Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 23 maja 2025 09:48
  • Data zakończenia: 23 maja 2025 09:59

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaką metodę nie wykorzystuje się do wykrywania błędów transmisji danych w sieciach komunikacyjnych?

A. Pomiar napięcia sygnału przesyłanego
B. Sprawdzanie parzystości
C. Weryfikacja sumy kontrolnej
D. Cykliczna redundancja
Wszystkie metody wymienione w pytaniu, z wyjątkiem pomiaru poziomu napięcia, mają zastosowanie w detekcji błędów transmisji danych. Kontrola parzystości to jedna z najprostszych technik, gdzie do każdego bajtu danych dodawany jest dodatkowy bit, aby wskazać, czy liczba bitów o wartości 1 jest parzysta czy nieparzysta. Metoda ta może wykrywać błędy pojedynczego bitu, jednak nie jest w stanie zidentyfikować błędów wielu bitów, co stanowi jej główną słabość. Z kolei analiza sumy kontrolnej, opierająca się na zliczaniu wartości bajtów, pozwala na wykrycie błędów w transmisji, ale również nie jest w stanie naprawić uszkodzonych danych. Cykliczna kontrola nadmiarowości (CRC) to bardziej złożona metoda, która wykorzystuje algorytmy matematyczne do generowania kodu kontrolnego, co znacznie zwiększa zdolność detekcji błędów w porównaniu do poprzednich metod. Krytycznym błędem w myśleniu jest założenie, że wszystkie wymienione metody są na równi skuteczne w detekcji błędów. W rzeczywistości skuteczność każdej z nich zależy od kontekstu użycia oraz specyfiki przesyłanych danych. Pomiar poziomu napięcia nie jest metodą detekcji błędów, ponieważ koncentruje się na analizie fizycznych właściwości sygnału, a nie na weryfikacji spójności czy integralności danych. Dlatego ważne jest zrozumienie właściwego zastosowania każdej z tych metod w kontekście transmisji danych.

Pytanie 2

Osoba pracująca na linii produkcyjnej blach, która prowadzi proces odlewania taśmy cynkowo-tytanowej, powinna poza obuwiem, rękawicami i kaskiem roboczym posiadać odzież

A. roboczą trudnopalną
B. termoaktywną
C. roboczą standardową
D. bawełnianą w formie kombinezonu
Odpowiedź "robocze trudnopalne" jest poprawna, ponieważ w procesach związanych z odlewaniem metali, takich jak cynkowo-tytanowa taśma, istnieje wysokie ryzyko wystąpienia pożaru oraz poparzeń. Ubrania robocze trudnopalne są zaprojektowane z myślą o ochronie przed wysokimi temperaturami i płomieniami, co jest szczególnie istotne w środowiskach przemysłowych, gdzie pracownicy mogą być narażeni na kontakt z gorącymi materiałami czy odpryskami. Takie odzież jest wykonana z materiałów, które nie tylko opóźniają zapłon, ale także ograniczają rozwój ognia, co daje pracownikom cenny czas na ewakuację w przypadku zagrożenia. Przykładem może być odzież wykonana z tkanin takich jak Nomex czy Kevlar, które są powszechnie stosowane w przemyśle. Ponadto, stosowanie odzieży roboczej trudnopalnej jest zgodne z normami BHP oraz standardami branżowymi, które wymagają odpowiednich środków ochrony osobistej w środowisku pracy. Dlatego ważne jest, aby operatorzy linii produkcyjnej byli odpowiednio zabezpieczeni, by zminimalizować ryzyko wypadków związanych z ogniem.

Pytanie 3

Wskaź zasady, która stosowana jest wyłącznie przy demontażu urządzenia o złożonej konstrukcji?

A. Rozmontować kolejno każdą część urządzenia, nie uwzględniając ich przynależności do podzespołów urządzenia
B. Przygotować plan demontażu i wymontować jedynie wybrane podzespoły
C. Opracować plan demontażu i rozłożyć poszczególne zespoły urządzenia, a następnie zdemontować podzespoły na części
D. Ustalić lokalizację poszczególnych zespołów i oddzielić je, pozostawiając w całości
Poprawna odpowiedź odnosi się do kluczowych zasad demontażu skomplikowanych urządzeń, które są kluczowe dla zapewnienia bezpieczeństwa oraz efektywności całego procesu. Wykonanie planu demontażu jest istotne, ponieważ pozwala na zrozumienie struktury urządzenia, co z kolei umożliwia bezpieczne i uporządkowane rozmontowywanie poszczególnych zespołów. Przy takiej procedurze, każdy zespół jest najpierw demontowany w całości, co minimalizuje ryzyko uszkodzenia podzespołów i ułatwia ich późniejszy montaż lub konserwację. Przykładem zastosowania tej zasady może być demontaż skomplikowanych systemów elektronicznych, takich jak komputery czy maszyny przemysłowe, gdzie precyzyjne rozpoznanie kolejności demontażu, na podstawie schematów, może zapobiec zniszczeniu delikatnych komponentów. Zgodnie z najlepszymi praktykami, taki plan demontażu powinien być udokumentowany oraz regularnie aktualizowany, aby uwzględniał zmiany w konstrukcji urządzeń oraz nowe technologie.

Pytanie 4

Jakie urządzenie służy do pomiaru prędkości obrotowej wirnika silnika?

A. prądnica tachometryczna.
B. resolver.
C. galwanometr.
D. tensometr.
Prądnica tachometryczna jest urządzeniem stosowanym do pomiaru prędkości obrotowej wirnika silnika, które działa na zasadzie generowania napięcia proporcjonalnego do prędkości obrotowej wału. Jest to szczególnie przydatne w aplikacjach, gdzie precyzyjny pomiar prędkości jest kluczowy, takich jak w silnikach elektrycznych, systemach automatyki czy pojazdach. Prądnice tachometryczne są często wykorzystywane w systemach regulacji, gdzie dokładne informacje o prędkości obrotowej są niezbędne do uzyskania stabilności i efektywności działania układu. W praktyce, prądnice te znajdują zastosowanie w napędach, robotyce oraz w różnych maszynach przemysłowych. Dobrą praktyką jest regularne kalibrowanie prądnic tachometrycznych, aby zapewnić ich dokładność oraz niezawodność. Znajomość działania prądnic tachometrycznych oraz ich zastosowań pozwala inżynierom na efektywniejsze projektowanie systemów automatyki i zwiększa efektywność produkcji.

Pytanie 5

Wskaż urządzenie, które można wykorzystać do pomiaru ciśnienia wywieranego przez ciecz na ścianki zbiornika?

A. Pirometr
B. Tachometr
C. Tensometr
D. Żyroskop
Tensometr to urządzenie, które służy do pomiaru odkształceń materiałów pod wpływem sił zewnętrznych, w tym ciśnienia cieczy. W kontekście zbiorników, tensometry są wykorzystywane do monitorowania sił działających na ścianki zbiorników, co pozwala na ocenę ciśnienia cieczy wewnętrznej. Przykłady zastosowania to kontrola zbiorników ciśnieniowych w przemyśle chemicznym, gdzie precyzyjny pomiar ciśnienia jest kluczowy dla bezpieczeństwa i efektywności procesów. Tensometry mogą być integrowane z systemami automatyki przemysłowej, co umożliwia zdalne monitorowanie i wczesne wykrywanie nieprawidłowości. Zgodnie z normami branżowymi, stosowanie tensometrów w tych aplikacjach przyczynia się do zwiększenia niezawodności i wydajności operacyjnej. Dodatkowo, dzięki stosowaniu materiałów o wysokiej czułości i precyzji, tensometry zapewniają dokładne i powtarzalne pomiary, co jest niezwykle istotne w kontroli procesów technologicznych.

Pytanie 6

Przekładnie, które umożliwiają ruch posuwowy w tokarkach CNC, to

A. jarzmowe
B. korbowe
C. cierne pośrednie
D. śrubowe toczne
Odpowiedź 'śrubowe toczne' jest poprawna, ponieważ w tokarkach CNC ruch posuwowy, który jest kluczowy dla precyzyjnego wykonywania obróbki skrawaniem, jest realizowany za pomocą przekładni śrubowych tocznych. Te systemy wykorzystują śruby o dużym skoku, co pozwala na dokładne i płynne przesunięcie narzędzia skrawającego wzdłuż osi roboczej. Przekładnie te są preferowane w aplikacjach CNC, ponieważ zapewniają wysoką precyzję oraz powtarzalność, co jest zgodne z normami branżowymi dotyczącymi jakości obróbki. Na przykład, w przemyśle motoryzacyjnym, gdzie tolerancje wymiarowe są bardzo rygorystyczne, wykorzystanie przekładni śrubowych tocznych pozwala na osiągnięcie wymaganych parametrów przy zachowaniu efektywności produkcji. Warto również zauważyć, że systemy te są stosowane w wielu nowoczesnych maszynach, co czyni je standardem w branży obróbczej. W zakresie najlepszych praktyk, operatorzy powinni regularnie kontrolować stan tych przekładni, aby zapewnić ich długowieczność i niezawodność w pracy.

Pytanie 7

Jeśli na tłok siłownika o powierzchni S = 0,003 m2 działa ciśnienie czynnika wynoszące 2 MPa, to jaka jest siła działająca na tłok?

A. 12 kN
B. 9 kN
C. 6 kN
D. 2 kN
Aby obliczyć siłę naporu działającą na tłok siłownika, należy skorzystać ze wzoru F = p * S, gdzie F to siła, p to ciśnienie, a S to powierzchnia przekroju tłoka. W naszym przypadku ciśnienie p wynosi 2 MPa, co należy przeliczyć na pascale: 2 MPa = 2 * 10^6 Pa. Powierzchnia S wynosi 0,003 m². Podstawiając wartości do wzoru, otrzymujemy F = 2 * 10^6 Pa * 0,003 m² = 6000 N, co jest równoważne 6 kN. Zrozumienie tego działania ma fundamentalne znaczenie w hydraulice, gdzie siły generowane przez ciśnienie są kluczowe dla działania maszyn i systemów. Na przykład w układach hydraulicznych w samochodach, takich jak hamulce czy podnośniki, prawidłowe obliczenie siły pozwala na efektywne i bezpieczne działanie tych mechanizmów. Zastosowanie ciśnienia i przekroju tłoka jest również istotne przy projektowaniu urządzeń takich jak prasy hydrauliczne czy siłowniki, gdzie precyzyjna manipulacja siłą jest niezbędna.

Pytanie 8

W normalnych warunkach działania wyłącznika różnicowoprądowego wektorowa suma natężeń prądów sinusoidalnych przepływających w przewodach fazowych oraz neutralnym wynosi

A. 1 A
B. 0 A
C. 2 A
D. 3 A
Odpowiedzi 1 A, 2 A i 3 A sugerują istnienie różnicy prądów w obwodzie, co w przypadku prawidłowego działania wyłącznika różnicowoprądowego jest niepoprawne. Wyłącznik ten działa na zasadzie pomiaru różnicy między prądem wpływającym a wypływającym, a w warunkach normalnych te dwa prądy powinny być równe, co prowadzi do zera. W przypadku podania wartości 1 A, 2 A czy 3 A można by błędnie wnioskować, że w obwodzie występuje jakaś forma upływu prądu, co jest mylące. Typowym błędem w myśleniu jest założenie, że każdy prąd płynący przez obwód musi generować różnice natężeń, co nie jest zgodne z zasadami zachowania energii. W praktyce, w instalacjach elektrycznych, sumowanie prądów sinusoidalnych w obwodzie powinno zawsze prowadzić do zera, co jest warunkiem stabilności i bezpieczeństwa systemu. Warto pamiętać, że niewłaściwe zrozumienie działania wyłączników różnicowoprądowych może prowadzić do błędnych decyzji w projektowaniu i eksploatacji instalacji elektrycznych, co w skrajnych przypadkach może zagrażać życiu i zdrowiu użytkowników.

Pytanie 9

Jakim przyrządem pomiarowym można zmierzyć wartość napięcia zasilającego cewkę elektrozaworu?

A. Miernik oporności
B. Miernik mocy
C. Woltomierz
D. Miernik prądu
Omomierz jest urządzeniem służącym do pomiaru oporu elektrycznego, co oznacza, że jego zastosowanie w kontekście pomiaru napięcia zasilającego cewkę elektrozaworu jest nieadekwatne. Używając omomierza, można jedynie określić opór cewki, co dostarcza informacji o jej stanie, ale nie o napięciu, które jest na nią podawane. Amperomierz, z drugiej strony, mierzy natężenie prądu, który przepływa przez obwód, co również nie pozwala na bezpośrednie zmierzenie napięcia. Aby uzyskać wartość napięcia, musielibyśmy znać dodatkowo wartość oporu, co komplikuje pomiar i wprowadza możliwość błędu. Watomierz to narzędzie stosowane do pomiaru mocy, co również nie jest przydatne w kontekście bezpośredniego pomiaru napięcia. Często zdarza się, że osoby, które nie mają wystarczającej wiedzy na temat funkcji poszczególnych przyrządów, mogą pomylić ich zastosowanie, co prowadzi do nieprawidłowego diagnozowania problemów w obwodach elektrycznych. W kontekście elektrozaworów, zrozumienie roli napięcia jest kluczowe, ponieważ zbyt niskie lub zbyt wysokie napięcie może prowadzić do nieprawidłowego działania systemu, a w konsekwencji do awarii całego urządzenia. Dlatego kluczowe jest stosowanie odpowiednich przyrządów pomiarowych, takich jak woltomierz, aby zapewnić prawidłowe funkcjonowanie systemów elektrycznych.

Pytanie 10

Metoda osuszania sprężonego powietrza, w której w pierwszej fazie usuwana jest para wodna oraz olej za pomocą węgla aktywowanego, a w drugiej następuje odessanie pary wodnej w kapilarach żelu krzemionkowego, określana jest jako

A. konwekcją
B. desorpcją
C. adsorpcją
D. absorpcją
W procesach związanych z osuszaniem sprężonego powietrza, niepoprawne odpowiedzi mogą być mylące, szczególnie dla osób mniej zaznajomionych z terminologią. Konwekcja odnosi się do transportu ciepła poprzez ruch płynów, a nie do procesu usuwania wilgoci. Absorpcja, choć wydaje się zbliżona, polega na wchłanianiu substancji przez inną substancję, co różni się od adsorpcji, gdzie cząsteczki są przyciągane do powierzchni materiału, a nie wnikają w jego objętość. Desorpcja z kolei to proces, w którym substancje, wcześniej adsorbowane, są uwalniane z powierzchni materiału, a więc nie jest to etap osuszania, a raczej proces przeciwny. Te nieścisłości mogą prowadzić do błędnych wniosków w kontekście doboru technologii osuszania w różnych aplikacjach przemysłowych. Zrozumienie różnic pomiędzy tymi procesami jest kluczowe dla efektywnego zaprojektowania systemów uzdatniania powietrza, które spełniają wymagania jakościowe oraz normy branżowe, takie jak ISO 8573. W związku z tym, aby skutecznie przeprowadzić proces usuwania wilgoci, należy skupić się na technikach adsorpcji, które zapewniają najwyższą efektywność oraz niezawodność w aplikacjach wymagających precyzyjnej kontroli warunków atmosferycznych.

Pytanie 11

Podczas funkcjonowania urządzenia mechatronicznego zaobserwowano wyższy poziom hałasu (głośne, rytmiczne dźwięki) spowodowany przez łożysko toczne. Jakie działanie będzie odpowiednie w celu naprawy urządzenia?

A. wymiana całego łożyska
B. wymiana osłony łożyska
C. usunięcie nadmiaru smaru w łożysku
D. zredukowanie luzów łożyska
Jak na to patrzę, wymiana całego łożyska to naprawdę najlepsze wyjście, gdy słychać jakieś dziwne odgłosy z urządzenia mechatronicznego. Zwykle hałas bierze się ze zużycia łożyska, co zwiększa luzy i obniża jakość materiałów. Wymieniając łożysko, nie tylko pozbywasz się hałasu, ale też przywracasz sprzęt do pełnej sprawności. Ważne, żeby dobrze dobrać łożysko, myślę, że trzeba zwrócić uwagę na jego typ, wymiary i materiał, z którego jest zrobione. No i wymiana musi być zgodna z tym, co mówi producent – wtedy urządzenie będzie dłużej działać bezproblemowo. Przykładowo, w obrabiarkach to kluczowe, bo jakość pracy łożysk ma duży wpływ na jakość obrabianych elementów. Regularne przeglądy łożysk i odpowiednie smarowanie też są ważne, bo wydłużają ich żywotność.

Pytanie 12

Ciecze hydrauliczne, które przekazują energię, lecz nie oferują ochrony przed korozją ani smarowania, to ciecze klasy

A. HH
B. HR
C. HL
D. HG
Ciecze hydrauliczne typu HH to tak naprawdę te, które przenoszą energię, ale nie chronią przed korozją ani się nie smarują. Używa się ich głównie w hydraulice, gdzie priorytetem jest efektywne przenoszenie mocy, bez potrzeby dodatkowej ochrony. Przykłady? Proste układy hydrauliczne w maszynach budowlanych, które raczej nie są narażone na dużą korozję czy duże obciążenia. W takich sytuacjach można zbudować układ hydrauliczny z materiałów odpornych na rdzewienie, więc nie ma potrzeby dodawania dodatkowych środków ochronnych do płynów. W branży można spotkać standardy jak ISO 6743, które definiują różne klasy cieczy hydraulicznych na podstawie ich cech. Zrozumienie klasyfikacji cieczy hydraulicznych, w tym typu HH, to klucz do tego, by inżynierowie i technicy mogli wybierać odpowiednie materiały do konkretnych zastosowań, co jest ważne, żeby systemy hydrauliczne działały efektywnie i były niezawodne.

Pytanie 13

Elastyczny przewód elektryczny, służący do łączenia elementów systemu elektrycznego w aplikacjach mechatronicznych, powinien być

A. zakończony na końcach tulejkami
B. odizolowany na dowolną długość
C. zaizolowany na końcach
D. równo przycięty na końcach
Zakończenie przewodu giętkiego tulejkami to naprawdę ważna sprawa, zwłaszcza z perspektywy bezpieczeństwa i skuteczności połączeń w systemach mechatronicznych. Tulejki, czyli końcówki przewodów, dają mocne i trwałe połączenia, co zmniejsza ryzyko różnych awarii, zarówno mechanicznych, jak i elektrycznych. Jak dobrze wiemy, dzięki tulejkom żyły przewodów są lepiej chronione przed uszkodzeniami mechanicznymi czy korozją, co na pewno wydłuża ich żywotność. Poza tym, użycie tulejek ułatwia podłączanie przewodów do różnych elementów systemu, jak złącza czy komponente elektroniczne. To jest w sumie istotne w układach mechatronicznych, bo często trzeba coś zmieniać. I jeszcze jedno: stosowanie tulejek jest zgodne z branżowymi normami i standardami, a to ma znaczenie nie tylko dla bezpieczeństwa operatorów, lecz także dla niezawodności całego systemu. Dlatego warto korzystać z tulejek w zakończeniach przewodów giętkich, bo to po prostu najlepsza praktyka w tej dziedzinie.

Pytanie 14

Komutatorowa prądnica tachometryczna podłączona do wału silnika wykonawczego, działającego w systemie mechatronicznym, stanowi przetwornik

A. prędkości obrotowej na impulsy elektryczne
B. kąta obrotu na regulowane napięcie stałe
C. prędkości obrotowej na napięcie stałe
D. kąta obrotu na impulsy elektryczne
Komutatorowa prądnica tachometryczna to urządzenie przetwarzające prędkość obrotową na napięcie stałe, co czyni je niezwykle użytecznym w aplikacjach mechatronicznych, w tym w systemach automatyki i robotyki. Podczas pracy, prądnica generuje napięcie proporcjonalne do prędkości obrotowej wału silnika, co umożliwia dokładne pomiary i kontrolę prędkości. Przykładowo, w systemach regulacji prędkości silników elektrycznych, informacje dostarczane przez prądnice tachometryczne stanowią feedback dla regulatorów PID, co pozwala na precyzyjne dostosowanie mocy dostarczanej do silnika. Zastosowanie takich urządzeń przyczynia się do zwiększenia efektywności i bezpieczeństwa systemów mechatronicznych, a ich standardy budowy i działania są zgodne z normami IEC i ISO, zapewniając niezawodność i zgodność w różnych warunkach pracy. Wiedza na temat działania prądnic tachometrycznych jest zatem kluczowa dla inżynierów projektujących nowoczesne systemy automatyki.

Pytanie 15

Siłownik, który przesuwa tłok w jedną stronę dzięki sprężonemu powietrzu, a powrót tłoka jest wymuszany przez sprężynę, określamy jako siłownik pneumatyczny

A. jednostronnej pracy.
B. dwustronnej pracy, bez amortyzacji.
C. dwustronnej pracy.
D. różnicowy.
Siłownik jednostronnego działania to urządzenie, w którym sprężone powietrze działa na tłok jedynie w jednym kierunku, podczas gdy jego powrót do pozycji wyjściowej jest wymuszany przez sprężynę. Tego typu siłowniki są powszechnie stosowane w aplikacjach, gdzie nie jest wymagane ciągłe działanie w obie strony, co czyni je idealnym rozwiązaniem w systemach automatyki i pneumatyki. Przykładem zastosowania siłowników jednostronnego działania są chwytaki pneumatyczne, które chwytają obiekty w jednym kierunku, a następnie powracają do pozycji startowej dzięki sprężynie. Warto zwrócić uwagę, że siłowniki tego typu są często projektowane zgodnie z normami ISO, co zapewnia ich wysoką jakość i niezawodność. Dodatkowo, ograniczenie ruchu do jednej strony pozwala na oszczędność miejsca oraz efektywniejsze wykorzystanie sprężonego powietrza, co przekłada się na niższe koszty eksploatacyjne w dłuższej perspektywie czasowej.

Pytanie 16

Aby usunąć stycznik zamontowany na szynie, należy wykonać działania w poniższej kolejności:

A. odłączyć napięcie, zwolnić zatrzask i zdjąć stycznik z szyny, odkręcić przewody
B. odkręcić przewody, zwolnić zatrzask i zdjąć stycznik z szyny, odłączyć napięcie
C. odłączyć napięcie, odkręcić przewody, zwolnić zatrzask i zdjąć stycznik z szyny
D. zwolnić zatrzask i zdjąć stycznik z szyny, odłączyć napięcie, odkręcić przewody
Odpowiedź odłącz napięcie, odkręć przewody, zwolnij zatrzask i zdejmij stycznik z szyny jest prawidłowa, ponieważ przestrzega podstawowych zasad bezpieczeństwa oraz dobrych praktyk w zakresie pracy z urządzeniami elektrycznymi. Przede wszystkim, odłączenie napięcia jest kluczowym krokiem, który ma na celu zabezpieczenie operatora przed porażeniem elektrycznym. Gdy napięcie jest odłączone, można bezpiecznie manipulować urządzeniami. Następnie, odkręcenie przewodów powinno nastąpić przed zwolnieniem zatrzasku, aby uniknąć nieprzewidzianych sytuacji, takich jak przypadkowe zwarcie podczas demontażu. Po odłączeniu przewodów możliwe jest bezpieczne zwolnienie zatrzasku i zdjęcie stycznika z szyny. Taki sposób postępowania jest zgodny z normami BHP oraz zaleceniami producentów urządzeń, co zapewnia skuteczne i bezpieczne wykonanie demontażu. Przykłady zastosowania tej procedury można znaleźć w praktyce w obiektach przemysłowych, gdzie regularnie przeprowadza się konserwację i serwisowanie osprzętu elektrycznego.

Pytanie 17

Czym charakteryzuje się filtr dolnoprzepustowy?

A. przepuszcza sygnały sinusoidalne o częstotliwości niższej od częstotliwości granicznej
B. przepuszcza sygnały sinusoidalne o częstotliwości wyższej od częstotliwości granicznej
C. tłumi sygnały sinusoidalne o częstotliwości niższej od częstotliwości granicznej
D. wzmacnia sygnały sinusoidalne o częstotliwości niższej od częstotliwości granicznej
Filtr dolnoprzepustowy jest urządzeniem, które umożliwia przechodzenie sygnałów o częstotliwości mniejszej od określonej częstotliwości granicznej, skutecznie tłumiąc sygnały o wyższych częstotliwościach. Użycie filtrów dolnoprzepustowych jest powszechne w systemach audio, gdzie pozwalają one na eliminację niepożądanych wysokoczęstotliwości, co skutkuje czystszych dźwiękiem. Przykładem praktycznego zastosowania jest użycie filtrów w subwooferach, które mają za zadanie reprodukcję niskich częstotliwości. W zastosowaniach telekomunikacyjnych filtry dolnoprzepustowe są wykorzystywane w celu eliminacji zakłóceń wysokoczęstotliwościowych, umożliwiając lepszą jakość sygnału. Ponadto, filtry te są integralną częścią wielu układów elektronicznych, na przykład w systemach pomiarowych, gdzie są używane do wygładzania sygnałów oraz eliminacji szumów. W praktyce inżynieryjnej, dobór filtrów dolnoprzepustowych opiera się na analizie częstotliwościowej oraz parametrach projektowych, co jest zgodne z zasadami dobrych praktyk w dziedzinie elektroniki i telekomunikacji.

Pytanie 18

Silnik liniowy przekształca

A. energię mechaniczną w energię elektryczną
B. energię elektryczną w energię mechaniczną
C. ruch obrotowy w ruch liniowy
D. ruch liniowy w ruch obrotowy
Silnik liniowy to urządzenie, które bezpośrednio przekształca energię elektryczną w ruch mechaniczny w linii prostej. Działa na zasadzie generowania siły wzdłuż swojej osi, co pozwala na bezpośrednie przemieszczanie obiektów bez potrzeby używania mechanizmów przekładniowych, jak w przypadku silników obrotowych. Przykładem zastosowania silników liniowych są systemy transportu w przemyśle, takie jak linie montażowe, gdzie precyzyjne ruchy liniowe są niezbędne do efektywnej produkcji. Innym przykładem są pociągi maglev, które dzięki silnikom liniowym poruszają się z dużymi prędkościami, eliminując tarcie i zwiększając efektywność energetyczną. Przy projektowaniu silników liniowych wykorzystuje się standardy dotyczące bezpieczeństwa i efektywności, takie jak normy IEC oraz ISO, co zapewnia nie tylko wysoką wydajność, ale również niezawodność w działaniu. W praktyce, silniki liniowe znajdują zastosowanie w robotyce, automatyce oraz nowoczesnych systemach transportowych, co tylko podkreśla ich znaczenie w dzisiejszym przemyśle.

Pytanie 19

Która z wymienionych metod nie jest wykorzystywana do trwałego łączenia elementów z tworzyw sztucznych?

A. Spawanie
B. Klejenie
C. Zaginanie
D. Zgrzewanie
Zgrzewanie, spawanie i zaginanie to techniki, które są powszechnie stosowane do trwałego łączenia elementów wykonanych z tworzyw sztucznych, co może prowadzić do nieporozumień związanych z ich zastosowaniem. Zgrzewanie polega na podgrzewaniu miejsc styku dwóch elementów do momentu ich stopienia, a następnie ich łączeniu. Proces ten tworzy jednorodną strukturę materiału, co sprawia, że połączenie jest trwałe i wytrzymałe na obciążenia. W przypadku spawania, szczególnie w kontekście tworzyw sztucznych, można używać różnych metod, takich jak spawanie gorącym powietrzem czy spawanie w kąpieli cieczy. Oba te procesy również skutkują trwałym połączeniem, które jest często porównywalne z właściwościami mechanicznymi materiału bazowego. Zaginanie natomiast polega na deformacji materiału pod wpływem siły, co w przypadku tworzyw może prowadzić do trwałego kształtowania, ale nie do połączenia dwóch elementów w sensie ich zespolenia. Wiele osób może mylić te techniki, myśląc, że każda z nich może być użyta w każdej sytuacji, co prowadzi do błędnych wniosków. Kluczowe jest zrozumienie, że trwałe połączenia wymagają zastosowania odpowiednich metod, które działają w oparciu o fizykę i mechanikę materiałów, a nie tylko na zasadzie chemii powierzchni. Brak znajomości różnic między tymi technikami może prowadzić do nieodpowiednich wyborów w projektach inżynieryjnych, co z kolei może skutkować osłabieniem konstrukcji i problemami w eksploatacji.

Pytanie 20

Którą z poniższych czynności należy regularnie przeprowadzać podczas serwisowania układu pneumatycznego?

A. Wymieniać szybkozłączki
B. Zastępować przewody pneumatyczne
C. Usuwać kondensat
D. Dostosowywać ciśnienie powietrza
Usuwanie kondensatu z układu pneumatycznego jest kluczowym elementem konserwacji, ponieważ nadmiar wilgoci może prowadzić do wielu problemów, w tym korozji, uszkodzenia komponentów oraz obniżenia wydajności systemu. Kondensat jest efektem skraplania się pary wodnej zawartej w powietrzu sprężonym, a jego obecność w układzie może mieć negatywny wpływ na działanie zarówno zaworów, jak i siłowników pneumatycznych. Regularne usuwanie kondensatu, na przykład poprzez stosowanie separatorów kondensatu lub automatycznych zaworów odpływowych, jest zgodne z dobrymi praktykami w branży pneumatycznej. Przykładem zastosowania jest przemysł motoryzacyjny, gdzie układy pneumatyczne są powszechnie wykorzystywane w narzędziach i maszynach. W takim przypadku niewłaściwe zarządzanie kondensatem może prowadzić do zacięć narzędzi oraz nieefektywnego działania linii produkcyjnej. Właściwa konserwacja nie tylko wydłuża żywotność układu, ale także zapewnia bezpieczeństwo i efektywność pracy.

Pytanie 21

Silnik elektryczny o mocy 4 kW generuje na wale moment obrotowy 13,1 Nm przy jakiej prędkości obrotowej?

A. 5487 obr/min
B. 2916 obr/min
C. 305 obr/min
D. 524 obr/min
Często, jak wybiera się prędkość obrotową silnika, to można się zaplątać w zrozumieniu, jak moc, moment obrotowy i prędkość się ze sobą łączą. Wiesz, czasem ludzie myślą, że jak moment obrotowy jest większy, to automatycznie prędkość obrotowa też rośnie, a to nie do końca tak działa. Musisz pamiętać, że prędkość obrotowa i moment obrotowy mają odwrotną zależność: jak moc zostaje stała, to większy moment oznacza niższą prędkość i na odwrót. Jeszcze zdarza się, że ludzie mylą jednostki; na przykład, moc mamy w watach, a nie w niutonometrach, i to może prowadzić do różnych pomyłek. Tak samo z prędkością, jak się źle przelicza, to wychodzą błędy. Jeśli chodzi o inżynierię elektryczną i mechaniczną, to ważne jest, żeby stosować właściwe wzory i rozumieć, jak różne parametry wpływają na działanie silników. W praktyce, złe obliczenia mogą skutkować nieodpowiednim doborem części, co potem przekłada się na to, jak efektywnie działa cały system i jego trwałość w czasie.

Pytanie 22

Który instrument pomoże w monitorowaniu jakości sprężonego powietrza pod kątem wilgotności oraz obecności kondensatu?

A. Termomanometr bimetaliczny
B. Miernik punktu rosy
C. Detektor wycieków
D. Miernik przepływu powietrza
Miernik punktu rosy to naprawdę ważne urządzenie, jeżeli chodzi o jakość sprężonego powietrza. Głównie pozwala zmierzyć, w jakiej temperaturze para wodna zaczyna się skraplać, co jest mega istotne w kontekście wilgotności. W różnych branżach, gdzie sprężone powietrze jest na porządku dziennym, kontrolowanie wilgotności to podstawa. Za dużo wody w powietrzu może uszkodzić sprzęt, prowadzić do korozji, a czasem nawet zmniejszyć efektywność działania. Na przykład w systemach pneumatycznych, gdzie wszystko musi działać precyzyjnie, nadmiar wilgoci może spowodować tzw. „hydrauliczne uderzenie”, co w efekcie może doprowadzić do awarii. A skoro mówimy o branży spożywczej czy farmaceutycznej, to według norm ISO 8573, które regulują jakość sprężonego powietrza, pomiar punktu rosy to kluczowa sprawa, bo wpływa na bezpieczeństwo i jakość produktów. Używając miernika punktu rosy, szczególnie w połączeniu z systemami osuszania powietrza, można naprawdę zadbać o odpowiednie standardy jakości, co jest niezbędne, żeby procesy przemysłowe działały jak należy.

Pytanie 23

Przed zainstalowaniem podtynkowej instalacji zasilającej dla urządzenia mechatronicznego nie weryfikuje się

A. ciągłości żył przewodu
B. stanu izolacji przewodu
C. wagi żył w przewodzie
D. średnicy żył przewodu
Wybór odpowiedzi dotyczącej wagi żył w przewodzie jako niewłaściwego elementu do sprawdzenia przed montażem podtynkowej instalacji zasilającej jest poprawny. W praktyce inżynieryjnej, przed rozpoczęciem instalacji, kluczowe jest zweryfikowanie średnicy żył, ciągłości oraz stanu izolacji przewodów. Średnica żył ma fundamentalne znaczenie dla obliczenia obciążalności przewodu oraz dla zapewnienia, że przewód nie będzie się przegrzewał podczas pracy. Sprawdzenie ciągłości żył jest istotne, aby upewnić się, że nie ma przerw w obwodzie, co mogłoby prowadzić do uszkodzenia urządzeń podłączonych do instalacji. Stan izolacji jest niezbędny do zapewnienia bezpieczeństwa użytkowania instalacji, ponieważ uszkodzona izolacja może prowadzić do zwarć lub porażenia prądem. Waga żył, chociaż może być istotna w niektórych kontekstach konstrukcyjnych, nie jest kluczowym czynnikiem przy montażu instalacji elektrycznej, co czyni tę odpowiedź poprawną. Przykładowo, w projektach na budowach stosuje się normy, takie jak PN-IEC 60364, które precyzują wymagania dotyczące sprawdzeń przedmontażowych.

Pytanie 24

Aby zmierzyć naprężenia normalne (ściśnięcia, rozciągnięcia), należy użyć

A. tachometru
B. tensometru
C. termometru
D. pirometru
Tensometr jest urządzeniem służącym do pomiaru naprężeń normalnych, takich jak ściskanie i rozciąganie. Działa na zasadzie pomiaru odkształceń, które następnie przelicza na wartości naprężeń zgodnie z zasadą Hooke'a. Dzięki temu, tensometry są niezwykle ważne w inżynierii mechanicznej i materiałowej, gdzie precyzyjne pomiary naprężeń są kluczowe dla oceny wytrzymałości materiałów oraz konstrukcji. Przykłady zastosowania tensometrów obejmują badania wytrzymałościowe elementów konstrukcyjnych, takich jak belki, stropy czy mosty. W standardach takich jak ISO 9513 określono metody kalibracji tensometrów, co pozwala na uzyskanie wiarygodnych wyników. Dobre praktyki w stosowaniu tensometrów obejmują również ich odpowiedni dobór do rodzaju materiału oraz warunków pomiarowych, co zapewnia rzetelność i dokładność uzyskanych wyników. Dodatkowo, stosowane są różne typy tensometrów, w tym tensometry foliowe, które umożliwiają pomiary na różnorodnych powierzchniach, co zwiększa ich wszechstronność w zastosowaniach inżynieryjnych.

Pytanie 25

Jaki zawór powinien być użyty, aby umożliwić przepływ czynnika wyłącznie w jednym kierunku?

A. Rozdzielający
B. Dławiący
C. Zwrotny
D. Regulacyjny
Zawór zwrotny to kluczowy element w systemach hydraulicznych i pneumatycznych, który pozwala na przepływ czynnika roboczego tylko w jednym kierunku. Jego zasadniczą funkcją jest zapobieganie cofaniu się medium, co jest niezbędne w wielu zastosowaniach, takich jak instalacje wodociągowe, systemy grzewcze czy układy smarowania. Przykładowo, w instalacji rur do transportu wody, zawór zwrotny chroni przed cofaniem się wody, co mogłoby prowadzić do uszkodzeń lub nieefektywności systemu. Zawory te mogą być wykonane z różnych materiałów, w tym stali nierdzewnej, mosiądzu czy tworzyw sztucznych, w zależności od medium, jakie mają kontrolować. Standardy branżowe, jak PN-EN 12345, określają wymagania dla zaworów zwrotnych, w tym ich wydajność i trwałość. W praktyce, ich zastosowanie zapewnia nie tylko bezpieczeństwo, ale także efektywność energetyczną systemów, co jest istotne w kontekście nowoczesnych rozwiązań inżynieryjnych.

Pytanie 26

Co oznaczają kolory przewodów w trójprzewodowych czujnikach zbliżeniowych prądu stałego?

A. niebieski - przewód sygnałowy; brązowy (czerwony) - przewód sygnałowy; czarny - minus zasilania; niebieski - plus zasilania
B. brązowy (czerwony) - minus zasilania; czarny - plus zasilania
C. brązowy (czerwony) - przewód sygnałowy; czarny - minus zasilania; niebieski - plus zasilania
D. brązowy (czerwony) - plus zasilania; czarny - przewód sygnałowy; niebieski - minus zasilania
Odpowiedź, w której brązowy (czerwony) przewód oznacza plus zasilania, czarny przewód to przewód impulsowy, a niebieski przewód to minus zasilania, jest prawidłowa i zgodna z powszechnie przyjętymi standardami branżowymi. W systemach zbliżeniowych prądu stałego kolorystyka przewodów ma kluczowe znaczenie dla zapewnienia prawidłowego działania urządzeń. Użycie brązowego lub czerwonego przewodu jako przewodu dodatniego (plus) jest normą w wielu krajach, a czarny przewód jest standardowo używany jako przewód sygnałowy lub impulsowy. Niebieski przewód w tym kontekście pełni funkcję przewodu ujemnego (minus). W praktyce, stosowanie się do tych oznaczeń ma kluczowe znaczenie dla prawidłowego podłączenia urządzeń, co zapobiega zwarciom oraz uszkodzeniom komponentów. W przypadku błędnego podłączenia, na przykład zamieniając przewody plus i minus, może dojść do uszkodzenia czujnika lub nieprawidłowego działania systemu. Przykładem zastosowania tej wiedzy może być instalacja systemów automatyki budynkowej, gdzie prawidłowe podłączenie czujników zbliżeniowych jest kluczowe dla ich efektywności.

Pytanie 27

Czynniki takie jak nacisk, długość gięcia, wysięg, przestrzeń między kolumnami, skok, prędkość dojścia, prędkość operacyjna, prędkość powrotu, pojemność zbiornika oleju oraz moc silnika to cechy charakterystyczne dla?

A. prasy krawędziowej
B. szlifierki narzędziowej
C. przecinarki plazmowej
D. frezarki uniwersalnej
Wybór frezarki uniwersalnej, przecinarki plazmowej lub szlifierki narzędziowej jako odpowiedzi prowadzi do nieporozumień związanych z ich podstawowymi funkcjami oraz zastosowaniami. Frezarka uniwersalna to narzędzie skrawające, które służy do obróbki materiałów poprzez usuwanie ich w postaci wiórów. Parametry takie jak prędkość skrawania, posuw oraz moc silnika są kluczowe, ale nie dotyczą one zginania materiałów. Przecinarka plazmowa, z kolei, jest wykorzystywana do cięcia metali poprzez zastosowanie strumienia plazmy, co nie ma związku z parametrami gięcia. W przypadku szlifierki narzędziowej, używanej do precyzyjnego szlifowania narzędzi i elementów, głównymi parametrami są prędkość obrotowa tarczy szlifierskiej oraz rodzaj materiału szlifującego. Wybór tych maszyn pokazuje typowe błędy w myśleniu, gdzie użytkownicy mogą mylić różne procesy obróbcze. Ważne jest zrozumienie, że każda maszyna ma swoje specyficzne zastosowanie i parametry, które determinują jej funkcjonalność. Przykładowo, w przemyśle niezbędne jest, aby maszyny były wybierane zgodnie z wymaganiami produkcyjnymi, co często wymaga znajomości różnych rodzajów maszyn i ich zastosowań. Zrozumienie tych różnic jest kluczowe dla efektywnej i bezpiecznej produkcji.

Pytanie 28

Siłownik hydrauliczny jest zasilany olejem pod ciśnieniem p = 60 barów oraz ma przepływ Q = 85 l/min. Jaka jest moc hydrauliczna, którą pobiera siłownik?

A. 85,0 kW
B. 51,0 kW
C. 5,1 kW
D. 8,5 kW
Moc hydrauliczna siłownika można obliczyć za pomocą wzoru: P = Q * p, gdzie P to moc w watach, Q to natężenie przepływu w litrach na minutę, a p to ciśnienie w barach. W tym przypadku mamy p = 60 barów oraz Q = 85 l/min. Aby obliczyć moc, musimy najpierw przeliczyć jednostki: 1 l/min = 0,001 m³/min, a 60 barów = 6 MPa. Przeliczając natężenie przepływu: Q = 85 l/min * 0,001 m³/l = 0,085 m³/min. Teraz przeliczamy na sekundy: 0,085 m³/min = 0,085/60 m³/s = 0,00141667 m³/s. Teraz możemy obliczyć moc: P = Q * p = 0,00141667 m³/s * 6 MPa = 8,5 kW. Tego typu obliczenia są kluczowe dla inżynierów zajmujących się hydrauliką, ponieważ pozwalają na dobór odpowiednich komponentów systemu hydraulicznego, takich jak pompy i siłowniki, co ma bezpośredni wpływ na efektywność energetyczną oraz funkcjonalność urządzenia. W praktyce, znajomość mocnych punktów siłowników hydraulicznych pozwala na ich właściwe zastosowanie w maszynach przemysłowych, budowlanych czy w aplikacjach mobilnych.

Pytanie 29

Jeśli w trakcie standardowych warunków eksploatacji pneumatyczne urządzenie mechatroniczne generuje duże drgania, to osoba obsługująca powinna być wyposażona w

A. obuwie ochronne.
B. rękawice antywibracyjne.
C. kask zabezpieczający.
D. okulary ochronne.
Rękawice antywibracyjne są kluczowym elementem ochrony osobistej, gdy pracownik obsługuje pneumatyczne urządzenia mechatroniczne, które generują znaczne drgania. Te drgania mogą prowadzić do poważnych urazów, takich jak zespół wibracyjny, który objawia się bólem, mrowieniem i osłabieniem kończyn. Rękawice antywibracyjne są zaprojektowane w taki sposób, aby minimalizować przenoszenie drgań na ręce operatora, co znacząco zmniejsza ryzyko kontuzji. W praktyce, standardy takie jak ISO 10819 dotyczące pomiarów drgań w rękach użytkowników podkreślają znaczenie stosowania odpowiednich środków ochronnych. W przypadku pracy z maszynami, które wytwarzają drgania, inwestycja w wysokiej jakości rękawice antywibracyjne jest nie tylko zgodna z dobrymi praktykami, ale również zapewnia komfort i bezpieczeństwo operatora. Przykładem zastosowania takich rękawic jest praca w branży budowlanej, gdzie narzędzia pneumatyczne, takie jak młoty udarowe, są powszechnie używane. Używanie rękawic antywibracyjnych pozwala pracownikom na dłuższą i bardziej wydajną pracę bez ryzyka zdrowotnego związane z drganiami.

Pytanie 30

W jaki sposób można aktywować samowzbudną, bocznikową prądnicę prądu stałego, która nie uruchamia się z powodu braku magnetyzmu szczątkowego?

A. Podłączyć prądnicę na krótko do pracy silnikowej
B. Odwrócić kierunek prędkości obrotowej na przeciwny
C. Zwiększyć opór w obwodzie wzbudzenia
D. Zmienić sposób podłączenia w obwodzie wzbudzenia
Zmiana kierunku prędkości obrotowej na przeciwny nie wprowadzi żadnych korzyści w kontekście wzbudzenia prądnicy. W rzeczywistości, aby prądnica mogła wytwarzać prąd, wirnik musi obracać się w określonym kierunku, który jest zgodny z kierunkiem, w którym została zaprojektowana. Obrót w przeciwnym kierunku może prowadzić do dalszych problemów z generowaniem magnetyzmu i nie spowoduje automatycznego wzbudzenia urządzenia. Zwiększenie rezystancji w obwodzie wzbudzenia również jest niewłaściwym rozwiązaniem, ponieważ wysoka rezystancja zmniejsza przepływ prądu, co uniemożliwia skuteczne wzbudzenie maszyny. W obwodzie wzbudzenia powinno się dążyć do minimalizowania oporów, aby zapewnić odpowiednią ilość prądu wzbudzenia. Zmiana podłączenia w obwodzie wzbudzenia, choć teoretycznie mogłaby pomóc w niektórych konfiguracjach, w praktyce nie rozwiązuje problemu utraty magnetyzmu. Niewłaściwe podłączenie może wręcz pogorszyć sytuację, prowadząc do braku wzbudzenia. Typowe błędy myślowe w tym kontekście obejmują nieporozumienie dotyczące zasad działania prądnic oraz niewłaściwe podejście do analizy ich stanu technicznego. Kluczowym aspektem w sytuacji utraty magnetyzmu jest zastosowanie metody, która pozwoli na chwilowe uruchomienie prądnicy z zewnętrznym źródłem mocy, co skutecznie przywróci jej zdolność do wzbudzania się.

Pytanie 31

Jakie narzędzie jest konieczne do wykonania gwintu zewnętrznego?

A. Narzynka
B. Gwintownik
C. Skrobak
D. Tłocznik
Narzynka jest narzędziem skrawającym, które służy do nacinania gwintów zewnętrznych na różnych materiałach, w tym metalach. Użycie narzynki jest szczególnie ważne w procesach obróbczych, gdzie precyzja i jakość gwintu mają kluczowe znaczenie. Narzynki są dostępne w różnych rozmiarach oraz typach, w zależności od wymaganego profilu gwintu, co umożliwia ich zastosowanie w szerokim zakresie aplikacji przemysłowych. W praktyce, narzynki są często używane w produkcji śrub oraz w przemyśle motoryzacyjnym, gdzie precyzyjne dopasowanie gwintów jest niezbędne. Dobrą praktyką jest również stosowanie smaru podczas nacinania gwintu, co minimalizuje tarcie i wydłuża żywotność narzędzia. Przestrzeganie standardów ISO dotyczących gwintów, takich jak ISO 965 dla gwintów metrycznych, gwarantuje, że wykonane gwinty będą odpowiednio dopasowane do elementów złącznych. W związku z tym, umiejętność prawidłowego użycia narzynki jest istotna dla każdego specjalisty w dziedzinie obróbki skrawaniem.

Pytanie 32

Należy przekształcić energię sprężonej cieczy roboczej w ruch obrotowy o bardzo niskiej i stabilnej prędkości obrotowej, jak również znacznym momencie obrotowym. Elementem wykonawczym jest hydrauliczny

A. silnik tłokowy
B. silnik zębaty
C. siłownik nurnikowy
D. siłownik teleskopowy
Wybór silnika zębatego, siłownika nurnikowego lub siłownika teleskopowego jako alternatywy dla silnika tłokowego jest niewłaściwy z kilku powodów. Silnik zębaty, choć efektywny w kontekście prędkości obrotowych, nie jest przystosowany do generowania dużego momentu obrotowego przy niskich prędkościach, co jest kluczowe w wielu zastosowaniach hydraulicznych. Z kolei siłownik nurnikowy, będący elementem o liniowym ruchu, nie przekształca energii cieczy w ruch obrotowy, co wyklucza go z rozważanej funkcji. Siłownik teleskopowy, mimo że może oferować pewne korzyści w zakresie kompaktowości i wydajności, również nie generuje ruchu obrotowego, co czyni go nieodpowiednim w kontekście tego pytania. Typowe błędy myślowe, które mogą prowadzić do wyboru tych elementów, obejmują mylenie zastosowań silników i siłowników oraz nieadekwatne rozumienie ich podstawowych zasad działania. Kluczowe jest zrozumienie, że każdy z tych elementów ma swoje specyficzne zastosowania i ograniczenia, a wybór niewłaściwego komponentu może prowadzić do obniżenia efektywności całego systemu hydraulicznego. W kontekście przemysłowym, normy takie jak ISO 4414 stanowią wytyczne dotyczące stosowania hydrauliki, co podkreśla znaczenie doboru odpowiednich typów napędów w zależności od specyficznych wymagań aplikacji.

Pytanie 33

Jaki czujnik jest stosowany do pomiaru prędkości obrotowej wału silnika?

A. Potencjometr obrotowy
B. Prądnica tachometryczna
C. Mostek tensometryczny
D. Selsyn trygonometryczny
No więc, selesyn trygonometryczny, mostek tensometryczny i potencjometr obrotowy to elementy, które nie są do pomiaru prędkości obrotowej wału silnika. Selesyn trygonometryczny jest używany do przenoszenia informacji o położeniu, ale nie do pomiaru prędkości. Z kolei mostek tensometryczny służy do mierzenia odkształceń, co sprawia, że lepiej się nadaje do analizy sił czy obciążeń, a nie prędkości obrotowej. Potencjometr obrotowy znowu mierzy kąt obrotu, generując napięcie proporcjonalne do tego kąta, ale nie daje nam informacji o tym, jak szybko ten kąt się zmienia. Często w kontekście pomiaru prędkości pojawiają się błędne założenia co do tych urządzeń, co może prowadzić do kiepskiego projektowania systemów pomiarowych. Jak wybierasz czujniki do analizy prędkości obrotowej, ważne jest, żeby rozumieć, że prądnica tachometryczna daje najbardziej precyzyjne dane dzięki swojej konstrukcji i zasadzie działania, co czyni ją standardem w branży.

Pytanie 34

Produkcja sprężonego powietrza w systemach pneumatycznych obejmuje przynajmniej jego

A. osuszanie, filtrowanie i smarowanie
B. sprężanie, osuszanie i filtrowanie
C. sprężanie, filtrowanie i smarowanie
D. sprężanie, osuszanie i smarowanie
Wybór odpowiedzi, w której pojawiają się procesy jak sprężanie, filtrowanie i smarowanie, albo osuszanie, filtrowanie i smarowanie, pokazuje, że nie wszystko jeszcze jest jasne w temacie przygotowania sprężonego powietrza. Smarowanie, chociaż ważne w niektórych zastosowaniach pneumatycznych, nie jest bezpośrednio związane z przygotowaniem powietrza. Większość czasu smarowanie dotyczy cylindrów i zaworów, gdzie właściwy smar może pomóc, ale nie ma wpływu na jakość samego powietrza. Osuszanie i filtrowanie są za to kluczowe, bo gdy do systemu dostaje się woda lub zanieczyszczenia, może to doprowadzić do uszkodzeń. Dodatkowo, sprężanie bez wcześniejszego osuchania może powodować kondensację, co jest dość powszechnym błędem. Ważne, żeby pamiętać, że te procesy są powiązane, bo tylko wtedy można optymalnie zarządzać układami pneumatycznymi i zapewnić ich sprawne działanie. Eliminacja wilgoci i zanieczyszczeń to podstawa, żeby systemy pneumatyczne działały długo i bezawaryjnie.

Pytanie 35

Napięcie wyjściowe zasilacza zasilającego sterownik PLC zainstalowany w urządzeniu mechatronicznym, zgodnie z parametrami przedstawionymi w tabeli, może wynosić

Parametry techniczne sterownika
Normy i przepisyIEC 61131-2
Typ produktuSterownik kompaktowy
Liczba wejść dyskretnych6
Napięcie wejść dyskretnych24 V DC
Liczba wyjść dyskretnych4 przekaźnikowe
Typ wyjśćprzekaźnikowe
Sygnalizacja stanówLED
Napięcie zasilania24 V DC
Dopuszczalny zakres napięcia zasilania21,2÷28,8 V DC
Tętnienia<5%

A. 30 V DC
B. 25 V DC
C. 20 V DC
D. 15 V DC
Napięcia 15 V DC, 30 V DC i 20 V DC nie mieszczą się w określonym zakresie zasilania dla sterownika PLC. Wybór zbyt niskiego napięcia, takiego jak 15 V DC, może prowadzić do niewłaściwego działania urządzenia. Sterownik PLC wymaga odpowiedniego napięcia, aby poprawnie funkcjonować i realizować zaprogramowane zadania. Zbyt niskie napięcie może skutkować niestabilnością pracy, co może prowadzić do błędów w przetwarzaniu sygnałów i w konsekwencji do awarii systemu. Z kolei napięcie 30 V DC przekracza dopuszczalny zakres zasilania, co stwarza ryzyko uszkodzenia komponentów, a nawet ich trwałego zniszczenia. W przypadku zasilania stosuje się zasady dotyczące tolerancji napięcia, które gwarantują bezpieczeństwo i efektywność działania urządzeń. Ponadto, 20 V DC, mimo że jest bliższe dolnej granicy, również nie spełnia wymogów określonych w dokumentacji, co może prowadzić do nieprzewidywalnych zachowań urządzenia oraz problemów z jego stabilnością. Wybór niewłaściwego napięcia zasilania jest częstym błędem, który może wynikać z niedostatecznej analizy specyfikacji technicznych i wymagań aplikacji. Kluczowe jest zrozumienie, że każde urządzenie ma swoje unikalne wymagania, które należy spełnić, aby zapewnić jego prawidłowe funkcjonowanie i bezpieczeństwo operacyjne.

Pytanie 36

Aby zachować odpowiedni poziom ciśnienia w systemach hydraulicznych, wykorzystuje się zawory

A. odcinające
B. dławiące
C. rozdzielające
D. redukujące
Zawory redukcyjne odgrywają kluczową rolę w zarządzaniu ciśnieniem w układach hydraulicznych. Ich głównym zadaniem jest obniżenie ciśnienia roboczego na określonym poziomie, co jest istotne w wielu zastosowaniach przemysłowych. Zawory te działają poprzez automatyczne regulowanie przepływu cieczy, co pozwala na utrzymanie stabilnych warunków pracy w układzie. Na przykład, w systemach hydraulicznych zasilających maszyny produkcyjne, zawory redukcyjne zapewniają, że ciśnienie nie przekracza wartości określonej przez producenta, co zapobiega uszkodzeniom i zwiększa bezpieczeństwo operacji. Dobre praktyki w branży hydraulicznej zalecają regularne sprawdzanie i konserwację zaworów redukcyjnych, aby zapewnić ich prawidłowe funkcjonowanie. Dodatkowo, zgodność z normami takimi jak ISO 4414 dotycząca bezpieczeństwa w hydraulice, podkreśla wagę stosowania właściwych zaworów w celu minimalizacji ryzyka awarii systemów hydraulicznych.

Pytanie 37

Sensory indukcyjne działające w trybie zbliżeniowym nie mogą być używane do detekcji elementów stworzonych

A. z miedzi
B. z polipropylenu
C. ze stali
D. z aluminium
Odpowiedź 'z polipropylenu' jest prawidłowa, ponieważ zbliżeniowe sensory indukcyjne działają na zasadzie wykrywania zmian w polu elektromagnetycznym, które są generowane przez metalowe obiekty. Polipropylen, będący materiałem nieprzewodzącym i nieferromagnetycznym, nie wpływa na to pole, co uniemożliwia sensoryzm ich detekcję. Użycie takich materiałów w aplikacjach wymagających wykrywania obiektów jest istotne, na przykład w automatyce przemysłowej, gdzie potrzebne są nietypowe materiały, jak plastiki, do produkcji elementów maszyny. W rzeczywistości, sensory indukcyjne są szeroko stosowane w procesach automatyzacji, takich jak detekcja elementów wykonanych z metali, np. w liniach montażowych. W takich aplikacjach standardy, takie jak ISO 12100 dotyczące bezpieczeństwa maszyn, wymagają odpowiedniego doboru technologii detekcji, co potwierdza praktyczną przydatność sensorów indukcyjnych w przemyśle.

Pytanie 38

Podczas funkcjonowania urządzenia zaobserwowano nasilenie hałasu, spowodowane przez łożysko toczne. Odpowiednią metodą naprawy maszyny może być

A. wymiana osłony łożyska
B. wymiana całego łożyska
C. zmniejszenie luzów łożyska
D. zmniejszenie nadmiaru smaru w łożysku
Wymiana całego łożyska jest odpowiednim rozwiązaniem w przypadku stwierdzenia zwiększonego hałasu, gdyż najczęściej oznacza to, że łożysko uległo uszkodzeniu lub zużyciu. W praktyce, łożyska toczne są zaprojektowane do pracy z minimalnym luzem i w odpowiednio smarowanych warunkach. Gdy zauważamy hałas, to zazwyczaj jest skutkiem odkształceń materiałowych lub uszkodzenia elementów tocznych, co może prowadzić do dalszych uszkodzeń mechanicznych w obrębie układu napędowego. W takim przypadku wymiana całego łożyska eliminuje ryzyko wystąpienia kolejnych awarii w przyszłości. Dobrą praktyką w branży jest również przeprowadzanie analizy przyczyn źródłowych usterki, co pozwala na zrozumienie, dlaczego łożysko uległo uszkodzeniu, co może być związane z niewłaściwym smarowaniem, luzami, czy też eksploatacją w warunkach przekraczających specyfikacje producenta. Wymiana łożyska powinna być przeprowadzana zgodnie z obowiązującymi standardami, takimi jak ISO 281, które określają metodologię doboru i oceny łożysk, co zwiększa niezawodność całego urządzenia.

Pytanie 39

Poniższy zapis w metodzie Grafcet oznacza otwarcie zaworu 1V1

DOtworzyć zawór 1V1
t = 2s

A. z ograniczeniem czasowym.
B. warunkowo.
C. impulsowo.
D. z opóźnieniem czasowym.
Odpowiedź "z opóźnieniem czasowym" jest poprawna, ponieważ zapis w metodzie Grafcet zawiera informację o opóźnieniu, które jest kluczowym elementem w automatyzacji procesów. Opóźnienia czasowe w systemach automatyki są często stosowane do synchronizacji działań, co zapewnia płynne działanie całego systemu. W tym przypadku, akcja otwarcia zaworu 1V1 następuje po upływie 2 sekund od momentu aktywacji danego kroku. Przykładem zastosowania takiego opóźnienia może być scenariusz, w którym otwarcie zaworu musi być zsynchronizowane z innymi procesami, na przykład uruchomieniem pompy, która dostarcza ciecz do zaworu. W takich sytuacjach, stosowanie opóźnień jest zgodne z najlepszymi praktykami w projektowaniu systemów automatyki, co zwiększa niezawodność i bezpieczeństwo operacji. Ponadto, standardy branżowe, takie jak IEC 61131-3, podkreślają znaczenie precyzyjnego definiowania czasów reakcji w systemach sterowania, co także odnosi się do omawianego przypadku.

Pytanie 40

Jaki typ licencji pozwala na używanie oprogramowania przez określony czas, po którym konieczna jest rejestracja lub usunięcie go z komputera?

A. Trial
B. Adware
C. Freeware
D. GNU GPL
Wybór innych odpowiedzi może wynikać z nieporozumienia co do definicji i zastosowań różnych typów licencji oprogramowania. Freeware to oprogramowanie dostępne za darmo, które nie ma ograniczeń czasowych, jednak często wiąże się z brakiem wsparcia technicznego lub ograniczonymi funkcjami. Użytkownicy mogą błędnie sądzić, że freeware działa na podobnej zasadzie jak licencje trial, co prowadzi do zamieszania. GNU GPL (General Public License) dotyczy oprogramowania open source, które można dowolnie używać, modyfikować i dystrybuować, nie wprowadza jednak ograniczeń czasowych, co czyni tę odpowiedź niewłaściwą. Adware to oprogramowanie, które wyświetla reklamy lub zbiera dane o użytkownikach, ale także nie wiąże się z czasowym ograniczeniem dostępu do funkcji. Wybierając błędną odpowiedź, użytkownicy mogą mylić licencje ograniczone w czasie z tymi, które są całkowicie bezpłatne lub otwarte. Ważne jest, aby dobrze zrozumieć te różnice, aby podejmować świadome decyzje dotyczące wyboru oprogramowania oraz przestrzegać przepisów licencyjnych, co jest kluczowe w dzisiejszym środowisku cyfrowym.