Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 24 maja 2025 19:19
  • Data zakończenia: 24 maja 2025 19:38

Egzamin zdany!

Wynik: 34/40 punktów (85,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który z elementów nie wchodzi w skład systemu przygotowania sprężonego powietrza?

A. Sprężarka
B. Filtr
C. Zawór redukcyjny
D. Smarownica
Sprężarka to ważny element w systemie sprężonego powietrza, ale nie wchodzi w skład zespołu przygotowania. W tym zespole są inne części, takie jak zawory redukcyjne, filtry i smarownice. Te elementy mają swoje zadania, jak na przykład oczyszczanie powietrza, regulację jego ciśnienia i nawilżanie przed użyciem. Zawór redukcyjny dba o to, żeby ciśnienie było odpowiednie, co jest naprawdę ważne, żeby maszyny działały jak trzeba. Filtr zajmuje się usuwaniem zanieczyszczeń i wilgoci, a to prolonguje żywotność urządzeń i zwiększa ich efektywność. Smarownica z kolei dodaje odpowiednią ilość oleju, co zmniejsza tarcie i zapobiega uszkodzeniom. Jak dobrze się rozumie rolę każdego z tych elementów, to można lepiej zarządzać systemami pneumatycznymi i je optymalizować w przemyśle, co jest naprawdę ważne w tej branży.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Układ mechatroniczny jest zbudowany z elementu wykonawczego funkcjonującego w specjalnej osłonie, pod wysokim ciśnieniem roboczym, oraz z komponentów sterujących połączonych wzmocnionymi przewodami pneumatycznymi, które są mocowane za pomocą złączy wtykowych. Osoba obsługująca ten układ może być szczególnie narażona na uderzenie

A. tłoczyskiem siłownika
B. przerwanym przewodem pneumatycznym
C. nieprawidłowo zamocowanym przewodem pneumatycznym
D. siłownikiem
Wybór odpowiedzi dotyczącej "rozerwanego przewodu pneumatycznego" nie jest właściwy, ponieważ chociaż uszkodzony przewód może prowadzić do niebezpiecznych sytuacji, nie jest on bezpośrednią przyczyną uderzenia. W praktyce takie przypadki są zazwyczaj wynikiem wcześniejszych problemów z instalacją i konserwacją, a nie bezpośrednio związane z eksploatacją układu. Z kolei siłownik jako element wykonawczy, mimo że może generować znaczne siły, stanowi bardziej kontrolowany element układu, który w odpowiednio zaprojektowanych systemach nie powinien stwarzać zagrożenia dla użytkowników. Tłoczysko siłownika również nie jest przyczyną zagrożenia, o ile system jest odpowiednio zabezpieczony. Zastosowanie standardów takich jak ISO 12100, dotyczących bezpieczeństwa maszyn, podkreśla znaczenie analizy ryzyka oraz dostosowania środków ochronnych, aby zapobiec sytuacjom, w których elementy ruchome mogłyby stać się zagrożeniem dla osób w ich otoczeniu. Wiele osób mylnie utożsamia ogólne ryzyko związane z uszkodzeniem elementów układu z bezpośrednim zagrożeniem, co prowadzi do niewłaściwych wniosków. Kluczowe jest zrozumienie, że to zazwyczaj niewłaściwe działania związane z instalacją i konserwacją, a nie same elementy, stają się źródłem zagrożeń.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Aby zmierzyć naprężenia normalne (ściśnięcia, rozciągnięcia), należy użyć

A. tachometru
B. termometru
C. tensometru
D. pirometru
Tensometr jest urządzeniem służącym do pomiaru naprężeń normalnych, takich jak ściskanie i rozciąganie. Działa na zasadzie pomiaru odkształceń, które następnie przelicza na wartości naprężeń zgodnie z zasadą Hooke'a. Dzięki temu, tensometry są niezwykle ważne w inżynierii mechanicznej i materiałowej, gdzie precyzyjne pomiary naprężeń są kluczowe dla oceny wytrzymałości materiałów oraz konstrukcji. Przykłady zastosowania tensometrów obejmują badania wytrzymałościowe elementów konstrukcyjnych, takich jak belki, stropy czy mosty. W standardach takich jak ISO 9513 określono metody kalibracji tensometrów, co pozwala na uzyskanie wiarygodnych wyników. Dobre praktyki w stosowaniu tensometrów obejmują również ich odpowiedni dobór do rodzaju materiału oraz warunków pomiarowych, co zapewnia rzetelność i dokładność uzyskanych wyników. Dodatkowo, stosowane są różne typy tensometrów, w tym tensometry foliowe, które umożliwiają pomiary na różnorodnych powierzchniach, co zwiększa ich wszechstronność w zastosowaniach inżynieryjnych.

Pytanie 9

Co koniecznie trzeba skonfigurować w urządzeniu, aby mogło funkcjonować w sieci Ethernet?

A. Z szybkość przesyłania danych
B. Bity stopu
C. Adres serwera DNS
D. Niepowtarzalny adres IP
W kontekście pracy urządzenia w sieci Ethernet, wiele osób może uważać, że inne parametry, takie jak prędkość transmisji, adres serwera DNS czy bity stopu, są równie istotne. Jednak w rzeczywistości są to elementy, które nie są bezpośrednio związane z podstawową funkcjonalnością urządzenia w sieci Ethernet. Prędkość transmisji, na przykład, odnosi się do szybkości, z jaką dane mogą być przesyłane w sieci, ale sama w sobie nie stanowi identyfikatora dla urządzenia. W większości standardowych konfiguracji Ethernet prędkość jest ustalana na poziomie portów switcha i jest zgodna z określonymi standardami, takimi jak 100BASE-T czy 1000BASE-T. Adres serwera DNS jest kluczowy dla rozwiązywania nazw domenowych i umożliwia dostęp do zasobów internetowych, ale nie ma wpływu na wewnętrzną komunikację w lokalnej sieci Ethernet, w której to komunikacja odbywa się za pomocą adresów IP. Bity stopu, z drugiej strony, są elementem protokołu komunikacyjnego, a nie konfiguracji sieciowej, i dotyczą bardziej transmisji danych w kontekście połączeń szeregowych, a nie sieci Ethernet. Typowym błędem jest zatem mylenie różnych warstw architektury sieciowej oraz niezrozumienie, że każde z tych ustawień ma swoje specyficzne zastosowanie, które nie zastępuje potrzeby posiadania unikalnego adresu IP w sieci Ethernet.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Zainstalowanie dodatkowych zaworów bezpieczeństwa w systemie zasilającym zbiornik ciśnieniowy?

A. ogranicza ryzyko wynikające z możliwości rozerwania zbiornika
B. całkowicie redukuje ryzyko, jakie wiąże się z możliwością rozerwania zbiornika
C. powiększa ryzyko związane z możliwością rozerwania zbiornika
D. nie wywiera wpływu na wzrost lub zmniejszenie ryzyka, jakie wynika z możliwości rozerwania zbiornika
Montaż dodatkowych zaworów bezpieczeństwa w instalacji zasilającej zbiornik ciśnieniowy to naprawdę ważny krok, jeśli chodzi o bezpieczeństwo. Te zawory pomagają regulować ciśnienie wewnętrzne, co jest kluczowe, żeby nie doszło do rozerwania zbiornika. W praktyce, dobrze jest stosować zawory zgodnie z międzynarodowymi normami, na przykład ASME czy EN. Wyobraź sobie sytuację w zakładzie przemysłowym, gdzie pompy generują duże ciśnienie; wtedy zawory mogą odprowadzić nadmiar medium, co jest mega przydatne. No i oczywiście pamiętaj o regularnej konserwacji tych zaworów – to też wpływa na bezpieczeństwo całej operacji. Odpowiednio dobrane i zainstalowane zawory naprawdę mogą zmniejszyć ryzyko wypadków, co jest korzystne zarówno dla ludzi, jak i dla samej infrastruktury.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Aby zachować odpowiedni poziom ciśnienia w systemach hydraulicznych, wykorzystuje się zawory

A. odcinające
B. redukujące
C. dławiące
D. rozdzielające
Zawory redukcyjne odgrywają kluczową rolę w zarządzaniu ciśnieniem w układach hydraulicznych. Ich głównym zadaniem jest obniżenie ciśnienia roboczego na określonym poziomie, co jest istotne w wielu zastosowaniach przemysłowych. Zawory te działają poprzez automatyczne regulowanie przepływu cieczy, co pozwala na utrzymanie stabilnych warunków pracy w układzie. Na przykład, w systemach hydraulicznych zasilających maszyny produkcyjne, zawory redukcyjne zapewniają, że ciśnienie nie przekracza wartości określonej przez producenta, co zapobiega uszkodzeniom i zwiększa bezpieczeństwo operacji. Dobre praktyki w branży hydraulicznej zalecają regularne sprawdzanie i konserwację zaworów redukcyjnych, aby zapewnić ich prawidłowe funkcjonowanie. Dodatkowo, zgodność z normami takimi jak ISO 4414 dotycząca bezpieczeństwa w hydraulice, podkreśla wagę stosowania właściwych zaworów w celu minimalizacji ryzyka awarii systemów hydraulicznych.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Mocno podgrzana ciecz hydrauliczna wytwarza podczas awarii w słabo wentylowanym pomieszczeniu tzw. "mgłę olejową", która może prowadzić do różnych schorzeń

A. układu sercowego
B. układu słuchu
C. dermatologicznych
D. układu pokarmowego
Silnie rozgrzana ciecz hydrauliczna, która tworzy mgłę olejową w pomieszczeniach o słabej wentylacji, może prowadzić do problemów dermatologicznych. Wysoka temperatura oraz skład chemiczny cieczy hydraulicznej mogą powodować podrażnienie skóry, a nawet alergie kontaktowe. Osoby narażone na długotrwały kontakt z taką mgłą mogą doświadczać objawów takich jak wysypka, swędzenie czy inne zmiany skórne. Dobrą praktyką w środowisku pracy jest stosowanie odpowiednich środków ochrony osobistej, takich jak rękawice ochronne oraz odzież długą, a także zapewnienie odpowiedniej wentylacji pomieszczeń, co jest zgodne z normami BHP. Standardy te są szczególnie istotne w przemysłach, gdzie wykorzystywane są substancje chemiczne, aby minimalizować ryzyko zdrowotne dla pracowników. Warto również przeprowadzać regularne szkolenia dla pracowników dotyczące zagrożeń związanych z substancjami chemicznymi oraz zasad ochrony zdrowia w miejscu pracy.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Jakie zadanie w obwodach elektronicznych realizuje transoptor?

A. Zwiększa prąd
B. Dodaje napięcia
C. Wytwarza sygnały sinusoidalne
D. Izoluje galwanicznie sygnały
Transoptor, czyli optoizolator, jest naprawdę ważnym elementem w elektronice. Jego główną rolą jest zapewnienie izolacji galwanicznej pomiędzy różnymi częściami układu. Działa to w ten sposób, że dzięki zjawisku fotonowemu możemy przesyłać sygnały elektryczne bez potrzeby bezpośredniego połączenia. To znaczy, że wrażliwe części obwodu są chronione przed wysokimi napięciami i zakłóceniami, co jest mega przydatne. Widzę, że transoptory są powszechnie stosowane w automatyce – świetnie izolują sygnały sterujące od obwodów zasilających. Dodatkowo w interfejsach komunikacyjnych zapewniają bezpieczeństwo przesyłanym danym. Korzystanie z transoptorów to naprawdę dobra praktyka w inżynierii, bo zmniejsza ryzyko uszkodzeń przez różnice potencjałów, zwiększając tym samym niezawodność systemu. Warto także dodać, że potrafią pracować w różnych częstotliwościach, co sprawia, że są dosyć uniwersalne w nowoczesnych układach elektronicznych.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Jakie połączenie można zaklasyfikować jako połączenia trwałe?

A. Sworzniowe
B. Nitowane
C. Wciskowe
D. Wpustowe
Odpowiedź "Nitowane" jest poprawna, ponieważ połączenia nitowane zaliczają się do grupy połączeń nierozłącznych, co oznacza, że ich demontaż jest skomplikowany i wymaga specjalistycznych narzędzi. Połączenia te są powszechnie stosowane w przemyśle lotniczym, motoryzacyjnym oraz w konstrukcjach stalowych, gdzie kluczowa jest wysoka wytrzymałość na obciążenia oraz odporność na zmiany temperatury. Nity, jako elementy łączące, są stosowane do łączenia blach, profili i innych komponentów, gdzie istotna jest trwałość oraz bezpieczeństwo. W praktyce, standardy takie jak ISO 14588 definiują wymagania dotyczące nitu, co zapewnia ich odpowiednią jakość. W przypadku naprawy lub demontażu konstrukcji nitowanych, często konieczne jest przewiercenie nitów, co podkreśla ich nierozłączny charakter. Warto również dodać, że połączenia nitowane są preferowane w sytuacjach, gdzie nie ma możliwości zastosowania spawania, np. w konstrukcjach, które mają być poddawane różnym cyklom pracy temperaturowej.

Pytanie 27

Który z komponentów powinien zostać wymieniony w podnośniku hydraulicznym, gdy tłoczysko siłownika unosi się, ale po pewnym czasie samoistnie opada?

A. Sprężynę zaworu zwrotnego
B. Filtr oleju
C. Zawór bezpieczeństwa
D. Tłokowy pierścień uszczelniający
Tłokowy pierścień uszczelniający jest kluczowym elementem w podnośniku hydraulicznym, który zapewnia nieprzepuszczalność pomiędzy tłokiem a cylindrem. Gdy ten pierścień jest uszkodzony lub zużyty, może dochodzić do wycieków oleju hydraulicznego, co prowadzi do niepożądanych spadków ciśnienia i samoczynnego opadania tłoczyska siłownika. Zastosowanie odpowiednich materiałów do produkcji pierścieni uszczelniających, takich jak elastomery odpornie na działanie wysokich temperatur oraz chemikaliów, jest zgodne z najlepszymi praktykami w branży hydrauliki. Bardzo ważne jest regularne sprawdzanie i wymiana tłokowych pierścieni uszczelniających, co wpływa na niezawodność i bezpieczeństwo pracy urządzenia. Przykładowo, w zastosowaniach przemysłowych, takich jak podnośniki używane w warsztatach samochodowych, skuteczna uszczelka pozwala na stabilne podnoszenie pojazdów, eliminując ryzyko opadania, co z kolei chroni zdrowie pracowników oraz mienie. Właściwe utrzymanie tych elementów przyczynia się do długowieczności urządzenia i jego efektywności operacyjnej.

Pytanie 28

Czujnik indukcyjny zbliżeniowy

A. reaguje, gdy do sensora zbliżają się obiekty metalowe
B. reaguje, gdy do sensora zbliżają się obiekty nieprzezroczyste
C. informuje o kontakcie z zewnętrznym przedmiotem
D. informuje o odległości od zbliżającego się obiektu
Indukcyjny sensor zbliżeniowy jest urządzeniem, które reaguje na obecność metalowych obiektów w swoim polu detekcji. Działa na zasadzie generowania pola elektromagnetycznego, które zmienia się w obecności metalu. Kiedy metalowy obiekt zbliża się do sensora, jego pole zmienia właściwości, co powoduje, że sensor uruchamia sygnał wyjściowy. Tego typu czujniki są często wykorzystywane w automatyce przemysłowej, na przykład do wykrywania pozycji narzędzi w maszynach, kontroli obecności elementów w liniach produkcyjnych, a także w systemach bezpieczeństwa, gdzie mają za zadanie monitorować dostęp do zamkniętych przestrzeni. Dzięki ich odporności na zewnętrzne warunki, takie jak zanieczyszczenia czy wilgoć, są to jedne z najczęściej stosowanych sensorów w trudnych warunkach przemysłowych. Ponadto, zgodnie z normami IEC 60947-5-2, czujniki indukcyjne powinny być odpowiednio zainstalowane, by zapewnić ich niezawodną pracę oraz bezpieczeństwo operacyjne.

Pytanie 29

Którego urządzenia dotyczą podane w tabeli parametry?

Ilość wejść 24 VDC
Ilość wyjść przekaźnikowych
Rozszerzenie we/wyMaksymalna ilość
Maksymalna ilość we/wy
Pojemność programu
Czas przetwarzaniaInstrukcji podstawowych
systemowych
Pamięć danychWewnętrznych bajtów
Słów wewnętrznych
Timery
Liczniki
ZasilanieZnamionowe napięcie zasilania

A. Czujnika optycznego.
B. Silnika.
C. Sterownika PLC.
D. Falownika.
Sterownik PLC, czyli Programmable Logic Controller, jest kluczowym elementem w automatyzacji procesów przemysłowych. Parametry takie jak liczba wejść i wyjść, możliwość rozszerzenia tych wejść i wyjść, pojemność programu oraz czas przetwarzania instrukcji są typowe dla tego urządzenia. Sterowniki PLC są programowalne i umożliwiają realizację złożonych algorytmów sterujących, co jest niezbędne w nowoczesnych liniach produkcyjnych. Na przykład, w przemyśle motoryzacyjnym, sterowniki PLC mogą być używane do kontrolowania procesów montażowych, synchronizując pracę robotów i maszyn. Dodatkowo, możliwość monitorowania danych w czasie rzeczywistym oraz implementacji logiki sekwencyjnej dostosowuje je do różnych zastosowań, co potwierdza ich wszechstronność. Warto również podkreślić, że zastosowanie sterowników PLC zgodnie z zasadami automatyzacji, jak IEC 61131-3, zapewnia efektywność i zgodność z międzynarodowymi standardami.

Pytanie 30

Cyfrowy tachometr jest narzędziem do mierzenia

A. prędkości obrotowej wału silnika
B. naprężeń w metalach
C. natężenia przepływu powietrza
D. lepkości cieczy
Tachometr cyfrowy to urządzenie, które służy do precyzyjnego pomiaru prędkości obrotowej wału silnika. W praktyce, tachometry cyfrowe są niezbędne w wielu dziedzinach, takich jak motoryzacja, przemysł czy inżynieria. Zasada działania tych urządzeń opiera się na pomiarze liczby obrotów wału w określonym czasie, co pozwala na obliczenie prędkości obrotowej w jednostkach takich jak obroty na minutę (RPM). Przykład zastosowania tachometru cyfrowego można znaleźć w diagnostyce silników, gdzie jego pomiar pozwala na ocenę stanu technicznego oraz efektywności działania jednostki napędowej. W branży motoryzacyjnej, tachometry są często używane do regulacji pracy silnika, co ma wpływ na osiągi pojazdu oraz jego zużycie paliwa. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie precyzyjnych pomiarów w procesach inżynieryjnych, co czyni tachometry cyfrowe kluczowym elementem w zapewnieniu jakości i efektywności systemów mechanicznych.

Pytanie 31

Jak można zmierzyć prędkość przepływu gazu?

A. przy pomocy pirometru radiacyjnego
B. z wykorzystaniem impulsatora fotoelektrycznego
C. używając czujnika termoelektrycznego
D. za pomocą zwężki Venturiego
Pirometr radiacyjny jest urządzeniem służącym do pomiaru temperatury na podstawie promieniowania emitowanego przez obiekt. Choć temperatura może mieć wpływ na gęstość i lepkość gazów, nie bezpośrednio mierzy prędkość ich przepływu. Zastosowanie pirometru jest szczególnie istotne w procesach przemysłowych, gdzie kontrola temperatury jest kluczowa, ale nie ma on zastosowania w pomiarze prędkości. Czujnik termoelektryczny, z kolei, służy do pomiaru temperatury i działa na zasadzie generacji napięcia w odpowiedzi na różnice temperatur. Jak w przypadku pirometru, jego zastosowanie jest ograniczone do monitorowania temperatury, a nie prędkości przepływu gazu. Impulsator fotoelektryczny, natomiast, jest urządzeniem do detekcji obiektów i zliczania impulsów, co również nie ma bezpośredniego związku z pomiarem prędkości gazów. Te pomyłki wynikają z nieporozumienia dotyczącego funkcji i zastosowań różnych typów czujników i przyrządów pomiarowych. Ważne jest, aby rozumieć, jakie właściwości fizyczne są mierzonymi i w jakich kontekstach powinno się ich używać, aby uniknąć błędów w interpretacji danych oraz podjęcia niewłaściwych decyzji inżynieryjnych.

Pytanie 32

Instalacje pneumatyczne powinny być montowane pod lekkim kątem wznoszącym, aby ułatwić

A. rozbijanie kropli oleju strumieniem sprężonego powietrza
B. rozchodzenie się mgły olejowej w instalacji
C. odfiltrowanie cząstek stałych z powietrza
D. spływ kondensatu wodnego do najniższego punktu instalacji
Odpowiedź dotycząca spływu kondensatu wodnego do najniższego punktu instalacji jest poprawna, ponieważ odpowiednie nachylenie instalacji pneumatycznych jest kluczowe dla efektywnego zarządzania kondensatem. W instalacjach wykorzystujących sprężone powietrze, wilgoć ma tendencję do skraplania się w chłodniejszych miejscach, co prowadzi do powstawania kondensatu. Utrzymywanie niewielkiego kąta wznoszącego pozwala na naturalny spływ kondensatu do wyznaczonych punktów odprowadzających, co minimalizuje ryzyko osadzania się wody w rurach. Praktyczne przykłady skutecznego zarządzania kondensatem można znaleźć w branżach takich jak przemysł spożywczy czy farmaceutyczny, gdzie odpowiednie odprowadzanie wody jest kluczowe dla zachowania jakości produktu. Normy branżowe, takie jak ISO 8573, podkreślają znaczenie zarządzania jakością powietrza sprężonego, co obejmuje również kontrolę kondensatu, co dodatkowo uzasadnia konieczność stosowania odpowiedniego nachylenia rur.

Pytanie 33

Która z wymienionych metod nie jest wykorzystywana do trwałego łączenia elementów z tworzyw sztucznych?

A. Spawanie
B. Klejenie
C. Zaginanie
D. Zgrzewanie
Klejenie jest jedną z technik łączenia elementów wykonanych z tworzyw sztucznych, jednak jej zastosowanie nie prowadzi do trwałego połączenia w sensie mechanicznym, jak to ma miejsce w przypadku zgrzewania, spawania czy zaginania. Kleje używane do łączenia tworzyw sztucznych często działają na zasadzie adhezji, co oznacza, że wiążą elementy poprzez przyciąganie molekularne, a nie poprzez ich fuzję. W praktyce oznacza to, że w przypadku obciążeń mechanicznych, czy zmian temperatury, połączenie może ulegać osłabieniu. Zgrzewanie i spawanie polegają na miejscowym podgrzaniu materiału i połączeniu go w stanie ciekłym, co tworzy jednorodną strukturę. Zaginanie jest techniką formowania, która także nie prowadzi do trwałych połączeń, ale zmienia kształt materiału. W zastosowaniach przemysłowych, takich jak produkcja mebli z tworzyw sztucznych czy elementów elektronicznych, klejenie stosowane jest głównie w procesach, gdzie ważna jest estetyka lub kiedy inne metody są niepraktyczne. Warto zwrócić uwagę na dobór odpowiednich klejów, które są zgodne z typem tworzywa sztucznego oraz wymaganiami aplikacyjnymi, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Jaką rolę odgrywają zawory przelewowe w systemach hydraulicznych?

A. Zapewniają ustawiony, stały spadek ciśnienia
B. Utrzymują ustalony poziom ciśnienia
C. Redukują nagłe skoki ciśnienia
D. Ograniczają ciśnienie do ustalonego poziomu
Zawory przelewowe pełnią kluczową rolę w układach hydraulicznych, a ich główną funkcją jest utrzymywanie określonego poziomu ciśnienia. Działają one na zasadzie otwierania się w momencie, gdy ciśnienie w systemie przekracza zdefiniowaną wartość, co pozwala na odprowadzenie nadmiaru cieczy z systemu. Dzięki temu zapobiegają one uszkodzeniom elementów układu hydraulicznego, takich jak pompy czy silniki hydrauliczne. Przykładem zastosowania zaworów przelewowych może być system hydrauliczny stosowany w maszynach budowlanych, gdzie stabilne ciśnienie jest niezbędne do prawidłowego działania narzędzi roboczych. W branży hydraulicznej powszechnie stosuje się standardy, takie jak ISO 4413, które określają wymagania dotyczące układów hydraulicznych, w tym zastosowania zaworów przelewowych. Utrzymanie stałego ciśnienia nie tylko zwiększa efektywność działania systemu, ale również wpływa na jego bezpieczeństwo oraz trwałość.