Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 22 maja 2025 21:26
  • Data zakończenia: 22 maja 2025 21:39

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na ilustracji widać panel ustawień bezprzewodowego punktu dostępu, który pozwala na

Ilustracja do pytania
A. przypisanie adresów MAC kart sieciowych
B. przypisanie maski podsieci
C. nadanie nazwy hosta
D. konfigurację serwera DHCP
No dobra, jeśli chodzi o konfigurację serwera DHCP na bezprzewodowym urządzeniu dostępowym, to wiesz, że to naprawdę kluczowa rzecz, żeby wszystko działało sprawnie w sieci lokalnej. Serwer DHCP, czyli Dynamic Host Configuration Protocol, sprawia, że urządzenia klienckie dostają swoje adresy IP na bieżąco. Dzięki temu, jak nowe urządzenie łączy się z siecią, to automatycznie dostaje adres IP, maskę podsieci i inne potrzebne rzeczy jak brama domyślna czy serwery DNS. To mega ułatwia życie, bo nie musimy biegać i konfigurować każdego z osobna, co znacząco zmniejsza szansę na jakieś problemy z konfliktami adresów IP. W panelu, gdzie konfigurujemy to wszystko, można ustawić zakresy adresów do przydzielenia, czas dzierżawy i inne opcje jak DNS czy WINS. Jak się robi to zgodnie z najlepszymi praktykami, to wszędzie to tak właśnie działa, szczególnie w sieciach, gdzie często coś się zmienia lub jest więcej użytkowników. A tak w ogóle, jak konfigurujesz DHCP, to łatwo jest dodać nowe urządzenia bez zbędnej roboty, co jest super w większych sieciach, gdzie wszystko się dzieje szybko. Dobrze zarządzany serwer DHCP to też lepsze wykorzystanie IP, co ma znaczenie, jak masz dużą sieć.

Pytanie 2

Jakie urządzenie służy do pomiaru wartości mocy zużywanej przez komputerowy zestaw?

A. dozymetr
B. anemometr
C. watomierz
D. omomierz
Wybór watomierza jako urządzenia do pomiaru mocy pobieranej przez zestaw komputerowy jest jak najbardziej prawidłowy. Watomierz jest narzędziem, które umożliwia pomiar mocy elektrycznej, wyrażanej w watach (W). To bardzo istotne podczas oceny wydajności energetycznej sprzętu komputerowego, szczególnie w kontekście optymalizacji zużycia energii oraz w analizie kosztów eksploatacyjnych. Przykładowo, podczas testów porównawczych różnych komponentów komputerowych, takich jak karty graficzne czy procesory, watomierz pozwala na monitorowanie rzeczywistego poboru mocy w trakcie obciążenia, co jest kluczowe dla oceny ich efektywności. W obiektach komercyjnych i przemysłowych stosowanie watomierzy do analizy poboru mocy urządzeń komputerowych jest zgodne z zasadami zrównoważonego rozwoju i optymalizacji kosztów. Takie pomiary mogą pomóc w identyfikacji sprzętu, który zużywa nadmierną ilość energii, co pozwala na podjęcie działań mających na celu zwiększenie efektywności energetycznej. Warto również zauważyć, że nowoczesne watomierze często oferują funkcje monitorowania zdalnego oraz analizy danych, co dodatkowo zwiększa ich użyteczność w kontekście zarządzania zasobami energetycznymi.

Pytanie 3

Który z systemów operacyjnych przeznaczonych do sieci jest dostępny na zasadach licencji GNU?

A. Linux
B. OS X Server
C. Unix
D. Windows Server 2012
Linux jest systemem operacyjnym, który jest udostępniony na licencji GNU General Public License (GPL), co oznacza, że jego kod źródłowy jest publicznie dostępny i może być modyfikowany oraz rozpowszechniany. Licencja ta umożliwia każdemu użytkownikowi na używanie, modyfikowanie oraz dystrybucję oprogramowania, co sprzyja innowacjom i rozwojowi technologii. Dzięki temu Linux stał się podstawą dla wielu dystrybucji, takich jak Ubuntu, Fedora czy Debian, które są szeroko stosowane w różnych środowiskach, od komputerów osobistych, przez serwery, aż po urządzenia wbudowane. Przykładem zastosowania Linuxa w praktyce jest jego dominacja w środowiskach serwerowych, gdzie zapewnia stabilność, bezpieczeństwo oraz elastyczność. Wiele dużych firm oraz organizacji wybiera Linux ze względu na niski koszt licencji i możliwość dostosowania systemu do swoich specyficznych potrzeb, co czyni go idealnym wyborem w kontekście rozwoju technologii open-source.

Pytanie 4

Funkcja znana jako: "Pulpit zdalny" standardowo operuje na porcie

A. 3390
B. 3379
C. 3389
D. 3369
Odpowiedzi 3390, 3369 oraz 3379 są niepoprawne i wynikają z nieporozumień dotyczących standardowych ustawień serwerów oraz protokołów komunikacyjnych. Port 3390, choć może być używany w różnych aplikacjach, nie jest portem domyślnym dla RDP, co może prowadzić do błędnych konfiguracji w środowiskach zdalnych. Takie podejście może skutkować nieprawidłowym działaniem aplikacji RDP oraz problemami z dostępem do systemów. Z kolei 3369 i 3379 to porty, które nie są standardowo przypisane do żadnych powszechnie używanych protokołów zdalnego dostępu i mogą być mylone z innymi usługami, co dodatkowo utrudnia rozwiązywanie problemów w obszarze IT. Typowym błędem jest zakładanie, że porty mogą być dowolnie zmieniane lub przypisywane bez uwzględnienia ich pierwotnego przeznaczenia. Właściwe zrozumienie przypisania portów oraz ich zastosowania ma kluczowe znaczenie dla bezpieczeństwa i efektywności systemów IT. Błędne założenia mogą prowadzić do luk w zabezpieczeniach oraz problemów z dostępem, co jest szczególnie problematyczne w kontekście rozwoju technologii i wzrastającego znaczenia pracy zdalnej. Dlatego znajomość standardowych ustawień oraz ich konsekwencji jest niezbędna dla każdego specjalisty IT.

Pytanie 5

Jaką maskę podsieci powinien mieć serwer DHCP, aby mógł przydzielić adresy IP dla 510 urządzeń w sieci o adresie 192.168.0.0?

A. 255.255.255.192
B. 255.255.254.0
C. 255.255.255.128
D. 255.255.252.0
Analizując inne maski, można zauważyć, że maska 255.255.255.192 (/26) oferuje jedynie 62 dostępne adresy IP (2^6 - 2 = 62), co jest niewystarczające dla 510 urządzeń. Błędem jest założenie, że wystarczy zastosować sieć o niewielkim zakresie, myśląc, że będzie to wystarczające w dłuższym okresie. Kolejną maską, 255.255.255.128 (/25), również nie zaspokaja wymagań, ponieważ oferuje jedynie 126 adresów IP (2^7 - 2 = 126). Takie podejście jest często spotykane wśród osób nieświadomych potrzeby prognozowania wzrostu liczby urządzeń w sieci. Maska 255.255.254.0 (/23) to jedyna odpowiednia opcja, która prawidłowo realizuje założenia dotyczące liczby hostów. Maska 255.255.252.0 (/22) również zwraca uwagę, ale oferuje 1022 adresy IP, co jest nadmiarem w tej sytuacji, a co może prowadzić do marnotrawienia zasobów IP. W praktyce należy zawsze analizować nie tylko aktualne potrzeby, ale także przyszły rozwój sieci, co jest kluczowe w projektowaniu infrastruktury sieciowej. Warto także dodać, że zastosowanie zbyt małej liczby adresów IP może prowadzić do konfliktów, a w konsekwencji do problemów z dostępnością usług.

Pytanie 6

Za pomocą taśmy 60-pinowej pokazanej na ilustracji łączy się z płytą główną komputera

Ilustracja do pytania
A. tylko dyski SCSI
B. jedynie dyski EIDE
C. napędy ATAPI
D. wszystkie wymienione urządzenia
Wybierając niepoprawne odpowiedzi często można spotkać się z błędnym rozumieniem roli i zastosowań różnych standardów interfejsów. ATAPI (ATA Packet Interface) jest rozszerzeniem dla standardu ATA i jest używane głównie do podłączania napędów optycznych jak CD-ROM czy DVD-ROM do systemów IDE. Standardy ATA lub IDE, w tym EIDE (Enhanced Integrated Drive Electronics), są przeznaczone do podłączania dysków twardych i nie korzystają z 60-pinowych taśm a ze złączy 40-pinowych. EIDE jest rozwinięciem IDE oferującym zwiększoną przepustowość i dodatkowe funkcje jak LBA (Logical Block Addressing). Ważnym aspektem w technologii dyskowej jest zrozumienie różnicy między tymi standardami oraz ich przeznaczeniem. Interfejsy ATA i ich warianty są powszechnie stosowane w komputerach osobistych ze względu na prostotę i niższe koszty produkcji. Natomiast SCSI z racji swojej wysokiej wydajności i możliwości podłączenia większej liczby urządzeń bezpośrednio do jednego kontrolera jest bardziej zaawansowanym rozwiązaniem stosowanym w serwerach i stacjach roboczych. Podsumowując wybór odpowiedniej technologii zależy od specyfiki zastosowania oraz wymagań wydajnościowych danego systemu komputerowego.

Pytanie 7

Podstawowym zadaniem mechanizmu Plug and Play jest

A. automatyczne tworzenie kopii zapasowych danych na nowo podłączonym nośniku pamięci
B. automatyczne uruchamianie ostatnio używanej gry
C. automatyczne usuwanie sterowników, które nie były używane przez dłuższy czas
D. rozpoznawanie nowo podłączonego urządzenia i automatyczne przydzielanie mu zasobów
Głównym celem mechanizmu Plug and Play (PnP) jest automatyczne wykrywanie nowo podłączonego sprzętu oraz efektywne przydzielanie mu wymaganych zasobów systemowych, takich jak adresy I/O, przerwania (IRQ) czy kanały DMA. Mechanizm ten znacząco ułatwia użytkownikom instalację urządzeń, eliminując konieczność ręcznego konfigurowania ustawień, co było standardem w starszych systemach operacyjnych. Przykładem zastosowania PnP może być podłączenie drukarki USB do komputera. System operacyjny automatycznie wykrywa urządzenie, instaluje odpowiednie sterowniki oraz konfiguruje zasoby potrzebne do jego poprawnej pracy. Z punktu widzenia dobrych praktyk, mechanizm ten wspiera zasadę ułatwienia użytkowania technologii, a także przyspiesza proces integracji nowych komponentów w infrastrukturze IT. Współczesne systemy operacyjne, takie jak Windows, Linux czy macOS, w pełni wykorzystują możliwości PnP, co świadczy o fundamentalnym znaczeniu tego mechanizmu w zarządzaniu sprzętem komputerowym. Dodatkowo, Plug and Play współczesne standardy, takie jak USB, są zgodne z tym mechanizmem, co pozwala na szeroką interoperacyjność urządzeń.

Pytanie 8

PoE to norma

A. zasilania aktywnych urządzeń przez sieć LAN
B. zasilania aktywnych urządzeń przez sieć WLAN
C. uziemienia urządzeń w sieciach LAN
D. zasilania aktywnych urządzeń przez sieć WAN
Zrozumienie standardu PoE i jego zastosowań w sieci LAN jest kluczowe dla efektywnego projektowania i wdrażania infrastruktury sieciowej. Wybierając odpowiedzi dotyczące zasilania urządzeń, warto zwrócić uwagę na koncepcje dotyczące różnych sieci. Na przykład, zasilanie poprzez sieć WAN (Wide Area Network) jest nieprawidłowe, ponieważ WAN obejmuje szersze obszary geograficzne i nie jest przystosowany do przesyłania energii elektrycznej. Zasilanie przez sieć WLAN (Wireless Local Area Network) również nie jest zasadne, ponieważ WLAN odnosi się do sieci bezprzewodowych, gdzie urządzenia takie jak punkty dostępu mogą być zasilane, ale nie poprzez połączenie bezprzewodowe, co jest fizycznie niemożliwe. Podobnie, idea uziemienia urządzeń w sieci LAN jest mylna; chociaż uziemienie jest istotne z punktu widzenia bezpieczeństwa, nie ma związku z procesem zasilania, który realizowany jest przez PoE. Typowe błędy myślowe w tej dziedzinie obejmują mylenie różnych typów sieci i ich funkcji, co prowadzi do nieporozumień na temat sposobu zasilania urządzeń. PoE działa wyłącznie w kontekście sieci LAN, co czyni go skutecznym narzędziem w zarządzaniu zasilaniem urządzeń w lokalnych sieciach.

Pytanie 9

Termin określający zdolność do rozbudowy sieci to

A. kompatybilnością
B. nadmiarowością
C. skalowalnością
D. bezawaryjnością
Skalowalność to kluczowa cecha systemów informatycznych, która odnosi się do ich zdolności do rozbudowy i dostosowywania się do rosnących potrzeb użytkowników oraz zwiększającego się obciążenia. W kontekście sieci, oznacza to możliwość zwiększania liczby urządzeń, użytkowników lub przepustowości bez utraty wydajności. Przykłady skalowalnych rozwiązań obejmują architektury chmurowe, gdzie zasoby mogą być dynamicznie dostosowywane do potrzeb w czasie rzeczywistym. Dobre praktyki w projektowaniu skalowalnych systemów obejmują stosowanie mikroserwisów, które pozwalają na niezależną skalowalność poszczególnych komponentów, oraz implementację protokołów komunikacyjnych, które wspierają efektywne zarządzanie zasobami. W branży IT, standardy takie jak TOGAF czy ITIL również podkreślają znaczenie skalowalności jako fundamentu elastycznych i odpornych architektur przedsiębiorstw. Rozumienie skalowalności jest kluczowe dla inżynierów i architektów systemów, ponieważ pozwala na projektowanie rozwiązań, które będą mogły rosnąć razem z potrzebami biznesowymi.

Pytanie 10

Aby zapewnić komputerowi otrzymanie konkretnego adresu IP od serwera DHCP, należy na serwerze ustalić

A. zarezerwowanie adresu IP urządzenia.
B. dzierżawę adresu IP.
C. wykluczenie adresu IP urządzenia.
D. pulę adresów IP.
Zastrzeżenie adresu IP komputera w serwerze DHCP polega na przypisaniu konkretnego adresu IP do konkretnego urządzenia (np. komputera), co gwarantuje, że za każdym razem, gdy to urządzenie łączy się z siecią, otrzyma ten sam adres. Jest to szczególnie przydatne w sytuacjach, gdy urządzenie pełni specyficzne funkcje w sieci, takie jak serwer wydruku, serwer plików czy inne usługi, które wymagają stałego dostępu pod tym samym adresem IP. Proces zastrzegania adresu IP jest zgodny z protokołem DHCP (Dynamic Host Configuration Protocol), który jest standardem w zakresie automatycznej konfiguracji urządzeń w sieci. Aby zastrzec adres IP, administrator sieci musi dodać odpowiedni wpis w konfiguracji serwera DHCP, co zapewnia, że dany adres nie będzie przydzielany innym urządzeniom. Dobrym przykładem takiej sytuacji jest zastrzeżenie adresu IP dla drukarki w biurze, co umożliwia każdemu użytkownikowi łatwe drukowanie, korzystając z ustalonego adresu IP, zamiast szukać zmieniającego się adresu przy każdym połączeniu.

Pytanie 11

Wtyczka (modularne złącze męskie) przedstawiona na rysunku stanowi zakończenie przewodu

Ilustracja do pytania
A. F/UTP
B. koncentrycznego
C. U/UTP
D. światłowodowego
Rozważając inne opcje, należy zrozumieć istotę złączy i ich zastosowanie w różnych typach kabli. Kable światłowodowe nie są zakończone złączami RJ-45, ponieważ używają innego typu złączy, takich jak SC czy LC, które są dostosowane do transmisji danych za pomocą światła. Kable koncentryczne, które są stosowane w telewizji kablowej i połączeniach antenowych, również nie używają złączy RJ-45; typowym złączem dla nich jest złącze typu F. Z kolei kable U/UTP, czyli Unshielded Twisted Pair, podobnie jak F/UTP mogą używać złączy RJ-45, ale brak ekranowania w kablach U/UTP sprawia, że są one bardziej podatne na zakłócenia elektromagnetyczne. W związku z tym, w miejscach o dużym natężeniu takich zakłóceń, używa się kabli F/UTP, które zapewniają dodatkową ochronę dzięki ekranowaniu. Typowym błędem jest mylenie rodzajów kabli i ich przeznaczenia, co prowadzi do niewłaściwego doboru komponentów sieciowych. Zrozumienie różnic między tymi technologiami jest kluczowe dla zapewnienia optymalnej wydajności i stabilności systemów teleinformatycznych. Dokonanie niewłaściwego wyboru może prowadzić do problemów z sygnałem i utratą danych, dlatego ważne jest, aby dobrze znać specyfikacje i zastosowanie każdego z rodzaju kabli i złączy.

Pytanie 12

Jakie złącze powinna mieć karta graficzna, aby mogła być bezpośrednio podłączona do telewizora LCD, który ma tylko analogowe złącze do komputera?

A. DP
B. HDMI
C. DVI-D
D. DE-15F
Wybór jakiegokolwiek innego złącza niż DE-15F w kontekście podłączenia telewizora LCD wyłącznie z analogowym złączem do komputera prowadzi do nieporozumień dotyczących sygnałów i kompatybilności. Złącze DVI-D, mimo że jest popularnym standardem w nowoczesnych kartach graficznych, obsługuje jedynie sygnał cyfrowy, co oznacza, że nie może być użyte do bezpośredniego połączenia z telewizorem analogowym. Brak odpowiednich adapterów sprawia, że przy braku konwersji sygnału użytkownik nie uzyska obrazu na telewizorze. Podobnie, HDMI jest złączem, które również przesyła sygnał cyfrowy, co czyni go niekompatybilnym z telewizorami, które nie posiadają złącza HDMI. Co więcej, złącze DisplayPort (DP) jest dedykowane głównie dla nowoczesnych monitorów i kart graficznych, co w praktyce oznacza, że nie ma możliwości podłączenia go bezpośrednio do starego telewizora LCD. Wybór DVI-D, HDMI lub DP może wydawać się kuszący ze względu na ich zaawansowaną technologię i wyższą jakość obrazu, lecz w rzeczywistości są one nieprzydatne w kontekście podłączania urządzeń, które nie obsługują sygnału cyfrowego. Zrozumienie różnic pomiędzy analogowymi i cyfrowymi sygnałami jest kluczowe w wyborze odpowiednich złącz, a w przypadku telewizora LCD z analogowym złączem, DE-15F jest jedynym racjonalnym wyborem.

Pytanie 13

Użytkownik napotyka trudności przy uruchamianiu systemu Windows. W celu rozwiązania tego problemu, skorzystał z narzędzia System Image Recovery, które

A. przywraca system używając punktów przywracania
B. przywraca system na podstawie kopii zapasowej
C. odzyskuje ustawienia systemowe, korzystając z kopii rejestru systemowego backup.reg
D. naprawia pliki rozruchowe, wykorzystując płytę Recovery
Odpowiedź 'przywraca system na podstawie kopii zapasowej' jest poprawna, ponieważ narzędzie System Image Recovery w systemie Windows zostało zaprojektowane do przywracania systemu operacyjnego z utworzonej wcześniej kopii zapasowej, która zawiera pełny obraz systemu. Taki obraz systemu to kompleksowa kopia wszystkich plików systemowych, aplikacji oraz ustawień, co pozwala na szybkie i efektywne przywrócenie systemu do stanu z momentu wykonania kopii. Przykładowo, w przypadku awarii systemu spowodowanej wirusem lub błędami w oprogramowaniu, użytkownik może przywrócić system do stanu roboczego sprzed awarii, co oszczędza czas i wysiłek związany z reinstalacją systemu. Warto zaznaczyć, że regularne tworzenie kopii zapasowych jest zgodne z najlepszymi praktykami w zarządzaniu danymi i bezpieczeństwem systemów komputerowych, co znacząco minimalizuje ryzyko utraty danych. Dobrą praktyką jest także przechowywanie kopii zapasowych w bezpiecznym miejscu, na przykład na zewnętrznym dysku twardym lub w chmurze.

Pytanie 14

Norma PN-EN 50173 rekomenduje montaż przynajmniej

A. jednego punktu rozdzielczego na każde piętro
B. jednego punktu rozdzielczego na każde 250m2 powierzchni
C. jednego punktu rozdzielczego na cały budynek wielopiętrowy
D. jednego punktu rozdzielczego na każde 100m2 powierzchni
Wybór odpowiedzi, że norma PN-EN 50173 zaleca instalowanie jednego punktu rozdzielczego na każde 100m2 lub 250m2 powierzchni jest niezgodny z jej wymaganiami. W rzeczywistości, normy te koncentrują się na zapewnieniu właściwej jakości usług telekomunikacyjnych w kontekście budynków wielokondygnacyjnych, a nie na powierzchni użytkowej. Podejście oparte na metrażu może prowadzić do niewystarczającej infrastruktury sieciowej, szczególnie w budynkach o dużym natężeniu użytkowania, takich jak biurowce czy hotele. Zastosowanie punktów rozdzielczych wyłącznie w oparciu o powierzchnię może skutkować miejscami o niskiej jakości sygnału oraz problemami z dostępem do usług, co jest sprzeczne z podstawowymi założeniami normy. Innym błędnym podejściem jest myślenie, że w całym budynku wystarczy jeden punkt rozdzielczy. Taki model może nie sprostać wymaganiom użytkowników, szczególnie w przypadku dużych obiektów, gdzie wzrasta liczba urządzeń oraz intensywność korzystania z sieci. Niewłaściwe zrozumienie wymagań normy prowadzi do ryzyka wymagającego kosztownych późniejszych poprawek oraz zakłóceń w dostępie do usług. Właściwe planowanie i przestrzeganie norm PN-EN 50173 ma kluczowe znaczenie dla zapewnienia niezawodności oraz wydajności infrastruktury telekomunikacyjnej w obiektach wielopiętrowych.

Pytanie 15

Instalacja systemów Linux oraz Windows 7 odbyła się bez żadnych problemów. Systemy zainstalowały się prawidłowo z domyślnymi konfiguracjami. Na tym samym komputerze, przy tej samej specyfikacji, podczas instalacji systemu Windows XP pojawił się komunikat o braku dysków twardych, co może sugerować

A. nieodpowiednio ustawione bootowanie urządzeń
B. uszkodzenie logiczne dysku twardego
C. brak sterowników
D. nieprawidłowe ułożenie zworek na dysku twardym
Złe ułożenie zworek w dysku twardym oraz błędne ustawienia bootowania napędów to często mylone koncepcje, które mogą prowadzić do błędnego rozumienia problemu z instalacją systemu operacyjnego. W przypadku złego ułożenia zworek na dyskach twardych, skutkiem może być ich niewykrycie przez BIOS, ale przy odpowiedniej konfiguracji i nowoczesnych systemach, zwłaszcza przy użyciu jednego dysku, nie powinno to stanowić problemu. Współczesne dyski SATA nie wymagają fizycznego ustawiania zworek, co sprawia, że ten argument jest nieadekwatny w kontekście problemów z instalacją Windows XP. Ustawienia bootowania także mają swoją rolę, ale w przypadku komunikatu o braku dysków twardych problem leży głębiej. Bootowanie odnosi się do sekwencji uruchamiania systemu operacyjnego z nośników, ale jeśli dysk nie jest wykrywany, to nawet poprawne ustawienia bootowania nie pomogą. Uszkodzenie logiczne dysku twardego może wywołać różne inne objawy, takie jak trudności z dostępem do danych, ale nie jest to bezpośrednia przyczyna niewykrywania dysku podczas instalacji. W związku z tym, kluczowe jest zrozumienie, że brak odpowiednich sterowników to najczęstszy problem, zwłaszcza przy starszych systemach operacyjnych, takich jak Windows XP.

Pytanie 16

Jakie zadanie pełni router?

A. eliminacja kolizji
B. przekładanie nazw na adresy IP
C. przesyłanie pakietów TCP/IP z sieci źródłowej do sieci docelowej
D. ochrona sieci przed atakami z zewnątrz oraz z wewnątrz
Wybór odpowiedzi dotyczącej tłumaczenia nazw na adresy IP odnosi się do roli serwera DNS, który jest odpowiedzialny za przekształcanie nazw domenowych na odpowiadające im adresy IP. Serwer DNS działa w inny sposób niż router i nie pełni funkcji transportu danych między różnymi sieciami. Z kolei odpowiedź związana z zabezpieczeniem sieci przed atakami odnosi się bardziej do funkcji zapór ogniowych (firewall) oraz systemów wykrywania intruzów, które mają na celu ochronę sieci przed nieautoryzowanym dostępem oraz różnymi typami ataków. Router głównie zajmuje się kierowaniem ruchu, a nie odpowiedzialnością za bezpieczeństwo sieci. Natomiast eliminacja kolizji dotyczy bardziej warstwy łącza danych, gdzie urządzenia takie jak przełączniki (switch) stosują techniki, takie jak CSMA/CD (Carrier Sense Multiple Access with Collision Detection) w sieciach Ethernet, aby zapobiegać kolizjom w przesyłaniu danych. Zrozumienie tych różnic i ról poszczególnych urządzeń w sieci jest kluczowe dla skutecznego projektowania i zarządzania infrastrukturą sieciową.

Pytanie 17

W jednostce ALU w akumulatorze zapisano liczbę dziesiętną 500. Jaką ona ma binarną postać?

A. 111111101
B. 110110000
C. 111011000
D. 111110100
Błędne odpowiedzi mogą wynikać z niepoprawnych obliczeń lub błędnego zrozumienia systemów liczbowych. Na przykład, odpowiedź 111111101, która wydaje się być bliska, jest wynikiem przekształcenia liczby 509, a nie 500. Takie pomyłki mogą wystąpić, gdy osoby nie stosują odpowiednich kroków podczas konwersji. Inna odpowiedź, 111011000, odpowiada liczbie 448, co również jest wynikiem błędnego przeliczenia. Prawidłowy proces konwersji liczby dziesiętnej na binarną wymaga systematycznego podejścia, w którym każda reszta dzielenia ma kluczowe znaczenie. Niedostateczne zrozumienie tego procesu może prowadzić do typowych błędów myślowych, takich jak oszacowywanie wartości binarnych bez dokładnych obliczeń. Odpowiedź 110110000 reprezentuje liczbę 432, co pokazuje, jak łatwo można zjechać z właściwego toru, nie wykonując kroków obliczeniowych metodycznie. Aby uniknąć tych pomyłek, warto praktykować konwersje na prostych przykładach, co pozwoli na lepsze opanowanie tej umiejętności. Ponadto, zrozumienie, jak systemy binarne są wykorzystywane w komputerach, w tym pamięci i procesorach, ma fundamentalne znaczenie dla pracy w dziedzinie informatyki.

Pytanie 18

Jakie kolory wchodzą w skład trybu CMYK?

A. Czerwony, purpurowy, żółty oraz karmelowy
B. Błękitny, purpurowy, żółty i czarny
C. Czerwony, zielony, niebieski i czarny
D. Czerwony, zielony, żółty oraz granatowy
Tryb CMYK, który oznacza cyjan, magentę, żółty i czarny, jest standardem wykorzystywanym w druku kolorowym. W odróżnieniu od modelu RGB, który jest używany głównie w wyświetlaczach elektronicznych, CMYK jest oparty na subtraktywnym mieszaniu kolorów, co oznacza, że kolory są tworzone przez odejmowanie światła od białego tła. W praktyce, każdy kolor w trybie CMYK jest osiągany przez odpowiednie proporcje tych czterech barw, co pozwala na uzyskanie szerokiego zakresu kolorów niezbędnych w druku. Na przykład, podczas druku broszur, ulotek czy plakatów, zrozumienie i umiejętność pracy z tym modelem kolorów jest kluczowe dla zapewnienia wysokiej jakości wydruków. Dobrym przykładem jest proces kalibracji drukarki, która dostosowuje proporcje tych kolorów, aby osiągnąć pożądany efekt kolorystyczny. Na rynku istnieje wiele standardów, takich jak ISO 12647, które pomagają w osiągnięciu spójności kolorystycznej i jakości w druku, a znajomość trybu CMYK jest w tym kontekście nieoceniona.

Pytanie 19

W systemie serwerowym Windows widoczny jest zakres adresów IPv4. Ikona umieszczona obok jego nazwy sugeruje, że

Ilustracja do pytania
A. pula adresów w tym zakresie została wyczerpana całkowicie
B. ten zakres jest aktywny
C. pula adresów w tym zakresie jest prawie w pełni wyczerpana
D. ten zakres jest nieaktywny
Zakres adresów IP w systemie serwerowym Windows przy opisywanej ikonie jest nieaktywny co oznacza że serwer nie przydziela adresów IP z tej puli. Przekonanie że zakres jest aktywny wynika często z niewłaściwego zrozumienia ikon i interfejsów użytkownika. Jest to typowy błąd wynikający z założenia że wszystkie widoczne elementy w interfejsie są aktywne co nie zawsze jest zgodne z rzeczywistością. Zakładając że pula jest wyczerpana w 100% może wynikać z niedostatecznej analizy sytuacji. Taki stan byłby sygnalizowany innymi wskaźnikami a nie wyłącznie ikoną sugerującą nieaktywność. Użytkownicy mogą mylnie identyfikować problemy z dostępnością adresów zamiast sprawdzać stan aktywności zakresu i jego konfigurację. Myślenie że pula jest bliska wyczerpania również odzwierciedla niedostateczne rozumienie mechanizmów zarządzania DHCP. Właściwa interpretacja ikon i wskaźników pozwala na efektywne zarządzanie zasobami sieciowymi i unikanie błędów które mogą skutkować przestojami w pracy sieci. Poprawna analiza wymaga zarówno teoretycznej wiedzy jak i praktycznego doświadczenia w administracji serwerami co jest kluczowe dla utrzymania sprawnie działającej infrastruktury IT. Zrozumienie kiedy i dlaczego zakresy są aktywne lub nieaktywne jest fundamentem skutecznego zarządzania DHCP i zapewnienia ciągłości działania sieci komputerowej.

Pytanie 20

Na podstawie oznaczenia pamięci DDR3 PC3-16000 można określić, że ta pamięć

A. ma przepustowość 160 GB/s
B. pracuje z częstotliwością 160 MHz
C. ma przepustowość 16 GB/s
D. pracuje z częstotliwością 16000 MHz
Oznaczenie pamięci DDR3 PC3-16000 wskazuje na jej przepustowość, która wynosi 16 GB/s. Wartość 16000 w tym kontekście odnosi się do efektywnej przepustowości pamięci, co jest wyrażone w megabajtach na sekundę (MB/s). Aby to przeliczyć na gigabajty, dzielimy przez 1000, co daje nam 16 GB/s. Taka przepustowość jest kluczowa w zastosowaniach wymagających dużych prędkości przesyłu danych, jak w przypadku gier komputerowych, obróbki wideo czy pracy w środowiskach wirtualnych. Zastosowanie pamięci DDR3 PC3-16000 optymalizuje wydajność systemów, w których wiele procesów zachodzi jednocześnie, co jest standardem w nowoczesnych komputerach. Warto również zauważyć, że DDR3 jest standardem pamięci, który był powszechnie stosowany w komputerach od około 2007 roku, a jego rozwój doprowadził do znacznych popraw w wydajności w porównaniu do wcześniejszych generacji, co czyni go preferowanym wyborem w wielu zastosowaniach do dzisiaj.

Pytanie 21

Aby chronić systemy sieciowe przed zewnętrznymi atakami, należy zastosować

A. narzędzie do zarządzania połączeniami
B. protokół SSH
C. zapory sieciowej
D. serwer DHCP
Zapora sieciowa, czyli firewall, to mega ważny element w zabezpieczaniu sieci. Jej główna robota to monitorowanie i kontrolowanie, co właściwie się dzieje w ruchu sieciowym, zgodnie z ustalonymi zasadami. Dzięki niej możemy zablokować nieautoryzowane dostępy i odrzucać niebezpieczne połączenia. To znacznie zmniejsza ryzyko ataków hakerskich czy wirusów. Przykładem może być to, jak firma używa zapory na granicy swojej sieci, żeby chronić swoje zasoby przed zagrożeniami z Internetu. W praktyce zapory mogą być sprzętowe albo programowe, a ich ustawienia powinny być zgodne z najlepszymi praktykami w branży, jak zasada minimalnych uprawnień, co oznacza, że dostęp mają tylko ci, którzy naprawdę go potrzebują. Różne standardy, na przykład ISO/IEC 27001, podkreślają, jak ważne jest zarządzanie bezpieczeństwem danych, w tym stosowanie zapór w szerszej strategii ochrony informacji.

Pytanie 22

Które medium transmisyjne charakteryzuje się najmniejszym ryzykiem narażenia na zakłócenia elektromagnetyczne przesyłanego sygnału?

A. Czteroparowy kabel FTP
B. Gruby kabel koncentryczny
C. Cienki kabel koncentryczny
D. Kabel światłowodowy
Czteroparowy kabel FTP, gruby kabel koncentryczny oraz cienki kabel koncentryczny to media transmisyjne, które opierają się na przesyłaniu sygnału elektrycznego. W takim przypadku są one podatne na zakłócenia elektromagnetyczne, co może prowadzić do degradacji jakości sygnału. Kabel FTP (Foiled Twisted Pair) posiada dodatkową ekranowaną powłokę, co zwiększa odporność na zakłócenia w porównaniu do standardowego kabla U/UTP. Jednakże, w sytuacjach z silnymi zakłóceniami, takich jak w pobliżu urządzeń przemysłowych, kabel FTP może nie zapewnić wystarczającego poziomu ochrony. Gruby kabel koncentryczny, mimo swojej solidnej konstrukcji, również nie jest odporny na zakłócenia elektromagnetyczne, a jego zastosowanie jest obecnie ograniczane na rzecz nowocześniejszych technologii. Cienki kabel koncentryczny, charakteryzujący się mniejszą średnicą, jest jeszcze bardziej narażony na wpływ zakłóceń. Błędne przekonanie, że odpowiedzi oparte na kablach miedzianych mogą konkurować z światłowodami, często wynika z niepełnej analizy właściwości tych mediów. Wybór medium transmisyjnego powinien być oparty na analizie wymagań systemu oraz środowiska, w którym będzie ono używane. W przypadku silnych zakłóceń elektromagnetycznych, rozwiązania optyczne są zdecydowanie bardziej zalecane.

Pytanie 23

Według normy JEDEC, standardowe napięcie zasilające dla modułów pamięci RAM DDR3L o niskim napięciu wynosi

A. 1.20 V
B. 1.65 V
C. 1.50 V
D. 1.35 V
Odpowiedź 1.35 V jest prawidłowa, ponieważ jest to standardowe napięcie zasilania dla modułów pamięci RAM DDR3L, które zostało określone przez organizację JEDEC. DDR3L (Double Data Rate 3 Low Voltage) to technologia pamięci zaprojektowana z myślą o obniżonym zużyciu energii przy jednoczesnym zachowaniu wysokiej wydajności. Napięcie 1.35 V w porównaniu do tradycyjnego DDR3, które działa przy napięciu 1.5 V, pozwala na zmniejszenie poboru energii, co jest szczególnie istotne w urządzeniach mobilnych oraz w zastosowaniach serwerowych, gdzie efektywność energetyczna jest kluczowa. Dzięki zastosowaniu DDR3L możliwe jest zwiększenie czasu pracy na baterii w laptopach oraz zmniejszenie kosztów operacyjnych serwerów. Warto również zauważyć, że pamięci DDR3L są kompatybilne z standardowymi modułami DDR3, co pozwala na ich wykorzystanie w różnych systemach komputerowych.

Pytanie 24

W systemie Linux plik ma przypisane uprawnienia 765. Jakie działania może wykonać grupa związana z tym plikiem?

A. odczytać oraz wykonać
B. odczytać oraz zapisać
C. może jedynie odczytać
D. odczytać, zapisać i wykonać
Wybór odpowiedzi sugerujących różne kombinacje uprawnień dla grupy nie zrozumiał uprawnień ustalonych dla pliku w systemie Linux. Gdy przyjrzymy się uprawnieniom 765, ważne jest, aby zrozumieć, że każda cyfra w tej notacji reprezentuje różne poziomy dostępu. Grupa ma przypisane uprawnienia na poziomie 6, co oznacza, że może odczytywać oraz zapisywać plik, ale nie ma uprawnienia do jego wykonywania. Odpowiedzi, które sugerują, że grupa może tylko odczytać plik, są błędne, ponieważ pomijają możliwość zapisu, co jest kluczowe w kontekście współpracy i zarządzania plikami. Z kolei odpowiedzi, które wskazują na możliwość wykonywania pliku, są mylącą interpretacją, ponieważ uprawnienia do wykonania przysługują jedynie właścicielowi pliku lub innym użytkownikom, w zależności od ich przypisanych uprawnień. Tego rodzaju pomyłki często wynikają z niepełnego zrozumienia systemu uprawnień w Linuxie, który opiera się na binarnej reprezentacji dostępu. Kluczowe jest, aby użytkownicy zdawali sobie sprawę z tego, jak przydzielanie uprawnień wpływa na bezpieczeństwo i dostępność danych, co powinno być podstawą do efektywnego zarządzania plikami w środowisku wieloużytkownikowym.

Pytanie 25

W systemie Windows 7 program Cipher.exe w trybie poleceń jest używany do

A. przełączania monitora w tryb uśpienia
B. szyfrowania i odszyfrowywania plików oraz katalogów
C. sterowania rozruchem systemu
D. wyświetlania plików tekstowych
Odpowiedź odnosząca się do szyfrowania i odszyfrowywania plików oraz katalogów za pomocą narzędzia Cipher.exe w systemie Windows 7 jest prawidłowa, ponieważ Cipher.exe to wbudowane narzędzie do zarządzania szyfrowaniem danych w systemie plików NTFS. Umożliwia użytkownikom zabezpieczanie wrażliwych danych przed nieautoryzowanym dostępem, co jest szczególnie istotne w kontekście ochrony danych osobowych oraz zgodności z regulacjami prawnymi, takimi jak RODO. W praktyce, można używać Cipher.exe do szyfrowania plików, co chroni je w przypadku kradzieży lub utraty nośnika danych. Na przykład, używając polecenia 'cipher /e <ścieżka do pliku>', można szybko zaszyfrować dany plik, a następnie, przy użyciu 'cipher /d <ścieżka do pliku>', odszyfrować go. Dobrą praktyką jest przechowywanie kluczy szyfrujących w bezpiecznym miejscu oraz regularne audyty systemu zabezpieczeń, aby zapewnić ciągłość ochrony danych.

Pytanie 26

Litera S w protokole FTPS oznacza zabezpieczenie danych podczas ich przesyłania poprzez

A. uwierzytelnianie
B. szyfrowanie
C. autoryzację
D. logowanie
Protokół FTPS (File Transfer Protocol Secure) to rozszerzenie standardowego protokołu FTP, które dodaje warstwę zabezpieczeń poprzez szyfrowanie przesyłanych danych. Litera 'S' oznacza, że wszystkie dane przesyłane pomiędzy klientem a serwerem są szyfrowane. Użycie szyfrowania chroni informacje przed nieautoryzowanym dostępem w trakcie transmisji, co jest kluczowe w kontekście bezpieczeństwa danych. W praktyce oznacza to, że nawet jeśli dane zostaną przechwycone przez złośliwego użytkownika, nie będą one czytelne bez odpowiedniego klucza szyfrującego. W branży IT stosuje się różne protokoły szyfrowania, takie jak SSL (Secure Sockets Layer) lub TLS (Transport Layer Security), które są powszechnie uznawane za standardy zabezpieczeń. Przy korzystaniu z FTPS, szczególnie w środowiskach, gdzie przesyłane są wrażliwe dane, jak dane osobowe czy informacje finansowe, szyfrowanie staje się niezbędnym elementem polityki bezpieczeństwa. Wdrożenie FTPS z odpowiednią konfiguracją szyfrowania jest zgodne z najlepszymi praktykami w zakresie ochrony danych, co czyni go godnym zaufania rozwiązaniem do bezpiecznej wymiany plików.

Pytanie 27

Plik ma przypisane uprawnienia: rwxr-xr--. Jakie uprawnienia będzie miał plik po zastosowaniu polecenia chmod 745?

A. r-xrwxr--
B. rwxr--r-x
C. rwxr-xr-x
D. rwx--xr-x
Niepoprawne odpowiedzi wynikają z błędnych interpretacji sposobu działania polecenia chmod oraz znaczenia uprawnień plikowych w systemach UNIX i Linux. Każda z proponowanych opcji nieprawidłowo interpretuje zmiany, które wprowadza kod chmod 745. Ważne jest, aby zrozumieć, że liczby w poleceniu chmod reprezentują uprawnienia w systemie oktalnym, gdzie każda cyfra odpowiada zestawowi uprawnień: 4 dla odczytu (r), 2 dla zapisu (w) i 1 dla wykonywania (x). Możliwości kombinacji tych wartości mogą prowadzić do nieporozumień, zwłaszcza podczas analizy uprawnień grupy oraz innych użytkowników. Na przykład, odpowiedź 'r-xrwxr--' sugeruje, że grupa ma pełne uprawnienia, co jest sprzeczne z zamysłem polecenia chmod 745, które ogranicza te uprawnienia. Natomiast 'rwx--xr-x' pomija uprawnienia grupy, co również jest niezgodne z zastosowaniem. Kluczowym błędem myślowym jest pomijanie zasady, że zmiana uprawnień dotyczy trzech głównych kategorii: właściciela, grupy oraz innych użytkowników. Każda z tych grup ma swoje zdefiniowane uprawnienia, które są ściśle kontrolowane przez system. Aby skutecznie zarządzać uprawnieniami, ważne jest dokładne rozumienie oraz praktykowanie koncepcji związanych z bezpieczeństwem systemów, co prowadzi do lepszego zarządzania dostępem do danych i aplikacji. Zrozumienie tego procesu jest niezbędne dla każdego administratora systemu oraz użytkownika dbającego o bezpieczeństwo danych.

Pytanie 28

Który typ rekordu w bazie DNS (Domain Name System) umożliwia ustalenie aliasu dla rekordu A?

A. NS
B. PTR
C. AAAA
D. CNAME
Rekord CNAME, czyli Canonical Name, jest przydatny w systemie DNS, bo pozwala na tworzenie aliasów dla innych rekordów, w tym rekordów A, które łączą nazwy domen z adresami IP. To trochę tak, jakbyś miał wiele nazw na jedną stronę. Na przykład, jeśli masz rekord A dla www.example.com, który wskazuje na adres IP 192.0.2.1, to możesz użyć rekordu CNAME dla shop.example.com, który też będzie kierował do www.example.com. Dzięki temu, jak zmienisz adres IP dla www.example.com, to nie musisz się martwić o shop.example.com - tylko w jednym miejscu aktualizujesz IP. Używanie rekordu CNAME to dobra praktyka w zarządzaniu DNS, bo to ułatwia życie i zmniejsza szansę na błędy podczas zmian adresów IP.

Pytanie 29

Ilustracja pokazuje rezultat testu sieci komputerowej za pomocą komendy

Badanie wp.pl [212.77.100.101] z użyciem 32 bajtów danych:
Odpowiedź z 212.77.100.101: bajtów=32 czas=25ms TTL=249
Odpowiedź z 212.77.100.101: bajtów=32 czas=25ms TTL=249
Odpowiedź z 212.77.100.101: bajtów=32 czas=25ms TTL=249
Odpowiedź z 212.77.100.101: bajtów=32 czas=27ms TTL=249

A. tracert
B. netstat
C. ipconfig
D. ping
Odpowiedź ping jest poprawna ponieważ polecenie to służy do diagnozowania stanu połączenia z innym urządzeniem w sieci komputerowej. Wykorzystuje ono protokół ICMP do wysyłania pakietów echo request do docelowego hosta a następnie oczekuje na odpowiedź echo reply. W wyniku działania polecenia ping użytkownik otrzymuje informacje o czasie odpowiedzi i liczbie utraconych pakietów co jest kluczowe w diagnozowaniu problemów z wydajnością sieci oraz ustalaniu dostępności urządzeń. Na przykład w systemach Windows typowym wynikiem działania polecenia ping jest wyświetlenie adresu IP docelowego hosta liczby bajtów w pakiecie oraz czasu odpowiedzi w milisekundach. Polecenie to jest standardem w większości systemów operacyjnych co czyni je uniwersalnym narzędziem dla administratorów sieci. Znajomość tego narzędzia jest niezbędna do efektywnego zarządzania infrastrukturą sieciową umożliwiając szybką detekcję i lokalizację problemów z łącznością. W praktyce ping jest często pierwszym krokiem w diagnostyce sieciowej pomagając administratorom potwierdzić czy problem z siecią leży po ich stronie czy po stronie zewnętrznych dostawców usług sieciowych.

Pytanie 30

Który adres IP posiada maskę w postaci pełnej, zgodną z klasą adresu?

A. 140.16.5.18, 255.255.255.0
B. 180.12.56.1, 255.255.0.0
C. 118.202.15.6, 255.255.0.0
D. 169.12.19.6, 255.255.255.0
Adres IP 180.12.56.1 należy do klasy B, co oznacza, że standardowa maska podsieci dla tej klasy to 255.255.0.0. Klasa B obejmuje adresy IP od 128.0.0.0 do 191.255.255.255, gdzie pierwsze dwa oktety są przeznaczone do identyfikacji sieci, a dwa pozostałe do identyfikacji hostów w tej sieci. Użycie maski 255.255.0.0 dla adresu 180.12.56.1 jest zgodne z tą klasyfikacją i umożliwia utworzenie dużej liczby podsieci oraz hostów. W praktyce, taka konfiguracja jest często wykorzystywana w dużych organizacjach oraz dostawcach usług internetowych, gdzie potrzeba obsługiwać wiele urządzeń w ramach jednej sieci, a zarazem umożliwić łatwe zarządzanie i routing informacji. Zastosowanie pełnej maski klasy B pomaga w optymalizacji ruchu sieciowego oraz przydzielaniu zasobów. W związku z tym, znajomość klas adresów oraz powiązanych z nimi masek jest fundamentem efektywnego projektowania i zarządzania sieciami komputerowymi.

Pytanie 31

Jakie są różnice pomiędzy poleceniem ps a poleceniem top w systemie Linux?

A. Polecenie ps nie przedstawia stopnia wykorzystania CPU, natomiast polecenie top oferuje tę funkcjonalność
B. Polecenie top pokazuje aktualnie funkcjonujące procesy w systemie, regularnie aktualizując informacje, podczas gdy ps tego nie robi
C. Polecenie ps umożliwia wyświetlenie uprawnień, z jakimi działa proces, co nie jest możliwe w przypadku top
D. Polecenie top pozwala na pokazanie PID procesu, a ps nie ma takiej opcji
Polecenie top jest narzędziem w systemie Linux, które umożliwia monitorowanie aktualnie działających procesów w czasie rzeczywistym, co oznacza, że informacje są regularnie odświeżane na ekranie. Dzięki temu użytkownicy mogą na bieżąco obserwować, jak różne procesy wykorzystują zasoby systemowe, takie jak CPU i pamięć. Zastosowanie polecenia top jest szczególnie przydatne podczas diagnozowania problemów ze wydajnością lub gdy zachodzi potrzeba identyfikacji procesów zajmujących zbyt dużo zasobów. W przeciwieństwie do tego, polecenie ps (process status) wyświetla statyczny stan procesów w momencie wywołania, co oznacza, że nie dostarcza informacji w czasie rzeczywistym. Użytkownicy mogą korzystać z ps do uzyskania szczegółowych informacji o procesach, ale muszą ponownie wywołać polecenie, aby uzyskać aktualne dane. W praktyce, administratorski sposób monitorowania aplikacji polega na używaniu top do ciągłego śledzenia, natomiast ps jest używane do analizowania konkretnych stanów procesów w chwili wykonania komendy.

Pytanie 32

Na rysunku przedstawiono ustawienia karty sieciowej urządzenia z adresem IP 10.15.89.104/25. Co z tego wynika?

Ilustracja do pytania
A. adres IP jest błędny
B. adres domyślnej bramy pochodzi z innej podsieci niż adres hosta
C. adres maski jest błędny
D. serwer DNS znajduje się w tej samej podsieci co urządzenie
Odpowiedź jest poprawna, ponieważ adres domyślnej bramy jest z innej podsieci niż adres hosta. Kluczowym elementem jest zrozumienie, jak działają podsieci w sieciach komputerowych. Adres IP 10.15.89.104 z maską 255.255.255.128 oznacza, że sieć obejmuje adresy od 10.15.89.0 do 10.15.89.127. Adres bramy 10.15.89.129 jest poza tym zakresem, co oznacza, że należy do innej podsieci. To jest ważne, ponieważ brama domyślna musi być w tej samej podsieci co host, aby komunikacja wychodząca z lokalnej sieci mogła być prawidłowo przekierowana. W praktyce konfiguracje tego typu są istotne dla administratorów sieci, którzy muszą zapewnić, że urządzenia sieciowe są prawidłowo skonfigurowane. Zgodność adresacji IP z maską podsieci oraz prawidłowe przypisanie bramy są kluczowe dla unikania problemów z łącznością sieciową. Standardowe praktyki branżowe zalecają dokładną weryfikację konfiguracji, aby upewnić się, że wszystkie urządzenia mogą komunikować się efektywnie i bez zakłóceń. Prawidłowa konfiguracja wspiera stabilność sieci i minimalizuje ryzyko wystąpienia problemów związanych z routingiem danych.

Pytanie 33

Zidentyfikuj najprawdopodobniejszą przyczynę pojawienia się komunikatu "CMOS checksum error press F1 to continue press DEL to setup" podczas uruchamiania systemu komputerowego?

A. Zniknięty plik konfiguracyjny.
B. Rozładowana bateria podtrzymująca ustawienia BIOS-u
C. Uszkodzona karta graficzna.
D. Wyczyszczona pamięć CMOS.
Komunikat "CMOS checksum error press F1 to continue press DEL to setup" często wskazuje na problemy związane z pamięcią CMOS, która jest odpowiedzialna za przechowywanie ustawień BIOS-u, takich jak data, godzina oraz konfiguracja sprzętowa. Gdy bateria CMOS, najczęściej typu CR2032, jest rozładowana, pamięć ta nie jest w stanie zachować danych po wyłączeniu komputera, co prowadzi do błędów przy uruchamianiu. W praktyce, aby rozwiązać problem, należy wymienić baterię na nową, co jest prostą i standardową procedurą w konserwacji sprzętu komputerowego. Prawidłowe funkcjonowanie baterii CMOS jest kluczowe dla stabilności systemu; bez niej BIOS nie może poprawnie odczytać ustawień, co skutkuje błędami. Zrozumienie tego procesu jest istotne dla każdego użytkownika komputera, szczególnie dla osób zajmujących się serwisowaniem sprzętu, ponieważ pozwala na szybkie diagnozowanie i naprawę problemów sprzętowych, zgodnie z zaleceniami producentów i najlepszymi praktykami branżowymi.

Pytanie 34

Jaka jest maksymalna liczba komputerów, które mogą być zaadresowane w podsieci z adresem 192.168.1.0/25?

A. 510
B. 254
C. 126
D. 62
Podane odpowiedzi, takie jak 62, 254 oraz 510, bazują na błędnej interpretacji zasad adresowania IP w kontekście maski podsieci. Odpowiedź 62 może wynikać z mylnego obliczenia, które uwzględnia tylko część dostępnych adresów, najprawdopodobniej z przyjęciem nieprawidłowej maski. Taka liczba adresów nie uwzględnia w pełni możliwości podsieci /25. Z kolei odpowiedź 254 często odnosi się do podsieci /24, gdzie zarezerwowane są dwa adresy, ale przy masce /25, ta liczba jest zawężona. Z kolei 510 przekracza techniczne możliwości podsieci, ponieważ nie ma tylu dostępnych adresów w konfiguracji /25. Typowym błędem w analizie liczby dostępnych adresów jest pominięcie faktu, że dwa adresy są zawsze rezerwowane: jeden dla adresu sieci, a drugi dla adresu rozgłoszeniowego, co często prowadzi do nieporozumień. Przy projektowaniu sieci ważne jest zrozumienie, że efektywne zarządzanie adresami IP wymaga precyzyjnej znajomości zasad dotyczących podsieci. Ignorowanie tych zasad może prowadzić do problemów z zarządzaniem siecią, takich jak konflikty adresów, niemożność poprawnego routingu lub zbyt mała liczba dostępnych adresów dla urządzeń w danej podsieci.

Pytanie 35

Na diagramie element odpowiedzialny za dekodowanie poleceń jest oznaczony liczbą

Ilustracja do pytania
A. 1
B. 3
C. 2
D. 6
CU czyli jednostka sterująca odpowiada za dekodowanie instrukcji w procesorze Jest to kluczowy element architektury procesora który interpretuje instrukcje maszynowe pobierane z pamięci i przekształca je w sygnały sterujące dla innych elementów procesora takich jak ALU rejestry czy pamięć operacyjna Jednostka sterująca odczytuje instrukcje jedna po drugiej i analizuje ich format oraz wykonuje odpowiednie kroki do ich realizacji Współczesne procesory często stosują złożone mechanizmy dekodowania aby zwiększyć wydajność i efektywność wykonywania instrukcji Praktycznym przykładem zastosowania wiedzy o jednostce sterującej jest projektowanie systemów cyfrowych oraz optymalizacja kodu maszynowego w celu zwiększenia wydajności działania aplikacji Znajomość CU jest również niezbędna przy rozwoju nowych architektur procesorów oraz przy implementacji systemów wbudowanych gdzie dekodowanie instrukcji może być krytycznym elementem umożliwiającym realizację złożonych operacji w czasie rzeczywistym Zrozumienie roli jednostki sterującej pozwala na lepsze projektowanie i implementację efektywnych algorytmów wykonujących się na poziomie sprzętowym

Pytanie 36

Ile sieci obejmują komputery z adresami IP przedstawionymi w tabeli oraz standardową maską sieci?

Komputer 1172.16.15.5
Komputer 2172.18.15.6
Komputer 3172.18.16.7
Komputer 4172.20.16.8
Komputer 5172.20.16.9
Komputer 6172.21.15.10

A. Dwóch
B. Czterech
C. Sześciu
D. Jednej
Adresy IP należą do klasy B oznacza to że standardowa maska sieci to 255.255.0.0. W tej klasie dwie pierwsze części adresu określają sieć a dwie ostatnie hosta. Adresy które zaczynają się od 172.16 172.18 172.20 i 172.21 należą do różnych sieci. Dlatego też te sześć adresów reprezentuje cztery różne sieci. Przy przydzielaniu adresów IP ważne jest zrozumienie jak maska podsieci wpływa na klasyfikację sieci co jest kluczowe w projektowaniu skalowalnych i wydajnych sieci. W praktyce administracja sieci musi często implementować strategie takie jak VLSM (Variable Length Subnet Masking) aby zoptymalizować wykorzystanie adresów IP. Wiedza o podziałach na podsieci jest niezbędna do zarządzania dużymi sieciami z wieloma segmentami co pozwala na efektywne użycie przestrzeni adresowej oraz poprawę bezpieczeństwa i wydajności sieci. Zrozumienie tej koncepcji jest nieodzowne dla profesjonalistów zajmujących się projektowaniem i zarządzaniem sieciami komputerowymi.

Pytanie 37

W celu zainstalowania systemu openSUSE oraz dostosowania jego ustawień, można skorzystać z narzędzia

A. GEdit
B. YaST
C. Brasero
D. Evolution
Wybór odpowiedzi innych niż YaST wskazuje na pewne nieporozumienia dotyczące funkcji i zastosowania oprogramowania w ekosystemie openSUSE. Brasero, będący narzędziem do nagrywania płyt, nie ma żadnych funkcji związanych z konfiguracją systemu operacyjnego. Jego głównym celem jest ułatwienie użytkownikom tworzenia i nagrywania obrazów dysków oraz danych na nośniki optyczne. Tak więc, jest to narzędzie dedykowane do zadań związanych z obsługą mediów, a nie z instalacją systemu. GEdit to prosty edytor tekstu, który jest używany do edytowania plików tekstowych, kodu źródłowego oraz innych dokumentów. Chociaż GEdit może być użyteczny w wielu kontekstach, nie ma funkcji ani narzędzi do zarządzania konfiguracją systemu operacyjnego. Z drugiej strony, Evolution to aplikacja do zarządzania pocztą elektroniczną, która nie ma zastosowania w kontekście instalacji lub konfiguracji systemu. Takie wybory mogą wynikać z mylnego przekonania, że wszystkie wymienione aplikacje są związane z administracją systemem, podczas gdy tylko YaST jest dedykowanym narzędziem do tego celu. Stosowanie odpowiednich narzędzi jest kluczowe dla skutecznej administracji systemem, dlatego ważne jest, aby posiadać wiedzę na temat ich przeznaczenia i funkcji.

Pytanie 38

Protokół transportowy bez połączenia w modelu ISO/OSI to

A. TCP
B. STP
C. UDP
D. FTP
UDP, czyli User Datagram Protocol, jest bezpołączeniowym protokołem warstwy transportowej, który działa na modelu ISO/OSI. Jego główną cechą jest to, że nie nawiązuje trwałego połączenia przed przesłaniem danych, co pozwala na szybszą transmisję, ale kosztem pewności dostarczenia. UDP jest często wykorzystywany w aplikacjach czasu rzeczywistego, takich jak strumieniowanie wideo, gry online oraz VoIP, gdzie opóźnienia są bardziej istotne niż całkowita niezawodność. W przeciwieństwie do TCP, który zapewnia mechanizmy kontroli błędów i retransmisji, UDP nie gwarantuje dostarczenia pakietów, co czyni go idealnym do zastosowań, gdzie szybkość jest kluczowa, a niewielkie straty danych są akceptowalne. Przykładem zastosowania UDP w praktyce może być transmisja głosu w czasie rzeczywistym, gdzie opóźnienia są niepożądane, a niewielkie zniekształcenia lub utraty pakietów są tolerowane. W kontekście dobrych praktyk branżowych, UDP jest zalecany w sytuacjach, gdzie minimalizacja opóźnień jest priorytetem, a aplikacje są zaprojektowane z myślą o obsłudze potencjalnych strat danych.

Pytanie 39

Urządzenie, które łączy różne segmenty sieci i przesyła ramki pomiędzy nimi, wybierając odpowiedni port, do którego są kierowane konkretne ramki, to

A. hub
B. switch
C. UPS
D. rejestrator
Wybór odpowiedzi, która nie dotyczy funkcji przełącznika, może być mylący i pokazywać, że nie do końca rozumiesz, jak działają sieci komputerowe. Koncentrator, który jest jednym z tych urządzeń, działa na poziomie fizycznym i w ogóle nie analizuje adresów MAC. Zamiast tego on rozsyła dane do wszystkich urządzeń w sieci, co może prowadzić do kolizji i opóźnień. Rejestrator, z drugiej strony, nie ma nic wspólnego z przesyłaniem danych - służy do zapisywania informacji. A zasilacz awaryjny (UPS) to z kolei coś, co dba o zasilanie w razie awarii, ale też nie przesyła danych. Tak więc wybór jednej z tych opcji zamiast przełącznika sugeruje, że nie zrozumiałeś, jak te urządzenia działają. Żeby dobrze zarządzać ruchem sieciowym, warto znać różnice między nimi i wiedzieć, gdzie je zastosować. To kluczowe dla kogoś, kto chce zajmować się projektowaniem i zarządzaniem sieciami.

Pytanie 40

Jakie narzędzie w systemie Linux pozwala na wyświetlenie danych o sprzęcie zapisanych w BIOS?

A. debug
B. cron
C. dmidecode
D. watch
Wynik uzyskany z odpowiedzi innych narzędzi, takich jak cron, watch czy debug, pokazuje fundamentalne nieporozumienie w zakresie ich funkcji w systemie Linux. Cron to demon, który zarządza cyklicznym wykonywaniem zadań w określonych interwałach czasu, co oznacza, że nie ma związku z odczytem danych sprzętowych z BIOS. Jego głównym zastosowaniem jest automatyzacja procesów, a nie dostarczanie informacji o sprzęcie. Narzędzie watch z kolei jest używane do cyklicznego uruchamiania poleceń i wyświetlania ich wyników, co również nie ma nic wspólnego z analizą danych BIOS. To narzędzie mogłoby być przydatne do monitorowania wyników komend, ale nie do bezpośredniego odczytu informacji o komponentach sprzętowych. Debug jest narzędziem do analizy i wychwytywania błędów w programach, a nie do odczytu danych systemowych. Typowym błędem myślowym w przypadku tych odpowiedzi jest mylenie funkcji narzędzi z ich specyfiką. Odpowiednie wykorzystanie narzędzi w systemie Linux wymaga zrozumienia ich przeznaczenia i funkcjonalności, co jest kluczowe dla efektywnego zarządzania systemem operacyjnym i sprzętem. W praktyce, wybór niewłaściwego narzędzia do zadania skutkuje nieefektywnością i zwiększeniem ryzyka błędów w administracji systemem.