Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 29 maja 2025 08:35
  • Data zakończenia: 29 maja 2025 08:47

Egzamin niezdany

Wynik: 12/40 punktów (30,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jak geodeta oznaczy na szkicu przyłącze energetyczne niskiego napięcia do budynku mieszkalnego, jeśli wykonał inwentaryzację powykonawczą za pomocą lokalizatora?

A. eN
B. e
C. eNA
D. eA
Odpowiedzi eA, eN oraz e są nieprawidłowe w kontekście oznaczania przyłącza energetycznego niskiego napięcia do budynku mieszkalnego. Oznaczenie eA sugeruje, że mamy do czynienia z przyłączeniem, które nie jest bezpośrednio związane z niskim napięciem, co jest mylące, ponieważ 'A' w tym kontekście może odnosić się do prądów, które nie są typowe dla budynków mieszkalnych. Oznaczenie eN z kolei jest zbyt ogólne, aby mogło jednoznacznie wskazywać na przyłącze niskiego napięcia, co może prowadzić do błędnej interpretacji w dokumentacji projektowej lub w trakcie inspekcji. Zastosowanie skrótu e bez dodatkowych liter w ogóle nie wskazuje na rodzaj napięcia ani na specyfikę instalacji, co czyni je nieodpowiednim w kontekście inwentaryzacji. Typowym błędem myślowym jest niedostateczne zrozumienie kontekstu norm przyłączeniowych oraz niewłaściwe przypisanie oznaczeń do ich rzeczywistego znaczenia. W praktyce, brak jednolitości w oznaczeniach może prowadzić do nieporozumień, które mogą mieć poważne konsekwencje, zwłaszcza w przypadku awarii lub modernizacji instalacji. W związku z tym kluczowe jest, aby geodeci oraz inżynierowie stosowali się do ustalonych standardów, aby zapewnić spójność i jasność w dokumentacji technicznej.

Pytanie 2

W teodolicie stała podstawa, która służy do jego ustawienia w poziomie, nazywana jest

A. spodarką
B. alidadą
C. pionem
D. limbusem
W teodolicie istnieje wiele elementów i terminów, które mogą prowadzić do zamieszania, gdy próbujemy zrozumieć jego budowę i funkcje. Limbusem nazywamy inną część teodolitu, która jest odpowiedzialna za wskazywanie kątów na obręczy. Jest to element, który służy do odczytu kątów, a nie do ustalania stabilnej podstawy narzędzia, co jest jego podstawową funkcją. Kolejnym terminem jest pion, który odnosi się do kierunku prostopadłego do poziomu, ale również nie ma nic wspólnego z podstawą teodolitu. Pion jest kluczowy dla określenia pozycji urządzenia w przestrzeni, jednakże nie stanowi jego podstawy. Alidadą jest natomiast wskazówka montowana na teodolicie, używana do celowania w określony punkt. Choć wszystkie te terminy są istotne dla funkcjonowania teodolitu, żaden z nich nie odpowiada funkcji podstawy, poza spodarką. Właściwe zrozumienie tych terminów oraz ich zastosowanie w praktyce geodezyjnej jest kluczowe dla uniknięcia błędów i nieporozumień, które mogą wpłynąć na jakość pomiarów oraz skuteczność pracy w terenie. Dlatego, aby uniknąć typowych błędów myślowych, ważne jest dokładne zrozumienie, jak poszczególne elementy teodolitu współpracują ze sobą, co pomoże w prawidłowym wykonywaniu pomiarów.

Pytanie 3

Który z poniższych elementów terenu zalicza się do pierwszej kategorii dokładnościowej?

A. Drzewo przyuliczne
B. Linia brzegowa jeziora
C. Budynek szkoły
D. Boisko sportowe
Boisko sportowe, drzewo przyuliczne i linia brzegowa jeziora to rzeczy, które raczej nie powinny być w pierwszej grupie dokładnościowej. Często myśli się, że obiekty jak boiska, z powodu swojej wielkości, są mega dokładne. Ale to nie do końca prawda. Takie boiska mogą być różnie zrobione, a ich lokalizacja nie zawsze jest dokładna w dokumentach geodezyjnych, co sprawia, że nie kwalifikują się do tej grupy. Drzewo przyuliczne, mimo że ważne ekologicznie, też nie jest na tyle dokładne, bo jego położenie bywa subiektywne i się zmienia. Linia brzegowa jeziora, chociaż istotna geograficznie, też nie spełnia wymagań pierwszej grupy, bo jej kształt i lokalizacja zmieniają się przez warunki hydrologiczne i erozję. Dużo ludzi może je mylić, nie zdając sobie z tego sprawy, że zmienność i brak precyzyjnych danych pomiarowych sprawiają, że nie można ich wrzucać do tej samej kategorii co stabilne budynki. Rozumienie tej różnicy jest mega ważne, jeśli chcemy prowadzić analizy przestrzenne i skutecznie planować miasto.

Pytanie 4

Jaką metodą powinno się ustalić wysokość stanowiska instrumentu w niwelacji punktów rozrzuconych?

A. Niwelacji reperów
B. Biegunową
C. Ortogonalną
D. Niwelacji siatkowej
Wybór innych metod, takich jak niwelacja siatkowa, biegunowa czy ortogonalna, w kontekście wyznaczania wysokości stanowiska instrumentu w niwelacji punktów rozproszonych, może prowadzić do wielu nieporozumień i błędów. Niwelacja siatkowa, choć użyteczna w pracach terenowych, nie koncentruje się na precyzyjnym wyznaczeniu wysokości instrumentu, lecz na rozkładzie danych pomiarowych w siatce, co nie zawsze zapewnia wymagany poziom dokładności w lokalizacji punktów. Z kolei niwelacja biegunowa skupia się na pomiarach kątów i odległości, co jest efektywne w innych aspektach geodezji, lecz nie dostarcza informacji dotyczących wysokości bezpośrednio związanych z punktem pomiarowym. Metoda ortogonalna, z kolei, polega na stosowaniu prostych kątów do ustalenia odniesienia, co w kontekście niwelacji może być zbyt uproszczonym podejściem, prowadzącym do błędów w pomiarach wysokości. W praktyce, te metody nie są przystosowane do dokładnego wyznaczania wysokości stanowiska instrumentów, co jest kluczowym krokiem w procesie niwelacji, a ich niewłaściwe zastosowanie może skutkować znacznymi różnicami w wynikach pomiarowych. Dlatego tak ważne jest stosowanie odpowiednich procedur i metod, aby zapewnić wiarygodność i precyzję wyników w geodezyjnych badaniach terenowych.

Pytanie 5

Na mapie zasadniczej symbol literowy oznacza budynek mieszkalny jednorodzinny

A. mz
B. md
C. mj
D. mt
Odpowiedź 'mj' jest poprawna, ponieważ oznaczenie budynku mieszkalnego jednorodzinnego na mapie zasadniczej zgodne jest ze standardami określonymi w Polskiej Normie PN-ISO 19108. W tej normie przypisano symbol literowy 'mj' dla budynków mieszkalnych jednorodzinnych. W praktyce oznaczenie to jest istotne dla urbanistów, architektów i innych profesjonalistów zajmujących się planowaniem przestrzennym, ponieważ umożliwia szybkie i jednoznaczne zidentyfikowanie rodzaju obiektu na mapie. Na przykład, w dokumentacji urbanistycznej, podczas analizy terenu pod zabudowę, oznaczenie 'mj' pozwala na łatwe rozróżnienie budynków mieszkalnych jednorodzinnych od innych typów zabudowy, co jest kluczowe w procesie projektowania oraz oceny wpływu planowanej zabudowy na środowisko. Dodatkowo, znajomość tych oznaczeń jest niezbędna podczas przeglądów administracyjnych, gdzie precyzyjna interpretacja mapy zasadniczej jest wymagana do podejmowania decyzji dotyczących wydawania pozwoleń na budowę lub zmian w zagospodarowaniu przestrzennym.

Pytanie 6

Która z metod pomiarów sytuacyjnych szczegółów terenowych opiera się na pomiarze kątów oraz odległości przy użyciu tachimetru?

A. Ortogonalna
B. Biegunowa
C. Domiarów prostokątnych
D. Wcięć kątowych
Metoda biegunowa to naprawdę podstawowa rzecz w geodezji. Chodzi o to, żeby zmierzyć kąty i odległości przy pomocy tachimetru. Dzięki temu, można dokładnie ustalić, gdzie są punkty w terenie, w odniesieniu do jednego, wybranego punktu. Tachimetr łączy w sobie teodolity i dalmierze, co pozwala na jednoczesne odczyty kątów poziomych i pionowych oraz dystansów do różnych punktów. To wszystko sprawia, że pomiary są efektywniejsze i bardziej precyzyjne. Metoda biegunowa jest szczególnie przydatna, gdy teren jest trudny do ogarnięcia, albo gdy potrzebujemy szybko i dokładnie zarejestrować teren. W branży są też różne normy, jak te ISO dotyczące pomiarów, które mówią, jak ważne jest korzystanie z tej metody w geodezji i inżynierii, czy przy tworzeniu map.

Pytanie 7

Jakiej metody nie należy używać do oceny pionowości komina przemysłowego?

A. wcięć kątowych
B. trygonometrycznej
C. fotogrametrycznej
D. stałej prostej
Odpowiedź wskazująca na metodę stałej prostej jako nieodpowiednią do badania pionowości komina przemysłowego jest poprawna, ponieważ ta technika nie jest w stanie precyzyjnie określić odchyleń od pionu. Metoda ta polega na wyznaczeniu linii prostych, które mogą być łatwo zakłócone przez zjawiska atmosferyczne, a także przez trudne warunki terenowe. W praktyce, do oceny pionowości kominów przemysłowych najczęściej wykorzystuje się metody takie jak wcięcia kątowe, trygonometryczne czy fotogrametryczne, które zapewniają większą dokładność i powtarzalność pomiarów. W przypadku pomiarów kominów, które mogą mieć znaczne wysokości, kluczowe jest zastosowanie technik, które uwzględniają zarówno perspektywiczne zniekształcenia, jak i ewentualne przesunięcia w poziomie, co czyni metody oparte na geodezji i fotogrametrii bardziej odpowiednimi. Przykłady zastosowania takich metod można znaleźć w dokumentacji projektowej budynków przemysłowych, gdzie dokładność pomiarów pionowości ma kluczowe znaczenie dla bezpieczeństwa konstrukcji.

Pytanie 8

Jeśli azymut A1-2 wynosi 327°12’35’’, to jaki jest azymut odwrotny A2-1?

A. 507°12’35’’
B. 147°12’35’’
C. 127°12’35’’
D. 527°12’35’’
Widać, że przy obliczaniu azymutu odwrotnego pojawił się pewien bałagan. Niektórzy mogą nie zauważyć, że jak A1-2 to 327°12’35’’, to dodanie 180° do tego nie kończy sprawy, zwłaszcza jak wynik wychodzi 507°12’35’’. Takie wartości nie mogą być przyjmowane ot tak, bo azymut powinien być w granicach 0°-360°. Kiedy przekroczymy tę granicę, trzeba odjąć 360°, by wszystko się zgadzało. No i jeśli poszło 127°12’35’’, to tu z kolei wkradł się błąd w dodawaniu, ale pewnie też nie do końca dobrze zrozumiano zasady. Pamiętaj, że azymuty zawsze bierzemy od północy i trzymamy się tych konwencji. Typowe błędy to brak korekty wartości azymutów i nielogiczne przekształcenia. W praktyce nawigacyjnej dla precyzyjnych wyników musisz znać zasady obliczeń azymutów i ich odwrotności.

Pytanie 9

Na jakiej nakładce tematycznej mapy zasadniczej powinien być zaznaczony włąz studzienki kanalizacyjnej?

A. Wysokościowej
B. Topograficznej
C. Sytuacyjnej
D. Ewidencyjnej
Wybór błędnych nakładek tematycznych do przedstawienia włązu studzienki kanalizacyjnej na mapie zasadniczej może wynikać z niepełnego zrozumienia ich funkcji oraz przeznaczenia. Nakładka ewidencyjna, która jest często mylona z sytuacyjną, ma na celu dokumentowanie i ewidencjonowanie obiektów w kontekście prawnym oraz administracyjnym. Nie zawiera jednak szczegółowych informacji o lokalizacji i funkcjonowaniu infrastruktury technicznej, co czyni ją nieodpowiednią do przedstawienia elementów takich jak studzienki kanalizacyjne. Nakładka wysokościowa jest stworzona do przedstawiania poziomów terenu i obiektów w kontekście wysokościowym; nie dostarcza informacji dotyczących układu infrastruktury podziemnej. Z kolei nakładka topograficzna, koncentrująca się na ogólnych ukształtowaniach terenu, również nie uwzględnia szczegółowych informacji na temat obiektów, które są kluczowe dla zarządzania infrastrukturą, takich jak studzienki. Zastosowanie niewłaściwej nakładki może prowadzić do nieefektywnego zarządzania infrastrukturą oraz utrudnienia w przeprowadzaniu niezbędnych prac konserwacyjnych, co w dłuższej perspektywie może prowadzić do poważnych problemów związanych z funkcjonowaniem systemów kanalizacyjnych. Dlatego ważne jest, aby stosować odpowiednie nakładki tematyczne zgodnie z ich przeznaczeniem, co jest zgodne z najlepszymi praktykami w dziedzinie zarządzania danymi przestrzennymi.

Pytanie 10

W jakiej skali sporządza się mapy zasadnicze dla niewielkich miejscowości, obszarów metropolitalnych i stref przemysłowych?

A. 1 : 5000
B. 1 : 500
C. 1 : 2000
D. 1 : 1000
Odpowiedź 1 : 1000 jest poprawna, ponieważ mapy zasadnicze małych miast, aglomeracji miejskich i obszarów przemysłowych sporządzane są w skali 1 : 1000, co oznacza, że 1 jednostka na mapie odpowiada 1000 jednostkom w rzeczywistości. Przykładowo, jeśli na mapie widoczna jest odległość 1 cm, w rzeczywistości jest to 1000 cm, czyli 10 m. Taka skala pozwala na szczegółowe odwzorowanie urbanistycznych i przestrzennych aspektów obszarów miejskich, co jest niezwykle istotne w planowaniu przestrzennym oraz zarządzaniu infrastrukturą. Przykłady zastosowania obejmują analizy gęstości zabudowy, lokalizację nowych inwestycji, a także ochronę środowiska. Zgodnie z obowiązującymi standardami, mapy zasadnicze powinny być aktualizowane regularnie, aby odzwierciedlały zmiany w zagospodarowaniu przestrzennym, co zwiększa ich użyteczność w praktyce.

Pytanie 11

W jakim zakresie znajduje się wartość azymutu boku AB, gdy różnice współrzędnych między punktem początkowym a końcowym boku AB wynoszą ΔXAB < 0 oraz ΔYAB < 0?

A. 200÷300g
B. 300÷400g
C. 0÷100g
D. 100÷200g
Wybór przedziału azymutu 300÷400g, 100÷200g lub 0÷100g jest błędny z kilku powodów. Azymut w przedziale 300÷400g sugeruje kierunek, który nie jest zgodny z ustalonymi różnicami współrzędnych ΔXAB < 0 oraz ΔYAB < 0. W takim przypadku, azymut w tym zakresie wskazywałby na kierunek północno-zachodni, co jest sprzeczne z tym, że obie różnice są ujemne i wskazują na kierunek dolny lewy. Z kolei przedział 100÷200g również nie jest właściwy, gdyż azymut w tym zakresie wskazywałby na kierunki północny wschód. Ostatnia propozycja, 0÷100g, obejmuje kierunki wschodnie oraz północno-wschodnie, co jest zupełnie niezgodne z założeniami zadania. Często popełnianym błędem jest mylenie kierunków w przestrzeni oraz zapominanie o znaczeniu różnic współrzędnych w określaniu azymutu. Kluczowe jest zrozumienie, że różnice współrzędnych pozwalają na wyznaczenie odpowiednich kątów w płaszczyźnie, co ma zastosowanie w geodezji, budownictwie, a także w nawigacji. W przypadku pomiarów, zawsze warto kierować się zasadą, że ujemne różnice wskazują na kierunki południowe lub zachodnie, a zrozumienie tej zasady jest fundamentem prawidłowego obliczania azymutów.

Pytanie 12

W terenie zmierzono długość linii pomiarowej, która wynosi 164,20 m. Jaka będzie długość tej linii na mapie w skali 1:2000?

A. 164,20 mm
B. 328,40 mm
C. 41,05 mm
D. 82,10 mm
Prawidłowa odpowiedź to 82,10 mm, co wynika z zastosowania zasady przeliczeń w skali. Aby obliczyć rzeczywistą długość linii na mapie w skali 1:2000, należy podzielić rzeczywistą długość linii w metrach przez wartość skali. W tym przypadku: 164,20 m / 2000 = 0,0821 m, co po przeliczeniu na milimetry (1 m = 1000 mm) daje 82,10 mm. W praktyce, taka operacja jest niezbędna w geodezji i kartografii, gdzie precyzyjny pomiar i przedstawienie danych w różnych skalach są kluczowe. W projektowaniu map, geodeci muszą znać skale, aby poprawnie odzwierciedlić rzeczywiste odległości i umożliwić łatwe interpretowanie danych przez użytkowników. Zgodnie z normami, ważne jest, aby przy przeliczaniu długości w skali zachować odpowiednią dokładność, co wpływa na jakość finalnych produktów, takich jak mapy topograficzne czy plany zagospodarowania przestrzennego.

Pytanie 13

Jakie czynniki wpływają na gęstość oraz rozmieszczenie pikiet w pomiarze wysokościowym obszaru?

A. Typ używanego sprzętu pomiarowego
B. Liczba osób przeprowadzających pomiar
C. Metoda realizacji rysunku polowego
D. Planowana skala mapy
Gęstość i rozmieszczenie pikiet w pomiarze wysokościowym terenu są ściśle związane z przewidywaną skalą mapy, która ma być rezultatem tego pomiaru. Skala mapy określa, jak szczegółowo mają być przedstawione dane na finalnym produkcie. Im mniejsza skala, tym mniej szczegółów musi być uwzględnionych, co może prowadzić do zmniejszenia gęstości pikiet. Z kolei przy większej skali, gdzie każdy detal terenu jest istotny, pikiety muszą być gęsiej rozmieszczone, aby uchwycić wszystkie istotne zmiany wysokości i ukształtowania terenu. Przykładowo, przy pomiarze terenu do małej skali, np. 1:50000, wystarczy mniej punktów pomiarowych, podczas gdy przy skali 1:5000 konieczne może być znacznie więcej pikiet, aby oddać wszystkie niuanse terenu. W praktyce, standardy takie jak ISO 19111 dotyczące geoinformacji podkreślają znaczenie odpowiedniego rozmieszczenia punktów pomiarowych w zależności od końcowego celu mapy, co jest kluczowe dla rzetelności i dokładności wyników pomiarów wysokościowych.

Pytanie 14

Na podstawie pomiarów niwelacyjnych uzyskano wysokości punktów 1, 2, 3, 4, 5 oraz 6:

H1 = 214,34 m; H2 = 215,32 m; H3 = 213,78 m; H4 = 217,09 m; H5 = 216,11 m; H6 = 212,96 m.

Jaką z wymienionych wysokości należy uznać jako poziom odniesienia przy rysowaniu profilu terenu, który biegnie wzdłuż tych punktów?

A. 213,00 m
B. 215,00 m
C. 217,00 m
D. 211,00 m
Wybór wartości 213,00 m, 215,00 m lub 217,00 m jako poziomu porównawczego przy wykreślaniu profilu terenu w kontekście podanych wysokości jest nieadekwatny. Wybierając wartość, która znajduje się powyżej najniżej położonego punktu pomiarowego, tworzysz zbiór danych, który może prowadzić do zniekształceń i błędnych interpretacji w analizach terenu. Na przykład, jeżeli przyjmiemy 213,00 m, różnice wysokości dla punktów 3, 5 i 6 będą ujemne, co może wprowadzać w błąd i utrudniać właściwą interpretację wyniku. Rekomendowane jest, aby poziom porównawczy zawsze znajdował się poniżej wszystkich analizowanych wysokości, co zapewnia nie tylko przejrzystość, ale i ułatwia dalsze prace inżynieryjne. W kontekście standardów i najlepszych praktyk w geodezji, kluczowe jest, aby posługiwać się poziomami bazowymi, które odzwierciedlają najniższe punkty badane na danym obszarze, co umożliwia rzetelną analizę. Ponadto, błędne podejście do określenia poziomu porównawczego może prowadzić do poważnych pomyłek w dalszych etapach projektowania i realizacji inwestycji, co podkreśla znaczenie właściwego doboru tego poziomu w pracy geodetów i inżynierów.

Pytanie 15

Jaki opis, używany na mapie zasadniczej, odnosi się do przewodu kanalizacyjnego sanitarnego o średnicy
20 cm, zmierzonego na osnowę?

A. ksB20
B. ks200
C. ksP200
D. ks20
Odpowiedzi ksP200, ks20 oraz ksB20 są nieprawidłowe z kilku istotnych powodów. Oznaczenie ksP200 sugeruje, że jest to przewód o średnicy 200 mm, ale dodatek 'P' może wprowadzać w błąd, ponieważ nie jest to standardowe oznaczenie dla przewodów kanalizacyjnych sanitarnych. Przypisanie dodatkowych liter do oznaczenia może wskazywać na inny typ materiału lub zastosowanie, co nie ma odzwierciedlenia w standardowej klasyfikacji przewodów sanitarnych. Odpowiedź ks20 również jest myląca; chociaż wskazuje na średnicę, to jednak brakująca końcówka '0' nie spełnia wymogu podania średnicy w milimetrach. W kontekście standardów branżowych, przyjęte jest, aby średnice były zapisane w pełnej formie, co natychmiastowo wyklucza takie oznaczenia. Ostatnia odpowiedź, ksB20, również zawiera niepoprawny prefiks 'B', co może sugerować, że jest to przewód innego typu. Tego rodzaju oznaczenia mogą prowadzić do dezorientacji w projektowaniu oraz realizacji budów, a także mogą wprowadzać błędy w obliczeniach hydraulicznych. Dlatego ważne jest, aby stosować się do uznanych norm i dobrych praktyk, które zapewniają precyzyjność i jednoznaczność w identyfikacji elementów systemów kanalizacyjnych.

Pytanie 16

Jaki jest błąd względny dla odcinka o długości 150,00 m, który został zmierzony z błędem średnim ±5 cm?

A. 1:30
B. 1:300
C. 1:3000
D. 1:30000
Analizując dostępne odpowiedzi, ważne jest, aby zrozumieć, jak oblicza się błąd względny oraz dlaczego wybrane metody mogą prowadzić do mylnych wyników. Wiele osób może mylnie zakładać, że błąd względny można określić w sposób prosty, traktując błąd pomiaru jako jedynie procent od całkowitej długości. Na przykład, odpowiedzi takie jak 1:30000 mogą wynikać z błędnego zrozumienia, że im mniejszy błąd pomiarowy, tym lepsza jakość pomiaru, co jest uproszczeniem. Taka interpretacja ignoruje rzeczywisty kontekst pomiaru, który w tym przypadku jest określony przez stosunek błędu do długości zmierzonego odcinka. Ponadto, podejście do 1:30 może sugerować, że błąd pomiarowy jest znacznie większy niż rzeczywiście, co może wynikać z niewłaściwego oszacowania wielkości błędu w kontekście stosunków, jakie są typowe dla tej długości. Kolejna odpowiedź, 1:300, może być oparta na błędnej kalkulacji wartości błędu, zniekształcając rzeczywisty wpływ błędu na pomiar. Aby efektywnie unikać takich błędów, kluczowe jest zrozumienie metodyki pomiarowej oraz odpowiedniego stosowania wzorów do obliczeń. W profesjonalnym środowisku, jak inżynieria lądowa czy geodezja, błąd względny jest stosowany do oceny precyzji i dokładności, co jest niezbędne do uzyskania wiarygodnych wyników.

Pytanie 17

Wyniki pomiarów należy skorygować przed ich użyciem w obliczeniach, uwzględniając poprawki związane z błędami

A. grube.
B. pozorne.
C. systematyczne.
D. średnie.
Odpowiedzi "pozorne", "średnie" i "grube" są niepoprawne, ponieważ nie odnoszą się do właściwego rodzaju błędów w kontekście analizowania wyników pomiarów. Błędy pozorne to często błędy wynikające z subiektywnej interpretacji danych, a nie z rzeczywistych odchyleń w pomiarach. Takie błędy mogą prowadzić do mylnych konkluzji, ale nie są one stałe ani systematyczne, co czyni je mniej istotnymi w kontekście usprawnień w metodyce pomiarowej. Z kolei błędy średnie, choć mogą wskazywać na statystyczne odchylenia wyników, nie odnoszą się do korygowania wyników pomiarów, a raczej do obliczeń statystycznych, które mogą pomóc w interpretacji danych, lecz nie eliminują systematycznych odchyleń. Błędy grube, występujące sporadycznie, są wynikiem niefortunnych okoliczności, takich jak awaria sprzętu lub pomyłka w odczycie, które można wykryć i wyeliminować, ale nie są to systematyczne błędy. Zrozumienie różnicy między tymi kategoriami błędów jest kluczowe dla skutecznej analizy danych i uzyskiwania wiarygodnych wyników, a ignorowanie tego podziału może prowadzić do poważnych błędów w interpretacji rezultatów pomiarów. Merytoryczne podstawy tych koncepcji są fundamentalne w naukach ścisłych i inżynierii, gdzie dokładność pomiarów jest kluczowa dla sukcesu badań i aplikacji technologicznych.

Pytanie 18

Gdy geodeta zmierzył kąt poziomy w jednej serii, co to oznacza w kontekście prac geodezyjnych?

A. zmierzył kąt w jednym ustawieniu lunety.
B. wykonał średnią arytmetyczną z dwóch pomiarów.
C. zmierzył kąt w dwóch ustawieniach lunety.
D. wykonał średnią arytmetyczną z dwóch odczytów.
Pomiar kąta poziomego w jednej serii oznacza, że geodeta pomierzył kąt w dwóch położeniach lunety, co jest standardową procedurą w geodezji. Technika ta pozwala na uzyskanie bardziej precyzyjnych wyników poprzez redukcję błędów systematycznych, które mogą wystąpić w wyniku nieprecyzyjnego ustawienia instrumentu. Obliczając kąt w dwóch położeniach lunety, geodeta może obliczyć średnią wartość, co zwiększa dokładność pomiarów. Na przykład, jeśli kąt pomierzony w pierwszym położeniu lunety wynosi 45°20'50", a w drugim 45°21'10", to obliczając średnią arytmetyczną: (45°20'50" + 45°21'10") / 2, uzyskujemy wynik 45°21'00", co jest bardziej wiarygodne niż poleganie na pojedynczym pomiarze. Jest to zgodne z dobrymi praktykami, które nakazują wykonywanie pomiarów z kilku pozycji, aby zminimalizować wpływ błędów losowych i systematycznych. Warto również zaznaczyć, że stosowanie tej metody jest kluczowe w kontekście geodezyjnych prac terenowych, gdzie precyzyjne pomiary są niezbędne dla prawidłowego określenia lokalizacji i geometrii obiektów."

Pytanie 19

Aby ułatwić lokalizację zmierzonych szczegółów danego obszaru na odpowiednim szkicu terenowym, tworzy się szkic

A. tachimetryczny
B. podstawowy
C. przeglądowy
D. dokumentacyjny
Odpowiedzi "podstawowy", "dokumentacyjny" i "tachimetryczny" nie są właściwe w kontekście wskazania szkicu, który ma służyć do łatwego odnalezienia pomierzonych szczegółów fragmentu terenu. Szkic podstawowy to dokument, który zazwyczaj zawiera dane referencyjne używane do opracowywania bardziej szczegółowych planów oraz projektów. Jego zakres i dokładność są często niewystarczające do przedstawienia ogólnego układu terenu. Z kolei szkic dokumentacyjny służy do archiwizacji zdarzeń geodezyjnych i jest bardziej szczegółowy, ale jego celem nie jest ułatwienie bieżącej orientacji w terenie, lecz raczej dokumentacja stanu na dany moment. Natomiast szkic tachimetryczny jest narzędziem wykorzystywanym do bardziej precyzyjnych pomiarów, w tym obliczeń kątów i odległości, co jest istotne w geodezji, jednak nie odpowiada on na potrzeby szybkiego odnalezienia danych w terenie. Wybór odpowiedniego rodzaju szkicu jest kluczowy; niewłaściwe podejście do tej kwestii może prowadzić do nieefektywności w procesie zbierania i analizowania danych. Ważne jest zrozumienie, że każdy z tych szkiców ma swoje specyficzne zastosowanie i nie można ich stosować zamiennie bez uwzględnienia kontekstu operacyjnego.

Pytanie 20

Na podstawie danych zamieszczonych w tabeli, oblicz wartość współczynnika kierunkowego cosAA-B linii pomiarowej A-B, który jest stosowany do obliczenia współrzędnych punktu pomierzonego metodą ortogonalną.

ΔXA-B = 216,11 mΔYA-B = 432,73 mdA-B = 483,69 m

A. cosAA-B = 0,4994
B. cosAA-B = 2,0024
C. cosAA-B = 0,4468
D. cosAA-B = 2,2382
Błędne odpowiedzi mogą wynikać z niepoprawnego zrozumienia definicji współczynnika kierunkowego oraz zasady jego obliczania. Współczynnik kierunkowy cosAA-B powinien być interpretowany jako stosunek przyrostu współrzędnych w osi X do długości linii pomiarowej. Jeśli osoba odpowiadająca uznaje, że wynik może wynosić 2,2382 lub 2,0024, to może sugerować błędne podejście do analizy danych, gdyż wartości te nie mogą przekraczać 1, co jest zgodne z podstawową zasadą trygonometrii, gdzie wartości cosinus są ograniczone do przedziału od -1 do 1. Alternatywnie, odpowiedzi takie jak cosAA-B = 0,4994 mogą wynikać z pomyłek w obliczeniach lub nieprawidłowego zastosowania danych. Należy zwrócić uwagę na dokładność pomiarów oraz ich interpretację, ponieważ każdy błąd w obliczeniach może prowadzić do znacznych problemów w projektowaniu czy realizacji inwestycji budowlanych. W geodezji kluczowe jest przestrzeganie standardów oraz dobrych praktyk, które zapewniają wysoką jakość wyników pomiarowych. Uwzględnienie wszystkich zmiennych oraz umiejętność analizy danych to podstawowe umiejętności, które muszą być ciągle rozwijane.

Pytanie 21

W miejscowym planie zagospodarowania przestrzennego obszary przeznaczone na sport i rekreację powinny być oznaczane symbolem literowym

A. U
B. US
C. ZP
D. MW
Wprowadzenie w błąd przez wybór innego symbolu może mieć poważne konsekwencje dla planowania przestrzennego. Symbol U oznacza tereny usługowe, co nie precyzuje rodzaju usług, które mogą być tam świadczone; to może prowadzić do niejasności w kontekście działalności sportowej, która wymaga specyficznych warunków. Z kolei symbol MW oznacza tereny zabudowy mieszkaniowej wielorodzinnej, co jest absolutnie niezgodne z przeznaczeniem obszarów rekreacyjnych. Tereny te powinny być dedykowane dla aktywności fizycznej i rekreacji, a nie dla budownictwa mieszkaniowego, co mogłoby negatywnie wpłynąć na jakość życia mieszkańców. Symbol ZP, który oznacza tereny zieleni publicznej, również nie oddaje pełnej specyfiki obiektów sportowych, które są bardziej złożone niż sama zieleń. Wybór nieodpowiednich symboli może prowadzić do nieprawidłowego zagospodarowania przestrzeni, co w praktyce skutkuje brakiem odpowiednich obiektów sportowych i rekreacyjnych w danym regionie. Warto pamiętać, że każdy symbol w planie zagospodarowania przestrzennego ma swoje konkretne znaczenie i przeznaczenie, dlatego kluczowe jest zrozumienie ich funkcji oraz trzymanie się uznanych standardów i norm. Ignorowanie tych zasad może skutkować nieefektywnym wykorzystaniem przestrzeni i frustracją społeczności lokalnych, które oczekują dostępu do profesjonalnych obiektów sportowych.

Pytanie 22

Spostrzeżenia bezpośrednieniejednakowo precyzyjne występują, gdy są realizowane

A. przez tego samego badacza
B. tym samym urządzeniem
C. tą samą techniką pomiaru
D. różnymi instrumentami
Wybór odpowiedzi 'różnymi przyrządami' jest poprawny, ponieważ spostrzeżenia bezpośrednie mogą być zróżnicowane w zależności od zastosowanego sprzętu pomiarowego. Każdy przyrząd ma swoje specyfikacje techniczne, charakterystyki pomiarowe oraz ograniczenia, co wpływa na dokładność i precyzję wyników. Użycie różnych przyrządów do tego samego pomiaru może prowadzić do odmiennych wyników, co jest kluczowe w kontekście analizy danych eksperymentalnych. Przykładem może być pomiar temperatury za pomocą termometru rtęciowego i cyfrowego; różne metody mogą dawać różne wyniki, nawet przy tej samej rzeczywistej temperaturze. W praktyce laboratoryjnej zaleca się stosowanie kalibrowanych i certyfikowanych przyrządów, aby zminimalizować błędy pomiarowe i zapewnić spójność danych. Warto również zaznaczyć, że w kontekście badań naukowych, stosowanie różnych przyrządów może być świadomym wyborem w celu weryfikacji wyników i potwierdzenia ich rzetelności, co jest zgodne z zasadami dobrej praktyki laboratoryjnej.

Pytanie 23

W teodolicie, okrąg lub ring z zaznaczonym podziałem kątowym określa się jako

A. alidadą
B. celownikiem
C. limbusem
D. spodarką
Limbus w teodolicie to element, który zawiera podziałką kątową, co pozwala na precyzyjne pomiary kątów poziomych i pionowych. W praktyce limbusem określa się okrągły lub pierścieniowy element instrumentu, na którym naniesione są wartości kątowe. Umożliwia on użytkownikowi łatwe odczytywanie zmierzonych kątów, co jest kluczowe w geodezji oraz inżynierii lądowej. Teodolit jest niezbędnym narzędziem w pomiarach terenowych, a limbusem posługują się geodeci do określania pozycji punktów i tworzenia map. Warto zaznaczyć, że zgodnie z normami geodezyjnymi, precyzja pomiarów wykonanych przy użyciu teodolitu jest kluczowa dla zapewnienia jakości realizowanych projektów. Użycie limbusa pozwala na uzyskanie dokładnych wyników, które są zgodne z wymaganiami branżowymi, a jego właściwa kalibracja i konserwacja są podstawą sukcesu w pomiarach.

Pytanie 24

Danymi źródłowymi numerycznymi wykorzystywanymi do generowania mapy numerycznej nie są

A. wywiady branżowe
B. zdjęcia fotogrametryczne
C. bezpośrednie pomiary geodezyjne
D. zdigitalizowane mapy
Wywiady branżowe to nie to samo co dane numeryczne, które są potrzebne do robienia mapy numerycznej. Te mapy potrzebują danych, które da się zmierzyć, zarejestrować albo sfotografować. Na przykład, zdjęcia fotogrametryczne pozwalają zbudować model terenu na podstawie zdjęć robionych z góry. Do tego dochodzą zdigitalizowane mapy, które przenoszą papierowe mapy do komputera. Pomiary geodezyjne dają nam informacje o konkretnych punktach w terenie, co jest mega ważne, żeby wszystko dobrze odwzorować. Wywiady mogą dostarczyć ciekawe konteksty, ale nie dają konkretnej liczby, więc nie nadają się do map numerycznych.

Pytanie 25

System informacyjny, który umożliwia zbieranie, aktualizację i udostępnianie danych o sieciach uzbrojenia terenu GESUT, to

A. ewidencja geometryczna sieci uzbrojenia terenu
B. ewidencja geodezyjna systemu urządzeń technicznych
C. geodezyjna ewidencja sieci uzbrojenia terenu
D. ewidencja geometryczna systemu uzbrojenia terenu
Geodezyjna ewidencja sieci uzbrojenia terenu (GESUT) jest kluczowym narzędziem w zarządzaniu infrastrukturą przestrzenną. Odpowiedź, która wskazuje na geodezyjną ewidencję, jest prawidłowa, ponieważ koncentruje się na precyzyjnym zbieraniu i utrzymywaniu danych geodezyjnych dotyczących sieci uzbrojenia, takich jak wodociągi, kanalizacje czy linie energetyczne. GESUT umożliwia nie tylko aktualizację tych danych, ale także ich udostępnianie różnym użytkownikom, co ma istotne znaczenie w kontekście planowania przestrzennego i zarządzania kryzysowego. Przykładowo, w sytuacji awarii sieci wodociągowej, szybki dostęp do map GESUT może znacząco przyspieszyć działania naprawcze. Dodatkowo, zgodnie z dobrymi praktykami branżowymi, ewidencja ta powinna być zgodna z krajowymi standardami, co pozwala na jej integrację z innymi systemami informacyjnymi, w tym ewidencją gruntów i budynków. Takie zintegrowane podejście wspiera efektywne zarządzanie infrastrukturą oraz podnosi jakość świadczonych usług.

Pytanie 26

Z jaką precyzją podaje się wysokości elementów naziemnych uzbrojenia terenu na mapach zasadniczych?

A. 0,1 m
B. 0,5 m
C. 0,05 m
D. 0,01 m
Wysokości elementów naziemnych uzbrojenia terenu na mapach zasadniczych podaje się z dokładnością do 0,01 m, co jest zgodne z wymaganiami standardów geodezyjnych. Taka precyzja jest niezbędna w kontekście planowania przestrzennego oraz inżynierii lądowej, gdzie drobne różnice w wysokości mogą mieć istotny wpływ na projektowane konstrukcje oraz zarządzanie wodami opadowymi. Na przykład, w przypadku budowy infrastruktury, jak drogi czy mosty, dokładność pomiaru jest kluczowa dla zapewnienia odpowiedniego spadku, co zapobiega gromadzeniu się wody na nawierzchni. W praktyce geodeci wykorzystują zaawansowane technologie, takie jak GPS o wysokiej precyzji oraz tachimetry, aby osiągnąć taką dokładność. Dobrą praktyką jest również stosowanie w terenie punktów osnowy geodezyjnej, które pozwalają na weryfikację pomiarów. Dodatkowo, precyzyjne pomiary wysokości są kluczowe w kontekście ochrony środowiska oraz projektowania obiektów w obszarach o skomplikowanej topografii, gdzie niewielkie różnice w wysokości mogą wpływać na ekosystemy.

Pytanie 27

W jaki sposób oraz gdzie są przedstawiane rezultaty wywiadu terenowego?

A. Na szkicach polowych, ołówkiem
B. Na szkicach polowych, kolorem czarnym i czerwonym
C. Na kopii mapy zasadniczej, kolorem zielonym
D. Na kopii mapy ewidencyjnej lub zasadniczej, kolorem czerwonym
Uwidacznianie wyników wywiadu terenowego z wykorzystaniem kolorów i różnych typów map jest kluczowe dla właściwej interpretacji danych geodezyjnych. Kolory używane w dokumentacji mają swoje konkretne znaczenie, a ich niewłaściwy dobór może prowadzić do dezorientacji. W przypadku błędnych odpowiedzi, jak użycie koloru zielonego albo czarnego i czerwonego na szkicach polowych, pojawia się ryzyko, że wyniki badań nie zostaną odpowiednio zinterpretowane. Przykładowo, kolor zielony często jest stosowany w mapach do oznaczania terenów zielonych, co wprowadza dodatkowy zamęt w kontekście wyników wywiadu. Użycie czarnego i czerwonego na szkicach polowych również jest mylące, ponieważ szkice polowe zazwyczaj służą do roboczych notatek, a nie do końcowej dokumentacji wyników. Takie podejście może prowadzić do błędów w komunikacji i interpretacji danych, co jest szczególnie niebezpieczne w kontekście projektów budowlanych czy planowania przestrzennego. Typowym błędem myślowym jest mylenie różnych typów dokumentów i ich zastosowań; na przykład, szkice polowe są narzędziem pomocniczym, a nie dokumentem finalnym. Zrozumienie, że kolor czerwony na mapie ewidencyjnej jest standardem dla wyników wywiadów, jest kluczowe, aby uniknąć nieporozumień i błędów w dalszym etapie prac geodezyjnych.

Pytanie 28

W trakcie projektowania osnów geodezyjnych nie przeprowadza się

A. inwentaryzacji już istniejących punktów geodezyjnych
B. wywiadu z terenu
C. stabilizacji punktów geodezyjnych
D. ustalenia lokalizacji i zabudowy poszczególnych punktów sieci
Podczas projektowania osnów geodezyjnych ważne jest, żeby najpierw zrobić inwentaryzację istniejących punktów. Dzięki temu wiemy, które z nich można wykorzystać w nowym projekcie i jaki mają stan. Wywiad terenowy też jest istotny, bo zbiera się dzięki niemu info o lokalnych warunkach, co jest konieczne, żeby dobrze zaplanować sieć punktów. Jeśli nie ustalimy właściwie lokalizacji punktów, to można mieć później problemy z ich funkcjonalnością. Często spotykanym błędem jest pomijanie tych kroków w projekcie. Stabilizacja punktów geodezyjnych nie powinna być pierwsza w tym procesie, bo to coś, co robimy dopiero po zaplanowaniu osnowy. Wiedza o tym, w jakiej kolejności działać, jest kluczowa, żeby projekt się udał. Jeśli nie przemyślimy wywiadu terenowego, inwentaryzacji oraz lokalizacji punktów, to mogą się pojawić problemy później, jak trudności z pomiarami czy błędy w danych. Stabilizacja punktów geodezyjnych powinna być na końcu, żeby zapewnić trwałość całej osnowy.

Pytanie 29

Znając, że kontrola pomiarów z łaty w tachimetrii klasycznej wyrażona jest równaniem 2s = g + d, oblicz wartość odczytu z łaty kreski środkowej, jeśli odczyt z łaty kreski górnej wynosi g = 2 200 mm, a odczyt z łaty kreski dolnej to d = 1 600 mm?

A. s = 2,0 m
B. s = 1,9 m
C. s = 1,7 m
D. s = 1,8 m
Wybór błędnych odpowiedzi może wynikać z nieprzemyślanego podejścia do zastosowania wzoru 2s = g + d. Należy zwrócić uwagę na to, że niepoprawne obliczenia często są efektem niewłaściwej interpretacji jednostek miary. Na przykład, mogą wystąpić trudności w prawidłowym przeliczeniu milimetrów na metry, co prowadzi do zafałszowania wyników. Również błędne sumowanie wartości g i d może doprowadzić do mylnych wniosków. Uczestnicy mogą pomylić się w obliczeniach przez nieuwagę, co jest częstym przypadkiem w praktyce geodezyjnej. Dobrą praktyką jest zawsze weryfikowanie wyników obliczeń oraz zwracanie uwagi na jednostki miar, aby uniknąć nieporozumień. W kontekście tachimetrii, istotne jest nie tylko poprawne wykonanie obliczeń, ale także zrozumienie, jak te pomiary wpływają na ogólny kontekst projektów budowlanych i inżynieryjnych. W związku z tym warto poświęcić czas na dokładne zapoznanie się z zasadami działania wyposażenia pomiarowego oraz na stosowanie standardów, które pozwalają zwiększyć dokładność i wiarygodność pomiarów.

Pytanie 30

Dokumentacja, która zawiera wyniki geodezyjnych pomiarów sytuacyjnych oraz wysokościowych, jak również efekty przetworzenia tych danych, jest kompletowana i przekazywana do Państwowego Zasobu Geodezyjnego i Kartograficznego w formie operatu

A. technicznego
B. szacunkowego
C. katastralnego
D. pomiarowego
Wybór odpowiedzi związanych z operatami katastralnymi, pomiarowymi czy szacunkowymi jest błędny, ponieważ nie odzwierciedla istoty dokumentacji geodezyjnej przekazywanej do Państwowego Zasobu Geodezyjnego i Kartograficznego. Operat katastralny dotyczy głównie ewidencji gruntów i budynków, a jego zadaniem jest zapewnienie danych o stanie prawnym i własnościowym nieruchomości, co odstaje od kontekstu pomiarów geodezyjnych. Z kolei operat pomiarowy zazwyczaj odnosi się do dokumentacji samych pomiarów, nie zaś do ich kompleksowego opracowania, co jest niezbędne do pełnego zrozumienia i interpretacji danych. Operat szacunkowy, natomiast, dotyczy wyceny nieruchomości i jest stosowany w kontekście oceny wartości majątkowej, co również nie ma bezpośredniego związku z geodezyjnymi pomiarami terenowymi i ich analizą. Typowym błędem myślowym jest mylenie różnych rodzajów dokumentacji geodezyjnej, co może prowadzić do nieporozumień w rozumieniu ich funkcji i zastosowania. Dlatego kluczowe jest zrozumienie, że operat techniczny jest jedynym odpowiednim dokumentem, który w pełni odzwierciedla rezultaty pomiarów oraz ich analizę, stanowiąc tym samym fundament dla dalszych działań w obszarze geodezji.

Pytanie 31

W kluczowej części państwowego zbioru danych geodezyjnych i kartograficznych zgromadzone są bazy danych, które dotyczą

A. geodezyjnej ewidencji infrastruktury terenowej
B. ewidencji gruntów i budynków (katastru nieruchomości)
C. rejestru cen oraz wartości nieruchomości
D. państwowego rejestru podstawowych osnów geodezyjnych, grawimetrycznych i magnetycznych
Niepoprawne odpowiedzi nawiązuą do różnych aspektów zarządzania danymi geodezyjnymi, jednak żadna z nich nie odnosi się bezpośrednio do centralnego zasobu geodezyjnego i kartograficznego w kontekście podstawowych osnów geodezyjnych. Rejestr cen i wartości nieruchomości, choć istotny w obszarze wyceny i obrotu nieruchomościami, nie jest związany bezpośrednio z fundamentami geodezji, a tym samym nie odzwierciedla kluczowych danych potrzebnych do precyzyjnych pomiarów przestrzennych. Ewidencja gruntów i budynków, znana również jako kataster, koncentruje się na dokumentacji własności i użytkowania gruntów, co jest ważne, ale nie obejmuje danych geodezyjnych dotyczących osnów. Geodezyjna ewidencja sieci uzbrojenia terenu natomiast dotyczy infrastruktury podziemnej, takiej jak wodociągi czy sieci elektryczne, a nie zasadniczych punktów odniesienia. Każda z tych pomyłek wynika z błędnego rozumienia roli centralnego zasobu geodezyjnego oraz jego znaczenia w kontekście precyzyjnego pomiaru i lokalizacji obiektów. Aby uniknąć takich nieporozumień, istotne jest zrozumienie, że ustalenie osnów geodezyjnych jest fundamentem dla wszystkich innych danych geodezyjnych i kartograficznych, na których opierają się analizy przestrzenne i planowanie.

Pytanie 32

Na jakiej odległości od startu trasy usytuowany jest punkt 1/5+78,00 m?

A. 2578,00 m
B. 578,00 m
C. 278,00 m
D. 1578,00 m
Wybór innych odpowiedzi może wynikać z błędnej interpretacji oznaczenia 1/5+78,00 m. Odpowiedzi takie jak 2578,00 m czy 578,00 m mogą sugerować, że odległość została źle oszacowana, co często zdarza się w trakcie projektowania tras, gdy nieprawidłowo odczytuje się oznaczenia w dokumentacji. W przypadku 2578,00 m błędnie doliczono dodatkowe metry, które nie są wpisane w oznaczeniu. Takie podejście prowadzi do nadmiernego szacowania dystansu, co może skutkować poważnymi konsekwencjami w planowaniu. Podobnie, opcja 578,00 m wskazuje na niepełne zrozumienie oznaczenia, w którym brak jest uwzględnienia dodatkowych metrów. Warto zauważyć, że w inżynierii i geodezji ważne jest stosowanie standardów, takich jak normy geodezyjne, które pomagają w zachowaniu spójności w interpretacji i obliczeniach. Błędy myślowe mogą wynikać z niedostatecznego zrozumienia kontekstu oznaczenia oraz z braku doświadczenia w stosowaniu właściwych praktyk w terenie. W kontekście projektowania tras kluczowe jest umiejętne łączenie teorii z praktycznymi zastosowaniami, aby uniknąć pomyłek, które mogą prowadzić do znacznych kosztów i opóźnień w realizacji projektów.

Pytanie 33

Do projekcji prostokątnej wyznaczonych punktów na linię wykorzystuje się

A. piony optyczne
B. dalmiarze elektromagnetyczne
C. węgielnice pryzmatyczne
D. łaty niwelacyjne
Dalmierze elektromagnetyczne, choć są użyteczne w pomiarach odległości, nie służą do rzutowania punktów na prostą. Ich głównym zastosowaniem jest pomiar dystansów z wykorzystaniem sygnałów elektromagnetycznych, co może być przydatne w różnych dziedzinach, ale nie zastępuje węgielnic pryzmatycznych w kontekście rzutowania. Łaty niwelacyjne, z kolei, służą do odczytywania różnic wysokości i są kluczowe w procesach niwelacji terenu. Nie są one zaprojektowane do rzutowania punktów na prostą, a ich główną funkcją jest pomiar i przeniesienie różnic wysokości. Piony optyczne, choć przydatne w ustalaniu pionu w budownictwie, nie mają zastosowania w rzutowaniu punktów na prostą, gdyż ich zadaniem jest jedynie pomoc w wyznaczaniu linii pionowej. Błędem myślowym jest założenie, że narzędzia te mogą pełnić funkcje węgielnic pryzmatycznych, podczas gdy każde z nich ma swoje specyficzne zastosowanie i ograniczenia. Zrozumienie różnic pomiędzy tymi narzędziami jest kluczowe dla efektywnego planowania prac geodezyjnych i budowlanych.

Pytanie 34

W ciągu niwelacyjnym teoretyczna suma różnic wysokości, mająca wartość 0 m, jest uzyskiwana w przypadku

A. zamkniętego.
B. jednostronnie nawiązanego.
C. dwustronnie nawiązanego.
D. otwartego.
Wybór innych opcji, takich jak niwelacja otwarta, dwustronnie nawiązana czy jednostronnie nawiązana, wiąże się z istotnymi różnicami w koncepcji i praktyce pomiarowej. Niwelacja otwarta, która polega na pomiarze różnic wysokości wzdłuż jednego, niezamkniętego odcinka, pozwala na gromadzenie danych z różnych punktów, ale nie zapewnia automatycznych możliwości weryfikacji dokładności, ponieważ nie wraca się do punktu wyjścia. Tworzy to potencjalne źródło błędów pomiarowych, które mogą wynikać z wpływu warunków atmosferycznych lub innych czynników zewnętrznych. Lewą stroną jest niwelacja jednostronnie nawiązana, gdzie pomiar prowadzony jest tylko w jednym kierunku, co również nie pozwala na eliminację błędów systematycznych. Niwelacja dwustronnie nawiązana, choć bardziej dokładna niż jednostronna, nadal wymaga powrotu do punktów pomiarowych, ale nie gwarantuje sumy 0 m, ponieważ każda sekcja pomiarowa może być narażona na różne błędy. W praktyce, realizacja projektów budowlanych wymaga standardów precyzyjnych pomiarów, dlatego niwelacja zamknięta jest preferowaną metodą, gdyż umożliwia kontrolę i weryfikację danych. Typowe błędy myślowe w wyborze niewłaściwej metody pomiarowej wynikają z niedostatecznego zrozumienia konsekwencji zastosowania otwartych systemów pomiarowych oraz braku znajomości zasad działania niwelacji zamkniętej, co może prowadzić do niedokładnych wyników.

Pytanie 35

Jaką precyzję graficzną można osiągnąć dla mapy o skali 1:2000, jeśli średni błąd lokalizacji elementu terenowego na tej mapie wynosi ±0,1 mm w skali mapy?

A. ±0,2 m
B. ±2 m
C. ±0,002 m
D. ±0,02 m
Wybór innych odpowiedzi może wynikać z nieprawidłowego zrozumienia relacji między skalą mapy a rzeczywistymi wymiarami w terenie. Odpowiedzi takie jak ±0,002 m, ±2 m czy ±0,02 m są błędne ze względu na niewłaściwe przeliczenie błędu pomiarowego w kontekście skali. Na przykład, odpowiedź ±0,002 m mogłaby wynikać z pomylenia jednostek lub niezrozumienia, że przeliczenie dotyczy skali, a nie jedynie wartości błędu. Z kolei ±2 m to znacznie większa wartość, która nie znajduje zastosowania w kontekście mapy w skali 1:2000. Tego rodzaju oszacowania mogą prowadzić do poważnych błędów w pracach geodezyjnych, gdzie precyzja jest kluczowa. Dodatkowo, odpowiedź ±0,02 m również nie odzwierciedla właściwego przeliczenia, ponieważ jest to wartość, która nie odpowiada założonemu błędowi pomiarowemu. Problemem jest często brak umiejętności przeliczania błędów pomiarów w kontekście skali, co jest podstawą w geodezji i kartografii. Dobrze zrozumiane zasady przeliczania błędów w zależności od skali mapy są niezbędne, aby uniknąć nieporozumień i błędnych interpretacji w praktyce zawodowej.

Pytanie 36

Długości krawędzi działki w formie kwadratu zmierzono z takim samym błędem ±3 cm. Jaki jest błąd obliczenia powierzchni działki, jeśli długość krawędzi wynosi 100 m?

A. ±3 m2
B. ±30 m2
C. ±60 m2
D. ±6 m2
Inne odpowiedzi, które nie są poprawne, wynikają z nieporozumienia w zrozumieniu, jak błędy pomiarowe wpływają na obliczenia pól powierzchni. Wiele osób może pomyśleć, że błąd w pomiarze długości boku można po prostu dodać do obliczonego pola, co prowadzi do błędnych wniosków. Na przykład, odpowiedź ±3 m² ignoruje zasadę, że błąd pomiarowy w funkcji kwadratowej nie jest równy błędowi pomiarowemu w długości. Dodatkowo, odpowiedzi takie jak ±30 m² oraz ±60 m² mogą wynikać z błędnego zastosowania wzorów lub rozumienia związku między długością a polem. W przypadku kwadratu, wzrost długości boku prowadzi do znacznie większego wzrostu pola, co jest ilustrowane przez fakt, że pole jest proporcjonalne do kwadratu długości boku. Inżynierowie oraz profesjonaliści w dziedzinie budownictwa muszą być świadomi, że błędy pomiarowe mogą się kumulować, a praktyka wskazuje, że odpowiednie metody obliczania błędów są kluczowe w procesie projektowania. Prawidłowe podejście do analizy błędów i ich propagacji jest niezbędne, aby uniknąć niekorzystnych skutków w realizacji projektów budowlanych.

Pytanie 37

Jakie jest pochylenie linii łączącej punkty A i B, które znajdują się na sąsiednich warstwicach, jeśli odległość między nimi wynosi 50 m, a cięcie warstwicowe to 0,5 m?

A. iAB = 5%
B. iAB = 10%
C. iAB = 1%
D. iAB = 0,5%
W przypadku analizy błędnych odpowiedzi warto zwrócić uwagę na podstawowe zasady obliczania pochylenia. Odpowiedzi, które wskazują na wartości 5%, 10% oraz 0,5% wynikają z błędnych interpretacji wzoru na obliczenie tego parametru. Na przykład, pochylenie 5% sugerowałoby, że różnica wysokości wynosi 2,5 m, co jest niezgodne z danymi w pytaniu. 10% wskazywałoby na różnicę wysokości 5 m, a 0,5% na zaledwie 0,25 m. Te błędne koncepcje mogą wynikać z nieprawidłowej analizy proporcji oraz niepoprawnego posługiwania się jednostkami. Powszechnym błędem jest także mylenie pochylenia z innymi miarami, takimi jak kąt nachylenia. W geodezji i inżynierii istotne jest, aby nie tylko stosować poprawne wzory, ale także rozumieć, jak różne parametry wpływają na projektowane obiekty. Warto zaznaczyć, że zgodnie z normami, pochylenie powinno być ustalane na podstawie rzeczywistych pomiarów oraz analiz terenowych, aby zapewnić bezpieczeństwo i efektywność budowy. Dlatego kluczowe jest dokładne przemyślenie każdego kroku w obliczeniach i unikanie typowych pułapek myślowych, które mogą prowadzić do błędnych wniosków.

Pytanie 38

Jakiego dokumentu wymaga geodeta, aby powiadomić ODGiK o wykonanych pracach geodezyjnych?

A. Wniosek o uzgodnienie dokumentacji i projektowej
B. Zgłoszenie pracy geodezyjnej
C. Podanie o dostęp do danych ewidencyjnych
D. Raport techniczny
Wnioski o udostępnienie danych ewidencyjnych, sprawozdania techniczne oraz wnioski o uzgodnienie dokumentacji projektowej to dokumenty, które nie są bezpośrednio związane z obowiązkiem zgłaszania prac geodezyjnych do ODGiK. Wniosek o udostępnienie danych ewidencyjnych jest procesem, który dotyczy pozyskiwania istniejących danych z ewidencji gruntów i budynków, jednak nie jest wymagany do rozpoczęcia nowych prac geodezyjnych. Sprawozdanie techniczne natomiast jest dokumentem, który podsumowuje wykonane prace oraz przedstawia wyniki pomiarów, ale powinno być sporządzone po zakończeniu prac, a nie przed ich rozpoczęciem. Wniosek o uzgodnienie dokumentacji projektowej dotyczy współpracy z różnymi instytucjami projektującymi, ale nie ma zastosowania w kontekście informowania ODGiK o rozpoczęciu prac. Zrozumienie ról tych dokumentów jest kluczowe dla efektywnego zarządzania procesami geodezyjnymi. Często mylnie przyjmuje się, że wszystkie te dokumenty są ze sobą powiązane; jednakże każdy z nich pełni odrębną funkcję i powinien być stosowany zgodnie z odpowiednimi procedurami. Niezrozumienie tego podziału może prowadzić do opóźnień w realizacji projektów oraz problemów z zachowaniem zgodności z przepisami prawnymi.

Pytanie 39

Jeśli bok kwadratu zmierzonego w terenie ma długość 10 m, to na mapie w skali 1:1000 jego pole powierzchni wyniesie

A. 10,0 cm2
B. 0,1 cm2
C. 100,0 cm2
D. 1,0 cm2
Wybór niewłaściwej odpowiedzi może wynikać z nieprawidłowego podejścia do obliczeń związanych z polem powierzchni na mapie w określonej skali. Na przykład, odpowiedzi takie jak 0,1 cm2 i 10,0 cm2 mogą sugerować błędne obliczenia w przeliczeniach jednostek lub zrozumienia, jak skala wpływa na rzeczywiste wymiary. W przypadku 0,1 cm2, nieprawidłowość polega na tym, że ktoś mógł błędnie zinterpretować przeliczenie, zakładając, że powierzchnia na mapie jest znacznie mniejsza, niż jest w rzeczywistości, co prowadzi do zaniżenia wartości. Z kolei 10,0 cm2 może wydawać się uzasadnione, gdyż można by pomyśleć o jednostkowym przeliczeniu, ale pomija to kluczowy krok w rozumieniu skali, który polega na prawidłowym przeliczeniu całkowitego obszaru. Kluczowym błędem wielu uczniów jest niepełne zrozumienie, że pole powierzchni na mapie jest funkcją kwadratu długości boku, a nie jedynie przeliczeniem liniowym. Prawidłowe zrozumienie geometrii oraz równań powierzchni jest istotne, a także znajomość tego, jak współczesne metody pomiarowe i kartograficzne wymagają precyzyjnych obliczeń, aby uniknąć błędów w planowaniu przestrzennym czy inżynieryjnym.

Pytanie 40

Błąd w osi celowej niwelatora o charakterze niepoziomym zalicza się do kategorii błędów

A. średnich
B. pozornych
C. przypadkowych
D. systematycznych
Odpowiedzi średnie, pozorne oraz przypadkowe są typami błędów, które różnią się od błędów systematycznych w swoim charakterze i źródłach. Błąd średni, na przykład, odnosi się do różnic w pomiarach, które mogą być spowodowane nieprzewidywalnymi okolicznościami, takimi jak zmiany warunków atmosferycznych czy wpływ zakłóceń zewnętrznych. W praktyce oznacza to, że takie błędy mogą się kumulować lub rozpraszać w czasie, co czyni je trudniejszymi do zidentyfikowania i skorygowania. Z kolei błąd pozorny to błędny wynik pomiaru, który powstaje na skutek nieprawidłowej interpretacji danych, co może prowadzić do mylnych wniosków. W kontekście pomiarów geodezyjnych, błędy pozorne mogą być wynikiem błędów ludzkich, takich jak niewłaściwe odczytywanie wyników lub błędne założenia dotyczące użytych parametrów. Natomiast błąd przypadkowy, który ma losowy charakter, jest zwykle spowodowany nieprzewidywalnymi czynnikami, co sprawia, że nie można go łatwo skorygować ani przewidzieć. W geodezji, każdy z tych błędów wymaga innego podejścia do analizy i korekcji, co podkreśla znaczenie zrozumienia ich różnorodności oraz systematycznego podejścia do pomiarów, aby osiągnąć jak najwyższą dokładność i wiarygodność wyników.