Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 6 kwietnia 2025 14:49
  • Data zakończenia: 6 kwietnia 2025 15:02

Egzamin niezdany

Wynik: 18/40 punktów (45,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Jakie czynności trzeba wykonać, aby zamocować koło pasowe na wale przy użyciu pasowania?

A. Podgrzać wał i schłodzić koło pasowe
B. Podgrzać koło pasowe oraz wał
C. Obniżyć temperaturę koła pasowego i wału
D. Podgrzać koło pasowe i schłodzić wał
Wybór nieprawidłowych metod zamocowania koła pasowego na wale jest często wynikiem nieprawidłowego zrozumienia procesów fizycznych zachodzących podczas montażu. Schładzanie koła pasowego, jak sugeruje jedna z odpowiedzi, byłoby szkodliwe, ponieważ doprowadziłoby do zmniejszenia jego średnicy, co znacznie utrudniłoby, a wręcz uniemożliwiło, jego montaż na wałku. W przypadku rozgrzewania wału i schładzania koła pasowego, również nie osiągnęlibyśmy pożądanego efektu, ponieważ schłodzenie koła spowodowałoby, że jego średnica zmniejszyłaby się, co również prowadziłoby do trudności z montażem. Ponadto, pomysły na rozgrzanie obu elementów mogą wydawać się logiczne, jednak nie uwzględniają one zasady, że oba elementy muszą mieć różne temperatury, aby mogły ze sobą współdziałać. Metody te są sprzeczne z podstawowymi zasadami inżynierii mechanicznej oraz praktykami montażowymi, które zalecają różnicowanie temperatur w celu ułatwienia montażu. Efektywność procesów montażowych opiera się na zrozumieniu zachowań materiałów i ich reakcji na zmiany temperatury, co jest kluczowe dla zapewnienia prawidłowego funkcjonowania maszyn. Dlatego tak ważne jest przestrzeganie sprawdzonych procedur, które gwarantują nie tylko wygodę montażu, ale również długotrwałe i niezawodne działanie urządzeń.

Pytanie 3

Aby zmierzyć napięcie na cewce elektrozaworu o nominalnym Un = 24 V, zastosowano analogowy woltomierz z 75 podziałami na skali, ustawiony na zakres 30 V. Ile podziałów wskaże ten woltomierz, jeśli napięcie na cewce elektrozaworu jest poprawne?

A. 75
B. 24
C. 30
D. 60
Odpowiedzi, które wskazują na 24, 75 lub 30 działek, oparte są na błędnych założeniach dotyczących sposobu pomiaru napięcia. W przypadku odpowiedzi 24 działki, może występować mylne przekonanie, że każda działka odpowiada napięciu 1 V - jednak w rzeczywistości, z uwagi na zakres 30 V i 75 działek, wartość, która przypada na jedną działkę, to 0,4 V. Natomiast odpowiedź 75 działek sugeruje, że woltomierz mógłby wskazać maksymalną wartość zakresu, co nie jest możliwe, gdyż mierzymy napięcie 24 V, a nie jego maksymalne dozwolone napięcie. Z kolei 30 działek odnosi się do błędnego założenia, że napięcie 24 V odpowiada 30% zakresu 30 V, co jest nieprawidłowe, ponieważ stanowiłoby to wartość mniejszą od rzeczywistego odczytu. W praktyce istotne jest zrozumienie, że pomiar napięcia wymaga nie tylko wiedzy na temat używanego narzędzia, ale także o jego właściwościach i układzie skali. Typowe błędy myślowe, które prowadzą do tych niepoprawnych odpowiedzi, to brak zrozumienia mechanizmu działania woltomierzy, co może skutkować nieprawidłową interpretacją danych pomiarowych. Prawidłowe zrozumienie skali oraz wartości mierzonych jest kluczowe, aby uniknąć nieporozumień i zapewnić dokładność pomiarów, co jest niezwykle ważne w inżynierii elektrotechnicznej.

Pytanie 4

Jakiego rodzaju kinematykę posiada manipulator, jeśli jego przestrzeń robocza przypomina prostopadłościan?

A. RRR - trzy osie obrotowe
B. RTT - jedną oś obrotową i dwie osie prostoliniowe
C. RRT - dwie osie obrotowe i jedną oś prostoliniową
D. TTT - trzy osie prostoliniowe
Odpowiedź RRR, która sugeruje manipulatory z kilkoma osiami obrotowymi, nie za bardzo pasuje do kontekstu prostopadłościennej przestrzeni roboczej. Obrotowe ruchy mogą wydawać się elastyczne, ale w praktyce nie dają tej samej precyzji, co ruchy prostoliniowe. Odpowiedzi RRT i RTT, które łączą osie obrotowe i prostoliniowe, też nie spełniają wymagań tej konkretnej przestrzeni. Wiesz, w takich manipulacjach ważne są bezpośrednie ruchy liniowe, które pozwalają na dotarcie do każdego punktu w prostopadłościanie, a z samymi obrotami to nie takie proste. Często błędne myślenie przy takich odpowiedziach wynika z niedostatecznego zrozumienia kinematyki, a niektórzy mylą ruchy manipulatorów z ich geometrią. Dlatego, moim zdaniem, ważne jest, żeby znać różne typy kinematyki, żeby móc dobierać odpowiednie urządzenia do konkretnych zadań.

Pytanie 5

W normalnych warunkach działania wyłącznika różnicowoprądowego wektorowa suma natężeń prądów sinusoidalnych przepływających w przewodach fazowych oraz neutralnym wynosi

A. 0 A
B. 1 A
C. 3 A
D. 2 A
Odpowiedzi 1 A, 2 A i 3 A sugerują istnienie różnicy prądów w obwodzie, co w przypadku prawidłowego działania wyłącznika różnicowoprądowego jest niepoprawne. Wyłącznik ten działa na zasadzie pomiaru różnicy między prądem wpływającym a wypływającym, a w warunkach normalnych te dwa prądy powinny być równe, co prowadzi do zera. W przypadku podania wartości 1 A, 2 A czy 3 A można by błędnie wnioskować, że w obwodzie występuje jakaś forma upływu prądu, co jest mylące. Typowym błędem w myśleniu jest założenie, że każdy prąd płynący przez obwód musi generować różnice natężeń, co nie jest zgodne z zasadami zachowania energii. W praktyce, w instalacjach elektrycznych, sumowanie prądów sinusoidalnych w obwodzie powinno zawsze prowadzić do zera, co jest warunkiem stabilności i bezpieczeństwa systemu. Warto pamiętać, że niewłaściwe zrozumienie działania wyłączników różnicowoprądowych może prowadzić do błędnych decyzji w projektowaniu i eksploatacji instalacji elektrycznych, co w skrajnych przypadkach może zagrażać życiu i zdrowiu użytkowników.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Które z wymienionych materiałów sztucznych jest najbardziej odpowiednie do wytwarzania kół zębatych?

A. Silikon
B. Poliamid
C. Poliuretan
D. Lateks
Poliamid, znany również jako nylon, jest jednym z najlepszych tworzyw sztucznych do produkcji kół zębatych ze względu na swoje doskonałe właściwości mechaniczne. Ma wysoką wytrzymałość na rozciąganie oraz odporność na ścieranie, co czyni go idealnym materiałem do zastosowań, gdzie występują znaczne obciążenia. Dzięki niskiemu współczynnikowi tarcia, poliamid zmniejsza zużycie energii i przedłuża żywotność elementów mechanicznych. Przykłady zastosowania obejmują przemysł motoryzacyjny, gdzie koła zębate z poliamidu są używane w układach przekładniowych, a także w urządzeniach przemysłowych, takich jak maszyny CNC. Poliamid jest także odporny na działanie olejów i rozpuszczalników, co dodatkowo zwiększa jego wszechstronność. Zgodnie z dobrymi praktykami inżynieryjnymi, wybór poliamidu do produkcji kół zębatych jest zgodny z wieloma normami branżowymi, co potwierdza jego zalety w kontekście efektywności i trwałości w aplikacjach inżynieryjnych.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Pamięć EPROM (ang. Erasable Programmable Read-Only Memory) to typ pamięci cyfrowej realizowanej w formie układu scalonego, którą można

A. programować i usuwać elektrycznie
B. kasować za pomocą promieniowania ultrafioletowego
C. bezpowrotnie stracić po odłączeniu zasilania
D. tylko odczytywać
Odpowiedzi, które mówią o programowaniu i kasowaniu elektrycznym oraz utracie danych po wyłączeniu zasilania, są w kontekście pamięci EPROM nietrafione. Pamięć EPROM nie traci danych po odłączeniu prądu; jest to pamięć nieulotna. To znaczy, że dane się w niej trzymają, nawet jak wyłączymy zasilanie, co jest mega ważne w wielu aplikacjach. Poza tym, EPROM programuje się tylko przy użyciu promieniowania UV, a nie elektrycznie, jak w przypadku pamięci EEPROM, która z kolei pozwala na kasowanie i programowanie elektryczne. A odpowiedź, która mówi, że EPROM to tylko odczyt, jest też myląca, bo EPROM można zaprogramować przed użyciem, więc ma znacznie większe możliwości. Wydaje mi się, że te błędne myśli mogą wynikać z braku znajomości różnic między różnymi typami pamięci i z problemów ze zrozumieniem, jak dokładnie działają te mechanizmy. Znajomość tych różnic jest naprawdę ważna, jeśli chcemy dobrze stosować technologię pamięci w projektowaniu systemów elektronicznych.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Który z poniższych elementów nagle obniża swoją rezystancję po osiągnięciu określonego poziomu napięcia na jego terminalach?

A. Tensometr.
B. Termistor.
C. Warystor.
D. Gaussotron.
Warystor to element elektroniczny, którego rezystancja gwałtownie spada po przekroczeniu określonego napięcia, znanego jako napięcie nominalne. Ten mechanizm jest zjawiskiem nieliniowym, co oznacza, że warystor działa jako izolator, gdy napięcie jest poniżej tego poziomu, ale staje się przewodnikiem, gdy napięcie przekracza tę granicę. Warystory są często stosowane w obwodach ochronnych, aby zabezpieczać urządzenia przed przepięciami, na przykład w zasilaczach oraz w systemach zabezpieczeń. Gdy napięcie wzrasta, warystor skutecznie 'odprowadza' nadmiar energii, co zapobiega uszkodzeniu innych komponentów w obwodzie. Z punktu widzenia norm i dobrych praktyk, warystory są zalecane w projektach, gdzie występuje ryzyko przepięć, zgodnie z normami IEC 61000-4-5 dotyczącymi odporności na przepięcia. Dodatkowo, ich zastosowanie w ochronie obwodów elektronicznych staje się kluczowe w kontekście wzrastającej liczby urządzeń narażonych na zakłócenia sieciowe oraz zmienność napięcia.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Jakie urządzenie służy do pomiaru prędkości obrotowej wirnika silnika?

A. resolver.
B. galwanometr.
C. tensometr.
D. prądnica tachometryczna.
Tensometr to urządzenie służące do pomiaru odkształceń w materiałach, a nie prędkości obrotowej. Jego działanie opiera się na efekcie piezoelektrycznym lub zmiany oporu elektrycznego w zależności od naprężenia. Użycie tensometru w kontekście pomiaru prędkości obrotowej jest nieadekwatne, ponieważ ten typ sensora nie ma zdolności do bezpośredniego monitorowania ruchu obrotowego. Galwanometr, z kolei, jest przyrządem elektromechanicznym służącym do pomiaru prądu elektrycznego, a jego zastosowanie w pomiarze prędkości obrotowej jest ograniczone i nieefektywne. Galwanometry są użyteczne w aplikacjach wymagających pomiaru małych prądów, ale nie mogą dostarczać informacji o obrotach wirnika. Resolver, będący urządzeniem do pomiaru kątowego, także nie jest idealnym rozwiązaniem do pomiaru prędkości obrotowej, ponieważ jego głównym zadaniem jest określenie położenia kątowego, a nie bezpośredni pomiar prędkości. Często pojawiające się błędy w myśleniu polegają na myleniu zastosowań tych urządzeń, co prowadzi do niewłaściwych wyborów w kontekście pomiarów i automatyzacji. Zrozumienie specyfiki i przeznaczenia poszczególnych urządzeń pomiarowych jest kluczowe dla efektywnego projektowania układów automatyki i systemów kontrolnych.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Co należy zrobić w pierwszej kolejności, gdy poszkodowany w wypadku jest nieprzytomny i nie wykazuje oznak oddychania?

A. wezwać pomoc i przeprowadzić sztuczne oddychanie
B. pozostawić poszkodowanego w aktualnej pozycji i zatelefonować po pomoc
C. wezwać pomoc i zapewnić drożność dróg oddechowych poszkodowanego
D. przeprowadzić reanimację poszkodowanego i wezwać pomoc
Inne odpowiedzi, które zaznaczyłeś, mają błędne podejście do tego, co jest najważniejsze w sytuacji wypadku. Pamiętaj, że nie można najpierw robić sztucznego oddychania, gdy drogi oddechowe są zablokowane, bo to jest naprawdę niebezpieczne. Jak coś zablokuje drogi, to powietrze się nie dostanie do płuc i tylko pogorszymy sytuację. Odpowiedź, w której zostawiasz poszkodowanego w pozycji, w jakiej go znalazłeś, jest też zła, bo może prowadzić do kompikacji jak aspiracja. No i w resuscytacji najważniejsze jest, by najpierw otworzyć drogi oddechowe, a potem wezwać pomoc. Każdy, kto chce być ratownikiem, powinien to wiedzieć. Ignorowanie tych zasad może naprawdę zaszkodzić osobie, która potrzebuje pomocy.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Jakiego rodzaju materiału należy użyć do produkcji narzędzi do mechanicznej obróbki skrawaniem, takich jak frezy?

A. Mosiądz
B. Stal szybkotnącą
C. Żeliwo szare
D. Brąz
Stal szybkotnąca, znana również jako stal HSS (high-speed steel), jest materiałem o wysokiej twardości i odporności na ścieranie, co czyni ją idealnym wyborem do produkcji narzędzi skrawających takich jak frezy. Jej zdolność do zachowania wysokiej wydajności przy dużych prędkościach obróbczych sprawia, że jest powszechnie stosowana w przemyśle metalowym. Przykładowo, narzędzia wykonane z stali szybkotnącej mogą pracować w temperaturach przekraczających 600°C, co znacznie zwiększa ich efektywność w mechanicznej obróbce metali. Ponadto, stal HSS posiada doskonałe właściwości cieplne, co umożliwia jej użycie w formach skrawających, które są narażone na intensywne warunki pracy. Dzięki tym właściwościom, stal szybkotnąca jest zgodna z normami ISO oraz innymi standardami jakości, co czyni ją najlepszym wyborem do produkcji narzędzi skrawających.

Pytanie 29

Wartością tarcia wewnętrznego cieczy dla oleju smarnego jest

A. gęstość
B. lepkość
C. smarność
D. utlenianie
Lepkość jest miarą oporu, jaki ciecz stawia podczas przepływu i jest kluczowym parametrem w ocenie właściwości olejów smarowych. Wysoka lepkość oznacza, że ciecz jest bardziej gęsta i oporna na przepływ, co jest korzystne w zastosowaniach wymagających skutecznego smarowania. Przykładowo, oleje silnikowe muszą mieć odpowiednią lepkość, aby skutecznie chronić silnik przed zużyciem oraz zapewniać odpowiednie smarowanie w różnych temperaturach pracy. Standardy, takie jak SAE, określają klasyfikacje lepkości, co pozwala na wybór odpowiedniego oleju do konkretnego zastosowania. Na przykład, olej 10W-40 ma różne właściwości lepkości w niskich i wysokich temperaturach, co czyni go wszechstronnym wyborem dla wielu silników. Ponadto, lepkość wpływa na inne parametry, takie jak temperatura krzepnięcia i przewodność cieplna, co jest istotne w kontekście efektywności energetycznej urządzeń mechanicznych.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Jaki środek smarny oraz o jakiej konsystencji powinno się wykorzystać w celu zmniejszenia oporu tarcia w siłownikach pneumatycznych?

A. Półciekły smar plastyczny
B. Olej w postaci mgły olejowej
C. Olej w postaci płynnej
D. Smar o stałej konsystencji
W przypadku siłowników pneumatycznych, wybór odpowiedniego środka smarnego jest kluczowy dla zapewnienia ich prawidłowego funkcjonowania. Półciekły smar plastyczny, mimo że może być skuteczny w niektórych zastosowaniach, nie jest najlepszym rozwiązaniem dla systemów pneumatycznych. Tego typu smar nie ma odpowiedniej zdolności do rozprzestrzeniania się w systemie, co prowadzi do nierównomiernego smarowania i zwiększonego tarcia. Z kolei smar o stałej konsystencji również nie zaspokaja potrzeb dynamicznych siłowników, które wymagają smarów o mniejszej lepkości, aby zapewnić swobodny ruch. Olej w postaci płynnej może być lepszą alternatywą, ale nie osiąga efektywności oleju w postaci mgły, który dzięki swojej formie zapewnia doskonałą penetrację i dystrybucję. Wybór niewłaściwego środka smarnego może prowadzić do zwiększonego zużycia elementów, a w konsekwencji do awarii urządzeń. W praktyce, wiele osób może myśleć, że wszelkie oleje są wystarczające do smarowania, co jest błędem. Optymalne smarowanie wymaga nie tylko odpowiedniego środka, ale także zrozumienia mechanizmów tarcia i zużycia, co jest fundamentalne dla prawidłowego funkcjonowania systemów pneumatycznych.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Jakie materiały wykorzystuje się do wytwarzania rdzeni magnetycznych w transformatorach?

A. ferromagnetyki
B. paramagnetyki
C. diamagnetyki
D. antyferromagnetyki
Ferromagnetyki są materiałami, które wykazują silne właściwości magnetyczne, co czyni je idealnymi do zastosowania w produkcji rdzeni magnetycznych transformatorów. W szczególności, ferromagnetyki, jak żelazo, nikiel czy kobalt, mają zdolność do silnego namagnesowania oraz do zatrzymywania magnetyzmu po usunięciu zewnętrznego pola magnetycznego. Dzięki tym właściwościom, rdzenie ferromagnetyczne minimalizują straty energetyczne i zwiększają efektywność transformatorów. W praktyce, zastosowanie ferromagnetyków w transformatorach pozwala na zmniejszenie rozmiaru urządzenia oraz zwiększenie jego mocy, co jest szczególnie ważne w urządzeniach elektrycznych o dużej mocy, takich jak transformatory w stacjach elektroenergetycznych. Dobre praktyki w branży zalecają również stosowanie materiałów o wysokiej permeabilności i niskich stratach histerezowych, co przyczynia się do jeszcze lepszej wydajności energetycznej transformatorów.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.