłowego projektowania i eksploatacji maszyn.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Wskaż na podstawie tabeli wymiary wpustu pryzmatycznego, który można osadzić na wale o średnicy 12 mm.

Wałek – d mmWpust
ponaddob x h mm
682 x 2
8103 x 3
10124 x 4
12175 x 5
17226 x 6
22308 x 7

A. 6 x 6 mm
B. 3 x 3 mm
C. 4 x 4 mm
D. 5 x 5 mm
Najczęściej popełnianym błędem przy wyborze wymiarów wpustu pryzmatycznego jest nieprawidłowe dopasowanie jego rozmiaru do średnicy wału. Wiele osób może pomyśleć, że wymiary 3 x 3 mm, 5 x 5 mm lub 6 x 6 mm będą odpowiednie dla wału o średnicy 12 mm, co jest błędne. Takie rozumowanie wynika często z niepełnego zrozumienia podstawowych zasad projektowania połączeń mechanicznych. W rzeczywistości, każdy wpust jest projektowany według określonych norm, które określają, jakie wymiary powinny być stosowane dla różnych średnic wałów. Zastosowanie zbyt małych wymiarów, takich jak 3 x 3 mm, prowadzi do niewystarczającego przenoszenia momentu obrotowego, co może skutkować ich uszkodzeniem oraz niestabilnością całego mechanizmu. Podobnie, zbyt duże wymiary, takie jak 5 x 5 mm lub 6 x 6 mm, mogą uniemożliwić odpowiednie osadzenie wpustu na wale, co również prowadzi do luzów i potencjalnych uszkodzeń. Kluczowym aspektem jest zrozumienie, że dobór wymiarów wpustu nie jest tylko kwestią estetyki, ale jest to fundamentalna zasada konstrukcji mechanicznych, która ma bezpośredni wpływ na efektywność i bezpieczeństwo urządzeń. Dlatego tak ważne jest, aby stosować się do tabel i specyfikacji producentów, aby dokonać właściwego wyboru wymiarów wpustu pryzmatycznego.

Pytanie 23

Jakiego koloru powinna być izolacja przewodu neutralnego w instalacji elektrycznej typu TN–S?

A. Niebieskim
B. Żółtym
C. Brązowym
D. Czarnym
W przypadku wyboru czarnego, brązowego lub żółtego koloru dla przewodu neutralnego, należy zwrócić uwagę na to, że każdy z tych kolorów jest zarezerwowany dla innych funkcji w instalacji elektrycznej. Kolor czarny jest zazwyczaj stosowany dla przewodów fazowych, a jego użycie w roli przewodu neutralnego mogłoby prowadzić do mylenia z przewodem fazowym, co stanowi poważne zagrożenie bezpieczeństwa. Z kolei brązowy, podobnie jak czarny, również identyfikuje przewody fazowe. Przewód brązowy w połączeniu z czarnym mógłby wprowadzać w błąd podczas wykonywania prac serwisowych, co zwiększa ryzyko błędów i potencjalnych wypadków. Zastosowanie koloru żółtego, który w połączeniu z zielonym jest przeznaczony dla przewodu ochronnego, również jest nieprawidłowe, ponieważ mogłoby prowadzić do niejednoznaczności w identyfikacji ochrony przeciwporażeniowej. Właściwe oznaczenie przewodów jest kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz zgodności z obowiązującymi normami. W związku z tym, nieprzestrzeganie tych zasad prowadzi do niebezpiecznych sytuacji, które mogą skutkować poważnymi konsekwencjami zdrowotnymi oraz materialnymi.

Pytanie 24

Aby zatrzymać tłoczysko siłownika pneumatycznego o działaniu dwustronnym w dowolnym miejscu, wykorzystuje się zawór

A. trójdrogowy dwupołożeniowy (3/2)
B. pięciodrogowy trójpołożeniowy (5/3)
C. trójdrogowy trójpołożeniowy (3/3)
D. pięciodrogowy dwupołożeniowy (5/2)
Zawór pięciodrogowy trójpołożeniowy (5/3) to właściwy wybór, bo pozwala na pełną kontrolę nad ruchem tłoczyska w siłowniku pneumatycznym. Można go zatrzymać w dowolnej pozycji, co jest super ważne w różnych zastosowaniach. Ten zawór ma pięć portów i trzy położenia robocze, co oznacza, że możemy zasilać siłownik z jednej strony (położenie 1), z drugiej (położenie 2) lub zatrzymać go w neutralnej pozycji (położenie 3). Dzięki temu wszystko działa precyzyjnie, co jest kluczowe np. w automatyce produkcyjnej czy robotyce. Używanie takich standardowych komponentów, jak zawory 5/3, to naprawdę dobry pomysł, bo zapewniają one niezawodność i łatwość w podłączeniu do innych części systemu. Przykładem mogą być linie montażowe, gdzie dokładne pozycjonowanie elementów jest mega istotne dla efektywności.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Silnik elektryczny o mocy 4 kW generuje na wale moment obrotowy 13,1 Nm przy jakiej prędkości obrotowej?

A. 305 obr/min
B. 2916 obr/min
C. 524 obr/min
D. 5487 obr/min
Jak chcesz obliczyć prędkość obrotową silnika elektrycznego, to możesz skorzystać z takiego wzoru: P = M * ω. Tu P to moc w watach, M to moment obrotowy w niutonometrach, a ω to prędkość kątowa w radianach na sekundę. Jak przekształcisz ten wzór, to dostaniesz ω = P / M. Dla tego silnika mamy: P = 4000 W i M = 13,1 Nm. Jak to obliczysz, to wyjdzie ω = 4000 W / 13,1 Nm, co daje jakieś 305,34 rad/s. Żeby przeliczyć na prędkość obrotową w obr/min, używamy przelicznika: 1 rad/s = 9,5493 obr/min. Więc 305,34 rad/s * 9,5493 to około 2916 obr/min. To pokazuje, że silniki elektryczne, mając daną moc i moment obrotowy, mogą naprawdę kręcić się szybko, co jest super ważne w różnych miejscach, gdzie potrzebna jest precyzyjna kontrola prędkości, jak w maszynach. Zrozumienie tych obliczeń jest istotne, żeby dobrze dobierać silniki do konkretnych zadań i optymalizować procesy mechaniczne w różnych branżach.

Pytanie 28

Aby zabezpieczyć połączenia gwintowe przed niekontrolowanym odkręceniem, należy zastosować przeciwnakrętkę oraz wykorzystać

A. dwoma kluczami płaskimi
B. jednym kluczem nasadowym
C. dwoma kluczami nasadowymi
D. jednym kluczem płaskim
Użycie dwóch kluczy płaskich do zabezpieczenia połączeń gwintowych poprzez zastosowanie przeciwnakrętki jest standardową praktyką w branży. Dwa klucze płaskie pozwalają na jednoczesne blokowanie nakrętki oraz przeciwnakrętki, co minimalizuje ryzyko ich samoczynnego odkręcenia. W praktyce, jeden klucz jest używany do obracania nakrętki, podczas gdy drugi klucz stabilizuje przeciwnakrętkę. Tego typu połączenia są powszechnie stosowane w mechanice, budownictwie oraz inżynierii, gdzie obciążenia i wibracje mogą prowadzić do poluzowania elementów. Zastosowanie dwóch kluczy płaskich jest zgodne z zasadami dobrej praktyki inżynieryjnej, które podkreślają znaczenie prawidłowego montażu i konserwacji połączeń gwintowych. Ważne jest również, aby używać kluczy o odpowiednim rozmiarze, co zapewnia właściwe dopasowanie oraz minimalizuje ryzyko uszkodzenia zarówno gwintów, jak i narzędzi. Takie podejście jest kluczowe dla zapewnienia trwałości i niezawodności połączeń mechanicznych.

Pytanie 29

Co należy zrobić w pierwszej kolejności, gdy poszkodowany w wypadku jest nieprzytomny i nie wykazuje oznak oddychania?

A. pozostawić poszkodowanego w aktualnej pozycji i zatelefonować po pomoc
B. przeprowadzić reanimację poszkodowanego i wezwać pomoc
C. wezwać pomoc i przeprowadzić sztuczne oddychanie
D. wezwać pomoc i zapewnić drożność dróg oddechowych poszkodowanego
Inne odpowiedzi, które zaznaczyłeś, mają błędne podejście do tego, co jest najważniejsze w sytuacji wypadku. Pamiętaj, że nie można najpierw robić sztucznego oddychania, gdy drogi oddechowe są zablokowane, bo to jest naprawdę niebezpieczne. Jak coś zablokuje drogi, to powietrze się nie dostanie do płuc i tylko pogorszymy sytuację. Odpowiedź, w której zostawiasz poszkodowanego w pozycji, w jakiej go znalazłeś, jest też zła, bo może prowadzić do kompikacji jak aspiracja. No i w resuscytacji najważniejsze jest, by najpierw otworzyć drogi oddechowe, a potem wezwać pomoc. Każdy, kto chce być ratownikiem, powinien to wiedzieć. Ignorowanie tych zasad może naprawdę zaszkodzić osobie, która potrzebuje pomocy.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Jaką funkcję spełnia urządzenie, którego dane techniczne przedstawiono w tabeli?

Ciecz roboczaJednostkaOlej mineralny
Wydajnośćdm³/min47 przy n = 1450 min⁻¹, p = 1 MPa
Ciśnienie na wlocieMPa- 0,02 (podciśnienie) do 0,5 (nadciśnienie)
Ciśnienie na wylocieMPamaks 10
Ciśnienie przeciekówMPamaks 0,2
Moment obrotowyNmmaks. 2,5
Prędkość obrotowaobr/min1000 do 1800
Optymalna temperatura pracy (cieczy w zbiorniku)K313-328
Filtracjaμm16

A. Wytwarza strumień oleju w układach i urządzeniach hydraulicznych.
B. Otwiera i zamyka przepływ cieczy roboczej.
C. Steruje kierunkiem przepływu cieczy.
D. Utrzymuje stałe ciśnienie niezależnie od kierunku przepływu cieczy.
Wybór odpowiedzi sugerującej, że urządzenie utrzymuje stałe ciśnienie niezależnie od kierunku przepływu cieczy, nie uwzględnia podstawowych zasad działania pomp hydraulicznych. Pompy nie pełnią funkcji stabilizowania ciśnienia, a ich głównym zadaniem jest generowanie przepływu oleju. Utrzymywanie stałego ciśnienia w systemie hydrauliczny jest osiągane przez zastosowanie innych komponentów, takich jak zawory ciśnieniowe czy regulatory. Kolejna nieprawidłowa koncepcja sugeruje, że urządzenie steruje kierunkiem przepływu cieczy. Choć dostęp do określonych kierunków przepływu może być istotny w układach hydraulicznych, zadanie to leży w gestii zaworów kierunkowych, a nie pomp. Ostatnia błędna odpowiedź, dotycząca otwierania i zamykania przepływu cieczy roboczej, również jest mylna, ponieważ te funkcje realizowane są przez zawory sterujące. Typowe błędy myślowe prowadzące do tego rodzaju mylnych wniosków obejmują pomieszanie funkcji różnych elementów systemu hydraulicznego, co jest częstym problemem wśród osób uczących się o hydraulice. Ważne jest zrozumienie, że każdy komponent w układzie hydraulicznym odgrywa specyficzną rolę, a pompy są dedykowane do generowania przepływu, a nie do regulacji ciśnienia czy kierunku przepływu.

Pytanie 32

Jaki rodzaj czujnika, montowanego na metalowym cylindrze siłownika pneumatycznego, powinno się wykorzystać do monitorowania położenia tłoka?

A. Czujnik optyczny
B. Czujnik tensometryczny
C. Czujnik indukcyjny
D. Czujnik magnetyczny
Czujnik magnetyczny jest idealnym rozwiązaniem do kontroli położenia tłoka w siłownikach pneumatycznych, w szczególności tych wykonanych z metalu. Działa na zasadzie detekcji pola magnetycznego generowanego przez magnes zamontowany na tłoku. Dzięki temu czujnik może precyzyjnie określić położenie tłoka, co jest kluczowe w aplikacjach wymagających dokładności i powtarzalności. Przykłady zastosowań czujników magnetycznych to automatyka przemysłowa, linie montażowe oraz systemy robotyczne, gdzie precyzyjne pozycjonowanie jest niezbędne. W standardach branżowych, takich jak ISO 6431 czy IEC 60947, czujniki magnetyczne są rekomendowane do monitorowania ruchu w siłownikach, co potwierdza ich trwałość i niezawodność w trudnych warunkach przemysłowych. Ich bezdotykowa natura sprawia, że nie ma ryzyka zużycia mechanicznego, co dodatkowo zwiększa ich żywotność.

Pytanie 33

Elastyczny przewód elektryczny, służący do łączenia elementów systemu elektrycznego w aplikacjach mechatronicznych, powinien być

A. zaizolowany na końcach
B. równo przycięty na końcach
C. zakończony na końcach tulejkami
D. odizolowany na dowolną długość
Zakończenie przewodu giętkiego tulejkami to naprawdę ważna sprawa, zwłaszcza z perspektywy bezpieczeństwa i skuteczności połączeń w systemach mechatronicznych. Tulejki, czyli końcówki przewodów, dają mocne i trwałe połączenia, co zmniejsza ryzyko różnych awarii, zarówno mechanicznych, jak i elektrycznych. Jak dobrze wiemy, dzięki tulejkom żyły przewodów są lepiej chronione przed uszkodzeniami mechanicznymi czy korozją, co na pewno wydłuża ich żywotność. Poza tym, użycie tulejek ułatwia podłączanie przewodów do różnych elementów systemu, jak złącza czy komponente elektroniczne. To jest w sumie istotne w układach mechatronicznych, bo często trzeba coś zmieniać. I jeszcze jedno: stosowanie tulejek jest zgodne z branżowymi normami i standardami, a to ma znaczenie nie tylko dla bezpieczeństwa operatorów, lecz także dla niezawodności całego systemu. Dlatego warto korzystać z tulejek w zakończeniach przewodów giętkich, bo to po prostu najlepsza praktyka w tej dziedzinie.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Jaki typ licencji pozwala na używanie oprogramowania przez określony czas, po którym konieczna jest rejestracja lub usunięcie go z komputera?

A. Freeware
B. GNU GPL
C. Adware
D. Trial
Wybór innych odpowiedzi może wynikać z nieporozumienia co do definicji i zastosowań różnych typów licencji oprogramowania. Freeware to oprogramowanie dostępne za darmo, które nie ma ograniczeń czasowych, jednak często wiąże się z brakiem wsparcia technicznego lub ograniczonymi funkcjami. Użytkownicy mogą błędnie sądzić, że freeware działa na podobnej zasadzie jak licencje trial, co prowadzi do zamieszania. GNU GPL (General Public License) dotyczy oprogramowania open source, które można dowolnie używać, modyfikować i dystrybuować, nie wprowadza jednak ograniczeń czasowych, co czyni tę odpowiedź niewłaściwą. Adware to oprogramowanie, które wyświetla reklamy lub zbiera dane o użytkownikach, ale także nie wiąże się z czasowym ograniczeniem dostępu do funkcji. Wybierając błędną odpowiedź, użytkownicy mogą mylić licencje ograniczone w czasie z tymi, które są całkowicie bezpłatne lub otwarte. Ważne jest, aby dobrze zrozumieć te różnice, aby podejmować świadome decyzje dotyczące wyboru oprogramowania oraz przestrzegać przepisów licencyjnych, co jest kluczowe w dzisiejszym środowisku cyfrowym.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Jakie narzędzie powinno się zastosować do przygotowania przewodu LgY 0,75 mm2 przed jego montażem w listwie zaciskowej?

A. Zaciskarkę tulejek
B. Klucz płaski
C. Zaciskarkę konektorów
D. Klucz dynamometryczny
Zaciskarka tulejek jest narzędziem przeznaczonym do trwałego łączenia przewodów z różnymi typami konektorów, co jest kluczowe w procesie przygotowania przewodu LgY 0,75 mm² do montażu w listwie zaciskowej. Użycie zaciskarki pozwala na uzyskanie solidnego i niezawodnego połączenia, które jest zgodne z normami bezpieczeństwa oraz standardami branżowymi, takimi jak PN-EN 60352. Przykładem zastosowania zaciskarki tulejek jest łączenie przewodów w instalacjach elektrycznych, gdzie wymagane jest zapewnienie wysokiej jakości połączeń elektrycznych, zwłaszcza w sytuacjach, gdy przewody są narażone na wibracje lub zmiany temperatury. Przeprowadzenie prawidłowego zaciskania pozwala na uzyskanie niskiej rezystancji połączenia, co jest kluczowe dla efektywności energetycznej oraz bezpieczeństwa użytkowania instalacji. Korzystając z dobrej jakości zaciskarki, można również uniknąć problemów związanych z luźnymi połączeniami, które mogą prowadzić do przegrzewania się przewodów i potencjalnych zagrożeń pożarowych.

Pytanie 39

Jakim symbolem literowym określa się zmienną wyjściową w sterowniku PLC?

A. I
B. R
C. T
D. Q
Odpowiedź Q jest poprawna, ponieważ w systemach programowalnych sterowników logicznych (PLC) zmienne wyjściowe oznaczane są właśnie tym symbolem. Wyjścia są sygnałami, które sterownik generuje na podstawie przetworzonych danych wejściowych oraz zaimplementowanych algorytmów. Standardowe oznaczenia w programowaniu PLC opierają się na konwencjach przyjętych w branży, gdzie 'I' oznacza wejścia (Input), 'Q' wyjścia (Output), 'R' jest często używane dla rejestrów, a 'T' odnosi się do timerów. Przykładem zastosowania zmiennych wyjściowych jest kontrola urządzeń wykonawczych, takich jak silniki, siłowniki czy zawory. Na przykład, w prostym procesie automatyzacji, sygnał wyjściowy Q0.0 może być użyty do włączania lub wyłączania silnika w odpowiedzi na warunki zdefiniowane przez czujniki wejściowe. Zrozumienie tych oznaczeń jest kluczowe dla efektywnego programowania i diagnostyki systemów automatyki przemysłowej, co jest zgodne z normami IEC 61131-3, które definiują struktury programowania w PLC.

Pytanie 40

W rezystancyjnych termometrach (oporowych) wykorzystuje się zjawisko związane ze zmianą

A. rezystancji metali albo półprzewodników przy zmianach temperatury
B. napięcia na końcówkach termoelementu podczas zmian temperatury
C. wielkości elementu aktywnego pod wpływem temperatury
D. rezystywności metali oraz półprzewodników w odpowiedzi na ciśnienie
Pomimo że różne metody pomiaru temperatury są stosowane w różnych dziedzinach, zrozumienie zasad działania termometrów rezystancyjnych jest kluczowe dla ich prawidłowego zastosowania. Wspomniane odpowiedzi sugerują inne zjawiska, które nie są związane z zasadniczym działaniem tych termometrów. Przykładowo, zmiana wymiarów elementu czynnego pod wpływem temperatury nie jest tym, na czym opiera się działanie termometrów rezystancyjnych. Zjawisko to dotyczy raczej termometrów bimetalicznych, gdzie różne metale rozszerzają się w różnym stopniu, co prowadzi do odchylenia wskaźnika. Z kolei rezystywność metali i półprzewodników pod wpływem ciśnienia odnosi się do innych aspektów fizyki materiałów, które są niezwiązane z pomiarem temperatury. Ostatnia koncepcja, dotycząca napięcia na zaciskach termoelementu, jest związana z termoelementami, które działają na zupełnie innych zasadach, opierając się na efekcie Seebecka. Używanie tych zjawisk jako podstawy do zrozumienia działania termometrów rezystancyjnych jest błędne i prowadzi do nieporozumień. Kluczowe jest, aby podczas analizy zjawisk fizycznych i ich zastosowania w technologii pomiarowej pamiętać o specyficznych mechanizmach, które rządzą danym urządzeniem pomiarowym.