Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 22 maja 2025 12:01
  • Data zakończenia: 22 maja 2025 12:23

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W trakcie serwisowania systemu alarmu przeciwwłamaniowego oraz napadowego konieczne jest sprawdzenie

A. ciągłości linii dozorowych za pomocą miernika
B. dokumentu gwarancyjnego systemu
C. poziomu naładowania akumulatora
D. ustawienia lokalizacji czujników
Lokalizacja umiejscowienia czujek jest istotna, jednak nie jest kluczowym aspektem konserwacji systemu sygnalizacji. Pomimo, że czujniki muszą być odpowiednio umiejscowione, aby skutecznie wykrywać intruzów, ich lokalizacja to kwestia, która jest ustalana w trakcie pierwszej instalacji systemu. W miarę upływu czasu można zmieniać ich położenie, ale nie jest to regularnie wymagany element konserwacji. W kontekście stanu naładowania akumulatora, jego znaczenie dla działania systemu nie może być pominięte. Kontrola ciągłości linii dozorowych za pomocą miernika również jest ważna, lecz nie zastępuje konieczności sprawdzenia akumulatora, który może być jedynym źródłem zasilania w przypadku awarii sieci. Karta gwarancyjna systemu ma znaczenie głównie w kontekście wsparcia producenta, ale nie wpływa na codzienną funkcjonalność systemu, zatem jej sprawdzanie nie powinno być traktowane jako element konserwacji. Typowym błędem myślowym jest koncentrowanie się na aspektach, które nie mają bezpośredniego wpływu na działanie systemu, zamiast na kluczowych elementach, które zapewniają jego niezawodność, takich jak stan akumulatora, co jest niezbędne dla bezpieczeństwa obiektu.

Pytanie 2

Który z wymienionych komponentów obwodów elektronicznych wytwarza sygnał napięciowy pod działaniem pola magnetycznego i znajduje zastosowanie w miernikach pola magnetycznego?

A. Hallotron
B. Piezorezystor
C. Kontaktron
D. Warystor
Hallotron to element elektroniczny, który generuje sygnał napięciowy w odpowiedzi na obecność pola magnetycznego. Działa na zasadzie efektu Halla, który polega na generowaniu różnicy potencjałów w przewodniku, gdy przez niego przepływa prąd i jednocześnie jest wystawiony na działanie pola magnetycznego. Hallotrony znajdują szerokie zastosowanie w różnych urządzeniach, takich jak mierniki pola magnetycznego, czujniki pozycji, a także w systemach automatyzacji przemysłowej. Dzięki swojej zdolności do pomiaru pola magnetycznego, hallotrony są kluczowe w wielu aplikacjach, w tym w pojazdach elektrycznych, gdzie monitorują położenie wału silnika. Ponadto, ich zastosowanie obejmuje także układy ochrony przed przeciążeniami, gdzie szybka reakcja na zmiany pola magnetycznego jest istotna dla bezpieczeństwa. Standardy branżowe, takie jak IEC 60947, podkreślają znaczenie wykorzystania czujników Hall’a w nowoczesnych aplikacjach, co stawia je w czołówce technologii sensorów. W praktyce, hallotrony umożliwiają precyzyjne i niezawodne pomiary, co jest kluczowe w wielu dziedzinach inżynierii.

Pytanie 3

W telewizji używa się kabli o impedancji falowej wynoszącej

A. 50 Ω
B. 120 Ω
C. 100 Ω
D. 75 Ω
Kabel 75 Ω to taki standard w telewizji, zwłaszcza do przesyłania wideo. Dzięki wysokiej impedancji te kable mają mniejsze straty sygnału i lepiej się dopasowują, co jest istotne, gdy obraz leci na dużą odległość. Używa się ich w praktycznie każdym systemie telewizyjnym – od anten po różne urządzenia, nawet w instalacjach satelitarnych. Generalnie, jeśli chodzi o wysoka jakość sygnału, to kabli 75 Ω powinniśmy używać do przesyłania sygnałów wideo, aby zmniejszyć zakłócenia. Warto też pamiętać, że odpowiedni kabel ma ogromne znaczenie w telewizji, a normy międzynarodowe, jak IEC 61169, potwierdzają, że trzeba ich przestrzegać.

Pytanie 4

Jakie narzędzie wykorzystuje się do weryfikacji poprawności zainstalowanej sieci komputerowej?

A. testera wytrzymałości dielektrycznej
B. multimetru z pomiarem R
C. miernika z pomiarem MER
D. analizatora sieci strukturalnych
Analizator sieci strukturalnych to zaawansowane narzędzie, które jest kluczowe do oceny poprawności instalacji sieci komputerowej. Dzięki zastosowaniu tego urządzenia, technicy mogą przeprowadzać kompleksową analizę parametrów, takich jak tłumienie, refleksja mocy oraz jakość sygnału w sieciach telekomunikacyjnych. Analizatory te są zgodne z normami branżowymi, takimi jak TIA/EIA-568, które określają wymagania dotyczące instalacji kabli strukturalnych. W praktyce, analizator pozwala na diagnostykę problemów, które mogą wystąpić w trakcie użytkowania sieci, co wpływa na jej wydajność i stabilność. Przykładowo, podczas instalacji sieci w biurze, technik może użyć analizatora do sprawdzenia, czy wszystkie kable są prawidłowo podłączone i czy nie występują straty sygnału, co mogłoby prowadzić do problemów z połączeniami internetowymi. Tego typu narzędzia są niezbędne dla zapewnienia wysokiej jakości usług oraz minimalizacji ryzyka awarii sieci.

Pytanie 5

Linka charakteryzująca się zwiększoną elastycznością, utworzona z wielu cienkich drucików miedzianych, nosi oznaczenie literowe

A. YDY
B. YDYp
C. LgY
D. DY
Wybór oznaczeń takich jak DY, YDY czy YDYp może wynikać z niepełnego zrozumienia klasyfikacji przewodów elektrycznych. Oznaczenie DY odnosi się do przewodów z izolacją polwinitową, które nie są tak elastyczne jak linki LgY i wykorzystywane są głównie w instalacjach stacjonarnych. Ta pomyłka może wynikać z mylnego założenia, że wszystkie przewody z izolacją polwinitową mają podobne właściwości giętkości. Z kolei YDY to oznaczenie, które odnosi się do przewodów o dużej elastyczności, ale zbudowanych z innych materiałów, które niekoniecznie są tak elastyczne jak te z miedzi. Ostatnie oznaczenie, YDYp, sugeruje przewody o większej odporności na uszkodzenia mechaniczne, ale ich strukturą nie jest tak optymalna do zastosowań wymagających dużej giętkości. Tego rodzaju myśli mogą prowadzić do wyboru niewłaściwego przewodu dla danej aplikacji, co może skutkować problemami z wydajnością i niezawodnością połączeń elektrycznych. Dlatego ważne jest, aby dokładnie zrozumieć różnice między różnymi oznaczeniami oraz ich zastosowaniami w praktyce, aby unikać błędów w obrębie projektowania i realizacji instalacji elektrycznych.

Pytanie 6

Aby zlokalizować uszkodzenie tranzystora bipolarnego bez jego wylutowywania z płyty głównej systemu alarmowego, powinno się zmierzyć

A. rezystancję złącz pomiędzy B, E, C przy włączonym systemie
B. napięcia pomiędzy końcówkami E, B, C przy włączonym systemie
C. rezystancję złącz pomiędzy B, E, C przy wyłączonym systemie
D. natężenie prądu kolektora tranzystora
Pomiar rezystancji złącz pomiędzy końcówkami tranzystora przy wyłączonej centrali alarmowej może prowadzić do błędnych wniosków. W takim stanie tranzystor nie jest w stanie zrealizować swojej funkcji, a wyniki pomiaru mogą być nieadekwatne do rzeczywistych warunków pracy. Złącze B-E, które w normalnym stanie pracy powinno mieć określoną wartość napięcia, w stanie wyłączonym może wykazywać rezystancję, która nie oddaje rzeczywistej sytuacji. Dodatkowo, pomiar rezystancji przy włączonej centrali jest niebezpieczny dla sprzętu, ponieważ może prowadzić do zwarć lub uszkodzeń. W przypadku pomiaru natężenia prądu kolektora tranzystora, bez znajomości jego wartości szczytowych i charakterystyki pracy, również można uzyskać niewłaściwe informacje, co do stanu komponentu. Praktyka ta nie jest zgodna z znormalizowanymi metodami diagnostycznymi, które zalecają ocenę napięć w aktywnej pracy urządzenia. Ostatecznie, pomiar napięć daje pełniejszy obraz stanu tranzystora, co jest kluczowe w procesie naprawy i diagnostyki.

Pytanie 7

Jakie urządzenie jest przeznaczone do bezdotykowego pomiaru temperatury?

A. kalorymetru
B. luksomierza
C. pirometru
D. multimetru
Multimetr to przyrząd pomiarowy, który służy do mierzenia napięcia, prądu oraz oporu elektrycznego. Chociaż jego wszechstronność sprawia, że jest to niezwykle użyteczne narzędzie w elektrotechnice, nie nadaje się do bezdotykowego pomiaru temperatury. Multimetry mogą mieć wbudowaną funkcję pomiaru temperatury, ale do ich wykorzystania zazwyczaj wymagana jest sonda, co oznacza, że wymaga on kontaktu z obiektem, co jest sprzeczne z definicją pomiaru bezdotykowego. Luksomierz to urządzenie przeznaczone do pomiaru natężenia światła, a kalorymetr służy do obliczania ilości ciepła wydzielającego się w wyniku reakcji chemicznych lub fizycznych. Zastosowanie tych urządzeń w kontekście pomiaru temperatury jest błędne, gdyż każde z nich ma swoje specyficzne przeznaczenie i nie spełnia wymogów dotyczących bezdotykowej metody pomiaru ciepłoty. Typowym błędem myślowym jest mylenie funkcji przyrządów pomiarowych, co prowadzi do nieprawidłowych wniosków o ich zastosowaniach. Zrozumienie specyfiki urządzeń pomiarowych oraz ich przeznaczenia jest kluczowe w kontekście wyboru odpowiedniego narzędzia do danej aplikacji.

Pytanie 8

Która modulacja jest stosowana w zakresie fal długich?

A. Impulsowa
B. Amplitudy
C. Fazy
D. Częstotliwości
Modulacja amplitudy (AM) jest powszechnie stosowana w paśmie fal długich, głównie ze względu na jej zdolność do efektywnego przesyłania informacji na dużych odległościach. W modulacji amplitudy, amplituda fali nośnej jest zmieniana w zależności od sygnału informacyjnego, co sprawia, że AM jest odpowiednia do transmisji radiowych w warunkach, gdzie fale radiowe mogą być mocno zakłócane przez różne przeszkody. W praktyce, stacje radiowe nadające w paśmie fal długich wykorzystują modulację amplitudy, aby umożliwić odbiorcom słuchanie programów radiowych z dużą jakością dźwięku na dużych dystansach. Standardy takie jak CCIR 493-7 określają parametry techniczne dla transmisji AM w paśmie fal długich. Dodatkowo, modulacja amplitudy jest stosunkowo prosta do zrealizowania, co sprawia, że jest często wykorzystywana w aplikacjach komercyjnych i amatorskich.

Pytanie 9

System RDS (Radio Data System) pozwala na

A. odsłuch z zaawansowanym efektem przestrzennym stereo
B. odbiór cyfrowych danych poprzez emisję UKF FM
C. transmisję informacji tekstowych przez emisję UKF FM
D. zdalne włączanie i wyłączanie odbiornika radiowego
Nieprawidłowe odpowiedzi sugerują mylne zrozumienie funkcji systemu RDS. Zdalne włączenie i wyłączenie odbiornika radiofonicznego, jak również odsłuch z pogłębionym przestrzennym efektem stereofonicznym, są funkcjami, które nie są częścią specyfikacji RDS. RDS nie służy ani do zdalnego sterowania odbiornikiem, ani do poprawy jakości dźwięku w sensie przestrzennym. W rzeczywistości, system RDS jest narzędziem do transmisji informacji, które jest zintegrowane z analogowym sygnałem radiowym, a jego głównym celem jest dostarczanie danych tekstowych oraz innych informacji do słuchaczy. Ponadto, odpowiedzi, które sugerują nadawanie informacji słownych, mylą funkcję RDS z innymi systemami komunikacyjnymi. RDS nie nadawcza informacji w postaci dźwiękowej; zamiast tego, przesyła metadane, które są odbierane przez radioodbiorniki. Te nieporozumienia mogą wynikać z braku znajomości podstawowych zasad działania RDS oraz jego ograniczeń. Właściwe zrozumienie tego systemu pozwala uniknąć typowych błędów myślowych i lepiej ocenić jego zastosowania w kontekście współczesnych technologii radiowych.

Pytanie 10

Jakie urządzenie pomiarowe powinno być użyte do analizy sygnału o wysokiej częstotliwości?

A. Oscyloskop
B. Mostek RLC
C. Waromierz
D. Multimetr
Oscyloskop jest idealnym przyrządem do pomiaru sygnałów o wysokich częstotliwościach, ponieważ umożliwia wizualizację przebiegów elektrycznych w czasie rzeczywistym. Wysoka częstotliwość sygnałów, zwykle powyżej kilku megaherców, wymaga urządzenia, które jest w stanie zarejestrować zmiany napięcia w krótkich odstępach czasu i precyzyjnie odwzorować je na ekranie. Oscyloskopy cyfrowe, dzięki dużej przepustowości i możliwości zapisu danych, pozwalają na analizę sygnałów, identyfikację ich kształtu oraz określenie istotnych parametrów, takich jak amplituda, częstość oraz czas trwania sygnału. Przykładowo, w inżynierii elektronicznej oscyloskopy są powszechnie stosowane do testowania i analizy układów komunikacyjnych, gdzie sygnały o wysokiej częstotliwości są kluczowe dla funkcjonowania systemów. Użycie oscyloskopu w praktyce pozwala inżynierom na diagnozowanie problemów z sygnałem, takich jak zniekształcenia, które mogą wpływać na jakość transmisji danych.

Pytanie 11

Obwód sabotażowy bez zastosowania rezystorów w systemie alarmowym powinien być skonfigurowany w trybie

A. EOL
B. NC
C. 2EOL
D. NO
Obwód sabotażowy z konfiguracją NC (Normally Closed) oznacza, że urządzenie jest domyślnie zamknięte. Gdy obwód jest przerwany (np. przez otwarcie drzwi), sygnał jest wysyłany do systemu alarmowego, co pozwala na wykrycie sabotażu. Użycie konfiguracji NC jest standardową praktyką w instalacjach alarmowych, ponieważ zapewnia, że w przypadku awarii (np. uszkodzenia przewodu) obwód zostanie przerwany, co wywoła alarm. W praktyce oznacza to, że wszystkie czujniki, takie jak kontaktrony lub czujniki ruchu, powinny być skonfigurowane w trybie NC, aby skutecznie monitorować stany i sygnalizować nieautoryzowany dostęp lub usunięcie elementów z systemu. Dodatkowo, dzięki temu podejściu system jest odporniejszy na fałszywe alarmy, ponieważ jakiekolwiek działanie niezgodne z normalnym funkcjonowaniem obwodu wywoła reakcję alarmową, co jest kluczowe w zabezpieczeniach.

Pytanie 12

Jakie zjawisko napięć związane jest z pojęciem rezonansu?

A. obwodzie szeregowym R, L, C
B. stabilizatorze napięcia o działaniu impulsowym
C. stabilizatorze napięcia o działaniu ciągłym
D. obwodzie równoległym R, L, C
Rezonans napięć występuje w obwodach szeregowych R, L, C, gdzie R to opornik, L to induktor, a C to kondensator. Gdy częstotliwość sygnału zmiennego osiąga wartość rezonansową, impedancja obwodu osiąga minimum, co prowadzi do maksymalizacji prądu. W takim stanie napięcia na elementach obwodu są ze sobą ściśle powiązane, co może prowadzić do zjawiska wzmacniania sygnału. Przykładem praktycznym zastosowania tego zjawiska jest obwód rezonansowy stosowany w radioodbiornikach, gdzie umożliwia selekcję określonej częstotliwości sygnału radiowego, eliminując inne zakłócenia. Zrozumienie tego zjawiska jest kluczowe w projektowaniu filtrów, oscylatorów oraz w systemach komunikacyjnych. W praktyce inżynierskiej, wiedza o rezonansie jest niezbędna do efektywnego projektowania układów elektronicznych, aby zapewnić ich stabilność i efektywność działania.

Pytanie 13

Aby zweryfikować funkcjonalność kabla krosowego, co należy zastosować?

A. testera kabli sieciowych przy podłączonym kablu do sieci komputerowej
B. testera kabli sieciowych przy odłączonym kablu od wszystkich urządzeń
C. wobulatora przy podłączonym kablu do sieci komputerowej
D. wobulatora przy odłączonym kablu od wszystkich urządzeń
Tester kabli sieciowych to naprawdę przydatne urządzenie, które pozwala sprawdzić, czy kable krosowe działają jak należy. Żeby wyniki były miarodajne, kabel musi być odłączony od wszystkich urządzeń. To pozwala testerowi na dokładne zbadanie każdej żyły kabli, bez żadnych zakłóceń z podłączonych sprzętów. Gdy kabel jest odłączony, można przeprowadzić solidną analizę, co pozwala wyłapać ewentualne zwarcia, przerwy czy złe połączenia. Warto też pamiętać, że standardy jak TIA/EIA-568 mówią, jak najlepiej instalować i testować kabli, a przestrzeganie ich to klucz do dobrze działającej sieci. Testowanie po instalacji jest super ważne, bo można szybko znaleźć i naprawić błędy, co poprawia niezawodność całego systemu. Używanie testera przy odłączonym kablu to najlepszy sposób, żeby upewnić się, że wszystko działa jak trzeba, co jest mega ważne dla stabilności i wydajności naszych sieci.

Pytanie 14

W firmie produkującej radiatory z aluminiowych kształtowników pracuje pięć osób. Każda z nich wytwarza codziennie 30 radiatorów. Na wykonanie 10 radiatorów potrzebny jest jeden kształtownik aluminiowy. Ile wynosi dzienny koszt nabycia materiałów do produkcji, jeśli jeden kształtownik kosztuje 50 zł?

A. 150 zł
B. 750 zł
C. 500 zł
D. 2 500 zł
Aby obliczyć dzienny koszt zakupu materiałów do produkcji radiatorów, należy najpierw ustalić, ile radiatorów produkują wszyscy pracownicy razem. Każdy z pięciu pracowników wykonuje 30 radiatorów dziennie, co daje 5 * 30 = 150 radiatorów. Ponieważ jeden kształtownik aluminiowy wystarcza na wykonanie 10 radiatorów, potrzebujemy 150 / 10 = 15 kształtowników. Koszt jednego kształtownika wynosi 50 zł, zatem całkowity koszt zakupu materiałów wyniesie 15 * 50 zł = 750 zł. W praktyce, znajomość kosztów materiałowych jest kluczowa dla efektywnego zarządzania produkcją w zakładach przemysłowych. Monitorowanie tych kosztów pozwala na optymalizację procesów i zwiększenie rentowności firmy. Zastosowanie odpowiednich standardów dotyczących zarządzania materiałami, takich jak Just-In-Time, może również przyczynić się do redukcji nadmiarów materiałowych oraz kosztów magazynowania.

Pytanie 15

Aby zakończyć instalację telewizyjną wykonaną przy użyciu kabla koncentrycznego, konieczne jest zastosowanie rezystora o oporności

A. 300 Ω
B. 50 Ω
C. 500 Ω
D. 75 Ω
Właściwa odpowiedź to 75 Ω, ponieważ większość systemów telewizyjnych, w tym anteny i odbiorniki, zostało zaprojektowanych do pracy z impedancją 75 Ω. Stosowanie rezystora o tej wartości na zakończeniu linii koncentrycznej jest kluczowe dla zapewnienia odpowiedniego dopasowania impedancji, co minimalizuje straty sygnału oraz odbicia. W praktyce, jeśli zakończenie linii nie będzie zgodne z impedancją, część sygnału może zostać odbita, co prowadzi do zakłóceń w odbiorze i obniżenia jakości sygnału wideo i audio. W standardach telekomunikacyjnych, takich jak normy DVB-T i DVB-S, impedancja 75 Ω jest powszechnie stosowana, co potwierdza jej znaczenie w branży. Przykładem zastosowania rezystora 75 Ω w praktyce jest montaż gniazdek antenowych oraz zakończeń kabli w instalacjach domowych, gdzie kluczowe jest zachowanie wysokiej jakości sygnału. Dodatkowo, w profesjonalnych aplikacjach telewizyjnych, takich jak systemy telewizji przemysłowej czy transmisje na żywo, wykorzystanie odpowiednich rezystorów końcowych jest niezbędne do utrzymania integralności sygnału.

Pytanie 16

Który z poniższych przyrządów jest używany do pomiaru rezystancji izolacji kabli?

A. Mostek Wiena
B. Induktor
C. Mostek Thomsona
D. Wobulator
Induktor, jako element pasywny, jest kluczowy w pomiarach rezystancji izolacji kabli, ponieważ jego działanie opiera się na zjawisku indukcji elektromagnetycznej. Podczas testowania izolacji, induktor jest wykorzystywany do generowania zmiennego pola magnetycznego, co pozwala na ocenę jakości izolacji przewodów. Stosując induktory, technicy mogą testować izolację w warunkach rzeczywistych, co jest zgodne z normami branżowymi, takimi jak IEC 61010, które podkreślają znaczenie bezpieczeństwa i dokładności w pomiarach. Przykład zastosowania induktora w tej dziedzinie to testowanie kabli wysokiego napięcia, gdzie konieczne jest potwierdzenie, że izolacja jest w stanie wytrzymać określone napięcia bez przewodzenia prądu przez izolację. Regularne pomiary rezystancji izolacji pozwalają na wcześniejsze wykrycie potencjalnych problemów, co jest praktyką zalecaną w utrzymaniu infrastruktury elektrycznej, zmniejszając ryzyko awarii i zapewniając większe bezpieczeństwo użytkowników.

Pytanie 17

Na podstawie informacji zawartych w tabeli pomiarowej, oszacuj wzmocnienie napięciowe KUMAX dla częstotliwości środkowej fO=260 Hz? Uwej=200mV

f[Hz]4080100140180220260
Uwyj
[V]
0,410,821,21,411,922,12,40
f[Hz]300340380420460500540
Uwyj
[V]
2,21,921,431,20,820,420,22

A. KUMAX = 260 V/V
B. KUMAX = 12 V/V
C. KUMAX = 24 V/V
D. KUMAX = 2,4 V/V
Odpowiedź KUMAX = 12 V/V jest poprawna, ponieważ wzmocnienie napięciowe definiuje się jako stosunek napięcia wyjściowego do napięcia wejściowego. W tym przypadku, dla częstotliwości środkowej 260 Hz, napięcie wyjściowe wynosi 2,4 V, a napięcie wejściowe to 200 mV (0,2 V). Obliczając wzmocnienie, uzyskujemy wartość 12 V/V, co oznacza, że napięcie wyjściowe jest 12 razy większe od napięcia wejściowego. W praktyce, takie wzmocnienie jest istotne w układach wzmacniaczy, gdzie precyzyjne dostosowanie wzmocnienia napięcia jest kluczowe dla osiągnięcia pożądanej jakości sygnału. Dobrze zaprojektowane układy wzmacniaczy wykorzystują stabilne źródła napięcia i precyzyjne komponenty, co pozwala na uzyskanie wysokiej linearności i niskich zniekształceń sygnału. Standardy dotyczące wzmacniaczy, takie jak normy IEEE, podkreślają konieczność dokładnych pomiarów wzmocnienia, aby zapewnić niezawodność i efektywność działania całego systemu elektronicznego.

Pytanie 18

Na wychyłowym przyrządzie do pomiaru napięcia umieszczono symbol przedstawiony na rysunku. Jaki ustrój zastosowano w tym mierniku?

Ilustracja do pytania
A. Elektromagnetyczny
B. Elektrodynamiczny
C. Ferrodynamiczny
D. Magnetoelektryczny
Odpowiedź "Magnetoelektryczny" jest poprawna, ponieważ symbol przedstawiony na rysunku odnosi się do ustroju magnetoelektrycznego, który jest kluczowym elementem w analogowych przyrządach pomiarowych. Mierniki magnetoelektryczne działają na zasadzie interakcji między polem magnetycznym wytworzonym przez magnes trwały a polem magnetycznym generowanym przez prąd przepływający przez cewkę. W wyniku tego zjawiska, cewka ruchoma przemieszcza się, co powoduje wychylenie wskazówki na skali pomiarowej. Tego rodzaju urządzenia są szeroko stosowane w laboratoriach oraz w przemyśle, ponieważ zapewniają wysoką dokładność pomiarów napięcia. Standardy ISO oraz normy IEC definiują wymagania dotyczące projektowania i kalibracji tych urządzeń, co gwarantuje ich niezawodność i precyzyjność w różnych warunkach pracy. Znajomość zasad działania ustrojów magnetoelektrycznych jest niezbędna dla inżynierów i techników zajmujących się pomiarami elektrycznymi.

Pytanie 19

W procesie technologicznym konieczne jest, aby w pomieszczeniu o objętości 18 m3 utrzymywana była temperatura 40 st. C +- 5 st. C. Najczęściej wybieranym urządzeniem do sterowania elementami grzejnymi będzie

A. system sterowania manualnego
B. system sterowania czasowego
C. regulator dwustawny
D. regulator tyrystorowy mocy
Układ sterowania ręcznego, regulator tyrystorowy mocy i układ sterowania czasowego to metody, które w określonych warunkach mogą być użyteczne, jednak nie odpowiadają one wymaganiom opisanym w pytaniu, gdzie kluczowe jest skuteczne i precyzyjne zarządzanie temperaturą w wąskim zakresie. Układ sterowania ręcznego polega na manualnym ustawianiu grzewania, co nie tylko nie zapewni automatyzacji, ale także zwiększy ryzyko nieefektywnego ogrzewania lub przegrzewania pomieszczenia. Regulator tyrystorowy mocy, choć stosowany w aplikacjach wymagających regulacji mocy, nie zapewnia takiej precyzji w zakresie włączania i wyłączania, jak regulator dwustawny, co może prowadzić do wahań temperatury. Z kolei układ sterowania czasowego jest używany głównie do programowania pracy urządzeń w określonych przedziałach czasowych, co nie jest wystarczające w sytuacji wymagającej stałej regulacji temperaturowej. Typowym błędem myślowym jest założenie, że każda z tych metod może automatycznie dostosować się do zmieniających się warunków, co w rzeczywistości nie jest prawdą. W przypadku wymaganej precyzji w utrzymaniu temperatury, zastosowanie regulatora dwustawnego jest jedynym odpowiednim rozwiązaniem, które spełnia kryteria stabilności i efektywności energetycznej.

Pytanie 20

Która metoda instalacji podstaw koryt kablowych jest niewłaściwa?

A. Gipsowanie w bruzdach
B. Przyklejanie do podłoża
C. Mocowanie przy pomocy stalowych gwoździ
D. Mocowanie przy użyciu kołków rozporowych oraz wkrętów
Mocowanie podstaw koryt kablowych na klej, kołki rozporowe, wkręty czy gwoździe to coś, co można spotkać w praktyce, ale nie zawsze to działa. Klejenie do podłoża niby szybkie i proste, ale nie zawsze ma wystarczającą moc, zwłaszcza gdy koryta są pod dużym obciążeniem albo drgania się zdarzają. Z czasem może to prowadzić do problemów z utrzymaniem koryta w miejscu, co może skończyć się jego uszkodzeniem. A jak trzeba będzie zdemontować instalację, to klej może sprawić, że ciężko będzie zdjąć koryto, co oznacza dodatkowe koszty i czas. Gdy mówimy o stalowych gwoździach, ryzykujemy, że nie dadzą one odpowiedniego wsparcia, zwłaszcza w twardych materiałach, bo mogą się złamać albo wypaść. Takie mocowania mogą też uszkodzić przewody, jeśli są za blisko punktów mocowania. Kołki rozporowe i wkręty to jedna z lepszych metod, ale musimy dobrze dobrać materiały i technikę, żeby uniknąć przesadnych obciążeń. Warto przy wyborze metody montażu myśleć nie tylko o łatwości, ale przede wszystkim o bezpieczeństwie i trwałości instalacji. To bardzo ważne, by mocowania były zgodne z normami branżowymi, bo to pozwoli nam uniknąć problemów w przyszłości.

Pytanie 21

Urządzenie, które może być używane na zewnątrz i cechuje się wysoką odpornością na negatywne działanie warunków atmosferycznych, to

A. głowica w.cz.
B. multiswitch.
C. tuner telewizji satelitarnej.
D. konwerter satelitarny.
Konwerter satelitarny to naprawdę ważne urządzenie w telewizji satelitarnej. Działa tak, że zamienia sygnały z satelity na coś, co dekodery lub tunery mogą zrozumieć i wykorzystać. Jest bardzo odporny na różne złe warunki pogodowe, więc spokojnie można go używać na zewnątrz. W praktyce montuje się go na antenach satelitarnych, gdzie musi znosić deszcz, śnieg, wiatr i wysokie lub niskie temperature. Jakość materiałów, z jakich jest zrobiony, ma ogromne znaczenie, bo to zapewnia jego trwałość i niezawodność. Istnieją różne standardy budowy konwerterów, jak na przykład EN 50083, które określają, jak powinny działać i jakie muszą być odporne na pogodę. Dzięki temu, użytkownicy mogą cieszyć się dobrym sygnałem telewizyjnym, nawet jak pogoda jest zmienna. Ważne jest, żeby dobrze wybrać konwerter, bo to wpływa na jakość odbioru, szczególnie w miejscach, gdzie sygnał nie jest najlepszy.

Pytanie 22

Brak koloru żółtego w telewizorze może być spowodowany uszkodzeniami w torze kolorystycznym

A. czerwonego lub zielonego
B. zielonego lub niebieskiego
C. niebieskiego i czerwonego
D. zielonego i niebieskiego
Dobra robota z odpowiedzią! Kolor żółty w systemie RGB uzyskuje się, łącząc mocne światło czerwone i zielone. Jeśli w torze koloru coś szwankuje, na przykład w torze czerwonym albo zielonym, to telewizor będzie miał problem z wyświetleniem żółtego. A z tymi telewizorami LCD i LED to jest tak, że każdy piksel ma subpiksele z tych trzech kolorów - czerwonego, zielonego i niebieskiego, które razem tworzą całą paletę kolorów. Standardy jak sRGB mówią, jak kolory powinny wyglądać, a ich prawidłowe wyświetlenie jest mega istotne dla jakości obrazu. Więc jak nie widzisz koloru żółtego, warto sprawdzić te tory kolorystyczne, żeby znaleźć, co może być uszkodzone. To jest zgodne z najlepszymi praktykami, które stosujemy w serwisie sprzętu wideo.

Pytanie 23

Którą z poniższych czynności nie uznaje się za element konserwacji systemów alarmowych?

A. Sprawdzanie czujników
B. Weryfikacja powiadamiania
C. Montaż manipulatora
D. Zamiana akumulatora
Montaż manipulatora to czynność, która nie należy do konserwacji instalacji alarmowych. Konserwacja odnosi się do działań mających na celu utrzymanie systemu w sprawności i zapewnienie jego prawidłowego funkcjonowania. Wymiana akumulatora, testowanie czujników oraz kontrola powiadamiania to działania rutynowe, które pomagają w ocenie stanu systemu oraz w zapobieganiu ewentualnym awariom. Na przykład, regularne testowanie czujników pozwala na wykrycie ich ewentualnych usterek, co jest kluczowe dla bezpieczeństwa użytkowników. Wymiana akumulatora, natomiast, jest niezbędna, aby zapewnić ciągłość działania systemu w przypadku przerwy w zasilaniu. Standardy branżowe, takie jak PN-EN 50131, wskazują na znaczenie regularnej konserwacji dla systemów zabezpieczeń, co podkreśla rolę tych czynności w zapewnieniu niezawodności i efektywności systemów alarmowych.

Pytanie 24

Kable zasilające, które łączą antenę z odbiornikiem, określamy jako

A. direktory
B. fidery
C. symetryzatory
D. dipole
Fidery to linie zasilające, które łączą antenę z odbiornikiem lub nadajnikiem. Ich głównym zadaniem jest przesyłanie sygnału radiowego z jednego urządzenia do drugiego z minimalnymi stratami. W kontekście systemów komunikacyjnych, fidery są kluczowe dla zapewnienia efektywności transmisji i odbioru sygnałów. Istnieje wiele typów fiderów, w tym kabel koncentryczny oraz przewody typu twinlead, które różnią się budową, charakterystyką impedancyjną oraz zastosowaniem. Na przykład, kabel koncentryczny jest szeroko stosowany w telekomunikacji i systemach wideo, ze względu na swoją zdolność do przesyłania sygnałów na dużych odległościach. W praktyce, odpowiedni dobór fidera jest niezwykle istotny, ponieważ wpływa na jakość sygnału oraz minimalizację zakłóceń. W branży telekomunikacyjnej i radiowej istnieją standardy dotyczące konstrukcji i testowania fiderów, co zapewnia ich wysoką niezawodność. Zrozumienie tego zagadnienia jest kluczowe dla profesjonalistów zajmujących się projektowaniem i instalacją systemów komunikacyjnych.

Pytanie 25

Aby przygotować przewód YLY do zamontowania w kostce zaciskowej, należy

A. odsłonięty z izolacji koniec posmarować pastą izolacyjną i umieścić w kostce
B. przewód włożyć do kostki bez usuwania izolacji oraz smarowania go pastą izolacyjną
C. na odsłonięty z izolacji koniec przewodu założyć końcówkę tulejkową i włożyć do kostki
D. odsłonięty z izolacji koniec przewodu umieścić bezpośrednio w kostce
Wprowadzenie do montażu przewodu YLY poprzez wkładanie go do kostki bez obierania izolacji lub smarowania go pastą izolacyjną jest niewłaściwe z kilku powodów. Przede wszystkim, pozostawienie izolacji na końcu przewodu skutkuje brakiem wystarczającego kontaktu elektrycznego. Izolacja może powodować, że prąd nie będzie mógł przepływać swobodnie, co prowadzi do oporu, a tym samym do nadmiernego nagrzewania się przewodu oraz potencjalnych zagrożeń pożarowych. W przypadku smarowania pastą izolacyjną, należy zauważyć, że taka praktyka nie poprawia jakości połączeń elektrycznych, a w niektórych sytuacjach może wręcz zaszkodzić, jeśli pasta nie będzie odpowiednia do zastosowania w instalacjach elektrycznych. Ponadto, wkładanie gołego końca przewodu do kostki bez odpowiedniego zacisku z użyciem tulejki zwiększa ryzyko luźnych połączeń, co jest niebezpieczne. Ważnym aspektem jest także, że nieprzestrzeganie dobrych praktyk przy przygotowywaniu przewodów może prowadzić do awarii instalacji, zwiększając koszty eksploatacji i konserwacji. W kontekście standardów branżowych, każda instalacja elektryczna powinna być wykonana zgodnie z zasadami bezpieczeństwa i najlepszymi praktykami, a nieodpowiednie podejście do montażu przewodów może skutkować poważnymi konsekwencjami. Dlatego zawsze kluczowe jest stosowanie się do wszystkich procedur związanych z przygotowaniem i montażem przewodów.

Pytanie 26

Sprawdzanie działania elektronicznego wzmacniacza akustycznego nie obejmuje

A. kontroli temperatury elementów
B. uaktualniania oprogramowania
C. pomiaru parametrów
D. znajdowania anomalii w działaniu urządzenia
Odpowiedź "uaktualnianie oprogramowania" jest poprawna, ponieważ testowanie elektronicznego wzmacniacza akustycznego koncentruje się głównie na aspektach związanych z jego wydajnością i funkcjonalnością w kontekście audio. W procesie testowania, kluczowe jest przeprowadzenie pomiaru parametrów, takich jak zniekształcenia harmoniczne, pasmo przenoszenia, czy moc wyjściowa, co pozwala na ocenę jakości dźwięku generowanego przez wzmacniacz. Kontrola temperatury elementów jest również istotna, aby zapewnić, że urządzenie nie przegrzewa się podczas pracy, co mogłoby prowadzić do uszkodzeń lub obniżenia jakości dźwięku. Dodatkowo, identyfikacja anomalii w działaniu urządzenia jest kluczowa w utrzymaniu jakości i niezawodności sprzętu. Uaktualnianie oprogramowania może być istotne w kontekście poprawy funkcjonalności, ale nie jest to kluczowy element testowania samego wzmacniacza akustycznego. Przykłady dobrych praktyk w tej dziedzinie obejmują korzystanie z analizatorów widma i oscyloskopów do dokładnej analizy parametrów akustycznych.

Pytanie 27

Ile żył powinien mieć kabel łączący komputer z modemem, zakończony na obu końcach wtykami RJ-45?

A. 9
B. 8
C. 2
D. 4
Jeśli łączysz komputer z modemem, to pamiętaj, że przewód powinien mieć 8 żyłek i końcówkę RJ-45. To zgodne ze standardem Ethernet, który teraz wszędzie króluje w sieciach komputerowych. Te wtyczki są zaprojektowane tak, żeby działały z kablami kategorii 5 i wyższymi, a to oznacza, że wykorzystujemy wszystkie 8 żyłek, co daje nam pełną funckjonalność. W praktyce, standardy 10BASE-T i 100BASE-TX korzystają z czterech par przewodów, co jest super ważne do przesyłania danych. Gdy używasz wszystkich 8 żył, masz szansę na szybszą transmisję, bo w dzisiejszych czasach przepustowość to kluczowa sprawa. Jak włożysz przewody z mniejszą ilością żył, to może być kiepsko z wydajnością. Warto też znać zasady cabling standards, jak TIA/EIA-568, bo one mówią, jak poprawnie prowadzić i kończyć kable, żeby sieć działała jak należy.

Pytanie 28

Poniżej przedstawiona jest funkcja logiczna opisująca układ przełączający. Dla której kombinacji sygnałów a, b, c wartość tej funkcji będzie wynosiła "1"?

F(abc)= a·b̅+c
abc
A.011
B.010
C.110
D.101

A. A.
B. C.
C. D.
D. B.
Poprawna odpowiedź to D, ponieważ spełnia wymogi logicznej funkcji F(abc). Aby funkcja przyjęła wartość "1", musimy mieć a=1, b̅=1 (co oznacza, że b=0) oraz c=1. Oznacza to, że dla kombinacji D (a=1, b=0, c=1) wszystkie warunki są spełnione, co daje wynik mnożenia logicznego równy 1. W praktycznych zastosowaniach wiedza o funkcjach logicznych jest kluczowa w inżynierii cyfrowej, szczególnie w projektowaniu układów przełączających w systemach elektronicznych. Na przykład, układy te są często wykorzystywane w systemach automatyki przemysłowej, gdzie odpowiednie sygnały muszą być ze sobą skorelowane, aby aktywować określone urządzenia. Przestrzeganie standardów takich jak IEC 61131-3 jest istotne, aby zapewnić spójność i niezawodność operacyjną w układach programowalnych. W związku z tym, zrozumienie tego zagadnienia jest niezbędne dla każdego inżyniera pracującego w dziedzinie automatyki i elektroniki.

Pytanie 29

Która forma transmisji sygnału jest najbardziej odporna na zakłócenia elektromagnetyczne?

A. światłowodu
B. kabla koncentrycznego
C. skrętki nieekranowanej
D. skrętki ekranowanej
Transmisja sygnału za pośrednictwem światłowodu jest uważana za najbardziej odporną na zakłócenia elektromagnetyczne, co wynika z samej natury światłowodów. Sygnał przesyłany w światłowodach oparty jest na zjawisku całkowitego wewnętrznego odbicia światła, co sprawia, że sygnał nie jest narażony na zakłócenia elektromagnetyczne, jakie mogą wpływać na transmisję w przewodach miedzianych. W praktyce oznacza to, że światłowody są idealnym rozwiązaniem w środowiskach, gdzie występują silne źródła zakłóceń, takie jak w pobliżu dużych maszyn przemysłowych czy nadajników radiowych. Przykładem zastosowania światłowodów są sieci telekomunikacyjne oraz systemy informacyjne w dużych miastach, gdzie niezawodność i jakość transmisji danych są kluczowe. Zgodnie z normami ITU-T G.652 oraz G.657, światłowody zapewniają wysoką przepustowość i niskie tłumienie sygnału, co czyni je standardem w nowoczesnych instalacjach telekomunikacyjnych.

Pytanie 30

W tabeli przedstawiono fragment danych technicznych bezprzewodowego czujnika temperatury. Określ, który z czynników może wpływać na niewłaściwą pracę czujnika.

DANE TECHNICZNE
Pasmo częstotliwości pracy868,0 MHz ÷ 868,6 MHz
Zasięg komunikacji radiowej (w terenie otwartym)do 500 m
Zasilaniebateria litowa CR123A 3 V
Czas pracy na bateriiokoło 3 lata
Pobór prądu w stanie gotowości50 μA
Maksymalny pobór prądu16 mA
Dokładność pomiaru temperatury±2%
Zakres temperatur pracy-10 °C...+55 °C
Maksymalna wilgotność93±3%
Wymiary obudowy24 x 110 x 27 mm
Waga56 g

A. Zakres zmian temperatury 15°C÷30°C.
B. Napięcie zasilania czujnika 2,9 V.
C. Obce źródło fal radiowych 868 MHz.
D. Odbiornik słuchawek bezprzewodowych 433 MHz.
Czynniki, które mogą wpływać na działanie czujnika temperatury, wymagają zrozumienia zasad jego funkcjonowania oraz kontekstu jego zastosowania. Zakres zmian temperatury 15°C÷30°C to parametry, w których czujnik powinien prawidłowo działać, ponieważ są zgodne z jego specyfikacją. Odpowiedź sugerująca, że problemem może być odbiornik słuchawek bezprzewodowych pracujący na częstotliwości 433 MHz, jest mylna, ponieważ różne urządzenia pracujące na różnych częstotliwościach nie wchodzą w interakcję, co pozwala na ich jednoczesne działanie w tym samym pomieszczeniu. Napięcie zasilania 2,9 V również mieści się w dopuszczalnym zakresie dla tego typu czujnika, co wyklucza je jako źródło problemów. Często nieprawidłowe wnioski oparte są na mylnym założeniu, że wszystkie urządzenia bezprzewodowe mogą zakłócać swoje działanie, niezależnie od częstotliwości. W rzeczywistości, aby zakłócenia miały miejsce, muszą one występować na tej samej częstotliwości operacyjnej. Zrozumienie zasad działania systemów bezprzewodowych oraz znajomość specyfikacji technicznych urządzeń są kluczowe dla ich prawidłowego wykorzystania, co pozwala na uniknięcie błędnych interpretacji dotyczących wpływu różnych czynników na ich funkcjonowanie.

Pytanie 31

Bezpiecznik topikowy stanowi komponent, który chroni przed efektami

A. przepięć w instalacji elektrycznej
B. nagromadzenia ładunku elektrostatycznego
C. spadku napięcia zasilającego
D. zwarć w obwodzie elektrycznym
Bezpiecznik topikowy jest kluczowym elementem zabezpieczeń elektrycznych, zapobiegającym skutkom zwarć w obwodzie elektrycznym. Działa na zasadzie przerywania obwodu, gdy prąd przepływający przez niego przekroczy określoną wartość. W przypadku zwarcia, prąd składający się z dużych wartości może prowadzić do przegrzania przewodów, co skutkuje uszkodzeniem urządzeń i zwiększa ryzyko pożaru. Bezpieczniki topikowe są powszechnie stosowane w instalacjach domowych i przemysłowych, zgodnie z normami takimi jak PN-EN 60269. Dobrze dobrany bezpiecznik topikowy chroni nie tylko instalację, ale również podłączone urządzenia, takie jak komputery czy sprzęt RTV. W przypadku awarii, wymiana bezpiecznika jest prostym zadaniem, które można wykonać samodzielnie, co czyni je praktycznym rozwiązaniem. Zrozumienie roli bezpiecznika topikowego w systemach zabezpieczeń jest kluczowe dla zapewnienia bezpieczeństwa oraz niezawodności instalacji elektrycznych.

Pytanie 32

Generator funkcyjny został skonfigurowany na sygnał o częstotliwości 1 kHz oraz maksymalnej wartości szczytowej wynoszącej 1 V. Po podłączeniu woltomierza AC, jego wskazanie wyniosło 0,707 V. Jaki kształt ma badany sygnał?

A. trójkątny
B. impulsowy
C. prostokątny
D. sinusoidalny
Wybór innych odpowiedzi oparty jest na pewnych nieporozumieniach związanych z właściwościami różnych typów przebiegów elektrycznych. Przebieg trójkątny charakteryzuje się liniowym wzrostem i spadkiem wartości amplitudy, co skutkuje inną wartością skuteczną; dla takiego sygnału RMS wynosi wartość szczytowa podzielona przez pierwiastek z 3, co nie odpowiada pomiarom dokonanym w tym przykładzie. Z kolei przebieg prostokątny, mimo że ma wartość skuteczną równą wartości szczytowej, nie może dać wskazania 0,707 V, ponieważ w tym przypadku wartość skuteczna wynosiłaby 1 V. Przebieg impulsowy z kolei ma krótkie impulsy, które również nie dają się przeliczyć na wartość skuteczną w sposób charakterystyczny dla sygnałów sinusoidalnych. Wiele osób może mylić wartości szczytowe z wartościami RMS, co prowadzi do błędnych wniosków. Rozumienie, jak różne kształty przebiegów wpływają na pomiar i interpretację woltomierzy, jest kluczowe w inżynierii elektrycznej i elektronicznej. Dlatego też, ważne jest, aby dobrze znać różnice między tymi przebiegami oraz ich właściwości, by skutecznie analizować i projektować systemy elektryczne.

Pytanie 33

Zawartość pamięci EPROM może zostać utracona w wyniku

A. braku napięcia zasilającego
B. obniżenia napięcia zasilającego poniżej 2,5 V
C. niesprawnego układu odświeżającego
D. bezpośredniego wpływu promieni słonecznych
Bezpośrednie działanie promieni słonecznych może prowadzić do uszkodzenia pamięci EPROM, ponieważ te układy są wrażliwe na promieniowanie UV. EPROM (Erasable Programmable Read-Only Memory) stosuje się w sytuacjach, w których potrzebne jest wielokrotne programowanie układu, a jego zawartość można usunąć poprzez naświetlanie promieniami UV. W praktyce oznacza to, że jeśli pamięć EPROM jest wystawiona na działanie intensywnego światła słonecznego, istnieje ryzyko, że dane zostaną przypadkowo usunięte. Z tego powodu w zastosowaniach przemysłowych i elektronicznych często stosuje się obudowy chroniące te pamięci przed bezpośrednim działaniem światła. Warto również zaznaczyć, że standardy dotyczące przechowywania urządzeń elektronicznych zalecają unikanie ekspozycji na silne źródła światła, aby zapewnić trwałość i wiarygodność przechowywanych danych. Zrozumienie tego zjawiska jest kluczowe dla inżynierów zajmujących się projektowaniem systemów elektronicznych, w których wykorzystuje się pamięci EPROM.

Pytanie 34

Który z protokołów przesyłania danych umożliwia transmisję różnicową sygnałów?

A. RS-485
B. GPIB
C. RS-232
D. I2C
Wybór RS-232, GPIB czy I2C jako standardów przesyłania danych, które miałyby umożliwić transmisję różnicową sygnałów, jest błędny z kilku powodów. RS-232 jest najstarszym standardem komunikacji szeregowej, który przesyła dane w sposób jednostronny, wykorzystywany głównie do połączeń krótkodystansowych. Jego konstrukcja, oparta na pojedynczym przewodzie z masą, czyni go narażonym na zakłócenia, co sprawia, że nie nadaje się do zastosowań wymagających dużej integracji w trudnych warunkach. GPIB, znany również jako IEEE 488, jest standardem komunikacji równoległej, który obsługuje wiele urządzeń, ale również nie stosuje różnicowej transmisji, co ogranicza jego zastosowanie do krótkich połączeń w środowisku laboratoryjnym. Z kolei I2C to protokół komunikacji szeregowej przeznaczony do krótkich dystansów, wykorzystywany w aplikacjach takich jak komunikacja z czujnikami czy sterownikami. I2C może przesyłać dane w dwóch liniach, ale również nie korzysta z różnicowego przesyłania sygnałów, co czyni go niewłaściwym w kontekście omawianego pytania. Typowe błędy w analizie tych standardów polegają na myleniu różnych technik przesyłania z ich możliwościami w zakresie eliminacji zakłóceń i długości połączeń. Przy wyborze odpowiedniego protokołu komunikacji kluczowe jest zrozumienie ich właściwości i ograniczeń, co pozwala na efektywne projektowanie systemów z uwzględnieniem ich przeznaczenia.

Pytanie 35

Którego urządzenia nie wykorzystuje się przy ustawianiu anten satelitarnych?

A. Kątomierza
B. Kompasu
C. Multimetru
D. Miernika sygnału
Multimetr nie jest przyrządem stosowanym do ustawiania anten satelitarnych, ponieważ jego główne funkcje dotyczą pomiaru napięcia, prądu oraz rezystancji. W kontekście instalacji anten satelitarnych kluczowe jest precyzyjne ustawienie kierunku anteny, aby maksymalizować odbiór sygnału. W tym celu wykorzystuje się inne urządzenia, takie jak mierniki sygnału, które umożliwiają bezpośredni pomiar jakości i siły sygnału satelitarnego. Dodatkowo, kompas może być pomocny przy orientacji anteny względem południa, co jest istotne przy ustawianiu anteny na odpowiednią satelitę. Kątomierz z kolei może służyć do precyzyjnego ustawienia kąta nachylenia anteny. W praktyce instalatorzy anten korzystają z tych narzędzi, aby zapewnić optymalne warunki odbioru, co jest kluczowe dla uzyskania wysokiej jakości sygnału telewizyjnego. Dobrą praktyką jest również stosowanie odpowiednich standardów instalacji, takich jak zalecenia producentów anten, co pozwala na uzyskanie najlepszych rezultatów.

Pytanie 36

Jakie rodzaje układów cyfrowych powinno się wykorzystać, aby zredukować liczbę linii przesyłu danych?

A. Multiplekser i dekoder
B. Multiplekser i demultiplekser
C. Koder i transkoder
D. Koder i demultiplekser
W przypadku odpowiedzi wskazujących na zastosowanie multipleksera i dekodera, ważne jest zrozumienie, że dekoder nie pełni funkcji redukcji linii przesyłowych. Dekodery są używane do konwersji binarnych sygnałów na sygnały wyjściowe, co może zwiększać liczbę linii wymaganych na wyjściu. Takie podejście prowadzi do nadmiarowości i nieefektywności, szczególnie w systemach o dużej liczbie sygnałów. W analogiczny sposób, wybór kodera i transkodera również nie jest odpowiedni w kontekście zmniejszenia linii przesyłowych. Kodery konwertują dane w celu ich efektywnego przesyłania lub przechowywania, natomiast transkodery zmieniają format tych danych. Oba te procesy mogą angażować dodatkowe zasoby, zamiast je minimalizować. Wreszcie, wybór kodera i demultipleksera jest równie mylący, gdyż koder nie jest dedykowany do redukcji linii, a demultiplekser, chociaż przydatny w rozdzielaniu sygnałów, nie niweluje potrzeby posiadania wielu linii na etapie kodowania. W analizie tych odpowiedzi często popełniane są błędy związane z niewłaściwym rozumieniem roli i funkcji poszczególnych układów cyfrowych oraz ich wpływu na architekturę systemów. Kluczowe jest, aby przy wyborze komponentów kierować się ich rzeczywistym zastosowaniem w kontekście redukcji zasobów, co powinno być podstawą wszelkich decyzji inżynieryjnych.

Pytanie 37

Jeśli po zainstalowaniu domofonu i podłączeniu zasilania w słuchawce słychać piski lub rozmowa jest cicho, co należy zrobić?

A. podnieść napięcie zasilania elektrozaczepu
B. dostosować napięcie w kasecie rozmownej
C. zwiększyć poziom głośności w unifonie
D. dostosować poziom głośności w zasilaczu
Wybór opcji związanej z podwyższeniem poziomu głośności w unifonie nie jest wystarczająco skuteczny, ponieważ w sytuacjach, gdy dźwięk jest słabo słyszalny lub słychać piski, problem często leży w zasilaczu. Unifon, jako urządzenie odbierające sygnał, może być zbyt czuły lub nie mieć możliwości skutecznej regulacji, jeśli zasilacz nie dostarcza odpowiedniego sygnału. Ponadto, podwyższenie napięcia zasilania elektrozaczepu nie ma wpływu na jakość dźwięku w słuchawce, ponieważ elektrozaczep odpowiada tylko za otwieranie drzwi i nie wpływa na przekaz audio. Regulacja napięcia w kasecie rozmownej także nie rozwiązuje problemu, ponieważ nie jest odpowiedzialna za głośność, lecz za ogólną funkcjonalność urządzenia. Niekiedy użytkownicy błędnie myślą, że wszelkie problemy z dźwiękiem można rozwiązać poprzez dostosowanie ustawień w odbiorniku, zapominając o kluczowej roli, jaką odgrywa zasilacz w całym systemie. Z tego powodu, ważne jest, aby przy instalacji domofonów zwracać uwagę na wszystkie komponenty systemu oraz ich wzajemne oddziaływanie. Właściwe zrozumienie funkcji oraz zależności między poszczególnymi elementami jest niezbędne dla efektywnej diagnostyki i naprawy występujących problemów.

Pytanie 38

Jakie narzędzie jest niezbędne do zainstalowania wtyku kompresyjnego typu F na kablu koncentrycznym?

A. śrubokręt.
B. nóż montażowy.
C. zaciskarkę.
D. obcęgi.
Zaciskarka to narzędzie specjalnie zaprojektowane do montażu wtyków kompresyjnych na kablach koncentrycznych. Dzięki precyzyjnemu mechanizmowi chwytania i zaciskania, pozwala na pewne i trwałe połączenie wtyku z kablem, co jest kluczowe dla uzyskania optymalnej jakości sygnału. Użycie zaciskarki zapewnia, że wtyk jest prawidłowo zamocowany, eliminując ryzyko luzów, które mogłyby prowadzić do zakłóceń sygnału. W branży telekomunikacyjnej oraz w instalacjach antenowych, gdzie jakość sygnału jest kluczowa, stosowanie odpowiednich narzędzi, takich jak zaciskarka, jest zgodne z najlepszymi praktykami. W przypadku kabli koncentrycznych, wtyki kompresyjne oferują lepszą ochronę przed zakłóceniami elektromagnetycznymi, a ich prawidłowy montaż przy użyciu zaciskarki jest niezbędny, aby zapewnić optymalne działanie całego systemu. Warto zwrócić uwagę na standardy, takie jak ISO/IEC 11801, które podkreślają znaczenie odpowiedniego montażu i użycia właściwych narzędzi w celu zapewnienia niezawodności i wydajności systemów transmisji danych.

Pytanie 39

W oscyloskopie dwukanałowym do wejścia CH-B podłączono sygnał o znanej częstotliwości, natomiast do wejścia CH-A sygnał do analizy. W jaki sposób powinien być ustawiony oscyloskop, aby za pomocą krzywych Lissajous oszacować przybliżoną częstotliwość sygnału do badania?

A. SINGLE
B. X - Y
C. ADD
D. DUAL
Wybór trybu X - Y w oscyloskopie dwukanałowym jest kluczowy dla analizy sygnałów za pomocą krzywych Lissajous. W tym trybie sygnał z kanału CH-A jest przedstawiany na osi Y, a sygnał z kanału CH-B na osi X, co pozwala na bezpośrednie porównanie obu sygnałów. Krzywe Lissajous są wykorzystywane do wizualizacji relacji częstotliwości i fazy między dwoma sygnałami. Jeżeli częstotliwości obu sygnałów są zbliżone, na ekranie oscyloskopu pojawi się charakterystyczny kształt krzywej, którego geometria pozwala na określenie stosunku częstotliwości sygnałów. Na przykład, jeśli sygnał badany w CH-A ma częstotliwość 2 razy większą niż sygnał w CH-B, to na oscyloskopie zobaczymy kształt przypominający elipsę. To podejście jest powszechnie stosowane w praktyce inżynieryjnej, szczególnie w dziedzinach takich jak telekomunikacja i elektronika, gdzie precyzyjna analiza sygnałów jest niezbędna. Poprawna interpretacja krzywych Lissajous wymaga znajomości relacji między częstotliwościami oraz umiejętności ich analizy, co jest istotnym aspektem pracy z oscyloskopem.

Pytanie 40

Przy wykonywaniu otworów w płytkach PCB konieczne jest użycie

A. okularów ochronnych
B. systemu odciągu dymu
C. matu przeciwpoślizgowych
D. rękawiczek z gumy
Okulary ochronne to naprawdę ważna rzecz, gdy wiercimy w płytkach drukowanych. Chronią nasze oczy przed pyłem i opiłkami, które mogą się uwolnić podczas wiercenia. Na przykład, materiał FR-4, często używany w płytkach PCB, przy wierceniu produkuje małe cząsteczki, które mogą podrażnić oczy, a w skrajnych przypadkach nawet je uszkodzić. Z tego, co pamiętam z zajęć BHP, zawsze trzeba nosić odpowiednie środki ochrony w pracy, zwłaszcza w laboratoriach elektroniki. Wiercenie tam to chleb powszedni, więc każda osoba zajmująca się tym powinna wiedzieć, jak używać okularów ochronnych. Dobrze jest też wybrać okulary z filtrami UV czy te odporne na uderzenia, bo zwiększa to bezpieczeństwo i komfort pracy. To naprawdę ważne, aby dostosować wyposażenie do pracy, a okulary są tu kluczowe.