Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 16 maja 2025 17:09
  • Data zakończenia: 16 maja 2025 17:18

Egzamin niezdany

Wynik: 7/40 punktów (17,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

W systemie chłodzenia cieczą silnika spalinowego wykorzystywane są pompy

A. zębate
B. membranowe
C. wirnikowe
D. tłoczkowe
Pompy zębate, tłoczkowe i membranowe są stosowane w różnych miejscach w przemyśle, ale do chłodzenia silników spalinowych się nie nadają. Pompy zębate działają na zasadzie zębatek i przez to mogą generować wyższe ciśnienia i pulsacje w systemie, co nie jest fajne. Zresztą, jak chodzi o pompowanie dużych objętości cieczy, to nie są najlepsze. Z kolei pompy tłoczkowe pracują na zasadzie zmiany objętości w komorach, ale są bardziej skomplikowane i wymagają więcej uwagi serwisowej, co czyni je trochę niewygodnymi do chłodzenia silników. A pompy membranowe? One wykorzystują elastyczne membrany, ale są dobre głównie tam, gdzie trzeba precyzyjnie dozować ciecz, a nie w chłodzeniu, bo nie obsłużą dużych objętości, a to w silnikach jest mega ważne. Dlatego wybór złej pompy do układu chłodzenia może prowadzić do przegrzewania się silnika i ogólnych problemów z jego efektywnością.

Pytanie 2

Optymalny poziom płynu chłodzącego w zbiorniku wyrównawczym powinien

A. przekraczać poziom maksymalny.
B. być poniżej poziomu minimalnego.
C. być poniżej dna zbiornika.
D. znajdować się pomiędzy poziomami oznaczającymi minimum i maksimum.
Prawidłowy poziom cieczy chłodzącej w zbiorniku wyrównawczym powinien znajdować się pomiędzy kreskami oznaczającymi minimum i maksimum, ponieważ to zapewnia optymalne działanie systemu chłodzenia silnika. Utrzymanie odpowiedniego poziomu cieczy jest kluczowe dla efektywności chłodzenia, co wpływa na prawidłowe funkcjonowanie silnika oraz zapobiega przegrzewaniu. Jeśli poziom cieczy będzie poniżej minimum, może to prowadzić do zjawiska 'wrzenia' płynu chłodzącego, a w konsekwencji do uszkodzenia silnika. Z drugiej strony, zbyt wysoki poziom cieczy może powodować nadmiar ciśnienia w układzie, co również jest niebezpieczne. Przykładowo, w samochodach osobowych, producenci zalecają regularne sprawdzanie poziomu płynu chłodzącego, szczególnie przed dłuższymi trasami. Dobre praktyki sugerują, aby sprawdzać poziom cieczy co najmniej raz w miesiącu oraz pamiętać o sezonowej wymianie płynu chłodzącego zgodnie z zaleceniami producenta pojazdu, co przyczynia się do wydłużenia żywotności silnika.

Pytanie 3

Maksymalna dopuszczalna różnica wskaźnika efektywności hamowania na jednej osi kół nie powinna być większa niż

A. 20 %
B. 25 %
C. 10 %
D. 30 %
Poprawne zrozumienie dopuszczalnej różnicy wskaźnika skuteczności hamowania jest kluczowe dla zachowania bezpieczeństwa na drodze. Odpowiedzi sugerujące niższe wartości, takie jak 25%, 20% czy 10%, mogą prowadzić do fałszywego poczucia bezpieczeństwa. Przyjmowanie zbyt restrykcyjnych norm może być problematyczne, ponieważ w rzeczywistości różne modele pojazdów mają różne specyfikacje i wymagania dotyczące hamowania. Na przykład, w przypadku niektórych pojazdów sportowych różnica ta może być bardziej wyraźna z uwagi na ich konstrukcję, jednak nie powinno to prowadzić do obniżenia bezpieczeństwa. Sugerowanie, że różnice 10% czy 20% są jedynym bezpiecznym rozwiązaniem, ignoruje różnorodność konstrukcji pojazdów oraz ich przeznaczenia. W rzeczywistości, zbyt niska granica może prowadzić do nadmiernych wymagań dotyczących regulacji systemów hamulcowych, co może być niepraktyczne, a nawet kosztowne. Ponadto, stosowanie takich norm może prowadzić do niepotrzebnej frustracji kierowców oraz mechaników, którzy próbują dostosować pojazdy do nieosiągalnych standardów. Dostosowanie norm do realiów rynkowych i technicznych jest kluczowe dla zapewnienia efektywnego działania układów hamulcowych.

Pytanie 4

Jakiej właściwości nie ma ciecz chłodząca używana w silnikach spalinowych?

A. Przeciwdziałanie zjawisku kawitacji i wrzenia
B. Niska skłonność do zamarzania
C. Ograniczenie nadmiernego przewodnictwa cieplnego
D. Zabezpieczenie przed korozją układu chłodzenia
Ciecz chłodząca w silnikach spalinowych ma dość ważne zadanie. Główna sprawa polega na tym, że odpowiada za transport ciepła z silnika do chłodnicy, a nie na ograniczaniu przewodnictwa cieplnego. To, że ciecz chłodząca ma dobre właściwości termiczne, to super sprawa. Dzięki temu silnik może działać w optymalnych temperaturach, co w moim odczuciu jest kluczowe dla jego trwałości i ogólnej wydajności. Pamiętaj, żeby regularnie sprawdzać i wymieniać ciecz chłodzącą, bo to zapobiegnie korozji i innym problemom, jak kawitacja, która może być naprawdę niebezpieczna dla silnika. Stosowanie odpowiednich cieczy, takich jak glikol etylenowy, pozwala dobrze funkcjonować w różnych warunkach, zwłaszcza zimą.

Pytanie 5

Pojęcia takie jak: kąt wyprzedzenia osi sworznia zwrotnicy oraz kąt nachylenia osi sworznia zwrotnicy są powiązane z systemem

A. kierowniczym
B. jezdnym
C. hamulcowym
D. napędowym
Odpowiedzi dotyczące układu napędowego, jezdnego czy hamulcowego są po prostu nieprawidłowe, bo skupiają się na zupełnie innych rzeczach w budowie i działaniu pojazdu. Układ napędowy to ten, który przenosi moc z silnika na koła, więc jego elementy, jak skrzynia biegów czy wały napędowe, nie mają nic wspólnego z kątami, o których mówisz. Kąt wyprzedzenia i kąt pochylenia nie wpływają na to, jak samochód przyspiesza. Z drugiej strony, układ jezdny dotyczy zawieszenia i kontaktu auta z nawierzchnią. Choć kąt pochylenia osi sworznia w jakiś sposób może wpływać na zawieszenie, to jednak nie jest to kluczowy parametr dla całego układu. A układ hamulcowy, który zatrzymuje auto, również nie ma z tym związku, bo te kąty bardziej dotyczą sterowności i stabilności. Mylenie tych układów i ich roli to częsty błąd, który może prowadzić do błędnych wniosków o tym, jak one działają i jak je ustawić.

Pytanie 6

Termostat stanowi część systemu

A. hamulcowego
B. dolotowego
C. chłodzenia
D. wylotowego
Termostat to naprawdę ważna część układu chłodzenia w samochodach. Jego główne zadanie to regulowanie temperatury silnika, a robi to przez otwieranie i zamykanie przepływu płynu chłodzącego, w zależności od tego, jak gorąco jest w silniku. Jak jest zimno, termostat jest zamknięty, co pozwala silnikowi szybciej osiągnąć odpowiednią temperaturę pracy. Kiedy silnik się nagrzeje, termostat się otwiera i płyn chłodzący może przepływać, co utrzymuje temperaturę na odpowiednim poziomie. Używanie sprawnego termostatu ma duży wpływ na efektywność paliwową i zmniejsza emisję spalin. Warto regularnie sprawdzać termostat, bo to dobra praktyka, którą polecają producenci, żeby mieć pewność, że silnik działa jak należy.

Pytanie 7

Reperacja tarcz hamulcowych w sytuacji, gdy nie są nadmiernie zdeformowane oraz mają właściwą grubość, polega na ich

A. metalizacji
B. galwanizacji
C. napawaniu
D. przetoczeniu
Napawanie, galwanizacja i metalizacja to metody, które raczej się nie nadają do regeneracji tarcz hamulcowych. Napawanie polega na dodawaniu nowej warstwy materiału, co w przypadku tarcz może wywołać nierówności i problemy z hamowaniem. To bardziej technika do naprawy elementów, które muszą być wzmocnione. Galwanizacja to sposób, który pokrywa metalowe powierzchnie warstewką ochronną, ale nie poprawia geometrii tarcz. Metalizacja z kolei to nanoszenie drobnego metalu, co też nie działa w przypadku tarcz hamulcowych. Takie myślenie po prostu nie ma sensu. Źle podchodząc do regeneracji tarcz, można narazić siebie i innych na niebezpieczeństwo, więc musimy korzystać ze sprawdzonych metod. Kluczowe jest, żeby zachować precyzyjną geometrię tarcz, a przetoczenie to robi, w przeciwieństwie do innych metod, które dodają materiał zamiast przywracać oryginalną funkcjonalność.

Pytanie 8

Ciśnienie powietrza w oponach pojazdu określane jest

A. w zależności od sezonu.
B. w zależności od wzoru bieżnika.
C. dla określonego rozmiaru opon.
D. przez wytwórcę pojazdu.
Myślenie o ciśnieniu w oponach tylko na podstawie ich rozmiaru, pory roku czy faktury bieżnika to prosta droga do błędów. Na przykład, ustalanie ciśnienia tylko według rozmiaru opon ignoruje całą masę istotnych rzeczy, jak ciężar auta czy jego przeznaczenie. Zmiany ciśnienia w zależności od pory roku mogą być mylące, bo różne auta potrzebują różnych wartości, niezależnie od pogody. Rzeźba bieżnika ma swoje znaczenie dla przyczepności, ale to nie ona decyduje o właściwym ciśnieniu, to producenci wiedzą najlepiej, jakie ciśnienie ustawić. Często zdarzają się uproszczenia w myśleniu o mechanice samochodu, które nie biorą pod uwagę tego, jak różne części współpracują ze sobą. Dlatego tak ważne, żeby kierowcy pamiętali, że ciśnienie w oponach powinno być ustalone na podstawie wskazówek producenta, bo to najlepszy sposób na uniknięcie problemów.

Pytanie 9

Wymianę pasa napędowego sprzętu silnika należy zrealizować

A. przy wymianie pompy wodnej
B. po określonym przebiegu i stopniu zużycia
C. podczas wymiany rozrządu
D. w trakcie przymusowego badania technicznego
Wymiana paska napędowego osprzętu silnika nie powinna się odbywać przy wymianie pompy wody czy podczas przeglądów technicznych. Jak wymieniasz pompę wody, to nie musisz koniecznie wymieniać paska, chyba że widzisz, że jest jakiś problem. Pompa może działać z paskiem, ale nie jest tak, że jak wymieniasz jedną, to drugą musisz też. Przeglądy techniczne są głównie o stanie technicznym pojazdu, a niekoniecznie o konkretnej wymianie, więc pasek nie jest tam szczegółowo sprawdzany. A jak chodzi o rozrząd, to też nie mylmy tego z wymianą paska – czasem trzeba go zdjąć, ale nie znaczy to, że trzeba go zmieniać, chyba że masz odpowiednie wskazówki od producenta. Niektórzy mechanicy mają podejście 'jeśli działa, to nie ruszaj' i to jest kiepskie podejście. Pamiętaj, że każdy pasek ma swoją żywotność i powinno się go regularnie kontrolować. Ignorowanie tego może prowadzić do poważnych usterek, które będą niebezpieczne oraz drogie w naprawie.

Pytanie 10

Jaką kwotę należy zapłacić za wymianę piasty koła w pojeździe, jeżeli cena piasty wynosi 250 zł, czas pracy to 1,4 godziny, a koszt roboczogodziny to 150 zł? Uwaga: uwzględnij 5% rabat na części zamienne oraz usługi.

A. 360 zł
B. 437 zł
C. 210 zł
D. 460 zł
Całkowity koszt wymiany piasty koła pojazdu oblicza się, biorąc pod uwagę zarówno cenę części zamiennej, jak i koszt robocizny. Cena piasty wynosi 250 zł, a czas wykonania wynosi 1,4 godziny, co przy stawce 150 zł za roboczogodzinę daje koszt robocizny równy 210 zł (1,4 godz. * 150 zł/godz.). Suma kosztów części i robocizny to 250 zł + 210 zł = 460 zł. Jednak należy uwzględnić 5% rabat na części zamienne i usługi. Rabat obliczamy na 460 zł: 460 zł * 0,05 = 23 zł. Po odjęciu rabatu od całkowitego kosztu, otrzymujemy 460 zł - 23 zł = 437 zł. Ta odpowiedź jest zgodna z zasadami kalkulacji kosztów w naprawach samochodowych, które uwzględniają zarówno ceny części, jak i robocizny oraz ewentualne rabaty, co jest standardową praktyką w branży. Warto również pamiętać, że niektóre warsztaty oferują dodatkowe zniżki na usługi, co może wpłynąć na ostateczną cenę usługi.

Pytanie 11

Gdzie stosowany jest odśrodkowy regulator prędkości obrotowej?

A. w przeponowej pompie paliwowej silnika z zapłonem iskrowym
B. w paliwowej pompie wysokiego ciśnienia w systemie Common Rail
C. w pompie tłoczkowej o niskim ciśnieniu
D. w rzędowej pompie wtryskowej
Każda z pozostałych opcji odnosi się do zastosowania pomp paliwowych w różnych kontekstach, ale nie uwzględnia kluczowej roli odśrodkowego regulatora prędkości obrotowej. Przeponowa pompa paliwa silnika z zapłonem iskrowym operuje na zupełnie innych zasadach; zazwyczaj jest stosowana w silnikach benzynowych i nie wymaga precyzyjnego dawkowania paliwa, co czyni zastosowanie odśrodkowego regulatora zbędnym. Pompy tłoczkowe niskiego ciśnienia, z kolei, służą do transportu paliwa z zbiornika do silnika, ale ich konstrukcja nie wymaga regulacji w oparciu o prędkość obrotową, co ogranicza ich zastosowanie w kontekście odśrodkowego regulatora. W przypadku pomp paliwowych wysokiego ciśnienia w układzie Common Rail, chociaż ich funkcja jest związana z precyzyjnym wtryskiem paliwa, to mechanizm działania opiera się na innych zasadach regulacji, takich jak elektroniczne sterowanie, co sprawia, że odśrodkowy regulator nie znajduje zastosowania w tym kontekście. Błędne założenie, że regulator może być użyty w tych typach pomp, wynika z mylnego zrozumienia zasad działania poszczególnych układów oraz funkcji, jakie pełnią w silnikach. Ważne jest zrozumienie, że różne systemy paliwowe mają swoje specyficzne wymagania dotyczące regulacji, które muszą być dostosowane do ich charakterystyki operacyjnej.

Pytanie 12

Klasyczny mechanizm różnicowy pozwala na

A. aktywowanie napędu na cztery koła.
B. prowadzenie samochodu z różnymi prędkościami obrotowymi kół napędowych.
C. przeniesienie momentu obrotowego z skrzyni biegów na wał.
D. płynne dostosowywanie prędkości pojazdu.
Pojęcie przeniesienia momentu obrotowego ze skrzyni biegów na wał dotyczy innych komponentów układu napędowego, w tym sprzęgieł i przekładni. To one odpowiadają za przekazywanie momentu obrotowego z silnika do mechanizmu różnicowego, a nie sam mechanizm różnicowy. Warto również zauważyć, że bezstopniowa regulacja prędkości pojazdu jest osiągana poprzez zastosowanie przekładni bezstopniowej (CVT), a nie przez mechanizm różnicowy, który ma inną funkcję. Jego przeznaczeniem jest umożliwienie kół obracania się z różnymi prędkościami, a nie bezstopniowe sterowanie prędkością. Włączenie napędu na cztery koła dotyczy systemów, które mogą wykorzystać mechanizm różnicowy, ale sama jego konstrukcja nie pozwala na aktywację napędu na wszystkie koła. Zrozumienie tych różnic jest kluczowe, aby unikać pomyłek dotyczących funkcji poszczególnych elementów układu napędowego. Często występującym błędem jest mylenie funkcji mechanizmu różnicowego z innymi elementami układu przeniesienia napędu, co prowadzi do nieprawidłowych wniosków i niezrozumienia ich działania.

Pytanie 13

Aby odczytać i zinterpretować błędy zapisane w pamięci sterownika silnika, należy wykorzystać

A. multimetr
B. komputerowy zestaw diagnostyczny
C. klucz serwisowy
D. czytnik kodów błędów
Komputerowy zestaw diagnostyczny to zaawansowane narzędzie wykorzystywane w diagnostyce silników, które umożliwia odczyt i interpretację błędów zapisanych w pamięci sterownika. Tego typu zestawy są standardem w warsztatach samochodowych i są niezbędne do skutecznej diagnostyki nowoczesnych pojazdów, które są coraz bardziej skomputeryzowane. Dzięki nim można uzyskać szczegółowe informacje o stanie różnych układów pojazdu, co pozwala na szybką identyfikację problemów oraz dokładne określenie koniecznych napraw. Na przykład, przy użyciu takiego zestawu diagnostycznego można odczytać kody błędów związane z systemem zarządzania silnikiem, a także monitorować parametry pracy silnika w czasie rzeczywistym. Zestawy te często oferują także funkcje takie jak testowanie komponentów, przeprowadzanie kalibracji oraz resetowanie błędów, co czyni je niezastąpionym narzędziem dla profesjonalnych mechaników. Warto również zauważyć, że korzystanie z komputerowego zestawu diagnostycznego jest zgodne z najlepszymi praktykami branżowymi, zalecanymi przez producentów pojazdów.

Pytanie 14

Który z poniższych elementów służy do redukcji wibracji w układzie zawieszenia?

A. Wahacz
B. Półosie napędowe
C. Sworzeń kulowy
D. Amortyzator
Amortyzator to kluczowy element układu zawieszenia w samochodzie, którego główną funkcją jest tłumienie wibracji i drgań wywołanych przez nierówności nawierzchni. Działa poprzez zamianę energii kinetycznej na ciepło, co pozwala na stabilizację pojazdu i zapewnienie komfortu jazdy. Dzięki amortyzatorom koła pojazdu mają stały kontakt z nawierzchnią, co nie tylko podnosi komfort, ale także zwiększa bezpieczeństwo poprzez poprawę trakcji i skrócenie drogi hamowania. Amortyzatory są zaprojektowane, by działać w połączeniu ze sprężynami zawieszenia, co pozwala na optymalne rozłożenie ciężaru pojazdu i absorpcję energii podczas jazdy po nierównościach. Z mojego doświadczenia, dobrze dobrane amortyzatory mogą znacząco poprawić właściwości jezdne pojazdu, a ich regularna kontrola i wymiana są kluczowe dla długowieczności innych komponentów zawieszenia. W praktyce, stosowanie wysokiej jakości amortyzatorów jest uznawane za standard branżowy, co ma bezpośredni wpływ na redukcję zmęczenia materiału innych elementów zawieszenia oraz na ogólne bezpieczeństwo jazdy.

Pytanie 15

Podczas wymiany wahacza poprzecznego wykonanego z lekkich stopów z nadmiernym luzem w przegubie kulistym, możliwe jest zastosowanie

A. tańszego stalowego zamiennika
B. części powypadkowej
C. zamiennika spełniającego normy producenta
D. wyłącznie elementu z logo producenta
Wybór części po wypadkach do wymiany wahacza poprzecznego to dość spore ryzyko. Te części mogą być kiepskiej jakości, co może mocno wpłynąć na bezpieczeństwo. Części z wypadków mogą mieć swoją historię, a ocena, co jest z nimi nie tak, bywa mega trudna. Używanie części z logo producenta, ale niezgodnych z normami, to zły pomysł, bo jakość takiej części jest wątpliwa. Może to prowadzić do uszkodzeń w zawieszeniu. Jeśli weźmiemy tańszy stalowy zamiennik zamiast lekkiego materiału, to może zmienić masę auta i jego właściwości jezdne. Większa masa w zawieszeniu to naprawdę może pogorszyć prowadzenie i komfort jazdy. Dlatego warto korzystać tylko z zamienników, które są zgodne z normami producenta. Inaczej może się to skończyć problemami mechanicznymi i prawnymi, a to w dłuższym czasie oznacza drogie naprawy i zagrożenie na drodze.

Pytanie 16

Jaką podstawę ma identyfikacja pojazdu?

A. numer silnika
B. numer dowodu rejestracyjnego pojazdu
C. numer VIN nadwozia
D. numer karty pojazdu
Numer VIN (Vehicle Identification Number) to unikalny identyfikator pojazdu, który zawiera istotne informacje dotyczące jego konstrukcji, producenta oraz daty produkcji. Jest to 17-znakowy kod składający się z liter i cyfr, który pozwala na jednoznaczną identyfikację konkretnego pojazdu w rejestrach, a także w systemach monitorowania kradzieży czy w historii serwisowej. Przykładowo, podczas zakupu używanego samochodu, sprawdzenie numeru VIN umożliwia weryfikację jego historii, co jest niezbędne dla dokonania świadomego wyboru. W praktyce, numer VIN jest także stosowany przez organy ścigania oraz ubezpieczycieli w celu identyfikacji pojazdów, co czyni go kluczowym elementem w procesach związanych z rejestracją i ubezpieczeniem. W związku z tym, właściwe posługiwanie się numerem VIN jest nie tylko standardem branżowym, ale także najlepszą praktyką w zarządzaniu flotą pojazdów oraz w handlu motoryzacyjnym.

Pytanie 17

Ilość energii elektrycznej, jaką można zgromadzić w akumulatorze, określa

A. gęstość elektrolitu
B. zdolność do rozruchu akumulatora
C. napięcie odniesienia akumulatora
D. pojemność nominalna akumulatora
Napięcie znamionowe akumulatora, choć istotne, nie określa maksymalnej ilości energii, jaką akumulator może zgromadzić. Napięcie to parametr, który definiuje różnicę potencjałów elektrycznych i ma kluczowe znaczenie dla określenia, jak skutecznie akumulator może współpracować z innymi komponentami systemu elektrycznego. Wartości napięcia muszą być dostosowane do wymagań urządzeń, jednak samo napięcie nie jest miarą zgromadzonej energii. Zdolność rozruchowa, jaką charakteryzują niektóre akumulatory, odnosi się do ich możliwości dostarczania dużych prądów przez krótki czas, co jest szczególnie ważne w przypadku silników spalinowych. Jednakże, zdolność ta nie ma związku z całkowitą energią zgromadzoną w akumulatorze. Ciężar właściwy elektrolitu, choć może dawać pewne wskazówki co do stanu naładowania akumulatora, nie jest bezpośrednim wskaźnikiem maksymalnej pojemności. W praktyce zrozumienie tych różnic jest kluczowe, aby uniknąć nieporozumień w doborze akumulatorów do specyficznych zastosowań, co może prowadzić do nieefektywności energetycznej oraz potencjalnych uszkodzeń systemów zasilających.

Pytanie 18

Podczas przeprowadzania testu drogowego po naprawie głowicy silnika, należy szczególnie zwrócić uwagę na

A. ciśnienie sprężania
B. temperaturę pracy silnika
C. regulację składu mieszanki
D. osiągane przyspieszenie
Regulacja składu mieszanki, osiągane przyspieszenie oraz ciśnienie sprężania to parametry, które oczywiście mają istotne znaczenie w kontekście ogólnej wydajności silnika, jednak nie są one kluczowe w pierwszej kolejności po naprawie głowicy silnika. Skład mieszanki paliwowo-powietrznej jest istotny dla uzyskania odpowiedniej mocy i efektywności paliwowej, ale jego regulacja powinna być przeprowadzana w kontekście całego systemu zasilania silnika, a nie tylko na etapie prób drogowych po naprawie. Osiągane przyspieszenie może być wskaźnikiem mocy silnika, ale nie dostarcza informacji o jego stanie technicznym, szczególnie po naprawach. W końcu, ciśnienie sprężania to ważny parametr, ale jego zmiany nie zawsze są bezpośrednio związane z bieżącą temperaturą pracy silnika. Niezrozumienie hierarchii tych parametrach oraz ich wpływu na działanie silnika po naprawie może prowadzić do błędnych ocen stanu technicznego pojazdu. Kluczowym aspektem jest to, że każdy z tych elementów powinien być monitorowany w odpowiednim kontekście, a temperatura pracy silnika powinna być priorytetem, aby zapewnić jego optymalne funkcjonowanie i zapobiegać poważnym uszkodzeniom. Właściwe zrozumienie i monitorowanie temperatury pozwala na szybką reakcję w przypadku wykrycia jakichkolwiek nieprawidłowości, co jest zgodne z najlepszymi praktykami w zakresie obsługi i konserwacji silników.

Pytanie 19

Układ hamulcowy należy odpowietrzyć

A. w tym samym kierunku co wskazówki zegara
B. w przeciwnym kierunku do wskazówek zegara
C. rozpoczynając od koła najbliższego pompie hamulcowej
D. rozpoczynając od koła najdalszego od pompy hamulcowej
Odpowietrzanie układu hamulcowego w sposób przeciwny do kierunku wskazówek zegara oraz od najbliższego koła do pompy hamulcowej prowadzi do poważnych błędów w procesie. Przede wszystkim, metoda odpowietrzania zaczynająca się od najbliższego koła nie jest zgodna z zasadami hydrauliki. Powietrze, które gromadzi się w systemie, zazwyczaj znajduje się w najdalszych częściach układu, a rozpoczęcie odpowietrzania od najbliższego koła ryzykuje pozostawieniem nieusuniętego powietrza, co skutkuje nieprawidłowym działaniem układu hamulcowego. Z kolei metoda odpowietrzania w kierunku przeciwnym do wskazówek zegara nie ma uzasadnienia technicznego, gdyż nie wpływa na usuwanie powietrza z układu w sposób efektywny. Zamiast tego, skutkuje to jedynie chaotycznym wprowadzaniem powietrza w inne miejsca układu, co zwiększa ryzyko wystąpienia sytuacji niebezpiecznych podczas jazdy. W praktyce, wiele warsztatów samochodowych stosuje metody oparte na najlepszych praktykach, które potwierdzają, że efektywne odpowietrzanie zaczynające się od najdalszego koła jest kluczowe dla zapewnienia optymalnej wydajności hamulców. Ignorując te zasady, można łatwo doprowadzić do sytuacji, w której układ hamulcowy będzie działał niewłaściwie, co w efekcie stwarza zagrożenie na drodze.

Pytanie 20

Aby odkręcić zapieczoną nakrętkę w układzie zawieszenia, należy użyć

A. podgrzewacza indukcyjnego
B. rurhaka
C. młotka
D. szlifierki kątowej
Użycie młotka do poluzowania zapieczonej nakrętki w układzie zawieszenia jest podejściem, które może prowadzić do poważnych uszkodzeń. Młotek generuje siłę udarową, co może spowodować nieodwracalne deformacje nakrętki lub śruby, a także uszkodzenie otaczających komponentów, co z kolei może prowadzić do konieczności wymiany całego elementu zawieszenia. W kontekście mechaniki pojazdowej, takie nieostrożne podejście jest niezgodne z zaleceniami producentów oraz normami branżowymi, które podkreślają konieczność zapobiegania uszkodzeniom podczas napraw. Rurhak jest narzędziem wykorzystywanym w niektórych zastosowaniach, ale jego działanie opiera się na przekładni dźwigni, co w przypadku zapieczonej nakrętki może okazać się niewystarczające. Przy dużym oporze, rurhak może nie tylko nie przynieść oczekiwanych rezultatów, lecz także narazić użytkownika na kontuzje. Z kolei szlifierka kątowa, chociaż skuteczna w cięciu lub szlifowaniu, może prowadzić do generowania dużych ilości ciepła, co zagraża integralności metalowych elementów oraz może wywołać pożar. Każdy z tych błędów myślowych wynika z niedostatecznego zrozumienia mechaniki materiałów oraz zastosowania odpowiednich metod w pracy z elementami konstrukcyjnymi.

Pytanie 21

Podczas obsługi okresowej pojazdu wymieniono materiały eksploatacyjne w ilościach podanych w tabeli. Koszt jednej roboczogodziny to 100 zł, a czas pracy mechanika wyniósł 1,5 godziny. Całkowity koszt usługi to

Części i materiałyCena jednostkowa brutto w złIlość
1. Filtr paliwa401 szt.
2. Filtr powietrza301 szt.
3. Filtr oleju201 szt.
4. Olej silnikowy254 l

A. 215 zł
B. 290 zł
C. 340 zł
D. 265 zł

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby zrozumieć, dlaczego odpowiedź 340 zł jest prawidłowa, musimy przyjrzeć się szczegółom obliczeń związanych z całkowitym kosztem usługi. Koszt części eksploatacyjnych wynosi 190 zł. Następnie należy uwzględnić koszt robocizny, który obliczamy jako iloczyn stawki za roboczogodzinę oraz czasu pracy mechanika. Przy stawce 100 zł za godzinę oraz 1,5 godziny pracy, otrzymujemy 100 zł x 1,5 = 150 zł. Po zsumowaniu obu kosztów (190 zł za części i 150 zł za robociznę) uzyskujemy 340 zł. To podejście jest zgodne z praktykami rachunkowości stosowanymi w branży motoryzacyjnej, gdzie dokładne ustalanie kosztów usług jest kluczowe dla zapewnienia transparentności oraz efektywności operacyjnej. Przykładowo, takie obliczenia są niezbędne przy planowaniu budżetu na serwis pojazdów, co pozwala na lepsze zarządzanie kosztami i zapobieganie nieprzewidzianym wydatkom.

Pytanie 22

Jakie narzędzie należy wykorzystać do pomiaru luzu zaworowego?

A. szczelinomierz.
B. czujnik zegarowy.
C. suwmiarka.
D. miernik wysokości.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Szczelinomierz to narzędzie pomiarowe, które jest niezbędne w procesie pomiaru luzu zaworowego w silnikach spalinowych. Luz zaworowy jest kluczowym parametrem, który wpływa na poprawne działanie układu rozrządu oraz ogólną wydajność silnika. Właściwy luz zapewnia optymalne warunki do otwierania i zamykania zaworów, co z kolei wpływa na efektywność spalania i osiągi silnika. Szczelinomierz umożliwia precyzyjne ustalenie wymiarów szczeliny, co jest kluczowe dla utrzymania odpowiedniej pracy silnika. W praktyce, w przypadku zbyt dużego luzu, może dochodzić do nieprawidłowego działania zaworów, natomiast zbyt mały luz może prowadzić do ich zatarcia. Używanie szczelinomierza w regularnych przeglądach technicznych oraz konserwacji silnika jest zgodne z zaleceniami producentów, co stanowi element dobrych praktyk w branży motoryzacyjnej.

Pytanie 23

Podczas uzupełniania oleju w automatycznej skrzyni biegów, należy użyć oleju oznaczonego symbolem

A. API
B. ŁT4
C. SAE
D. ATF

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź ATF (Automatic Transmission Fluid) jest poprawna, ponieważ jest to specyficzny typ oleju stosowanego w automatycznych skrzyniach biegów. Oleje ATF są zaprojektowane, aby spełniać rygorystyczne wymagania dotyczące pracy układów hydraulicznych, smarowania oraz chłodzenia, co jest kluczowe dla prawidłowego funkcjonowania automatycznej przekładni. Właściwości fizykochemiczne oleju ATF, takie jak lepkość, stabilność termiczna oraz odporność na utlenianie, są dostosowane do warunków pracy, jakie panują w skrzyniach automatycznych. Przykładem zastosowania oleju ATF może być jego użycie w samochodach osobowych, gdzie producenci zalecają stosowanie określonych specyfikacji, takich jak Dexron lub Mercon, w zależności od modelu pojazdu. Właściwy dobór oleju ATF wpływa na wydajność skrzyni biegów, a także na jej żywotność, co czyni go kluczowym elementem w serwisowaniu i konserwacji pojazdów.

Pytanie 24

Przed przeprowadzeniem diagnostyki silnika pojazdu przy użyciu analizatora spalin, należy

A. uzupełnić zbiornik paliwa.
B. schłodzić silnik.
C. dodać olej silnikowy do maksymalnego poziomu.
D. podnieść temperaturę silnika do wartości eksploatacyjnej.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rozgrzewanie silnika do temperatury eksploatacyjnej przed wykonaniem diagnostyki silnika przy użyciu analizatora spalin jest kluczowym etapem, który ma na celu uzyskanie dokładnych i wiarygodnych wyników pomiarów. Silniki spalinowe osiągają optymalną efektywność pracy oraz odpowiednie parametry spalin dopiero po osiągnięciu właściwej temperatury roboczej. W tej temperaturze wszystkie komponenty silnika, w tym systemy wtryskowe i katalizatory, działają w optymalny sposób, co pozwala na zminimalizowanie błędów pomiarowych. Dobrą praktyką jest również przeprowadzenie diagnostyki po pewnym czasie pracy silnika na biegu jałowym, co umożliwia stabilizację parametrów. Na przykład, podczas diagnostyki pojazdu osobowego, który przeszedł dłuższą jazdę, można zauważyć znaczące różnice w składzie spalin w porównaniu z pomiarami przy zimnym silniku. Warto zwrócić uwagę, że wiele instrukcji obsługi producentów zaleca konkretne procedury rozgrzewania silnika, co podkreśla znaczenie tego kroku w kontekście diagnostyki i redukcji emisji szkodliwych substancji.

Pytanie 25

Gdzie znajduje się filtr kabinowy w systemie?

A. w systemie chłodzenia
B. w systemie smarowania
C. w systemie paliwowym
D. w systemie klimatyzacji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Filtr kabinowy, znany również jako filtr powietrza kabinowego, pełni kluczową funkcję w systemie klimatyzacji pojazdu. Jego głównym zadaniem jest oczyszczanie powietrza, które dostaje się do wnętrza kabiny, eliminując kurz, pyłki, zanieczyszczenia oraz nieprzyjemne zapachy. Użycie filtra kabinowego poprawia jakość powietrza, co jest szczególnie istotne dla osób cierpiących na alergie czy astmę. W kontekście standardów branżowych, regularna wymiana filtra kabinowego jest zalecana co 15 000 do 30 000 kilometrów, w zależności od warunków eksploatacji oraz typu pojazdu. Dbanie o filtr kabinowy przyczynia się nie tylko do komfortu pasażerów, ale także do efektywności pracy systemu klimatyzacji, który może być obciążony przez zanieczyszczony filtr, prowadząc do wyższych kosztów eksploatacji. Regularna konserwacja systemu klimatyzacji, w tym wymiana filtra kabinowego, wpisuje się w najlepsze praktyki utrzymania pojazdu, co może przedłużyć jego żywotność oraz zwiększyć bezpieczeństwo podróżowania.

Pytanie 26

Kolejność dokręcania śrub/nakrętek głowicy rzędowego silnika wielocylindrowego ustalana przez producenta realizuje się według jakiej zasady?

A. po kolei od strony skrzyni biegów
B. po kolei od strony napędu wałka rozrządu
C. od wnętrza do zewnętrznej strony
D. od zewnętrznej strony do wnętrza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Właściwa kolejność dokręcania śrub głowicy silnika od środka do zewnątrz jest kluczowa dla zapewnienia równomiernego rozkładu sił i uniknięcia odkształceń w obszarze głowicy. Dzięki tej metodzie, wszystkie śruby działają w zharmonizowany sposób, co pozwala na równomierne dociśnięcie uszczelki oraz stabilizację całej konstrukcji. Działanie to jest szczególnie istotne w silnikach wielocylindrowych, gdzie różnice w rozkładzie ciśnienia mogłyby prowadzić do uszkodzeń, takich jak nieszczelności lub pęknięcia. Przykładem może być silnik typu V, gdzie ścisłe przestrzeganie tej zasady jest niezbędne do zapewnienia optymalnej pracy jednostki napędowej. W branży motoryzacyjnej standardy takie jak ISO 6789 określają metody i narzędzia do precyzyjnego dokręcania, co podkreśla wagę tego procesu. Wykonując dokręcanie zgodnie z tą zasadą, minimalizujemy ryzyko awarii i przedłużamy żywotność silnika, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 27

W dowodzie rejestracyjnym wskazana dopuszczalna masa całkowita pojazdu odnosi się do maksymalnej masy określonej przepisami, włączając w to

A. kierowcę oraz pasażerów, jednak bez ładunku
B. pasażerów, kierowcę i ładunek
C. materiały eksploatacyjne w ilościach standardowych, z pominięciem kierowcy i ładunku
D. przyczepę

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca, że dopuszczalna masa całkowita pojazdu odnosi się do masy pojazdu wraz z pasażerami, kierowcą i ładunkiem jest prawidłowa, ponieważ zgodnie z przepisami prawa drogowego, dopuszczalna masa całkowita (DMC) to maksymalna masa, jaką pojazd może ważyć podczas użytkowania na drodze. W skład tej masy wchodzą nie tylko same materiały eksploatacyjne, ale również wszyscy użytkownicy pojazdu oraz wszelkie przewożone ładunki. Przykładowo, przy wyliczaniu DMC dla autobusu pasażerskiego uwzględnia się zarówno masę pojazdu, jak i masę wszystkich pasażerów oraz ewentualny bagaż. Dobrą praktyką dla kierowców i przedsiębiorstw transportowych jest monitorowanie ilości przewożonych pasażerów oraz ładunku, aby nie przekraczać DMC, co może prowadzić do niebezpiecznych sytuacji na drodze oraz naruszeń przepisów prawa. W przypadku przekroczenia DMC, kierowca naraża siebie, pasażerów oraz innych uczestników ruchu na ryzyko, a także może ponieść konsekwencje prawne, w tym mandaty i kary administracyjne.

Pytanie 28

Pedał hamulca, który nadmiernie się ugina przy kolejnych naciskach, wskazuje na

A. zbyt wysoki poziom płynu hamulcowego
B. nadmierne zużycie bieżnika opon
C. zapowietrzenie układu hamulcowego
D. brak przyczepności opony do nawierzchni

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zbyt miękki pedał hamulca, który rośnie przy kolejnych naciśnięciach, najprawdopodobniej wskazuje na zapowietrzenie układu hamulcowego. Zapowietrzenie oznacza, że w układzie hydraulicznym znajduje się powietrze, co powoduje, że ciśnienie generowane przez pompkę hamulcową nie jest w pełni przenoszone na tłoczki hamulców. W efekcie pedał hamulca staje się mniej responsywny i wymaga większego wciśnięcia. Aby skutecznie rozwiązać ten problem, należy przeprowadzić odpowietrzanie układu hamulcowego, co jest kluczowym krokiem w utrzymaniu bezpieczeństwa pojazdu. Według standardów branżowych, zaleca się regularne sprawdzanie stanu układu hamulcowego oraz okresowe wymiany płynu hamulcowego, co zapobiega osadzaniu się powietrza oraz zapewnia jego właściwe właściwości hydrauliczne. Przykładem dobrych praktyk jest również stosowanie odpowiednich narzędzi do odpowietrzania, takich jak zestawy podciśnieniowe, które umożliwiają szybką i skuteczną eliminację powietrza z systemu.

Pytanie 29

Czym jest bieg jałowy?

A. najmniejsza prędkość obrotowa, przy której silnik może funkcjonować
B. prędkość poruszania się przy użyciu bezpośredniego przełożenia skrzyni biegów
C. prędkość obrotowa silnika w chwili rozłączenia sprzęgła
D. ustawienie dźwigni skrzyni biegów w pozycji N

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Bieg jałowy to najniższa prędkość obrotowa, z jaką może pracować silnik. W tym stanie silnik nie wykonuje żadnej pracy mechanicznej, a jego obroty są zminimalizowane, co pozwala na oszczędność paliwa oraz minimalizację emisji spalin. Przykładem zastosowania biegu jałowego jest sytuacja, gdy pojazd stoi w miejscu, a silnik wciąż pracuje, co umożliwia zasilenie systemów elektronicznych i klimatyzacji. Na standardy przemysłowe dotyczące pracy silnika wskazują, że utrzymywanie silnika na biegu jałowym przez dłuższy czas może prowadzić do jego zatarcia lub nadmiernego zużycia, dlatego zaleca się unikanie długotrwałego pozostawania na biegu jałowym. W kontekście motoryzacji, zrozumienie pracy silnika w różnych zakresach obrotów oraz ich wpływu na wydajność pojazdu stanowi kluczowy element dla każdego kierowcy i mechanika. Wiedza ta jest także istotna w kontekście regulacji dotyczących emisji spalin, gdzie dąży się do minimalizacji negatywnego wpływu na środowisko.

Pytanie 30

Jaką substancję można uznać za potencjalne źródło wybuchu oraz pożaru?

A. Uciekający płyn hamulcowy
B. LPG wyciekające z nieszczelnego systemu zasilania gazem
C. Uciekający płyn z systemu chłodzenia
D. Spaliny wydobywające się z układu wydechowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
LPG, czyli gaz płynny, jest substancją wysoce łatwopalną, co czyni go potencjalnym zagrożeniem w kontekście wybuchu i pożaru. W przypadku nieszczelnego układu zasilania gazem, LPG może wydobywać się do otoczenia, gdzie w obecności źródła zapłonu, takiego jak iskra lub wysoka temperatura, może dojść do zapłonu. W przemyśle i pojazdach zasilanych gazem, ważne jest, aby regularnie przeprowadzać kontrole szczelności instalacji gazowych oraz stosować odpowiednie materiały i technologie, które minimalizują ryzyko wycieków. Przykładem może być zastosowanie złączek i uszczelek wykonanych z materiałów odpornych na wysokie ciśnienie i temperaturę. Ponadto, w budynkach, gdzie wykorzystywane jest LPG, powinny być zainstalowane czujniki gazu, które w przypadku wycieku natychmiast alarmują użytkowników, co umożliwia podjęcie szybkich działań zapobiegających pożarowi. Zgodnie z normami bezpieczeństwa, takimi jak PN-EN 13786, instalacje gazowe powinny być projektowane i montowane przez wykwalifikowanych specjalistów, co zwiększa bezpieczeństwo użytkowania.

Pytanie 31

Gdzie instaluje się świece żarowe w silnikach diesla?

A. w misce olejowej
B. w głowicy silnika
C. w bloku chłodnicy
D. w układzie wydechowym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Świece żarowe w silnikach wysokoprężnych pełnią kluczową rolę w procesie rozruchu silnika, zwłaszcza w niskotemperaturowych warunkach. Montowane są w głowicy silnika, gdzie mają za zadanie podgrzewać mieszankę powietrzno-paliwową, co ułatwia jej zapłon. Dzięki temu silniki diesla mogą osiągnąć stabilną pracę nawet w trudnych warunkach atmosferycznych. Użycie świec żarowych znacząco poprawia wydajność silnika, redukuje emisję spalin i zmniejsza zużycie paliwa. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie jakości komponentów w silnikach, co czyni świece żarowe kluczowym elementem konstrukcji silnika wysokoprężnego. Dla przykładu, w wielu nowoczesnych pojazdach stosuje się świece żarowe z systemem automatycznego wyłączania po osiągnięciu optymalnej temperatury, co zwiększa ich żywotność i efektywność.

Pytanie 32

Złączenie elementów składowych podłogi w samochodzie osobowym zazwyczaj realizuje się poprzez

A. lutowanie
B. klejenie
C. zgrzewanie
D. kręcenie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zgrzewanie to chyba jedna z najfajniejszych metod, gdy chodzi o łączenie elementów podłogi w samochodach. Dlaczego? Bo jest naprawdę skuteczne i ma do tego świetne rozwiązania technologiczne. Cały proces polega na tym, że najpierw podgrzewamy krawędzie elementów, a potem je wyginamy, żeby stworzyć mocne połączenie. To ważne, zwłaszcza w przypadku podłóg, bo muszą one spełniać wysokie normy bezpieczeństwa i wytrzymałości. Dzięki zgrzewaniu, samochody są odporne na różne obciążenia, zarówno te związane z ruchem, jak i zmiany temperatury. Na dodatek, w nowoczesnych autach, gdzie liczy się lekkość i oszczędność materiałów, zgrzewanie idealnie się sprawdza. Dzięki temu możemy zmniejszyć wagę pojazdu, co przekłada się na lepsze osiągi i mniejsze zużycie paliwa. Warto też wspomnieć o zgrzewaniu ultradźwiękowym, które jest ekstra, bo pozwala na dokładne łączenie cienkowarstwowych części bez ryzyka ich uszkodzenia. Nie bez powodu w branży motoryzacyjnej zgrzewanie jest tak popularne - to kluczowa technika, która naprawdę ma znaczenie w produkcji.

Pytanie 33

Analizując jakość naprawy systemu wtrysku w silniku wysokoprężnym, co należy zweryfikować?

A. obecność kodów błędów kategorii B
B. poziom emisji tlenków azotu
C. obecność kodów błędów kategorii P
D. poziom emisji dwutlenku węgla

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Występowanie kodów usterek typu P jest kluczowe przy ocenie jakości naprawy układu wtryskowego silnika o zapłonie samoczynnym, ponieważ kody te odnoszą się do problemów związanych z układem paliwowym i emisjami spalin. Kody usterek typu P (Powertrain) wskazują na problemy z silnikiem lub jego osprzętem, a ich interpretacja jest niezbędna do zdiagnozowania i naprawy usterek. Przykładowo, kod P0401 może wskazywać na niską sprawność recyrkulacji spalin, co może prowadzić do zwiększonej emisji szkodliwych substancji. Zrozumienie i odpowiednia analiza tych kodów pozwala na szybką lokalizację problemu, co jest zgodne z najlepszymi praktykami diagnostyki w motoryzacji. Ponadto, diagnostyka komputerowa, w tym odczyt kodów usterek, jest standardem w nowoczesnym serwisie samochodowym, co czyni ją niezbędnym narzędziem dla mechaników, aby prawidłowo ocenić stan techniczny pojazdu.

Pytanie 34

Kiedy następuje wymiana oleju w przekładni głównej?

A. po przejechaniu 60 tys. km
B. co dekadę
C. co 12 miesięcy
D. zgodnie z wytycznymi producenta

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'zgodnie z instrukcją producenta' jest prawidłowa, ponieważ wymiana oleju w przekładni głównej powinna być przeprowadzana według specyfikacji dostarczonych przez producenta pojazdu. Instrukcje te zawierają istotne informacje dotyczące rodzaju oleju, jego lepkości oraz interwałów wymiany, które są dostosowane do konkretnego modelu i warunków eksploatacji. Na przykład, w niektórych pojazdach, olej w przekładni głównej może wymagać wymiany co 30 tys. km, podczas gdy w innych może to być 100 tys. km lub dłużej. Ignorowanie tych zaleceń może prowadzić do awarii przekładni, co często wiąże się z kosztownymi naprawami. W praktyce, regularne sprawdzanie poziomu i jakości oleju oraz jego wymiana w odpowiednich interwałach zalecanych przez producenta, zapewnia dłuższą żywotność układu napędowego oraz optymalne osiągi pojazdu. Warto również pamiętać, że stosowanie oleju o niewłaściwych parametrach może prowadzić do zwiększonego zużycia paliwa oraz obniżenia efektywności pracy przekładni.

Pytanie 35

Rozmontowanie pełnej kolumny McPhersona na pojedyncze części przeprowadza się przy użyciu

A. ręcznej prasy
B. specjalnie uformowanej dźwigni
C. prasy hydraulicznej
D. ściągacza do sprężyn

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ściągacz do sprężyn jest narzędziem niezbędnym do demontażu kolumny McPhersona, ponieważ umożliwia on bezpieczne i skuteczne usunięcie sprężyny zawieszenia, która jest elementem pod dużym ciśnieniem. W trakcie demontażu ważne jest, aby sprężynę odpowiednio ściągnąć, aby zminimalizować ryzyko uszkodzenia innych komponentów oraz zapewnić bezpieczeństwo osoby wykonującej tę operację. Ściągacze do sprężyn są dostępne w różnych wersjach, w tym ręcznych oraz hydraulicznych, co pozwala na dostosowanie narzędzia do konkretnych warunków pracy. Zastosowanie ściągacza do sprężyn jest zgodne z najlepszymi praktykami w branży motoryzacyjnej, które podkreślają znaczenie używania odpowiednich narzędzi do przeprowadzania prac serwisowych. Warto zauważyć, że niewłaściwe lub nieodpowiednie narzędzia mogą prowadzić do uszkodzenia kolumny McPhersona, co zwiększa koszty naprawy oraz czas przestoju pojazdu.

Pytanie 36

Podczas serwisowania głowicy silnika stwierdzono, że jedno z gniazd świecy zapłonowej ma zniszczony gwint. W tej sytuacji mechanik powinien

A. tulejować otwór i ponownie nagwintować
B. rozwiercić otwór na nowy wymiar naprawczy i ponownie nagwintować
C. wsadzić nową świecę zapłonową, która naprawi uszkodzony gwint
D. naprawić dotychczasowy gwint przy użyciu narzynki

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Tulejowanie otworu i nagwintowanie na nowo to chyba najlepsza metoda na naprawę uszkodzonego gwintu w gnieździe świecy zapłonowej. Chodzi o to, żeby wsunąć tuleję do otworu, co przywraca prawidłowe mocowanie świecy. Z tego, co wiem, tuleje są zazwyczaj robione z materiałów, które dobrze znoszą wysokie temperatury i ciśnienie, więc są świetnym rozwiązaniem w silnikach. Pomyśl tylko – jeśli gwint w głowicy silnika coś nadgryzła korozja albo źle wkręcona świeca, to tulejowanie będzie znacznie lepsze niż jakieś doraźne naprawy. W branży uznaje się, że ta metoda jest zdecydowanie trwalsza i bardziej niezawodna, więc czujesz, że robisz dobrze. Właściwie to stosowanie tulei w takich naprawach to sama czołówka najlepszych praktyk, bo znacznie zmniejsza ryzyko kolejnych uszkodzeń, które mogłyby być spowodowane źle wkręconą świecą.

Pytanie 37

Jakie elementy można naprawić stosując metodę lutowania?

A. zużyte łożysko ślizgowe wału korbowego
B. uszkodzoną końcówkę drążka kierowniczego
C. nieszczelną chłodnicę
D. pęknięty wał napędowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Lutowanie to super metoda, jeśli chodzi o naprawę nieszczelnych chłodnic. Dzięki temu można skutecznie połączyć różne elementy metalowe, bo materiał lutowniczy się topi i załatwia sprawę. Chłodnice zazwyczaj są z aluminium albo miedzi, więc lutowanie naprawdę daje radę w naprawie wycieków płynu chłodzącego. Z mojego doświadczenia ważne jest, żeby najpierw dokładnie oczyścić uszkodzone miejsce, a potem nałożyć topnik. To zapewnia lepsze trzymanie się lutowia. Potem całość musi się podgrzać, co topi materiał i łączy elementy. Dobrze zrobione lutowanie jest trwałe i wytrzymuje wysokie ciśnienie oraz temperaturę, co jest mega istotne w układach chłodzenia w samochodach. Warto mieć na uwadze, że są standardy, jak ISO 14731, które wskazują, jak ogarniać lutowanie, by mieć pewność, że połączenia są na najwyższym poziomie. Regularne kontrolowanie nieszczelności chłodnic też nie zaszkodzi – lepiej zapobiegać problemom niż je potem łatać.

Pytanie 38

Podczas pomiaru ciśnienia oleju w silniku, mechanik zauważył zbyt wysokie ciśnienie przy zwiększonych obrotach silnika. Możliwą przyczyną podwyższenia ciśnienia może być

A. uszkodzony zawór przelewowy pompy olejowej
B. zbyt wysoka temperatura pracy silnika
C. zużycie łożysk głównych wału korbowego
D. zbyt wysoki poziom oleju

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Uszkodzony zawór przelewowy pompy olejowej jest istotnym elementem układu smarowania silnika. Jego głównym zadaniem jest utrzymanie odpowiedniego ciśnienia oleju poprzez regulację przepływu oleju. W przypadku uszkodzenia zaworu przelewowego, olej może być zbyt mocno pompowany do układu, co prowadzi do nadmiernego ciśnienia, zwłaszcza przy wyższych prędkościach obrotowych silnika. To zjawisko może skutkować nie tylko uszkodzeniem samego zaworu, ale także innych komponentów silnika, takich jak uszczelki, które mogą nie wytrzymać tak wysokiego ciśnienia. Przykładowo, w silnikach sportowych, gdzie ciśnienie oleju ma kluczowe znaczenie dla wydajności, regularne sprawdzanie i konserwacja zaworu przelewowego jest niezbędna. Standardy branżowe zalecają przeprowadzanie takich kontroli co najmniej raz w roku lub po każdym większym serwisie, aby uniknąć poważnych awarii. Właściwe utrzymanie układu smarowania jest kluczowe dla zapewnienia długotrwałej i niezawodnej pracy silnika.

Pytanie 39

Aby zmierzyć luz zaworowy, konieczne jest posiadanie

A. szczelinomierza
B. passametra
C. mikrometru
D. głębokościomierza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Szczelinomierz to narzędzie niezbędne do pomiaru luzu zaworowego w silnikach spalinowych. Luz zaworowy odnosi się do przestrzeni między końcem zaworu a dźwignią zaworu (lub innym elementem napędu) i jest kluczowy dla prawidłowego działania silnika. Zbyt mały luz może prowadzić do zatarcia zaworów, natomiast zbyt duży luz może powodować nieprawidłowe działanie silnika i zwiększone zużycie paliwa. Szczelinomierz składa się z zestawu cienkich blaszek o różnych grubościach, które umożliwiają dokładne określenie luzu. Przykładowo, w silnikach o napędzie benzynowym, zaleca się regularne sprawdzanie luzu zaworowego co 10 000-15 000 km, co można wykonać właśnie przy pomocy szczelinomierza, zgodnie z zaleceniami producenta. Ponadto, znajomość i umiejętność stosowania szczelinomierza jest podstawowym elementem wyposażenia mechanika, co potwierdzają standardy branżowe i dobre praktyki w obsłudze silników.

Pytanie 40

W pneumatycznym systemie hamulcowym, elementem odpowiedzialnym za przechowywanie sprężonego powietrza jest

A. zbiornik powietrza
B. siłownik pneumatyczny
C. poduszka powietrzna
D. manometr

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zbiornik powietrza w pneumatycznym układzie hamulcowym jest kluczowym elementem odpowiedzialnym za magazynowanie sprężonego powietrza, które jest niezbędne do skutecznego działania hamulców. Zbiornik ten gromadzi powietrze w odpowiednim ciśnieniu, co umożliwia szybkie i efektywne uruchamianie hamulców w sytuacjach awaryjnych oraz w normalnych warunkach eksploatacyjnych. Przykładowo, w pojazdach ciężarowych oraz autobusach, zbiornik powietrza jest projektowany zgodnie z określonymi normami bezpieczeństwa, aby wytrzymał wysokie ciśnienia robocze. Dobre praktyki branżowe wskazują również na regularne kontrole zbiorników, w tym sprawdzanie ich szczelności oraz stanu technicznego, co jest niezbędne do zapewnienia bezpieczeństwa użytkowania. Utrzymując zbiornik powietrza w dobrym stanie, można zminimalizować ryzyko awarii układu hamulcowego i zapewnić nieprzerwaną wydajność działania systemu hamulcowego, co jest kluczowe w kontekście bezpieczeństwa transportu.