Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 14 maja 2025 08:41
  • Data zakończenia: 14 maja 2025 09:01

Egzamin zdany!

Wynik: 39/40 punktów (97,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Podczas demontażu świec zapłonowych, mechanik zauważył na jednej z nich suchy czarny osad oraz występujący nagar. Opisane symptomy mogą wskazywać na

A. uszkodzenie zaworów silnikowych
B. zbyt ubogą mieszankę paliwową
C. zbyt wysoki poziom oleju
D. zbyt bogatą mieszankę paliwową
Zbyt bogata mieszanka paliwowa to sytuacja, w której proporcja paliwa do powietrza jest zbyt duża, co prowadzi do niedostatecznego spalania mieszanki w komorze spalania. Objawy, które zaobserwował mechanik, takie jak czarny, suchy osad oraz nagar, są typowe dla zbyt dużej ilości paliwa, które nie ulega pełnemu spaleniu. W takich warunkach paliwo osadza się na świecach zapłonowych, co może prowadzić do ich uszkodzenia oraz problemów z uruchomieniem silnika. Przykładami skutków zbyt bogatej mieszanki są zwiększone zużycie paliwa, emisja szkodliwych substancji, a także zmniejszenie mocy silnika. W praktyce, mechanicy często zalecają sprawdzenie ustawień wtrysku paliwa oraz stanu układu dolotowego powietrza, aby zdiagnozować przyczyny takiej sytuacji. Zgodnie z dobrą praktyką, regularna konserwacja oraz przeglądy instalacji paliwowej mogą pomóc w uniknięciu tego typu problemów, co prowadzi do lepszej efektywności silnika oraz obniżenia kosztów eksploatacji.

Pytanie 2

Podczas serwisowania głowicy silnika stwierdzono, że jedno z gniazd świecy zapłonowej ma zniszczony gwint. W tej sytuacji mechanik powinien

A. naprawić dotychczasowy gwint przy użyciu narzynki
B. rozwiercić otwór na nowy wymiar naprawczy i ponownie nagwintować
C. tulejować otwór i ponownie nagwintować
D. wsadzić nową świecę zapłonową, która naprawi uszkodzony gwint
Tulejowanie otworu i nagwintowanie na nowo to chyba najlepsza metoda na naprawę uszkodzonego gwintu w gnieździe świecy zapłonowej. Chodzi o to, żeby wsunąć tuleję do otworu, co przywraca prawidłowe mocowanie świecy. Z tego, co wiem, tuleje są zazwyczaj robione z materiałów, które dobrze znoszą wysokie temperatury i ciśnienie, więc są świetnym rozwiązaniem w silnikach. Pomyśl tylko – jeśli gwint w głowicy silnika coś nadgryzła korozja albo źle wkręcona świeca, to tulejowanie będzie znacznie lepsze niż jakieś doraźne naprawy. W branży uznaje się, że ta metoda jest zdecydowanie trwalsza i bardziej niezawodna, więc czujesz, że robisz dobrze. Właściwie to stosowanie tulei w takich naprawach to sama czołówka najlepszych praktyk, bo znacznie zmniejsza ryzyko kolejnych uszkodzeń, które mogłyby być spowodowane źle wkręconą świecą.

Pytanie 3

W systemie smarowania silnika najczęściej wykorzystuje się pompy

A. nurnikowe
B. zębate
C. membranowe
D. tłoczkowe
Pompy zębate są najczęściej stosowanym typem pomp w układach smarowania silników, ponieważ zapewniają one stabilne ciśnienie i wysoką wydajność. Działają na zasadzie przesuwania oleju między zębami kół zębatych, co pozwala na efektywne pobieranie i tłoczenie smaru w obrębie silnika. Ich konstrukcja jest stosunkowo prosta, co wpływa na niskie koszty produkcji oraz łatwość w serwisowaniu. W praktyce, pompy zębate są powszechnie używane w silnikach spalinowych oraz w hydraulice, gdzie wymagane jest dostarczanie oleju pod odpowiednim ciśnieniem. Ponadto, ich działanie jest mało wrażliwe na zmiany lepkości oleju, co czyni je bardziej uniwersalnymi. W standardach branżowych, takich jak ISO 6743, podkreśla się znaczenie efektywnego smarowania, co czyni pompy zębate kluczowym elementem zapewniającym długowieczność i sprawność silników. Dobre praktyki w inżynierii mechanicznej zalecają regularne kontrole i konserwację pomp zębatych, aby uniknąć awarii i zapewnić optymalną wydajność silnika.

Pytanie 4

Po dokonaniu wymiany klocków hamulcowych na jednej stronie pojazdu konieczne jest

A. sprawdzenie poziomu płynu hamulcowego
B. zweryfikowanie siły hamowania na stanowisku diagnostycznym
C. odpowietrzenie układu hamulcowego
D. wymiana klocków hamulcowych na drugiej stronie pojazdu
Odpowiedź sugerująca odpowietrzenie układu hamulcowego jest nieadekwatna w kontekście wymiany klocków hamulcowych na jednej osi. Odpowietrzanie układu hamulcowego jest konieczne w sytuacji, gdy w układzie dostanie się powietrze, co najczęściej ma miejsce przy wymianie płynu hamulcowego lub naprawach związanych z układem hydrauliki hamulcowej. Wymiana klocków nie powinna wpływać na ciśnienie ani na szczelność układu, o ile nie doszło do jego uszkodzenia podczas prac. Ponadto, przeprowadzając odpowietrzanie, można przypadkowo wprowadzić powietrze do układu, co może prowadzić do obniżenia skuteczności hamowania, co jest groźne. Kolejna odpowiedź, dotycząca sprawdzenia siły hamowania na linii diagnostycznej, jest nadmiarowa w kontekście rutynowej wymiany klocków. Siła hamowania jest ważnym parametrem, ale jej sprawdzanie powinno mieć miejsce podczas kompleksowych przeglądów pojazdu, a nie bezpośrednio po wymianie klocków. Wreszcie, wymiana klocków hamulcowych na drugiej osi nie jest wymagana natychmiast po wymianie na jednej osi, chociaż zaleca się, aby klocki na obu osiach były w podobnym stanie. Zestawienie klocków na jednej osi z nowymi klockami na drugiej może prowadzić do nierównomiernego zużycia i zmniejszenia efektywności hamowania. W kontekście dobrych praktyk branżowych, kluczowe jest zachowanie równowagi w układzie hamulcowym, dlatego należy monitorować stan klocków na obu osiach.

Pytanie 5

Aby wykonać odczyt pamięci błędów systemu ABS, należy zastosować

A. skanera OBD
B. multimetru
C. licznika RPM
D. oscyloskopu
Skaner OBD (On-Board Diagnostics) to narzędzie diagnostyczne, które umożliwia odczytanie kodów błędów z systemów w pojazdach, w tym z układu ABS. Układ ABS (Antilock Braking System) jest odpowiedzialny za zapobieganie blokowaniu kół podczas hamowania, a jego prawidłowe działanie jest kluczowe dla bezpieczeństwa pojazdu. Skanery OBD są zaprojektowane do komunikacji z jednostką sterującą pojazdu (ECU) i umożliwiają nie tylko odczytu kodów błędów, ale także monitorowanie parametrów pracy poszczególnych systemów. W praktyce, aby przeprowadzić odczyt pamięci błędów ABS, należy podłączyć skaner do złącza diagnostycznego OBD-II, które jest standardowo umieszczone w każdym nowoczesnym pojeździe. Wykorzystując skaner, można szybko zidentyfikować ewentualne błędy w systemie ABS i podjąć odpowiednie kroki naprawcze. Zgodność z normą OBD-II jest powszechnym standardem w branży motoryzacyjnej, co zapewnia, że skanery OBD są wszechstronnie stosowane w wielu różnych pojazdach.

Pytanie 6

Gdzie wykorzystywana jest przekładnia planetarna?

A. w pompie wtryskowej
B. w rozruszniku
C. w alternatorze
D. w prądnicy
Przekładnia planetarna jest kluczowym elementem stosowanym w rozrusznikach, pozwalającym na efektywne przekształcanie momentu obrotowego oraz zwiększenie prędkości obrotowej silnika. W konstrukcji rozrusznika, przekładnia planetarna działa jako mechanizm redukcyjny, który wspomaga uruchamianie silnika spalinowego, zapewniając odpowiednią moc podczas rozruchu. Dzięki zastosowaniu przekładni planetarnej możliwe jest uzyskanie dużego momentu obrotowego przy niewielkich wymiarach i masie urządzenia. W praktyce oznacza to, że rozrusznik osiąga wysoką wydajność, co jest niezbędne w sytuacjach, gdy silnik wymaga dużej energii startowej. Przekładnie planetarne charakteryzują się także wysoką niezawodnością oraz trwałością, co jest zgodne z najlepszymi praktykami inżynieryjnymi w dziedzinie motoryzacji. Dodatkowo, ich budowa pozwala na zmniejszenie hałasu i wibracji podczas pracy, co zwiększa komfort użytkowania pojazdu.

Pytanie 7

Zanim przystąpisz do regulacji luzów zaworowych w silniku z zapłonem iskrowym, powinieneś

A. zweryfikować szczelność silnika
B. wykręcić wszystkie świece zapłonowe
C. wykonać pomiar ciśnienia sprężania
D. sprawdzić poziom naładowania akumulatora
Wykręcenie wszystkich świec zapłonowych przed regulacją luzów zaworowych w silniku z zapłonem iskrowym jest kluczowe dla prawidłowego przeprowadzenia tego procesu. Głównym powodem jest umożliwienie swobodnego obrotu wału korbowego podczas ustawiania silnika w odpowiedniej pozycji i pomiaru luzów. Dodatkowo, wykręcone świece zapłonowe pozwalają na zmniejszenie obciążenia silnika, co minimalizuje ryzyko uszkodzenia elementów układu zapłonowego. Praktyka ta jest zgodna z najlepszymi standardami w branży motoryzacyjnej, które zalecają przeprowadzanie takich operacji w warunkach zapewniających bezpieczeństwo i komfort pracy mechanika. Warto również zauważyć, że brak wykręcenia świec może prowadzić do utrudnień w obrocie wału, co może skutkować błędnymi pomiarami luzów zaworowych. Dobrą praktyką jest również kontrola stanu świec zapłonowych przed ich ponownym zamontowaniem, co pozwoli na wczesne wykrycie potencjalnych problemów z układem zapłonowym.

Pytanie 8

W trakcie analizy hamulców na stanowisku rolkowym przeprowadza się przede wszystkim pomiar

A. siły hamowania
B. siły tarcia
C. dystansu hamowania
D. opóźnienia przy hamowaniu
Pomiar siły hamowania na stanowisku rolkowym jest kluczowym elementem oceny efektywności systemu hamulcowego pojazdu. Siła hamowania, mierzona w niutonach (N), określa, jaką moc hamulce są w stanie wygenerować w momencie działania, co bezpośrednio wpływa na bezpieczeństwo i skuteczność hamowania. W praktyce, podczas testów na stanowisku rolkowym, pojazd jest umieszczany na rolkach, a następnie przy użyciu pedału hamulca generowana jest siła, która jest następnie rejestrowana. Pomiar ten pozwala na ocenę stanu technicznego hamulców, co jest zgodne z normami, takimi jak UNECE Regulation No. 13, które regulują wymagania dotyczące hamulców pojazdów. Dobre praktyki w zakresie diagnostyki hamulców obejmują regularne kontrole oraz analizę wyników pomiarów, co umożliwia wczesne wykrywanie ewentualnych usterek oraz zapewnia bezpieczeństwo użytkowników dróg. Zrozumienie siły hamowania oraz jej wpływu na drogę hamowania i opóźnienie jest kluczowe dla inżynierów i techników zajmujących się pojazdami.

Pytanie 9

Układ zblokowany przedni wskazuje, iż silnik znajduje się

A. z tyłu pojazdu i napędza koła przednie
B. z przodu pojazdu i napędza koła tylne
C. z przodu pojazdu i napędza koła przednie
D. z tyłu pojazdu i napędza koła tylne
Układ zblokowany przedni oznacza, że silnik jest umieszczony z przodu pojazdu i napędza koła przednie. Taki układ charakteryzuje się lepszą przyczepnością na nawierzchni, zwłaszcza w trudnych warunkach, co jest kluczowe dla zachowania stabilności pojazdu. Przykładem zastosowania jest większość samochodów osobowych, gdzie taki układ napędowy pozwala na efektywne przeniesienie momentu obrotowego na koła przednie, co z kolei wpływa na lepsze prowadzenie oraz komfort jazdy. W standardach branżowych, jak ISO 26262, układy zblokowane są preferowane w kontekście bezpieczeństwa, gdyż pozwalają na bardziej przewidywalne reakcje pojazdu w sytuacjach awaryjnych. Dodatkowo, układy te są często korzystniejsze pod względem kosztów produkcji i konserwacji, co czyni je popularnym wyborem wśród producentów samochodów.

Pytanie 10

W alternatorze, który generuje prąd przemienny do zasilania elektryki w samochodzie, zastosowane jest zjawisko indukcji

A. elektrycznej
B. elektrostatycznej
C. elektromagnetycznej
D. wzajemnej
Alternator w samochodzie generuje prąd przemienny dzięki zjawisku indukcji elektromagnetycznej. Zjawisko to polega na wytwarzaniu siły elektromotorycznej w przewodniku, gdy znajduje się on w zmiennym polu magnetycznym. W alternatorze wirnik (rotor) obraca się w polu magnetycznym stworzonym przez stałe magnesy lub elektromagnesy, co powoduje zmianę strumienia magnetycznego, co z kolei indukuje prąd przemienny w stojanie. Prąd ten jest następnie prostowany przez prostownik, aby zasilić systemy elektryczne pojazdu. Praktycznym zastosowaniem tej technologii jest dostarczanie energii do akumulatora oraz różnych komponentów elektrycznych, takich jak oświetlenie, systemy audio czy jednostki sterujące. Właściwe projektowanie alternatorów zgodnie z normami SAE (Society of Automotive Engineers) oraz IEC (International Electrotechnical Commission) zapewnia ich wydajność oraz trwałość, co jest kluczowe dla niezawodności pojazdów. W związku z tym zrozumienie zasady działania indukcji elektromagnetycznej jest niezbędne dla specjalistów w dziedzinie inżynierii elektrycznej i motoryzacyjnej.

Pytanie 11

Jakie jest zadanie systemu ABS?

A. zapobieganie poślizgowi kół na śliskiej nawierzchni podczas ruszania
B. zapobieganie zablokowaniu kół w trakcie hamowania na śliskiej nawierzchni
C. wspomaganie procesu hamowania w sytuacjach awaryjnych
D. stabilizacja trajektorii jazdy podczas pokonywania zakrętów
Układ ABS, czyli system zapobiegający blokowaniu kół, ma kluczowe znaczenie dla bezpieczeństwa jazdy, szczególnie na śliskich nawierzchniach. Jego głównym zadaniem jest utrzymanie kontroli nad pojazdem podczas hamowania, co zapobiega poślizgowi kół i pozwala kierowcy na dalsze manewrowanie. W przypadku nagłego hamowania na oblodzonej lub mokrej drodze, system ABS automatycznie zmienia siłę hamowania, aby uniknąć blokady kół. Dzięki temu, kierowca może utrzymać kontrolę nad pojazdem, co jest nieocenioną zaletą w sytuacjach awaryjnych. Na przykład, podczas hamowania w warunkach deszczowych, ABS może pomóc w skróceniu drogi hamowania, a jednocześnie umożliwić kierowcy wykonanie zwrotu, co może być kluczowe dla uniknięcia przeszkód. Standardy branżowe zalecają stosowanie systemów ABS w nowoczesnych pojazdach, co stało się normą w przemyśle motoryzacyjnym, przyczyniając się do poprawy ogólnego bezpieczeństwa na drogach.

Pytanie 12

Pomiar ciśnienia sprężania przeprowadza się, aby ocenić szczelność

A. opon
B. układu wydechowego
C. chłodnicy
D. zaworów
Pomiar ciśnienia sprężania w silniku spalinowym jest kluczowym testem diagnostycznym, który pozwala ocenić szczelność zaworów, a także ogólny stan silnika. Wysokiej jakości szczelność zaworów jest niezbędna do prawidłowego działania silnika, ponieważ zapewnia efektywne spalanie mieszanki paliwowo-powietrznej. W przypadku uszkodzenia lub niewłaściwego funkcjonowania zaworów, ciśnienie sprężania może być znacznie niższe niż normy producenta, co prowadzi do obniżenia mocy silnika, zwiększenia zużycia paliwa oraz emisji spalin. Standardowe procedury diagnostyczne, takie jak pomiar ciśnienia sprężania, są zalecane przez producentów silników i stosowane w warsztatach mechanicznych jako rutynowy element diagnostyki. Dobrą praktyką jest regularne przeprowadzanie takich testów, aby wykryć problemy, zanim doprowadzą one do poważniejszych awarii. Na przykład, w silnikach z uszkodzonymi zaworami wydechowymi, może wystąpić zjawisko "zaworu niezamkniętego" (ang. valve overlap), co znacząco obniża wydajność silnika. Testy ciśnienia sprężania powinny być przeprowadzane z użyciem odpowiednich narzędzi, takich jak manometry, które są kalibrowane i spełniają standardy branżowe.

Pytanie 13

Pierwsza cyfra w oznaczeniu "9.8" widocznym na śrubach wskazuje

A. klasę wytrzymałości, która definiuje stosunek granicy plastyczności do wytrzymałości wynoszący 90 N/mm2
B. moment dokręcenia 90 Nm
C. kod producenta
D. klasę wytrzymałości, która określa wytrzymałość na rozciąganie równą 900 N/mm2
Odpowiedź wskazująca na klasę wytrzymałości, która określa wytrzymałość na rozciąganie równą 900 N/mm2, jest poprawna z dwóch powodów. Po pierwsze, oznaczenie '9.8' w kontekście śrub odnosi się do klasy wytrzymałości, która w systemie metrycznym jest często reprezentowana przez pierwszą cyfrę. Druga cyfra, w tym przypadku '8', wskazuje na dodatkowe właściwości materiału. Klasa wytrzymałości 9.8 odpowiada śrubom, które osiągają wytrzymałość na rozciąganie równą 900 N/mm2 oraz granicę plastyczności na poziomie co najmniej 80% tej wartości, czyli 800 N/mm2. Takie oznaczenie jest zgodne z międzynarodowymi standardami ISO, które regulują klasyfikację materiałów. W praktyce, śruby tej klasy są stosowane w przemyśle motoryzacyjnym oraz budowlanym, gdzie wymagana jest znaczna wytrzymałość na obciążenia dynamiczne i statyczne. Zrozumienie tych klasyfikacji jest kluczowe dla inżynierów i techników, aby dobierać odpowiednie komponenty w zależności od zastosowania i wymagań konstrukcyjnych.

Pytanie 14

W trakcie regularnej inspekcji systemu hamulcowego przeprowadza się pomiar

A. przenikalności cieplnej
B. lepkości płynu hamulcowego
C. temperatury wrzenia płynu hamulcowego
D. temperatury krzepnięcia płynu hamulcowego
Temperatura wrzenia płynu hamulcowego to naprawdę ważna sprawa, która powinna być regularnie sprawdzana. Płyny hamulcowe mają to do siebie, że wchłaniają wilgoć. Z czasem woda dostaje się do płynu i to wpływa na jego właściwości. Gdy temperatura wrzenia jest zbyt niska, zwłaszcza podczas mocnego hamowania, może być naprawdę niebezpiecznie, bo płyn zaczyna wrzeć. To zjawisko nazywa się 'wodą w układzie'. Dlatego naprawdę warto regularnie kontrolować, co się dzieje z płynem hamulcowym. Na przykład płyn DOT 4 ma temperaturę wrzenia na poziomie przynajmniej 155 °C, ale po nawodnieniu może to spaść nawet poniżej 100 °C. To duża różnica, która może pogorszyć działanie hamulców. Kontrolując temperaturę wrzenia, możemy zapobiec poważnym problemom i zapewnić sobie bezpieczeństwo na drodze.

Pytanie 15

Jakiego oleju o symbolu wymaga przekładnia główna?

A. DOT3
B. GL-5 85W90
C. G12PLUS
D. API5W30
Odpowiedź GL-5 85W90 jest jak najbardziej trafna. Ten olej jest zaprojektowany specjalnie do stosowania w przekładniach głównych w pojazdach, które często muszą zmagać się z trudnymi warunkami. Spełnia normy klasyfikacji GL-5, co oznacza, że ma świetne właściwości przeciw zużyciowe, a także dobrze smaruje pod dużym obciążeniem. Lepkość 85W90 wskazuje, że olej działa dobrze w niskich temperaturach, a jednocześnie trzyma się dobrze w wysokich. Z doświadczenia wiem, że stosowanie GL-5 85W90 w przekładniach głównych różnych pojazdów, od terenowych po osobowe, pozwala uniknąć wielu problemów i sprawia, że działają one dłużej i skuteczniej. Warto również zwrócić uwagę, że ten olej jest zgodny z normami API, więc stoi na wysokim poziomie jakości. Zawsze dobrze jest używać oleju zgodnego z zaleceniami producenta, co w tym przypadku oznacza olej klasy GL-5.

Pytanie 16

Zacisk hamulca stanowi część systemu hamulcowego

A. bębnowego
B. elektromagnetycznego
C. tarczowego
D. taśmowego
Zacisk hamulcowy to mega ważny element w układzie hamulcowym tarczowym, który jest teraz bardzo popularny w autach. Jego główna rola to przytrzymywanie i dociskanie klocków hamulcowych do tarczy, co w rezultacie tworzy siłę hamującą. Kiedy kierowca wciska pedał hamulca, ciśnienie hydrauliczne wędruje do zacisków, co sprawia, że tłoczki przesuwają się i dociskają klocki do obracającej się tarczy. Tak to działa, a efektem jest skuteczne hamowanie. Z mojego doświadczenia, warto regularnie sprawdzać stan klocków hamulcowych i poziom płynu hamulcowego, bo to wpływa na bezpieczeństwo na drodze. Ostatnio w autach często pojawiają się systemy ABS, które współpracują z układem tarczowym, żeby nie blokować kół i stabilizować pojazd podczas hamowania. Warto wiedzieć, że układ tarczowy jest lepszy w sytuacjach, gdzie potrzebne jest mocne hamowanie i lepsze chłodzenie, dlatego często można go spotkać w sportowych i osobowych autach.

Pytanie 17

Jaką liczbę znaków zawiera numer VIN?

A. składa się z 15 znaków
B. składa się z 10 znaków
C. składa się z 17 znaków
D. składa się z 12 znaków
Numer VIN (Vehicle Identification Number) składa się z 17 znaków, co jest wynikiem standaryzacji wprowadzonej przez Międzynarodową Organizację Normalizacyjną (ISO) i przyjętej przez wiele krajów. VIN zawiera informacje o pojeździe, takie jak producent, model, typ nadwozia, rok produkcji, a także unikalny numer seryjny. Przykładowo, pierwsze trzy znaki VIN, znane jako WMI (World Manufacturer Identifier), identyfikują producenta pojazdu. Kolejne znaki dostarczają szczegółowych informacji na temat modelu, silnika oraz miejsca produkcji. Dzięki temu systemowi, każdy pojazd na świecie ma unikalny identyfikator, co jest niezbędne do rejestracji, ubezpieczenia oraz identyfikacji w przypadku kradzieży. Zrozumienie struktury i znaczenia numeru VIN jest kluczowe dla osób pracujących w branży motoryzacyjnej, a także dla właścicieli pojazdów, którzy chcą zadbać o swoje mienie.

Pytanie 18

Podczas ustawiania geometrii kół w pojazdach należy zwrócić szczególną uwagę na

A. napięcie pasków klinowych
B. stan amortyzatorów
C. kąty pochylenia kół i zbieżność
D. poziom płynu chłodniczego
Podczas ustawiania geometrii kół w pojazdach, kluczowym aspektem jest poprawne ustawienie kątów pochylenia kół oraz zbieżności. Te parametry wpływają bezpośrednio na prowadzenie pojazdu, zużycie opon oraz bezpieczeństwo jazdy. Kąty pochylenia kół odnoszą się do tego, jak koła są ustawione w pionie względem nawierzchni drogi. Jeśli są one nieprawidłowe, może to prowadzić do nierównomiernego zużycia opon oraz problemów z prowadzeniem pojazdu. Zbieżność natomiast odnosi się do ustawienia kół w poziomie - czy są one skierowane ku sobie czy od siebie. Prawidłowa zbieżność jest kluczowa dla stabilności pojazdu podczas jazdy na wprost i w zakrętach. Ustawienie geometrii kół zgodnie z zaleceniami producenta pojazdu jest standardową procedurą podczas serwisowania układu kierowniczego i zawieszenia. Warto również wiedzieć, że różne pojazdy mogą mieć różne wymagania co do ustawień geometrii, dlatego zawsze należy odnosić się do specyfikacji danego modelu. Prawidłowo ustawiona geometria kół przekłada się na komfort jazdy i mniejsze zużycie paliwa.

Pytanie 19

Jakie ciśnienie powinno panować w zbiorniku paliwa wysokiego ciśnienia w silniku wyposażonym w system zasilania Common Rail trzeciej generacji?

A. 180 MPa
B. 1,8 MPa
C. 1800 MPa
D. 18 MPa
Odpowiedź 180 MPa jest prawidłowa, ponieważ w silnikach z układem zasilania Common Rail trzeciej generacji ciśnienie paliwa w zasobniku paliwa wysokiego ciśnienia powinno wynosić około 180 MPa. Wysokie ciśnienie paliwa jest kluczowe dla prawidłowego działania układu wtryskowego, ponieważ umożliwia precyzyjne wtryskiwanie paliwa do komory spalania, co z kolei wpływa na efektywność spalania oraz emisję spalin. Standardy branżowe, takie jak Euro 6, wymagają od producentów stosowania technologii, które redukują emisję zanieczyszczeń, co jest możliwe dzięki zastosowaniu układów zasilania o wysokim ciśnieniu. Przykładowo, w silnikach Diesla, ciśnienie na poziomie 180 MPa pozwala na optymalną atomizację paliwa, co skutkuje lepszym spalaniem i mniejszym zużyciem paliwa. Ponadto, w nowoczesnych systemach wtryskowych, takich jak piezoelektryczne wtryskiwacze, ciśnienie paliwa odgrywa kluczową rolę w szybkiej reakcji na zmiany obciążenia silnika, co przekłada się na lepsze osiągi i większą dynamikę pojazdu.

Pytanie 20

Kolejność dokręcania śrub/nakrętek głowicy rzędowego silnika wielocylindrowego ustalana przez producenta realizuje się według jakiej zasady?

A. od wnętrza do zewnętrznej strony
B. po kolei od strony skrzyni biegów
C. od zewnętrznej strony do wnętrza
D. po kolei od strony napędu wałka rozrządu
Właściwa kolejność dokręcania śrub głowicy silnika od środka do zewnątrz jest kluczowa dla zapewnienia równomiernego rozkładu sił i uniknięcia odkształceń w obszarze głowicy. Dzięki tej metodzie, wszystkie śruby działają w zharmonizowany sposób, co pozwala na równomierne dociśnięcie uszczelki oraz stabilizację całej konstrukcji. Działanie to jest szczególnie istotne w silnikach wielocylindrowych, gdzie różnice w rozkładzie ciśnienia mogłyby prowadzić do uszkodzeń, takich jak nieszczelności lub pęknięcia. Przykładem może być silnik typu V, gdzie ścisłe przestrzeganie tej zasady jest niezbędne do zapewnienia optymalnej pracy jednostki napędowej. W branży motoryzacyjnej standardy takie jak ISO 6789 określają metody i narzędzia do precyzyjnego dokręcania, co podkreśla wagę tego procesu. Wykonując dokręcanie zgodnie z tą zasadą, minimalizujemy ryzyko awarii i przedłużamy żywotność silnika, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 21

W celu naprawienia otworu, który podczas użytkowania stracił swój nominalny wymiar, powinno się wykorzystać

A. spawanie
B. tulejowanie
C. nitowanie
D. kucie
Tulejowanie to taki sprytny sposób na naprawę otworów, które straciły swoje wymiary przez długotrwałe użytkowanie. W tym procesie wkłada się tuleje do środka otworów, co pozwala na przywrócenie ich właściwej średnicy. Można to spotkać w takich branżach jak przemysł maszynowy czy motoryzacyjny, gdzie dokładność wymiarów jest bardzo ważna. Na przykład, kiedy remontuje się bloki silników, to jeśli otwory na cylindry są uszkodzone, można zastosować tulejowanie, żeby zamontować nowe tłoki. Warto też wiedzieć, że standardy jak ISO 286 określają tolerancje wymiarowe, co ma duże znaczenie w tym procesie. Dobrze jest również pamiętać, żeby dobierać odpowiednie materiały tulei oraz dokładnie mierzyć przed i po naprawie. Tulejowanie to naprawdę fajna opcja, bo może zaoszczędzić czas i kasę w porównaniu do wymiany całych elementów, więc firmy chętnie z tego korzystają.

Pytanie 22

Jakie urządzenie jest niezbędne do właściwego zainstalowania tulei metalowo-gumowej w uchu resoru pojazdu?

A. ściągacz do łożysk
B. prasę hydrauliczną
C. wciągarkę linową
D. młotek oraz pobijak
Prasa hydrauliczna jest narzędziem, które umożliwia precyzyjne i równomierne wprowadzenie tulei metalowo-gumowej do uchu resoru, co jest kluczowe dla zapewnienia prawidłowego montażu. Dzięki zastosowaniu hydrauliki można łatwo kontrolować siłę nacisku, co jest szczególnie ważne, aby uniknąć uszkodzenia elementów resoru lub tulei. W praktyce, podczas montażu tulei, użycie prasy hydraulicznej pozwala na osiągnięcie odpowiedniego momentu siły, co jest zgodne z wymaganiami producentów i normami branżowymi. Wydajność tego narzędzia sprawia, że jest ono powszechnie wykorzystywane w zakładach zajmujących się serwisowaniem pojazdów, co przyczynia się do poprawy efektywności prac i bezpieczeństwa mechaników. Prasa hydrauliczna jest także zalecana w standardach jakości, np. w dokumentacji ISO dotyczącej montażu elementów mechanicznych, gdzie dokładność i powtarzalność procesu są kluczowe.

Pytanie 23

Przed długotrwałym magazynowaniem, wszystkie chromowane i niklowane elementy pojazdu powinny zostać pokryte

A. smarem miedziowym
B. preparatem silikonowym
C. wazeliną techniczną
D. smarem litowym
Wazelina techniczna jest idealnym środkiem do ochrony chromowanych i niklowanych elementów pojazdu przed korozją oraz działaniem wilgoci. Jej gęsta konsystencja pozwala na długotrwałe zabezpieczenie powierzchni metalowych, co jest szczególnie istotne podczas długotrwałego przechowywania. Wazelina tworzy na powierzchni warstwę ochronną, która chroni przed działaniem czynników atmosferycznych oraz osadami. W praktyce, przed przechowywaniem pojazdu, należy dokładnie oczyścić wszystkie chromowane i niklowane części, a następnie nałożyć wazelinę równomiernie, aby uzyskać pełną ochronę. Stosowanie wazeliny technicznej jest zgodne z zaleceniami wielu producentów sprzętu motoryzacyjnego oraz stanowi część standardowych procedur konserwacji, co potwierdzają różne publikacje branżowe. Zastosowanie tego środka nie tylko wydłuża żywotność elementów metalowych, ale również minimalizuje ryzyko ich zniszczenia w wyniku korozji.

Pytanie 24

Jakie elementy można naprawić stosując metodę lutowania?

A. uszkodzoną końcówkę drążka kierowniczego
B. pęknięty wał napędowy
C. zużyte łożysko ślizgowe wału korbowego
D. nieszczelną chłodnicę
Lutowanie to super metoda, jeśli chodzi o naprawę nieszczelnych chłodnic. Dzięki temu można skutecznie połączyć różne elementy metalowe, bo materiał lutowniczy się topi i załatwia sprawę. Chłodnice zazwyczaj są z aluminium albo miedzi, więc lutowanie naprawdę daje radę w naprawie wycieków płynu chłodzącego. Z mojego doświadczenia ważne jest, żeby najpierw dokładnie oczyścić uszkodzone miejsce, a potem nałożyć topnik. To zapewnia lepsze trzymanie się lutowia. Potem całość musi się podgrzać, co topi materiał i łączy elementy. Dobrze zrobione lutowanie jest trwałe i wytrzymuje wysokie ciśnienie oraz temperaturę, co jest mega istotne w układach chłodzenia w samochodach. Warto mieć na uwadze, że są standardy, jak ISO 14731, które wskazują, jak ogarniać lutowanie, by mieć pewność, że połączenia są na najwyższym poziomie. Regularne kontrolowanie nieszczelności chłodnic też nie zaszkodzi – lepiej zapobiegać problemom niż je potem łatać.

Pytanie 25

Po wykonaniu naprawy tłumika końcowego, trzeba przeprowadzić kontrolę pojazdu przy użyciu

A. testera diagnostycznego
B. miernika uniwersalnego
C. sonometru
D. refraktometru
Sonometr to instrument, który służy do pomiaru poziomu hałasu, a jego zastosowanie w kontroli tłumika końcowego pojazdu jest niezwykle istotne. Po naprawie tłumika, który ma na celu redukcję hałasu emitowanego przez silnik, ważne jest, aby upewnić się, że jego działanie jest zgodne z normami akustycznymi. W wielu krajach istnieją przepisy dotyczące dopuszczalnych poziomów hałasu emitowanego przez pojazdy, dlatego pomiar za pomocą sonometru jest kluczowy. Przykładowo, w Europie normy te są określane przez dyrektywy unijne, które regulują poziomy hałasu w pojazdach silnikowych. Używając sonometru, mechanik może określić, czy poziom hałasu mieści się w zalecanych granicach, co jest niezbędne dla zgodności z przepisami oraz dla komfortu użytkowników dróg. Przeprowadzone pomiary mogą również pomóc w identyfikacji niewłaściwych napraw, które mogą prowadzić do nadmiernego hałasu, co w konsekwencji może wpłynąć na dalsze działanie pojazdu oraz jego trwałość.

Pytanie 26

Na desce rozdzielczej samochodu zaświeciła się lampka ostrzegawcza ciśnienia oleju. W pierwszej kolejności powinno się

A. dokonać pomiaru ciśnienia oleju
B. zweryfikować wydajność pompy olejowej
C. ocenić funkcjonowanie czujnika oleju
D. sprawdzić poziom oleju
Zasygnalizowana kontrolka ciśnienia oleju na desce rozdzielczej pojazdu wskazuje, że może występować problem z układem smarowania silnika. Pierwszym krokiem powinno być skontrolowanie poziomu oleju silnikowego, ponieważ zbyt niski poziom oleju jest najczęstszą przyczyną spadku ciśnienia. W praktyce, niewystarczająca ilość oleju może prowadzić do poważnych uszkodzeń silnika, w tym do zatarcia tłoków czy uszkodzenia panewki. Regularne sprawdzanie poziomu oleju jest zgodne z zaleceniami producentów pojazdów i standardami branżowymi, które podkreślają konieczność utrzymania odpowiedniego poziomu oleju w celu zapewnienia prawidłowego smarowania. W przypadku niskiego poziomu oleju, należy uzupełnić go odpowiednim olejem, spełniającym normy jakościowe, co zapobiegnie dalszym problemom. Użytkownicy powinni również być świadomi, że poziom oleju warto sprawdzać regularnie, co kilka tysięcy kilometrów, a nie tylko w momencie, gdy świeci kontrolka. Dbałość o odpowiedni poziom oleju jest kluczowa dla długowieczności silnika i jego efektywnego działania.

Pytanie 27

Silnik z zapłonem iskrowym, w którym olej silnikowy przedostaje się przez nieszczelności do komory spalania, generuje z rury wydechowej dym o odcieniu

A. czerwonym
B. niebieskim
C. białym
D. czarnym
Silnik z zapłonem iskrowym, w którym olej silnikowy przenika do komory spalania, emituje dym o niebieskim zabarwieniu. To zjawisko jest wynikiem spalania oleju, który zawiera w sobie substancje smarne i dodatki chemiczne. Kiedy olej dostaje się do komory spalania, jego spalanie prowadzi do powstania charakterystycznych, niebieskich spalin. Niebieski dym jest często sygnałem, że silnik może mieć problemy z uszczelnieniem, co może prowadzić do dalszych uszkodzeń, jeśli nie zostanie naprawione. W praktyce, wykrycie niebieskiego dymu w spalinach silnika powinno skłonić właściciela pojazdu do natychmiastowej diagnostyki, aby zidentyfikować przyczynę wycieku oleju. Można to osiągnąć za pomocą testów ciśnienia kompresji, analizy oleju oraz inspekcji wizualnej uszczelek i pierścieni tłokowych. W motoryzacji, stosowanie odpowiednich standardów, jak SAE dla olejów silnikowych, jest kluczowe dla utrzymania silnika w dobrym stanie oraz minimalizowania emisji spalania oleju.

Pytanie 28

Częścią mechaniczną układu hamulcowego jest

A. zbiornik płynu hamulcowego
B. korektor siły hamowania
C. cylinderek hamulcowy
D. dźwignia hamulca ręcznego
Dźwignia hamulca ręcznego to jeden z najważniejszych elementów w mechanice auta, który pozwala kierowcom zatrzymać pojazd, zwłaszcza w sytuacjach, kiedy trzeba działać szybko. Używa się jej do zaciągania hamulców tylnej osi i działa na zasadzie przenoszenia siły mechanicznej, co jest bardzo praktyczne. Na przykład, gdy parkujesz na stoku, zaciągnięcie hamulca ręcznego jest wręcz kluczowe, żeby auto się nie stoczyło. W branży motoryzacyjnej obowiązują różne normy, jak ISO 26262, które mówią o bezpieczeństwie tych systemów, więc dźwignia ta musi być niezawodna. Ważne, żeby regularnie sprawdzać jej stan, bo wpływa to na nasze bezpieczeństwo na drodze. Moim zdaniem, każdy kierowca i mechanik powinien rozumieć, jak działa ta dźwignia, bo to nie tylko kwestia bezpieczeństwa, ale też komfortu jazdy.

Pytanie 29

Jakie zużycie określa wskaźnik TWI?

A. oleju silnikowego
B. płynu hamulcowego
C. opony
D. paliwa
Wskaźnik TWI (Tread Wear Indicator) jest kluczowym elementem bezpieczeństwa w oponach, który informuje kierowcę o stopniu zużycia bieżnika. Właściwe funkcjonowanie wskaźnika TWI jest niezbędne dla zachowania optymalnej przyczepności i stabilności pojazdu. W miarę eksploatacji opon, głębokość bieżnika zmniejsza się, co wpływa na zdolność do skutecznego odprowadzania wody i minimalizowania ryzyka aquaplaningu. Wskaźniki TWI są zazwyczaj umieszczone w rowkach bieżnika opon i stają się widoczne, gdy głębokość bieżnika spadnie do minimalnego poziomu, zazwyczaj 1,6 mm, co jest zgodne z przepisami prawa w wielu krajach. Regularne monitorowanie wskaźników TWI pozwala na wczesne wykrywanie konieczności wymiany opon, co nie tylko poprawia bezpieczeństwo, ale także wpływa na efektywność paliwową pojazdu. Dobre praktyki wskazują na konieczność wymiany opon w momencie, gdy TWI wskazuje na ich zużycie, co zapobiega dalszym uszkodzeniom i zapewnia lepsze osiągi pojazdu.

Pytanie 30

Cechą charakterystyczną bezstopniowej mechanicznej skrzyni biegów CVT jest

A. element synchronizujący
B. satelita
C. wałek napędowy
D. pas napędowy
Pas napędowy to naprawdę ważny element w bezstopniowej skrzyni biegów CVT, bo dzięki niemu moc z silnika płynnie przechodzi na koła. W tradycyjnych skrzyniach biegów mamy ustalone przełożenia, a CVT działa trochę inaczej, bo wykorzystuje pasy i stożki do zmiany przełożenia na bieżąco. Dzięki temu auto lepiej się prowadzi i bardziej oszczędza paliwo, co każdy kierowca na pewno doceni. W praktyce oznacza to, że jazda jest bardziej komfortowa, bo nie ma takiego szarpania. Widać, że CVT staje się coraz bardziej popularne, zwłaszcza w hybrydach, gdzie ekonomik to kluczowa sprawa. Pamiętaj też, żeby dbać o odpowiednie napięcie pasa i jego stan, bo to ma ogromne znaczenie dla wydajności i trwałości całego systemu.

Pytanie 31

W systemach chłodzenia silnika cyrkulacja cieczy chłodzącej jest realizowana przez

A. pompę wirnikową
B. pompę zębatą
C. pompę tłoczkową
D. pompę membranową
Pompa wirnikowa jest kluczowym elementem układu chłodzenia silnika, który zapewnia odpowiedni przepływ cieczy chłodzącej przez silnik i chłodnicę. Dzięki swojemu działaniu umożliwia skuteczne odprowadzanie ciepła powstającego podczas pracy silnika, co zapobiega przegrzewaniu się jednostki napędowej. W odróżnieniu od innych typów pomp, pompa wirnikowa charakteryzuje się wysoką efektywnością oraz zdolnością do wytwarzania dużego ciśnienia, co jest niezbędne w warunkach zmiennej objętości cieczy i różnorodnych obciążeń silnika. Przykładowo, w nowoczesnych samochodach osobowych pompy wirnikowe są często stosowane jako integralna część układu chłodzenia, co pozwala na uzyskanie optymalnych parametrów pracy silnika. W branży motoryzacyjnej standardem stało się wykorzystywanie pomp wirnikowych w silnikach spalinowych, co potwierdzają liczne badania oraz normy ISO, które określają wymogi dotyczące wydajności i niezawodności tych komponentów.

Pytanie 32

Jaki jest minimalny poziom efektywności hamowania hamulca roboczego, który pozwala na dalsze użytkowanie pojazdu osobowego?

A. 80%
B. 70%
C. 50%
D. 60%
Minimalny wskaźnik skuteczności hamowania hamulcem roboczym, który dopuszcza pojazd osobowy do dalszej eksploatacji, wynosi 50%. To oznacza, że pojazd musi być w stanie zatrzymać się w odpowiednim czasie, co jest kluczowe dla bezpieczeństwa ruchu drogowego. W praktyce, wskaźnik ten odnosi się do efektywności działania układu hamulcowego, który powinien umożliwiać hamowanie w sposób przewidywalny i skuteczny. Przykładowo, podczas rutynowych badań technicznych, pojazdy są testowane pod kątem tego wskaźnika, aby upewnić się, że nie stanowią zagrożenia dla kierowcy oraz innych uczestników ruchu. W przypadku, gdy wskaźnik ten jest poniżej wymaganych norm, pojazd nie powinien być dopuszczany do ruchu, co jest zgodne z regulacjami zawartymi w ustawodawstwie drogowym. Oznacza to również, że priorytetem powinno być regularne sprawdzanie i konserwacja układu hamulcowego, aby zapewnić jego efektywność oraz poprawić bezpieczeństwo jazdy.

Pytanie 33

Pierwszym krokiem przy demontażu silnika z pojazdu jest

A. odłączenie akumulatora
B. odkręcenie skrzyni biegów
C. odłączenie wiązki silnikowej
D. usunięcie oleju
Odłączenie akumulatora przed przystąpieniem do demontażu silnika jest kluczowym krokiem w procesie, który ma na celu zapewnienie bezpieczeństwa oraz ochronę komponentów pojazdu. Akumulator magazynuje energię elektryczną, a jego odłączenie eliminuje ryzyko zwarcia elektrycznego, co mogłoby prowadzić do uszkodzenia elektroniki pojazdu lub w skrajnych przypadkach do pożaru. Przykładem dobrych praktyk jest stosowanie odpowiednich narzędzi, takich jak klucze nasadowe, aby unikać uszkodzeń śrub oraz złączek. Dodatkowo, odłączenie akumulatora przed demontażem silnika jest zgodne z wytycznymi zawartymi w instrukcjach producentów pojazdów, co jest istotne dla zachowania gwarancji i integralności systemów elektronicznych. W praktyce należy również zabezpieczyć końcówki kabli poprzez ich owinięcie, aby uniknąć przypadkowego kontaktu z masą, co jest kolejnym elementem zwiększającym bezpieczeństwo pracy. Zastosowanie się do tych zaleceń jest niezbędne w każdym warsztacie zajmującym się naprawą samochodów.

Pytanie 34

Przekładnia napędowa z wykorzystaniem kół zębatych, wykorzystywana w mechanizmie rozrządu silnika, należy do grupy przekładni

A. walcowych
B. śrubowych
C. hiperboidalnych
D. ślimakowych
Napęd za pomocą kół zębatych, stosowany w układzie rozrządu silnika, rzeczywiście należy do grupy przekładni walcowych. Przekładnie te charakteryzują się tym, że moc jest przenoszona za pomocą zębów kół, które są osadzone na wałach. W silnikach spalinowych układ rozrządu jest kluczowym elementem, który synchronizuje ruch wału korbowego z zaworami, co pozwala na efektywne wciąganie powietrza i wydalanie spalin. Przykładem zastosowania przekładni walcowych są tradycyjne silniki, gdzie koła zębate o różnych średnicach pozwalają na precyzyjne dopasowanie prędkości obrotowej. Dzięki zastosowaniu przekładni walcowych, można uzyskać wysoką sprawność przenoszenia mocy oraz minimalizację luzów, co jest kluczowe dla niezawodności silnika. W branży motoryzacyjnej stosowanie przekładni walcowych jako elementu układu rozrządu jest standardem, co przekłada się na długowieczność i wydajność pojazdów.

Pytanie 35

Jak przeprowadza się pomiar ciśnienia oleju?

A. zawsze po wymianie oleju w silniku
B. na zimnym silniku
C. na rozgrzanym silniku
D. zawsze przed wymianą oleju w silniku
Pomiar ciśnienia oleju powinien być wykonywany na rozgrzanym silniku, ponieważ tylko w takich warunkach można uzyskać wiarygodne i miarodajne odczyty. Gdy silnik osiągnie optymalną temperaturę roboczą, olej staje się bardziej płynny, co umożliwia lepsze krążenie w układzie smarowania. Wysokie ciśnienie oleju na rozgrzanym silniku świadczy o prawidłowym funkcjonowaniu pompy olejowej oraz o tym, że olej dotarł do wszystkich kluczowych elementów silnika, takich jak panewki, wał korbowy czy głowica cylindra. Pomiar ciśnienia oleju w takich warunkach pozwala na ocenę stanu technicznego silnika oraz na wczesne wykrycie potencjalnych problemów, takich jak zbyt niskie ciśnienie, co może prowadzić do poważnych uszkodzeń komponentów silnika. Przykładowo, w silnikach spalinowych, ciśnienie oleju powinno mieścić się w określonym zakresie, zazwyczaj od 1,5 do 4 barów, w zależności od konstrukcji i producenta, co powinno być zawsze konsultowane z dokumentacją techniczną producenta.

Pytanie 36

Aby odkręcić zapieczoną nakrętkę w układzie zawieszenia, należy użyć

A. podgrzewacza indukcyjnego
B. rurhaka
C. szlifierki kątowej
D. młotka
Podgrzewacz indukcyjny jest najskuteczniejszym narzędziem do poluzowania zapieczonych nakrętek w układzie zawieszenia. Działa na zasadzie indukcji elektromagnetycznej, generując ciepło bezpośrednio w metalowych elementach. Wysoka temperatura, która szybko osiąga wartość niezbędną do rozszerzenia metalu, powoduje, że nakrętka oddziela się od złącza. To podejście jest preferowane, ponieważ minimalizuje ryzyko uszkodzenia otaczających komponentów oraz eliminuje konieczność użycia siły mechanicznej, co mogłoby prowadzić do deformacji lub pęknięć. W praktyce, stosowanie podgrzewacza indukcyjnego jest zgodne z normami bezpieczeństwa i najlepszymi praktykami w branży motoryzacyjnej. Pozwala to także na bardziej efektywne i szybkie wykonanie pracy, co jest kluczowe w środowisku warsztatowym. Przykładowo, podczas demontażu zawieszenia w pojazdach, gdzie nakrętki są często narażone na działanie czynników atmosferycznych, ich poluzowanie za pomocą podgrzewacza jest zarówno skuteczne, jak i bezpieczne. Dodatkowo, technologia ta pozwala na precyzyjne kontrolowanie temperatury, co jest istotne w przypadku wrażliwych materiałów.

Pytanie 37

Jakie informacje powinny być zawarte w dokumentacji dotyczącej przyjęcia pojazdu do diagnostyki?

A. regulacji zbieżności
B. wady podwozia
C. regulacji świateł
D. wady nadwozia
Wiesz, że informacje o uszkodzeniach nadwozia są mega ważne, kiedy przyjmujesz samochód do diagnostyki? Nadwozie to taka część, która naprawdę wpływa na bezpieczeństwo i stabilność pojazdu. Jak są jakieś wgniecenia czy pęknięcia, to może to prowadzić do problemów z jazdą, a nawet wypadków. Dlatego ważne jest, by w dokumentacji dokładnie spisać wszystkie takie uszkodzenia. Na przykład, jeśli auto miało kolizję, dobrze jest wiedzieć, co mogło się stać, żeby potem pasażerowie byli bezpieczni. Fajnie jest też przeprowadzić wizualną ocenę i pomiary nadwozia, żeby wyłapać ewentualne deformacje. To standardowa procedura, która pomaga uniknąć dalszych kłopotów i zapewnić, że auto jest w dobrym stanie.

Pytanie 38

W trakcie diagnostyki pompy paliwowej nie wykonuje się pomiaru

A. ciśnienia wtrysku
B. wydatku pompy
C. podciśnienia ssania
D. ciśnienia tłoczenia
Pompa paliwowa jest kluczowym elementem systemu zasilania silnika, a podczas jej diagnostyki istotne jest zrozumienie, jakie parametry są monitorowane. Pomiar ciśnienia wtrysku nie jest standardowym pomiarem przeprowadzanym podczas diagnostyki samej pompy paliwowej. Ciśnienie wtrysku odnosi się do ciśnienia, z jakim paliwo wtryskiwane jest do komory spalania przez wtryskiwacze i jest odzwierciedleniem działania układu wtryskowego, a nie samej pompy. Z drugiej strony, ciśnienie tłoczenia i wydatek pompy są kluczowymi parametrami, które określają efektywność działania pompy paliwowej. W praktyce, podczas diagnostyki należy skupić się na pomiarach, które bezpośrednio odnoszą się do wydajności pompy, takich jak ciśnienie tłoczenia oraz wydatek, aby zapewnić poprawne funkcjonowanie systemu zasilania. Dobrą praktyką jest także regularne kontrolowanie tych parametrów, aby upewnić się, że pompa działa w optymalnym zakresie, co ma kluczowe znaczenie dla wydajności i niezawodności silnika.

Pytanie 39

Podstawowym aspektem naprawy wiążącej się z wymianą uszczelki pod głowicą w silniku diesla jest odpowiedni jej wybór w odniesieniu do

A. twardości
B. elastyczności
C. grubości
D. długości
Wybór odpowiedniej grubości uszczelki pod głowicą jest kluczowym elementem w procesie naprawy silnika wysokoprężnego. Grubość uszczelki wpływa na szczelność połączenia między głowicą cylindrów a blokiem silnika, co jest niezbędne do prawidłowego funkcjonowania silnika. Zbyt cienka uszczelka może prowadzić do nieszczelności, co skutkuje wyciekami płynów chłodzących lub oleju oraz możliwym uszkodzeniem silnika z powodu przegrzania. Z kolei zbyt gruba uszczelka może zmienić geometrię komory spalania, co wpłynie na efektywność procesu spalania i może prowadzić do spadku mocy silnika. W praktyce, dobór grubości uszczelki powinien opierać się na specyfikacji producenta, która zazwyczaj zawiera szczegółowe informacje na temat odpowiednich wartości grubości dla danego modelu silnika. Dobrą praktyką jest również sprawdzenie stanu powierzchni uszczelnianych, aby upewnić się, że nie ma nierówności, które mogłyby wpłynąć na szczelność. Ponadto, korzystanie z uszczelek od renomowanych producentów, które spełniają określone normy jakościowe, jest zalecane w celu zapewnienia długotrwałej trwałości i niezawodności naprawy.

Pytanie 40

Dzięki lampie stroboskopowej możliwe jest wykonanie pomiaru

A. zbieżności kół.
B. kąta wyprzedzenia zapłonu.
C. ustawień świateł.
D. ciśnienia sprężania.
Lampy stroboskopowe są nieocenionym narzędziem w diagnostyce pojazdów, szczególnie do pomiaru kąta wyprzedzenia zapłonu. Działanie lampy stroboskopowej opiera się na zjawisku, które pozwala na wizualizację ruchomych punktów w czasie, w tym przypadku wałka rozrządu lub koła zamachowego. Dzięki synchronizacji błysków lampy z obrotami silnika można określić, czy kąt wyprzedzenia zapłonu jest zgodny z wartościami podanymi przez producenta pojazdu. Użycie lampy stroboskopowej pozwala na precyzyjne ustawienie zapłonu, co ma kluczowe znaczenie dla prawidłowego funkcjonowania silnika, jego wydajności oraz emisji spalin. W praktyce, podczas diagnostyki, technik ustawia lampę stroboskopową w odpowiedniej pozycji, a następnie obserwuje, w którym miejscu znacznik na obudowie silnika jest wyznaczony przez błysk lampy. W przypadku odchyleń, mechaniczną regulację można przeprowadzić w celu optymalizacji pracy silnika. Standardy branżowe, takie jak te określone przez SAE (Society of Automotive Engineers), podkreślają znaczenie precyzyjnego pomiaru i ustawienia kąta zapłonu dla zapewnienia efektywności operacyjnej silników spalinowych.