Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 24 kwietnia 2025 10:43
  • Data zakończenia: 24 kwietnia 2025 11:04

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Który z zaworów powinno się zastosować w układzie pneumatycznym, aby przyspieszyć wysuw tłoczyska w siłowniku dwustronnego działania?

A. Dławiąco zwrotnego
B. Przełącznika obiegu
C. Podwójnego sygnału
D. Szybkiego spustu
Zastosowanie zaworu szybkiego spustu w układzie pneumatycznym ma na celu przyspieszenie procesu wysuwu tłoczyska siłownika dwustronnego działania poprzez umożliwienie szybkiego uwolnienia sprężonego powietrza. Zawór ten działa na zasadzie minimalizacji oporu w drodze powietrza, co pozwala na zwiększenie prędkości ruchu tłoczyska. Przykładem zastosowania może być automatyka przemysłowa, gdzie szybkie ruchy elementów roboczych są kluczowe dla wydajności linii produkcyjnych. Wybierając zawór szybkiego spustu, warto kierować się normami takimi jak ISO 4414, które definiują wymagania dotyczące systemów pneumatycznych. Dodatkowo, prawidłowy dobór i montaż tego typu zaworu może zmniejszyć zużycie energii, ponieważ ogranicza straty ciśnienia. W praktyce wykorzystywanie zaworu szybkiego spustu w aplikacjach, gdzie czas cyklu ma znaczenie, przynosi wymierne korzyści, poprawiając ogólną efektywność operacyjną systemu.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Jaki czujnik powinno się wykorzystać do pomiaru wartości natężenia pola magnetycznego?

A. Tensometryczny
B. Ultradźwiękowy
C. Pojemnościowy
D. Hallotronowy
Czujnik hallotronowy jest specjalistycznym urządzeniem, które wykrywa obecność i natężenie pola magnetycznego. Zasada jego działania opiera się na efekcie Hall'a, który polega na wytwarzaniu napięcia poprzecznego na przewodniku, gdy przepływa przez niego prąd i jest jednocześnie poddany działaniu pola magnetycznego. Dzięki temu czujniki hallotronowe znajdują szerokie zastosowanie w różnych dziedzinach, takich jak motoryzacja (np. w systemach ABS), automatyka przemysłowa oraz urządzenia elektroniczne. Charakteryzują się wysoką czułością i precyzją, co czyni je najlepszym wyborem do pomiarów natężenia pola magnetycznego. Ich instalacja i użytkowanie są zgodne z powszechnie uznawanymi standardami branżowymi, co dodatkowo podnosi ich wartość w zastosowaniach przemysłowych. Warto również zwrócić uwagę na rozwój technologii, gdzie czujniki hallotronowe są integralną częścią nowoczesnych systemów pomiarowych i automatyzacyjnych.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Jakiego materiału powinno się użyć do ekranowania urządzeń pomiarowych, aby zredukować wpływ pól elektromagnetycznych na ich funkcjonowanie?

A. Teflon
B. Aluminium
C. Szkło
D. Preszpan
Aluminium jest doskonałym materiałem do ekranowania urządzeń pomiarowych ze względu na swoje właściwości elektryczne. Ma wysoką przewodność elektryczną, co pozwala na skuteczne blokowanie pól elektromagnetycznych poprzez odbicie fal elektromagnetycznych oraz ich pochłanianie. W praktyce, ekranowanie aluminium znajduje zastosowanie w wielu aplikacjach, w tym w laboratoriach pomiarowych, gdzie precyzyjne pomiary są kluczowe. W branży inżynieryjnej aluminium jest szeroko stosowane do budowy obudów urządzeń, które wymagają ochrony przed zakłóceniami elektromagnetycznymi, zgodnie z normami takimi jak IEC 61000-4-3, które określają wymagania dotyczące odporności na zakłócenia elektromagnetyczne. Dobre praktyki inżynieryjne zalecają również łączenie ekranów z uziemieniem, co dodatkowo zwiększa skuteczność ekranowania. Wykorzystanie aluminium w tej roli umożliwia również redukcję masy urządzeń, co jest istotne w konstrukcji przenośnych aplikacji pomiarowych.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Jaki typ smaru powinno się zastosować do smarowania elementów gumowych?

A. Silikonowy
B. Grafitowy
C. Litowy
D. Molibdenowy
Smar silikonowy jest idealnym wyborem do smarowania gumowych elementów ze względu na swoje właściwości chemiczne i fizyczne. Silikon wykazuje doskonałą adhezję do powierzchni gumowych, co przekłada się na długotrwałą ochronę przed zużyciem. Jest odporny na wysokie temperatury, co czyni go odpowiednim do zastosowań, w których gumowe elementy mogą być narażone na działanie ciepła. Ponadto, smar silikonowy nie powoduje degradacji materiałów elastomerowych, w przeciwieństwie do innych smarów, które mogą prowadzić do pęknięć lub twardnienia gumy. Przykłady zastosowania smaru silikonowego obejmują uszczelki w oknach, elementy zawieszenia w samochodach, a także w urządzeniach gospodarstwa domowego, takich jak pralki czy zmywarki. Stosując smar silikonowy, można znacznie wydłużyć żywotność gumowych części oraz poprawić ich działanie poprzez redukcję tarcia. Zgodnie z dobrymi praktykami branżowymi, smar silikonowy powinien być stosowany w każdej aplikacji wymagającej smarowania elementów gumowych, aby zapewnić ich optymalne funkcjonowanie.

Pytanie 10

Jakiego rodzaju środek ochrony indywidualnej powinien w szczególności wykorzystać pracownik podczas wymiany tranzystora CMOS?

A. Buty z izolującą podeszwą
B. Ochronne okulary
C. Opaskę uziemiającą
D. Fartuch ochronny z bawełny
Opaska uziemiająca to kluczowy element ochrony indywidualnej, szczególnie podczas pracy z wrażliwymi komponentami elektronicznymi, takimi jak tranzystory CMOS. Te elementy są szczególnie podatne na uszkodzenia spowodowane wyładowaniami elektrostatycznymi (ESD). Uziemienie pozwala na odprowadzenie ładunków elektrycznych, które mogłyby uszkodzić delikatne układy. W praktyce, noszenie opaski uziemiającej jest standardowym wymogiem w branży elektroniki, aby zapewnić, że operatorzy nie wprowadzą niepożądanych ładunków podczas manipulacji elementami. Przykładowo, w laboratoriach i zakładach produkcyjnych, gdzie pracuje się z urządzeniami wrażliwymi na ESD, stosowanie tych opasek jest obligatoryjne i często wymaga ich podłączenia do odpowiednich gniazd uziemiających. Warto również dodać, że zgodność z normami, takimi jak ANSI/ESD S20.20, podkreśla znaczenie stosowania środków ochrony ESD, w tym opasek uziemiających, w celu minimalizacji ryzyka uszkodzeń. Dzięki temu można znacznie zwiększyć niezawodność i żywotność urządzeń elektronicznych.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

W zakładzie produkcyjnym ustalono, że ciśnienie względne powietrza w zbiorniku wynosi +3 bary. Co oznacza, że nadciśnienie pNAD oraz ciśnienie absolutne (bezwzględne) pABS mają wartości:

A. pNAD = 3 bar, pABS = 3 bar
B. pNAD = 2 bar, pABS = 1 bar
C. pNAD = 3 bar, pABS = 4 bar
D. pNAD = 1 bar, pABS = 2 bar
Odpowiedź jest prawidłowa, ponieważ ciśnienie względne powietrza w zbiorniku wynoszące +3 bary oznacza, że wartość nadciśnienia (pNAD) wynosi 3 bary. Ciśnienie absolutne (pABS) oblicza się jako sumę ciśnienia atmosferycznego i ciśnienia względnego. W standardowych warunkach na poziomie morza ciśnienie atmosferyczne wynosi około 1 bara. Dlatego pABS = pNAD + pATM = 3 bary + 1 bar = 4 bary. Wiedza ta jest kluczowa w różnych zastosowaniach inżynieryjnych, takich jak projektowanie układów pneumatycznych i hydraulicznych, gdzie zachowanie ciśnienia jest kluczowe dla efektywności i bezpieczeństwa urządzeń. Przykładowo, w systemach pneumatycznych nadciśnienie jest wykorzystywane do napędu siłowników, a znajomość prawidłowych wartości ciśnień pozwala na optymalne ich zaprojektowanie zgodnie z normami ASME oraz ISO, co zapewnia ich prawidłowe funkcjonowanie i bezpieczeństwo użytkowania.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Jak można zmierzyć prędkość przepływu gazu?

A. używając czujnika termoelektrycznego
B. za pomocą zwężki Venturiego
C. z wykorzystaniem impulsatora fotoelektrycznego
D. przy pomocy pirometru radiacyjnego
Zwężka Venturiego jest urządzeniem pomiarowym, które wykorzystuje zjawisko Bernoulliego do pomiaru prędkości przepływu płynów, w tym gazów. Gdy gaz przechodzi przez zwężkę, jego prędkość wzrasta, a ciśnienie spada. Zmiana ciśnienia na wejściu i wyjściu zwężki pozwala na obliczenie prędkości przepływu, korzystając z równań dynamicznych. Zastosowanie zwężki Venturiego jest szerokie, obejmując przemysł chemiczny, energetykę oraz instalacje HVAC. Umożliwia ona nie tylko pomiar prędkości, ale również kontrolę i regulację przepływu mediów. Obliczenia dokonuje się najczęściej w oparciu o prawo Bernoulliego oraz równanie ciągłości, co czyni zwężkę skutecznym narzędziem w wielu zastosowaniach inżynieryjnych. Przykładem mogą być systemy wentylacyjne, gdzie precyzyjny pomiar przepływu gazu jest kluczowy dla efektywności energetycznej i jakości powietrza.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Jaki aparat elektryczny jest wykorzystywany do ochrony silnika indukcyjnego przed przeciążeniem?

A. Wyłącznik nadmiarowy
B. Wyłącznik różnicowoprądowy
C. Stycznik elektromagnetyczny
D. Przekaźnik termobimetalowy
Przekaźnik termobimetalowy jest urządzeniem, które działa na zasadzie różnicy temperatur pomiędzy dwoma metalami o różnych współczynnikach rozszerzalności. Jego głównym zastosowaniem jest ochrona silników indukcyjnych przed przeciążeniem i przegrzaniem. W momencie, gdy prąd płynący przez silnik przekracza ustaloną wartość, przekaźnik odcina zasilanie, co zapobiega uszkodzeniu silnika. Przekaźniki termobimetalowe są często stosowane w obwodach napędowych, gdzie silniki są narażone na zmienne warunki pracy. Dobrą praktyką jest ich instalacja w połączeniu z wyłącznikami automatycznymi, co zapewnia dodatkową ochronę. Zgodnie z normami IEC 60947-4-1, przekaźniki te muszą spełniać określone wymagania zabezpieczeń przeciążeniowych, co czyni je wiarygodnym rozwiązaniem w aplikacjach przemysłowych.

Pytanie 20

Jakie środki ochrony osobistej powinien używać pracownik obsługujący tokarkę precyzyjną?

A. Okulary ochronne
B. Rękawice i nauszniki ochronne
C. Maskę osłaniającą twarz
D. Czapkę z daszkiem
Okulary ochronne są kluczowym środkiem ochrony indywidualnej dla pracowników obsługujących tokarki precyzyjne. Ich zastosowanie ma na celu zabezpieczenie oczu przed odłamkami, pyłem oraz innymi niebezpiecznymi substancjami, które mogą powstawać podczas obróbki materiałów. Standardy BHP w przemyśle zalecają noszenie okularów ochronnych z odpowiednimi filtrami, które chronią przed szkodliwym promieniowaniem oraz zapewniają odpowiednią widoczność. Przykładowo, podczas frezowania lub toczenia metalu, mogą występować odpryski, które stanowią bezpośrednie zagrożenie dla wzroku. Dobre praktyki wskazują, że okulary powinny być przystosowane do specyficznych warunków pracy, a ich wybór powinien być zgodny z normami PN-EN 166 oraz PN-EN 170. Ponadto, pracownicy powinni być przeszkoleni w zakresie korzystania z tych środków ochrony, aby maksymalizować ich skuteczność.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Czy panewka stanowi część składową?

A. sprzęgła sztywnego tulejowego
B. łożyska ślizgowego
C. łożyska kulkowego
D. zaworu pneumatycznego
Panewka jest kluczowym elementem łożysk ślizgowych, które są szeroko stosowane w różnych zastosowaniach inżynieryjnych, takich jak silniki, maszyny przemysłowe czy urządzenia hydrauliczne. Panewka działa jako element osłony, która umożliwia swobodny ruch wału w obrębie obudowy, minimalizując tarcie i zużycie. W przypadku łożysk ślizgowych, panewka może być wykonana z różnych materiałów, takich jak tworzywa sztuczne, metale czy kompozyty, a jej wybór zależy od specyficznych warunków pracy, takich jak obciążenie, prędkość i temperatura. Standardy branżowe, takie jak ISO 11358, dostarczają wytycznych dotyczących projektowania i doboru materiałów dla panewki, co pozwala na osiągnięcie wysokiej wydajności oraz długiej żywotności łożyska. Przykładem zastosowania panewki w łożyskach ślizgowych są silniki spalinowe, gdzie panewka wału korbowego pozwala na przenoszenie dużych sił bez nadmiernego zużycia.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Element oznaczony symbolem BC 107 to tranzystor?

A. germanowy mocy
B. germanowy impulsowy
C. krzemowy m.cz.
D. krzemowy w.cz.
Odpowiedź 'krzemowy m.cz.' jest poprawna, ponieważ tranzystor BC 107 to tranzystor bipolarny wykonany z krzemu, który jest powszechnie stosowany w aplikacjach analogowych, zwłaszcza w obwodach wzmacniaczy niskosygnałowych. Krzem charakteryzuje się lepszymi właściwościami elektrycznymi w porównaniu do germanowych odpowiedników, co czyni go bardziej odpowiednim dla większości zastosowań. Tranzystor BC 107 ma maksymalne napięcie kolektor-emiter wynoszące 45V oraz maksymalny prąd kolektora do 100mA, co czyni go odpowiednim do niskonapięciowych zastosowań. Jego zastosowania obejmują wzmacniacze, przełączniki oraz zastosowania w układach cyfrowych. W kontekście praktycznym, użytkownicy powinni pamiętać, że dobór odpowiedniego tranzystora do aplikacji ma kluczowe znaczenie dla efektywności i niezawodności układu elektronicznego. Dlatego zawsze warto zapoznać się ze specyfikacjami technicznymi danego elementu przed jego zastosowaniem w projekcie.

Pytanie 29

Negatywny wpływ intensywnych fal elektromagnetycznych emitowanych przez działające urządzenie mechatroniczne można zredukować, stosując osłonę w postaci obudowy

A. drewnianej
B. z żywicy epoksydowej
C. polwinitowej
D. metalowej
Ekranowanie urządzeń mechatronicznych ma kluczowe znaczenie w zarządzaniu wpływem silnych fal elektromagnetycznych. Obudowy metalowe są najskuteczniejszym rozwiązaniem, ponieważ metale wykazują właściwości pochłaniające oraz odbijające fale elektromagnetyczne, co skutecznie minimalizuje ich przenikanie do wnętrza obudowy. Przykładem zastosowania metalowych obudów są urządzenia telekomunikacyjne, które muszą spełniać normy EMC (electromagnetic compatibility), co zapewnia ich prawidłowe funkcjonowanie w środowiskach o wysokim poziomie zakłóceń elektromagnetycznych. Standardy takie jak EN 55032 określają wymagania dotyczące emisji elektromagnetycznej, a obudowy metalowe są kluczowym elementem w ich spełnianiu. Dodatkowo, metalowe ekranowanie jest stosowane w wielu aplikacjach przemysłowych, takich jak maszyny CNC, gdzie zakłócenia mogą prowadzić do błędów w obróbce. Warto również wspomnieć, że odpowiednia konstrukcja obudowy, uwzględniająca różne czynniki, takie jak grubość materiału czy typ metalu, ma znaczący wpływ na efektywność ekranowania. Dlatego wybór metalowej obudowy jest najlepszym rozwiązaniem w kontekście ochrony przed niekorzystnymi skutkami fal elektromagnetycznych.

Pytanie 30

Jakie zadanie w obwodach elektronicznych realizuje transoptor?

A. Izoluje galwanicznie sygnały
B. Zwiększa prąd
C. Wytwarza sygnały sinusoidalne
D. Dodaje napięcia
Transoptor, czyli optoizolator, jest naprawdę ważnym elementem w elektronice. Jego główną rolą jest zapewnienie izolacji galwanicznej pomiędzy różnymi częściami układu. Działa to w ten sposób, że dzięki zjawisku fotonowemu możemy przesyłać sygnały elektryczne bez potrzeby bezpośredniego połączenia. To znaczy, że wrażliwe części obwodu są chronione przed wysokimi napięciami i zakłóceniami, co jest mega przydatne. Widzę, że transoptory są powszechnie stosowane w automatyce – świetnie izolują sygnały sterujące od obwodów zasilających. Dodatkowo w interfejsach komunikacyjnych zapewniają bezpieczeństwo przesyłanym danym. Korzystanie z transoptorów to naprawdę dobra praktyka w inżynierii, bo zmniejsza ryzyko uszkodzeń przez różnice potencjałów, zwiększając tym samym niezawodność systemu. Warto także dodać, że potrafią pracować w różnych częstotliwościach, co sprawia, że są dosyć uniwersalne w nowoczesnych układach elektronicznych.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Do działań wstępnych, które pozwolą na prawidłowy montaż nowego paska klinowego w przekładni pasowej, nie należy zaliczać

A. analizy stopnia zużycia
B. sprawdzenia wymiarów
C. weryfikacji czystości paska
D. oceny stopnia naprężenia
Odpowiedź 'sprawdzenie stopnia naprężenia' jest poprawna, ponieważ nie jest to czynność przygotowawcza, lecz działa niezbędne do zapewnienia prawidłowej pracy paska klinowego po jego montażu. Zanim pasek zostanie zamontowany, kluczowe jest, aby skupić się na weryfikacji wymiarów, kontroli czystości paska oraz ocenie stopnia zużycia. Weryfikacja wymiarów polega na sprawdzeniu długości i szerokości paska, co zapewnia, że nowy pasek będzie pasował do przekładni pasowej. Kontrola czystości paska jest niezbędna, aby zminimalizować ryzyko uszkodzeń mechanicznych i zapewnić odpowiednie tarcie między paskiem a kołami pasowymi. Ocena stopnia zużycia paska pozwala ustalić, czy stary pasek wymaga wymiany. Najważniejsze standardy branżowe, takie jak ISO 9001, zalecają dokładne przygotowanie przed montażem, co podkreśla znaczenie tych czynności, aby uniknąć problemów z wydajnością i trwałością systemu napędowego.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

W siłowniku działającym w obie strony o średnicy tłoka D = 20 mm oraz efektywności 0,8, zasilanym ciśnieniem p = 0,6 MPa, teoretyczna siła przy wysunięciu siłownika wynosi około

A. 160 N
B. 130 N
C. 150 N
D. 140 N
Aby obliczyć teoretyczną siłę wysunięcia siłownika dwustronnego działania, możemy skorzystać z następującego wzoru: F = p * A, gdzie F to siła, p to ciśnienie, a A to pole powierzchni tłoka. Pole powierzchni tłoka można obliczyć ze wzoru A = π * (D/2)², gdzie D to średnica tłoka. Dla D = 20 mm, A wynosi około 3,14 * (0,02/2)² = 3,14 * 0,01 = 0,0314 m². Przy ciśnieniu p = 0,6 MPa (czyli 600 kPa), obliczamy siłę: F = 600 kPa * 0,0314 m² = 18,84 kN. Jednakże ze względu na sprawność siłownika, musimy pomnożyć tę wartość przez 0,8. Ostatecznie otrzymujemy F = 18,84 kN * 0,8 = 15,07 kN, co w przeliczeniu na jednostki N daje 150 N. Tego rodzaju obliczenia są niezbędne w projektowaniu i analizie systemów pneumatycznych i hydraulicznych, a znajomość wzorów i jednostek jest kluczowa w praktyce inżynieryjnej.

Pytanie 39

Jakiego koloru powinna być izolacja przewodu PE?

A. Niebieski.
B. Żółto-zielony.
C. Brązowy.
D. Zielony.
Przewód PE, czyli Protective Earth, powinien być w kolorze żółto-zielonym. To jest standard, który obowiązuje w normie IEC 60446 i w innych przepisach dotyczących instalacji elektrycznych. Przewód PE jest naprawdę ważny, bo chroni nas przed porażeniem prądem. Dlatego jasne oznaczenie tego przewodu jest kluczowe dla bezpieczeństwa ludzi i urządzeń. Dzięki żółto-zielonemu kolorowi elektrycy od razu wiedzą, jaka jest jego funkcja, co ułatwia pracę i sprawia, że wszystko jest zgodne z międzynarodowymi standardami. Kiedy coś się dzieje i awaria występuje, ten przewód powinien odprowadzać nadmiar prądu do ziemi, zmniejszając ryzyko porażenia lub uszkodzenia sprzętu. Oznaczenie w odpowiednim kolorze pozwala na szybkie zidentyfikowanie przewodów, co jest niezbędne podczas montażu czy serwisu. Właściwe oznaczenie to też kwestia ważna, bo prawo wymaga, żeby projektanci i wykonawcy przestrzegali tych norm.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.