Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 20 maja 2025 18:29
  • Data zakończenia: 20 maja 2025 18:43

Egzamin zdany!

Wynik: 36/40 punktów (90,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Urządzenie służące do analizy silnika, przy użyciu metody określania ciśnienia sprężania, funkcjonuje na podstawie zmiany odczytów w zależności od wartości

A. ciśnienia w cylindrze
B. kąta zwarcia styków przerywacza
C. podciśnienia w cylindrze
D. kąta wyprzedzenia zapłonu
Odpowiedź wskazująca na ciśnienie w cylindrze jako kluczowy parametr diagnostyczny jest prawidłowa, ponieważ diagnostyka silnika opiera się na pomiarze ciśnienia sprężania jako jednego z najważniejszych wskaźników stanu silnika. Wartości te pozwalają na ocenę kondycji uszczelnień, pierścieni tłokowych oraz ogólnej sprawności cylindrów. W praktyce, mierniki ciśnienia sprężania są wykorzystywane podczas rutynowych przeglądów i diagnostyki silników spalinowych, co jest zgodne z zaleceniami producentów. Na przykład, jeśli ciśnienie w cylindrze jest niższe niż wartości nominalne, może to sugerować problemy z uszczelnieniami zaworów lub uszkodzeniem pierścieni tłokowych. W standardach branżowych takich jak ISO 9001 oraz w praktykach takie jak analiza trendów ciśnienia sprężania, technicy mogą oceniać nie tylko bieżący stan silnika, ale także przewidywać przyszłe awarie. Właściwe zrozumienie pomiaru ciśnienia sprężania jest istotne dla zachowania efektywności i wydajności silnika, co przekłada się na ekonomię paliwową oraz redukcję emisji spalin.

Pytanie 2

Który z komponentów mechanizmu tłokowo-korbowego silnika samochodowego odpowiada za przekazywanie sił z tłoka na korbowód?

A. Sworzeń tłokowy
B. Główka korbowodu
C. Stopa korbowodu
D. Pierścień tłokowy
Sworzeń tłokowy jest kluczowym elementem mechanizmu tłokowo-korbowego, który odpowiedzialny jest za przenoszenie sił generowanych przez tłok na korbowód. Działa on jako łącznik między tłokiem a korbowodem, umożliwiając przekazywanie ruchu posuwistego tłoka na ruch obrotowy korbowodu. W praktyce, gdy mieszanka paliwowo-powietrzna ulega spaleniu, generuje znaczne ciśnienie, które działa na tłok, powodując jego ruch w dół cylindra. Ten ruch posuwisty jest następnie przenoszony przez sworzeń tłokowy, co skutkuje obrotem korbowodu. Prawidłowe działanie sworzenia tłokowego ma kluczowe znaczenie dla efektywności silnika, jego mocy i żywotności. Właściwa konstrukcja oraz montaż sworzenia tłokowego są zgodne z normami branżowymi i dobrymi praktykami, co wpływa na niezawodność całego układu. Zastosowanie odpowiednich materiałów oraz technik obróbczych zwiększa trwałość tego elementu, co jest istotne w kontekście współczesnych silników spalinowych, gdzie zwiększone obciążenia i prędkości robocze stanowią duże wyzwanie.

Pytanie 3

Rękawice ochronne powinny być używane podczas prac

A. w okolicy elementów obracających się
B. tokarsko - frezerskich.
C. przeładunkowych
D. przy elementach wirujących
Rękawice ochronne są istotnym elementem wyposażenia w wielu dziedzinach pracy, jednak ich zastosowanie jest ściśle związane z rodzajem wykonywanych czynności. Odpowiedzi sugerujące użycie rękawic przy elementach obracających się, tokarsko-frezerskich czy wirujących mogą prowadzić do niewłaściwego zrozumienia ich funkcji. Prace przy elementach obracających się, takich jak maszyny i narzędzia mechaniczne, często wymagają innych form ochrony, takich jak osłony czy zabezpieczenia mechaniczne, które zapobiegają wciągnięciu rąk w ruchome części. W tych przypadkach, rękawice mogą stanowić dodatkowe ryzyko, ponieważ mogą zahaczać o elementy maszyny. Z kolei prace tokarsko-frezerskie, związane z obróbką metalu, wymagają rękawic o specyficznych właściwościach, które mogą nie być wystarczające do ochrony przed ostrymi narzędziami czy gorącymi materiałami. Ostatecznie, w kontekście pracy przy elementach wirujących, stosowanie rękawic również może być niebezpieczne, ponieważ mogą one zostać wciągnięte w mechanizmy, co prowadzi do poważnych obrażeń. Kluczowe jest zrozumienie, że ochrona rąk powinna być dostosowana do specyfiki wykonywanej pracy i ryzyka z nią związanego, a nie na zasadzie ogólnych założeń.

Pytanie 4

Wykonano pomiar głębokości bieżnika czterech letnich opon w pojeździe. Otrzymano takie wartości: 1,3 mm; 1,5 mm; 1,7 mm; 2,0 mm. Ile opon nadaje się do dalszego użytkowania?

A. Dwie.
B. Cztery.
C. Jedna.
D. Trzy.
Odpowiedź, że dwie opony nadają się do dalszej eksploatacji, jest prawidłowa z uwagi na minimalną głębokość bieżnika zalecaną dla opon letnich. Zgodnie z normami bezpieczeństwa, minimalna głębokość bieżnika dla opon letnich powinna wynosić 1,6 mm. W analizowanych pomiarach dwie opony (1,7 mm oraz 2,0 mm) mają głębokość bieżnika, która przekracza tę wartość, co oznacza, że są wystarczająco bezpieczne do dalszej eksploatacji. Opony z głębokością bieżnika poniżej 1,6 mm, jak w przypadku opon mierzących 1,3 mm i 1,5 mm, nie powinny być użytkowane, ponieważ ich właściwości jezdne ulegają znacznemu pogorszeniu, co zwiększa ryzyko aquaplaningu i wydłuża drogę hamowania. Warto również zaznaczyć, że regularne sprawdzanie głębokości bieżnika jest kluczowym elementem utrzymania pojazdu w dobrym stanie technicznym, co jest zgodne z zaleceniami producentów opon oraz instytucji zajmujących się bezpieczeństwem drogowym. Takie praktyki nie tylko poprawiają bezpieczeństwo, ale także mogą wpłynąć na efektywność paliwową pojazdu.

Pytanie 5

Masa własna pojazdu to?

A. masa pojazdu razem z masą osób i przedmiotów, które się w nim znajdują
B. masa pojazdu z osobami oraz ładunkiem, gdy jest dopuszczony do ruchu na drodze
C. masa pojazdu z typowym wyposażeniem: paliwem, olejami, smarami oraz cieczami w ilościach nominalnych, bez kierowcy
D. maksymalna masa ładunku oraz osób, którą pojazd może przewozić
Masa własna pojazdu, określana jako masa pojazdu z jego normalnym wyposażeniem (paliwem, olejami, smarami i cieczami w ilościach nominalnych, bez kierującego), jest kluczowym parametrem w kontekście bezpieczeństwa i efektywności użytkowania pojazdu. Zdefiniowanie masy własnej jest niezbędne dla odpowiedniego obliczania parametrów eksploatacyjnych, takich jak maksymalna ładowność, która uwzględnia dodatkowe osoby i ładunek. Przykładowo, znając masę własną, można precyzyjnie obliczyć, ile dodatkowego ładunku pojazd może bezpiecznie przewieźć, co jest szczególnie ważne w branży transportowej, gdzie przekroczenie dozwolonej masy całkowitej pojazdu może prowadzić do poważnych konsekwencji prawnych oraz zwiększonego ryzyka wypadków. Standardy dotyczące obliczania masy własnej są regulowane przez przepisy prawa, które precyzują, jakie składniki muszą być uwzględnione, aby zapewnić jednolitość i bezpieczeństwo na drogach. Praktyczne zastosowanie tej wiedzy pozwala na optymalizację kosztów operacyjnych oraz zwiększenie efektywności transportu.

Pytanie 6

Do pomiaru ciśnienia w oponach samochodu osobowego należy używać

A. galwanometru
B. higrometru
C. manometru
D. wakuometru
Manometr to fajne urządzenie, które pomaga nam zmierzyć ciśnienie w oponach. Tak naprawdę, to jest bardzo ważne, bo odpowiednie ciśnienie w oponach wpływa na nasze bezpieczeństwo na drodze i oszczędność paliwa. Manometry mogą być analogowe lub cyfrowe, co daje nam różne opcje do wyboru. Powinniśmy regularnie sprawdzać ciśnienie, żeby uniknąć problemów, które mogą prowadzić do uszkodzenia opon lub nawet wypadków. Pamiętajmy, żeby mierzyć ciśnienie, gdy opony są zimne, przed jazdą, bo wtedy pomiar jest najbardziej dokładny. Dobrze też porównać wyniki z tym, co mamy w instrukcji od auta lub na nalepce przy drzwiach kierowcy. To taka dobra praktyka każdej osoby, która jeździ autem!

Pytanie 7

Zbieżność kół przednich mierzona jest poprzez określenie różnicy

A. pomiędzy rozstawem kół po lewej i prawej stronie
B. przesunięcia kół tylnych w stosunku do kół przednich
C. odległości między obrzeżami obręczy kół przednią a tylną osią
D. kątów nachylenia kół jezdnych na osi napędowej
Pomiar zbieżności kół przednich jest kluczowym elementem w diagnostyce układów kierowniczych i zawieszenia pojazdów. Prawidłowy pomiar odległości między obrzeżami obręczy kół za i przed osią koła pozwala na ocenę, czy osie kół przednich są równolegle ustawione względem siebie oraz w stosunku do osi pojazdu. Zbieżność, czyli kąt ustawienia kół przednich, ma ogromny wpływ na stabilność jazdy, zużycie opon oraz efektywność paliwową. Przykładowo, zbyt duża zbieżność może prowadzić do nieprawidłowego zużycia opon, a w skrajnych przypadkach do niebezpiecznych sytuacji na drodze. Dobrym praktykom w diagnostyce zbieżności jest wykorzystywanie specjalistycznych urządzeń pomiarowych, takich jak stacje do pomiaru geometrii kół, które umożliwiają dokładne pomiary w warunkach warsztatowych. Regularne sprawdzanie zbieżności kół jest zalecane przez producentów pojazdów, szczególnie po zdarzeniach drogowych, które mogą wpłynąć na geometrię układu jezdnego, oraz po wymianie elementów zawieszenia.

Pytanie 8

Czas wymiany rozrządu wynosił 5 godzin. Zakup części do rozrządu kosztował 500 zł netto. Stawka za roboczogodzinę to 100 zł netto. Stawka VAT na towary i usługi wynosi 23%. Jaką kwotę zapłaci klient serwisu za wymianę rozrządu?

A. 1230 zł
B. 1150 zł
C. 1000 zł
D. 1049 zł
Aby obliczyć całkowity koszt wymiany rozrządu, należy uwzględnić zarówno koszt zakupionych części, jak i koszt robocizny. Zakup elementów rozrządu wyniósł 500 zł netto. Koszt roboczogodziny to 100 zł netto, a wymiana trwała 5 godzin, co daje łącznie 500 zł za robociznę (100 zł * 5 godzin). Suma kosztów netto wynosi więc 500 zł (części) + 500 zł (robocizna) = 1000 zł. Następnie, należy obliczyć podatek VAT w wysokości 23% od całkowitego kosztu netto. 23% z 1000 zł to 230 zł. Całkowity koszt z VAT wynosi więc 1000 zł + 230 zł = 1230 zł. Tego rodzaju obliczenia są istotne w branży motoryzacyjnej, ponieważ pozwalają na precyzyjne oszacowanie kosztów napraw i usług. Utrzymanie dokładnych wyliczeń jest kluczowe dla zarządzania finansami warsztatu oraz dla zapewnienia transparentności w relacjach z klientami.

Pytanie 9

Analiza składu spalin w zamkniętej przestrzeni bez odpowiedniego odciągu i działającej wentylacji może prowadzić do

A. urazów rąk
B. porażenia prądem
C. zatrucia spalinami
D. oparzenia spalinami
Zatrucie spalinami jest poważnym zagrożeniem, które występuje w pomieszczeniach, gdzie spaliny pochodzące z urządzeń grzewczych lub silników spalinowych gromadzą się bez odpowiedniego odciągu lub wentylacji. Spaliny te zawierają szkodliwe substancje, takie jak tlenek węgla, dwutlenek węgla, azotany oraz inne toksyczne związki chemiczne, które mogą prowadzić do poważnych problemów zdrowotnych, a nawet śmierci. W praktyce oznacza to, że miejsce pracy lub użytkowania musi być odpowiednio wentylowane, aby zapewnić usuwanie tych gazów. Zgodnie z normami BHP oraz wytycznymi dotyczącymi jakości powietrza w pomieszczeniach, należy regularnie kontrolować obecność zanieczyszczeń powietrza oraz instalować systemy wentylacyjne dostosowane do rodzaju i intensywności działalności. Przykładem mogą być miejsca, w których prowadzone są prace spawalnicze, gdzie obecność spalin jest nieunikniona, a odpowiednie wentylowanie pomieszczenia może zapobiec poważnym zagrożeniom zdrowotnym. W związku z tym, świadomość zagrożeń wynikających z obecności spalin i zastosowanie odpowiednich praktyk to kluczowe elementy zapewnienia bezpieczeństwa w miejscu pracy.

Pytanie 10

Po zakończeniu wymiany zaworów dolotowych w silniku należy

A. zweryfikować twardość sprężyn zaworowych
B. usunąć zabezpieczenie trzonka zaworu
C. sprawdzić szczelność zaworów
D. frezować gniazda zaworowe
Sprawdzanie szczelności zaworów jest kluczowym krokiem po wymianie zaworów dolotowych silnika. Zawory są odpowiedzialne za regulację przepływu mieszanki paliwowo-powietrznej do cylindrów oraz za wydobywanie spalin. Nieszczelność zaworów może prowadzić do znacznych strat mocy silnika, zwiększonego zużycia paliwa oraz nieprawidłowego działania jednostki napędowej. W praktyce, podczas sprawdzania szczelności zaworów, można wykorzystać metody takie jak próba ciśnieniowa, która polega na wprowadzeniu powietrza do cylindra i obserwacji, czy ciśnienie utrzymuje się na odpowiednim poziomie. Dobrą praktyką jest również użycie specjalistycznych narzędzi, takich jak zestawy do testowania szczelności, które umożliwiają dokładne określenie ewentualnych wycieków. Należy pamiętać, że zgodnie z normami branżowymi, regularne sprawdzanie szczelności zaworów powinno być częścią rutynowej konserwacji silnika, co pozwala na utrzymanie jego optymalnej wydajności oraz przedłużenie żywotności komponentów.

Pytanie 11

Aby przeprowadzić pomiar z precyzją 0,01 mm, należy zastosować

A. suwmiarkę.
B. mikrometr.
C. liniał.
D. kątomierz uniwersalny.
Mikrometr to przyrząd pomiarowy, który pozwala na niezwykle precyzyjne dokonywanie pomiarów z dokładnością do setnych części milimetra. Jest on często wykorzystywany w precyzyjnych operacjach mechanicznych oraz inżynieryjnych, gdzie wymagana jest wysoka dokładność. Mikrometry są powszechnie używane w laboratoriach metrologicznych, warsztatach mechanicznych oraz w produkcji elementów precyzyjnych, takich jak wały, łożyska czy elementy elektroniczne. W praktyce, aby zmierzyć średnicę małych przedmiotów, takich jak śruby czy osie, mikrometr może być użyty do łatwego odczytywania wartości na skali, co daje możliwość wykonania pomiaru z zyskiem na dokładności. Dobre praktyki w używaniu mikrometrów obejmują regularne kalibracje przyrządów oraz dbanie o ich czystość, co znacznie wpływa na jakość pomiarów. W kontekście norm metrologicznych, mikrometry są zgodne z wymogami standardów ISO dotyczących pomiarów długości, co czyni je niezastąpionym narzędziem w precyzyjnych pomiarach.

Pytanie 12

Wskaźnik TWI określa minimalną głębokość bieżnika dla opon wielosezonowych, która wynosi

A. 1,6 mm
B. 3,0 mm
C. 1,0 mm
D. 4,6 mm
Wskaźnik TWI (Tread Wear Indicator) to istotny parametr dotyczący głębokości bieżnika opon, który ma kluczowe znaczenie dla bezpieczeństwa jazdy. Minimalna głębokość bieżnika wynosząca 1,6 mm dla opon wielosezonowych jest zgodna z europejskimi standardami, które zostały ustalone w celu zapewnienia odpowiedniej przyczepności pojazdu na różnych nawierzchniach. Opony z bieżnikiem głębszym od 1,6 mm zapewniają lepszą hydroplaningową wydajność, co jest szczególnie istotne podczas jazdy w deszczu. Przykład praktyczny: gdy głębokość bieżnika spadnie poniżej tego wskaźnika, opona nie tylko traci swoje właściwości trakcyjne, ale może także wpływać na wydajność paliwową oraz komfort jazdy. Warto również pamiętać, że regularne sprawdzanie głębokości bieżnika oraz utrzymanie jej na wymaganym poziomie jest częścią dobrych praktyk zarządzania flotą pojazdów, co może znacząco wpłynąć na bezpieczeństwo kierowców oraz pasażerów.

Pytanie 13

Jaką rolę odgrywa synchronizator?

A. Utrzymuje stałą prędkość silnika
B. Włącza sprzęgło
C. Przekazuje moment obrotowy na koła napędowe
D. Płynnie łączy koło biegu z wałem
Synchronizator pełni kluczową rolę w mechanice skrzyni biegów, umożliwiając płynne połączenie koła biegu z wałem napędowym. Jego zadaniem jest eliminowanie różnicy prędkości między tymi elementami, co jest niezbędne do uzyskania gładkiej zmiany biegów. Dzięki synchronizatorom, kierowca może zmieniać biegi bez ryzyka zgrzytów, co znacząco zwiększa komfort jazdy i wydajność pojazdu. W praktyce, synchronizatory wykorzystują tarcze cierne, które dostosowują prędkości obrotowe na poziomie mechanicznym, co również wpływa na redukcję zużycia sprzęgła. W pojazdach sportowych oraz zaawansowanych technicznie samochodach osobowych stosuje się wysoko wydajne synchronizatory, które są odporne na wysokie temperatury i duże obciążenia, co przyczynia się do długotrwałego działania całego układu napędowego. W przypadku modernizacji skrzyni biegów, warto zwrócić uwagę na stan synchronizatorów, ponieważ ich zużycie może prowadzić do problemów z płynnością zmiany biegów oraz zwiększonego ryzyka uszkodzeń innych elementów układu napędowego.

Pytanie 14

Termin DOHC odnosi się do układu

A. górnozaworowego z pojedynczym wałkiem rozrządu w głowicy
B. górnozaworowego z dwoma wałkami rozrządu zainstalowanymi w głowicy
C. górnozaworowego z jednym wałkiem rozrządu umieszczonym w kadłubie
D. dolnozaworowego z jednym wałkiem rozrządu w kadłubie
Odpowiedź, że DOHC oznacza górnozaworowy układ z dwoma wałkami rozrządu w głowicy, jest prawidłowa. Skrót DOHC pochodzi od angielskiego 'Dual Overhead Camshaft', co dosłownie oznacza 'podwójny wałek rozrządu w górze'. Taki układ rozrządu pozwala na bardziej precyzyjne sterowanie procesem otwierania i zamykania zaworów, co wpływa na lepsze osiągi silnika, zarówno w zakresie mocy, jak i efektywności paliwowej. Zastosowanie dwóch wałków rozrządu umożliwia jednoczesne działanie na zawory dolotowe i wydechowe, co zwiększa przepływ powietrza do komory spalania oraz poprawia odprowadzanie spalin. Przykładem zastosowania DOHC są silniki w samochodach sportowych i wyższej klasy, gdzie optymalizacja osiągów silnika jest kluczowa. W branży motoryzacyjnej standardem staje się także wzbogacenie układów rozrządu o systemy zmiennych faz rozrządu, co further enhances the performance of DOHC engines in practical applications, emphasizing their growing importance in modern automotive engineering.

Pytanie 15

Jaka będzie łączna kwota za wymianę czujników prędkości obrotowej kół na osi przedniej, jeśli nowy czujnik kosztuje 155,00 zł brutto, a czas wymagany na przeprowadzenie tej naprawy to 1,1 rbh dla jednego koła? Koszt jednej roboczogodziny to 125,00 zł brutto.

A. 585,00 zł
B. 292,50 zł
C. 430,00 zł
D. 447,50 zł
Koszt wymiany czujników prędkości obrotowej w przednich kołach to 585,00 zł. Można to obliczyć dosyć prosto. Najpierw, każdy czujnik kosztuje 155,00 zł, a wymieniamy ich dwa, więc 155 zł razy 2 daje nam 310,00 zł. Potem trzeba doliczyć robociznę. Wymiana czujnika dla jednego koła zajmuje 1,1 godziny, więc na dwa koła to będzie 1,1 rbh razy 2, co daje 2,2 rbh. Koszt godziny pracy to 125,00 zł, więc robocizna wynosi 2,2 razy 125 zł, co daje 275,00 zł. Jak to wszystko zsumujemy: 310,00 zł za czujniki i 275,00 zł za robociznę to mamy 585,00 zł. Zrozumienie tych kosztów jest ważne, zwłaszcza jak się zarządza budżetem w serwisie samochodowym. Dobre kalkulacje pomagają dowiedzieć się, czy usługi są opłacalne.

Pytanie 16

Stopień sprężania w silnikach spalinowych definiujemy jako stosunek objętości

A. skokowej do objętości całkowitej cylindra
B. całkowitej cylindra do objętości komory spalania
C. komory spalania do objętości całkowitej cylindra
D. całkowitej cylindra do objętości skokowej
Wszystkie niepoprawne odpowiedzi opierają się na nieprecyzyjnych definicjach związanych z objętościami stosowanymi do obliczeń stopnia sprężania w silnikach spalinowych. Stwierdzenie, że stopień sprężania to stosunek objętości całkowitej cylindra do objętości skokowej, jest błędne, ponieważ objętość skokowa odnosi się do objętości, jaką tłok przemieszcza w czasie swojego ruchu, a nie do objętości komory spalania. Komora spalania to przestrzeń, w której zachodzi proces spalania mieszanki paliwowo-powietrznej, a nie objętość skokowa, która dotyczy ruchu tłoka. Podobnie, stwierdzenie o stosunku komory spalania do objętości całkowitej cylindra nie oddaje prawidłowego znaczenia stopnia sprężania, ponieważ to właśnie objętość całkowita cylindra, a nie komora spalania, powinna być w mianowniku tego stosunku. Kolejna nieprawidłowa koncepcja to pojęcie odwrotności objętości całkowitej cylindra do objętości skokowej, co jest mylące, ponieważ nie uwzględnia podstawowego znaczenia komory spalania w procesie sprężania. Właściwe zrozumienie tych pojęć jest niezbędne dla prawidłowej analizy działania silników spalinowych oraz ich parametrów, a błędne interpretacje mogą prowadzić do nieefektywnego projektowania silników oraz zwiększonego zużycia paliwa, co jest sprzeczne z nowoczesnymi standardami wydajności energetycznej.

Pytanie 17

Jaką metodą mierzy się wielkość bicia tarczy hamulcowej?

A. mikroskopem warsztatowym
B. czujnikiem zegarowym
C. mikrometrem
D. suwmiarką modułową
Czujnik zegarowy to narzędzie pomiarowe, które jest powszechnie stosowane w branży motoryzacyjnej do precyzyjnego pomiaru wielkości bicia tarczy hamulcowej. Jego zasada działania opiera się na analogowym wskaźniku, który wskazuje zmiany w pozycji tarczy w stosunku do osi obrotu. Pomiar bicia jest kluczowy, ponieważ nadmierne bicie tarcz hamulcowych może prowadzić do nierównomiernego zużycia klocków hamulcowych, a także do wibracji podczas hamowania, co wpływa na bezpieczeństwo. W praktyce, czujnik zegarowy jest zamocowany na stabilnej podstawie, a jego końcówka dotyka powierzchni tarczy hamulcowej. Podczas obracania tarczy, wskazówka zegara pokazuje wszelkie odchylenia, co pozwala technikom na skuteczną diagnozę i konserwację układów hamulcowych, zgodnie z najlepszymi praktykami branżowymi. Użycie czujnika zegarowego jest zgodne z wytycznymi wielu producentów pojazdów, którzy zalecają regularne sprawdzanie geometrii tarcz hamulcowych w ramach przeglądów technicznych.

Pytanie 18

Maksymalna dopuszczalna różnica wskaźnika efektywności hamowania na jednej osi kół nie powinna być większa niż

A. 30 %
B. 10 %
C. 20 %
D. 25 %
Dopuszczalna różnica wskaźnika skuteczności hamowania kół na jednej osi, która nie może przekraczać 30%, jest ważnym parametrem w kontekście bezpieczeństwa i efektywności systemów hamulcowych pojazdów. W praktyce oznacza to, że różnica w sile hamowania pomiędzy kołami na jednej osi nie powinna być zbyt duża, aby uniknąć ryzyka utraty kontroli nad pojazdem w trakcie hamowania. Przy dużych różnicach wskaźników skuteczności hamowania, na przykład wynikających z uszkodzenia hamulców, może dojść do niebezpiecznych sytuacji, takich jak nieprawidłowe torowanie pojazdu czy zwiększone ryzyko poślizgu. Standardy dotyczące hamulców, takie jak te opracowane przez Międzynarodową Organizację Normalizacyjną (ISO) oraz obowiązujące przepisy prawa drogowego, wskazują na konieczność monitorowania i regulacji skuteczności hamowania. W praktyce, aby zapewnić, że różnica ta nie przekracza 30%, zaleca się regularne przeglądy i konserwację układu hamulcowego, szczególnie w starszych pojazdach oraz po intensywnym użytkowaniu.

Pytanie 19

Mechanizm różnicowy w tylnym moście napędowym pojazdu umożliwia podział napędu na

A. koła napędowe, przy jednoczesnym braku możliwości obracania się kół z różnymi prędkościami obrotowymi
B. przód i tył, w przypadku pojazdu z napędem na cztery koła
C. tył i przód z pominięciem przekładni głównej mostu napędowego
D. koła napędowe, przy jednoczesnej możliwości obracania się kół z różnymi prędkościami obrotowymi
Mechanizm różnicowy w tylnym moście napędowym jest kluczowym elementem, który odpowiada za rozdział napędu na koła napędowe, pozwalając im na toczenie się z różnymi prędkościami obrotowymi. W praktyce oznacza to, że podczas skręcania samochodu wewnętrzne koło pokonuje krótszą odległość niż zewnętrzne, co powoduje różnice w prędkościach obrotowych. Mechanizm różnicowy umożliwia kompensację tych różnic, co jest niezwykle istotne dla stabilności i przyczepności pojazdu. Przykładem zastosowania tego rozwiązania są samochody osobowe, które podczas jazdy w zakręcie zyskują na manewrowości oraz minimalizują zużycie opon, a także poprawiają komfort jazdy. Zgodnie z praktykami inżynieryjnymi, mechanizmy różnicowe są projektowane w oparciu o normy dotyczące bezpieczeństwa i wydajności, co zapewnia ich niezawodność w różnych warunkach drogowych. Warto dodać, że nowoczesne technologie, takie jak elektroniczne mechanizmy różnicowe, jeszcze bardziej zwiększają możliwości dostosowania napędu do warunków panujących na drodze, poprawiając dynamikę jazdy i efektywność.

Pytanie 20

Podaj właściwą sekwencję działań diagnostycznych przeprowadzanych podczas regularnego przeglądu technicznego pojazdu osobowego.

A. Ustawienie ciśnienia w oponach, ustawienie świateł, weryfikacja amortyzatorów, weryfikacja hamulców
B. Ustawienie świateł, ustawienie ciśnienia w oponach, weryfikacja hamulców, weryfikacja amortyzatorów
C. Weryfikacja amortyzatorów, weryfikacja hamulców, ustawienie świateł, ustawienie ciśnienia w oponach
D. Weryfikacja hamulców, weryfikacja amortyzatorów, ustawienie ciśnienia w oponach, ustawienie świateł
Wskaźnik numer 3 pokazuje, jak powinno się przeprowadzać badanie techniczne samochodu. Na początek warto zająć się ciśnieniem w oponach, bo to naprawdę ma znaczenie dla bezpieczeństwa jazdy i zużycia paliwa. Kiedy opony mają złe ciśnienie, to mogą się szybciej zużywać i łatwiej o niebezpieczne sytuacje na drodze. Potem trzeba ogarnąć regulację świateł, bo dobre oświetlenie jest kluczowe, żeby inni kierowcy wiedzieli, co zamierzamy zrobić. Sprawdzanie amortyzatorów to kolejny ważny krok, bo to wpływa na komfort i stabilność podczas jazdy. No i na koniec – hamulce, bo skuteczność hamowania to podstawa bezpieczeństwa. Jeśli będziemy to wszystko robić w takiej kolejności, to zgodnie z obowiązującymi normami i dobrymi praktykami w motoryzacji, będziemy na dobrej drodze do bezpiecznej jazdy.

Pytanie 21

Zjawisko, w którym siła hamująca osłabia się, a następnie zanika w wyniku przegrzania, na przykład podczas długotrwałego hamowania, to

A. pochłanianie
B. fading
C. honowanie
D. przyczepność
Fading to proces, który zachodzi w układach hamulcowych, polegający na osłabieniu siły hamującej w wyniku ich przegrzania. W praktyce oznacza to, że podczas długotrwałego hamowania, na przykład w trakcie intensywnego zjazdu ze wzniesienia, materiały hamulcowe mogą osiągnąć temperatury, które prowadzą do zmiany ich właściwości. W przypadku hamulców tarczowych, nadmierne ciepło może powodować, że klocki hamulcowe tracą skuteczność, co jest szczególnie niebezpieczne w sytuacjach wymagających dużej precyzji i odpowiedzialności, jak np. na torze wyścigowym czy w transporcie publicznym. W branży motoryzacyjnej stosuje się różne materiały, takie jak węgiel lub ceramika, które mają lepsze właściwości cieplne, zmniejszając ryzyko fadingu. Praktyczne zrozumienie tego zjawiska jest kluczowe dla inżynierów projektujących systemy hamulcowe oraz dla kierowców, którzy muszą być świadomi ograniczeń swoich pojazdów, szczególnie w trudnych warunkach drogowych.

Pytanie 22

Jaki łączny koszt poniesiemy na wymianę świec zapłonowych w pojeździe z silnikiem sześciocylindrowym, jeśli cena jednej świecy wynosi 20,00 zł, a wymiana powinna zająć 45 minut, przy stawce jednego roboczogodziny równiej 120,00 zł?

A. 120,00 zł
B. 170,00 zł
C. 210,00 zł
D. 240,00 zł
Całkowity koszt wymiany świec zapłonowych w samochodzie z silnikiem sześciocylindrowym wynosi 210,00 zł, co jest wynikiem dokładnego obliczenia zarówno kosztu materiałów, jak i robocizny. Koszt jednej świecy zapłonowej wynosi 20,00 zł, a w silniku sześciocylindrowym potrzeba sześciu świec, co daje 20,00 zł x 6 = 120,00 zł za same świece. Dodatkowo, czas wymiany świec szacowany na 45 minut obliczamy w kontekście stawki robocizny. Ponieważ 45 minut to 0,75 godziny, koszt robocizny wynosi 120,00 zł (stawka za godzinę) x 0,75 = 90,00 zł. Zatem całkowity koszt wymiany świec zapłonowych to 120,00 zł (świece) + 90,00 zł (robocizna) = 210,00 zł. W kontekście praktycznym, regularna wymiana świec zapłonowych jest kluczowa dla utrzymania efektywności silnika, co wpływa na jego wydajność i zużycie paliwa. Zgodnie z zaleceniami producentów, wymianę świec należy przeprowadzać co określoną liczbę kilometrów lub co pewien czas, co przyczynia się do dłuższej żywotności silnika.

Pytanie 23

Z jakich elementów składa się system napędowy pojazdu?

A. Układ kierowniczy, skrzynia biegów, wał napędowy, tylny most
B. Silnik, sprzęgło, skrzynia biegów
C. Skrzynia biegów, półosie napędowe, koła pojazdu
D. Silnik, wał napędowy, stabilizator
Spoglądając na inne możliwości, można dostrzec, że część z nich nie ma nic wspólnego z zespołem napędowym. Układ kierowniczy, na przykład, zajmuje się prowadzeniem auta, a nie napędem. Skrzynia biegów, półosie napędowe i koła są ważne, ale nie tworzą pełnego zespołu napędowego. Chociaż skrzynia biegów jest kluczowa, to sama w sobie nie określa całego zespołu. Półosie i koła raczej odnoszą się do przeniesienia napędu, a nie jego źródła. A w przypadku odpowiedzi, gdzie wymienia się silnik, wał napędowy i stabilizator – pamiętaj, że stabilizator to element układu zawieszenia, a nie zespołu napędowego. Często mylimy te rzeczy, bo po prostu nie do końca rozumiemy, jak one działają. Wiedza o tym, co wchodzi w skład zespołu napędowego, jest kluczowa, gdy projektujemy czy serwisujemy auta, bo wpływa na jakość i bezpieczeństwo.

Pytanie 24

Oblicz czas obsługi pojazdu o przebiegu 60 tys. km. Wykorzystaj dane z tabeli.

Nazwa operacjiPrzebieg (tys. km)
153060100160
Czas wykonania operacji [min]
Kontrola oświetlenia1515151515
Wymiana płynów-10305050
Kontrola układu hamulcowego1010151520
Zabezpieczenia antykorozyjne nadwozia30--30-
Kontrola układu paliwowego-20-40-
Kontrola zawieszenia1010151525

A. 65 minut
B. 185 minut
C. 165 minut
D. 75 minut
Poprawna odpowiedź to 75 minut, co jest wynikiem dokładnego zsumowania czasów poszczególnych operacji serwisowych wymaganych dla pojazdu o przebiegu 60 tys. km. Kontrola oświetlenia trwa 15 minut, wymiana płynów to 30 minut, a kontrola układu hamulcowego i paliwowego po 15 minut każda. Łącznie daje to 15 + 30 + 15 + 15 = 75 minut. Takie podejście do obliczeń jest zgodne z dobrymi praktykami w branży motoryzacyjnej, gdzie dokładność czasu obsługi pojazdu jest kluczowa dla planowania serwisu. Wiedza na temat poszczególnych operacji serwisowych i ich czasów jest niezbędna dla mechaników, aby efektywnie zarządzać harmonogramem prac oraz informować klientów o przewidywanym czasie naprawy. Zrozumienie tych operacji pozwala również na lepsze prognozowanie kosztów serwisowych, co jest istotne z perspektywy zarządzania flotą pojazdów lub w kontekście indywidualnego właściciela samochodu.

Pytanie 25

W pojazdach z tradycyjnym systemem napędowym właściwa zbieżność kół powinna być

A. ujemna
B. zerowa
C. dodatnia
D. bez znaczenia
Ogólnie rzecz biorąc, zbieżność kół w samochodach z klasycznym napędem powinna być dodatnia. Chodzi o to, że przednie koła są trochę skierowane do siebie na górze. Taki sposób ustawienia kół pomaga utrzymać stabilność pojazdu, zarówno kiedy jedziemy prostą drogą, jak i przy skrętach. Dodatnia zbieżność zmniejsza ryzyko zużycia opon i poprawia ich kontakt z nawierzchnią. W warsztatach często zajmują się regulacją zbieżności i używają do tego różnych urządzeń, żeby wszystko było zgodne z tym, co mówi producent. Moim zdaniem, dobrze jest dostosować zbieżność do wartości dodatniej, bo to również wpływa na komfort jazdy i bezpieczeństwo, a pojazd zachowuje się przewidywalnie. Z tego, co wiem, różne pojazdy mogą mieć różne zalecenia odnośnie zbieżności, więc warto sprawdzić dokumentację techniczną swojego auta.

Pytanie 26

Parametrem związanym z geometrią kół nie jest

A. zbieżność kół
B. kąt wyprzedzenia sworznia zwrotnicy
C. ciśnienie w ogumieniu
D. kąt nachylenia sworznia zwrotnicy
Ciśnienie w ogumieniu nie jest parametrem geometrii kół, ponieważ dotyczy jedynie stanu opon, a nie ich ustawienia czy kątów. Parametry geometrii, takie jak kąt pochylenia sworznia zwrotnicy, zbieżność kół oraz kąt wyprzedzenia sworznia zwrotnicy, mają kluczowe znaczenie dla właściwego prowadzenia pojazdu oraz jego stabilności na drodze. Kąt pochylenia sworznia zwrotnicy wpływa na kąt, pod jakim opona styka się z nawierzchnią, co z kolei ma wpływ na przyczepność i zużycie opon. Zbieżność kół odnosi się do ustawienia osi kół względem siebie oraz do kierunku jazdy, co jest istotne dla prawidłowego zachowania się pojazdu podczas skrętów. Kąt wyprzedzenia sworznia zwrotnicy, określający kąt, pod jakim oś obrotu koła jest ustawiona względem pionu, ma znaczenie dla stabilności jazdy i samoczynnego wracania kierownicy do pozycji neutralnej po skręcie. Dlatego znajomość tych parametrów jest kluczowa dla zapewnienia bezpieczeństwa, a ich regularna kontrola jest zalecana w praktyce motoryzacyjnej.

Pytanie 27

Układ, który napełnia się płynem eksploatacyjnym oznaczonym jako R 134a, to

A. chłodzący
B. klimatyzacji
C. hamulcowy
D. wspomagania
Odpowiedź 'klimatyzacji' jest prawidłowa, ponieważ R 134a jest jednym z najpopularniejszych czynników chłodniczych stosowanych w systemach klimatyzacji w pojazdach. R 134a, chemicznie znany jako tetrafluoroetan, jest gazem o niskiej toksyczności i wpływie na środowisko, co czyni go odpowiednim wyborem w kontekście globalnych regulacji dotyczących ochrony atmosfery. W systemach klimatyzacji, R 134a jest wykorzystywany do transportu ciepła z wnętrza pojazdu na zewnątrz, umożliwiając schłodzenie kabiny. Proces ten polega na odparowaniu czynnika chłodniczego w parowniku, który absorbuje ciepło z wnętrza pojazdu, a następnie sprężeniu go w sprężarce, co powoduje wzrost temperatury i ciśnienia. Po skropleniu w skraplaczu, czynnik wraca do postaci cieczy i cykl się powtarza. Właściwe napełnienie układu czynnikiem R 134a i jego regularna konserwacja są kluczowe dla efektywności energetycznej systemu oraz komfortu użytkowników pojazdu.

Pytanie 28

Aby uzupełnić czynnik chłodniczy w nowoczesnej klimatyzacji samochodowej, należy użyć czynnika o symbolu

A. R-134a
B. R-12
C. R-22
D. R-1234yf
Czynnik chłodniczy R-1234yf jest nowoczesnym gazem stosowanym w systemach klimatyzacji w samochodach produkowanych od 2017 roku. Został on wprowadzony jako zamiennik dla R-134a, który był szeroko stosowany, ale ma większy potencjał cieplarniany. R-1234yf charakteryzuje się znacznie niższym wpływem na środowisko, co czyni go bardziej ekologicznym wyborem. Przykładem zastosowania R-1234yf mogą być nowoczesne modele samochodów, które spełniają normy emisji spalin i wymagania dotyczące ochrony środowiska. Wprowadzenie R-1234yf do układów klimatyzacji przyczyniło się do zmniejszenia emisji substancji szkodliwych. W branży motoryzacyjnej standardy ISO oraz normy ECE R-1234yf regulują wymagania dotyczące stosowania tego czynnika, co czyni go kluczowym elementem w nowoczesnych pojazdach. Właściwa wiedza o tym czynniku jest niezbędna dla profesjonalnych serwisów i techników zajmujących się naprawą i konserwacją systemów klimatyzacyjnych.

Pytanie 29

Zgodnie z aktualnymi regulacjami, maksymalna dopuszczalna różnica w ocenach efektywności tłumienia amortyzatorów na jednej osi wynosi

A. 10%
B. 25%
C. 20%
D. 15%
Maksymalna różnica w skuteczności tłumienia amortyzatorów na jednej osi nie może przekraczać 20%. To istotne, bo sprawia, że samochód zachowuje się stabilnie na drodze. Przykładowo, jeśli w autach osobowych amortyzatory działają nierówno, może to prowadzić do nieprzewidywalnego zachowania się pojazdu, a to już niebezpieczne. No i trzeba pamiętać, że producenci muszą wykazać zgodność ze standardami, żeby ich auta mogły być sprzedawane. Oprócz tego, trzymanie się tej zasady poprawia komfort jazdy i wydłuża żywotność zawieszenia. Dlatego przestrzeganie tego przepisu to kluczowa sprawa dla bezpieczeństwa na drodze i efektywności auta.

Pytanie 30

Aby zamontować głowicę silnika, potrzebny jest klucz

A. nasadowy
B. szwedzki
C. płaski
D. oczkowy
Klucz nasadowy jest narzędziem, które idealnie nadaje się do dokręcania głowicy silnika. Posiada on wymienną nasadkę, co pozwala na dobranie odpowiedniego rozmiaru do konkretnej śruby, co jest kluczowe w przypadku silników, gdzie różne śruby mogą mieć różne wymiary. Dzięki mechanizmowi ratchet (zapadkowy) klucz nasadowy umożliwia szybkie i efektywne dokręcanie bez konieczności ciągłego przestawiania narzędzia. W praktyce, używając klucza nasadowego, można z łatwością osiągnąć odpowiedni moment obrotowy, co jest niezwykle istotne dla prawidłowego działania silnika. W branży motoryzacyjnej stosuje się klucze nasadowe zgodne z normami DIN, co zapewnia ich wysoką jakość i trwałość. Przykładowo, przy pracach serwisowych, gdzie silnik wymaga regulacji, klucz nasadowy klasyfikowany jako 1/2 cala jest powszechnie stosowany, co pozwala na zastosowanie go w różnych zadaniach serwisowych, od dokręcania głowicy po wymianę oleju czy innych komponentów silnika.

Pytanie 31

Dostosowanie współpracujących ze sobą w parze elementów samochodowych do wymiarów naprawczych polega na

A. obróbce jednego elementu na wymiar nominalny, a drugiego na wymiar naprawczy
B. wymianie obu elementów na nowe o większych rozmiarach i kształtach
C. obróbce obu elementów na nowe wymiary i przywróceniu każdemu z nich odpowiedniego pasowania
D. wymianie jednego elementu na nowy o wymiarze naprawczym i obróbce drugiego na odpowiedni wymiar i kształt
Wybór wymiany obu części na nowe o zwiększonych rozmiarach i kształtach jest nieefektywnym podejściem, które nie uwzględnia zasady właściwego doboru komponentów w systemie mechanicznym. Zwiększenie rozmiarów części może doprowadzić do niezgodności z innymi elementami układu, co w efekcie może prowadzić do poważnych awarii i problemów z funkcjonowaniem pojazdu. Zastosowanie nowych części o zmienionych wymiarach i kształtach może skutkować problemami z montażem, ponieważ istniejące tolerancje oraz pasowania nie będą już odpowiednie. W przypadku obróbki jednej części na wymiar nominalny, a drugiej na wymiar naprawczy, również pojawia się ryzyko, że nie zostanie osiągnięte właściwe dopasowanie, co jest kluczowe w mechanice. Dobór wymiarów nominalnych i naprawczych musi być przeprowadzony zgodnie z dokładnymi specyfikacjami i zaleceniami producenta, aby zapobiec problemom z wydajnością oraz żywotnością podzespołów. Ponadto, wymiana jednej części na nową o wymiarze naprawczym i obróbka drugiej na odpowiedni wymiar i kształt są bardziej efektywne ekonomicznie oraz technologicznie, co pozwala na optymalne wykorzystanie istniejących zasobów i minimalizację kosztów. W rzeczywistości, stosowanie właściwych metod naprawy zgodnych z zasadami inżynierii ma kluczowe znaczenie dla zapewnienia bezpieczeństwa i efektywności pojazdów.

Pytanie 32

Luz zmierzony w zamku pierścienia tłokowego umieszczonego w cylindrze wynosi 0,6 mm. Producent wskazuje, że luz ten powinien wynosić od 0,25 do 0,40 mm. Uzyskany wynik sugeruje, że

A. luz mieści się w podanych normach
B. luz w zamku pierścienia powinien zostać zwiększony
C. luz jest zbyt mały
D. luz jest zbyt duży
Zgodnie z zaleceniami producenta, luz w zamku pierścienia tłokowego powinien wynosić od 0,25 mm do 0,40 mm. Zmierzony luz wynoszący 0,6 mm przekracza górną granicę tej tolerancji, co oznacza, że luz jest zbyt duży. Zbyt duży luz w zamku pierścienia tłokowego może prowadzić do niewłaściwego uszczelnienia, co z kolei może skutkować spadkiem efektywności silnika, a także zwiększeniem zużycia oleju i emisji spalin. W praktyce, odpowiedni luz jest kluczowy dla prawidłowego funkcjonowania silnika, ponieważ wpływa na jego wydajność oraz żywotność komponentów. W przypadku stwierdzenia nadmiernego luzu, zaleca się wymianę pierścieni tłokowych lub regulację ich osadzenia zgodnie z wytycznymi producenta, co zapewni optymalną pracę silnika oraz zmniejszy ryzyko awarii. Stosowanie się do tych standardów jest niezbędne, aby utrzymać silnik w dobrym stanie technicznym i zapewnić jego niezawodność.

Pytanie 33

Substancja eksploatacyjna oznaczona symbolem 10W/40 to

A. ciecz do spryskiwaczy.
B. ciecz hamulcowa.
C. olej silnikowy
D. ciecz chłodząca silnik.
Odpowiedź "olej silnikowy" jest poprawna, ponieważ oznaczenie 10W/40 odnosi się do klasyfikacji olejów silnikowych według normy SAE (Society of Automotive Engineers). Liczba przed literą 'W' (winter) oznacza lepkość oleju w niskich temperaturach, co jest istotne podczas uruchamiania silnika w zimie. W tym przypadku '10' wskazuje, że olej ma odpowiednią lepkość w temperaturach poniżej zera. Druga liczba, '40', określa lepkość oleju w wysokich temperaturach pracy silnika, co jest kluczowe dla zapewnienia odpowiedniej ochrony silnika w czasie jego eksploatacji. Oleje 10W/40 są powszechnie stosowane w silnikach benzynowych i diesla, oferując dobrą ochronę przy różnych warunkach temperaturowych. Zastosowanie takiego oleju wspiera właściwą pracę silnika, zapewniając jego smarowanie, a także redukując tarcie i zużycie części silnika. Używanie oleju o niewłaściwej specyfikacji może prowadzić do nadmiernego zużycia silnika oraz zwiększonego ryzyka awarii.

Pytanie 34

W jakich jednostkach mierzy się pojemność akumulatora?

A. amperogodzinach [Ah]
B. amperach [A]
C. woltach [V]
D. omach [Ohm]
Pojemność akumulatora mierzona jest w amperogodzinach [Ah], co odzwierciedla jego zdolność do przechowywania energii elektrycznej. Jedno amperogodzina oznacza, że akumulator może dostarczać prąd o natężeniu 1 ampera przez 1 godzinę. W praktyce oznacza to, że im większa pojemność akumulatora, tym dłużej może on zasilać urządzenia elektryczne. W kontekście zastosowań, akumulatory o dużej pojemności są wykorzystywane w systemach zasilania awaryjnego, pojazdach elektrycznych oraz w magazynach energii odnawialnej, takich jak systemy fotowoltaiczne. W branży akumulatorowej stosowane są standardy, takie jak IEC 61960, które definiują metody testowania pojemności akumulatorów oraz ich cykli ładowania i rozładowania. Zrozumienie pojemności akumulatora jest kluczowe dla projektowania systemów zasilania, gdyż pozwala na odpowiednie skalowanie urządzeń do wymagań energetycznych.

Pytanie 35

Zleceniodawca poprosił o wymianę osłony przegubu znajdującego się na półosi napędowej. Przed odłączeniem przegubu z półosi specjalista powinien zaznaczyć ich wzajemne położenie w celu

A. odpowiedniego umiejscowienia opasek zaciskowych
B. zamontowania przegubu w kole
C. zachowania równowagi zespołu półoś-przegub
D. poprawnego ustawienia osłony na półosi
Zachowanie wyważenia układu półoś-przegub jest kluczowe dla prawidłowego funkcjonowania całego układu napędowego pojazdu. Przeguby oraz półosie są elementami mechanicznymi, które podczas pracy muszą działać w harmonii, aby zminimalizować wibracje i zużycie. Oznaczenie wzajemnego położenia przed demontażem pozwala na precyzyjne przywrócenie tych samych warunków po wymianie osłony. W praktyce, mechanicy często stosują marker lub taśmę, aby zaznaczyć pozycje elementów, co pozwala uniknąć problemów z wyważeniem. Wyważony układ jest kluczowy w kontekście komfortu jazdy oraz trwałości komponentów, ponieważ niewłaściwe ustawienie może prowadzić do nadmiernego zużycia łożysk, drgań i hałasu. Dlatego tak ważne jest przestrzeganie zasad dobrych praktyk w serwisie pojazdów, co często jest podkreślane w szkoleniach technicznych oraz dokumentacji producentów.

Pytanie 36

Oblicz pojemność skokową silnika trzycylindrowego, mając na uwadze, że pojemność skokowa jednego cylindra wynosi 173,4 cm3?

A. 520,2 cm3
B. 173,4 cm3
C. 346,8 cm3
D. 693,6 cm3
Pojemność skokowa silnika to całkowita objętość, jaką zajmują wszystkie cylindry podczas jednego cyklu pracy. Dla trzycylindrowego silnika, gdzie pojemność jednego cylindra wynosi 173,4 cm3, objętość skokowa oblicza się, mnożąc tę wartość przez liczbę cylindrów. Wzór na obliczenie pojemności skokowej silnika to: V = V_cylindrów * n, gdzie V_cylindrów to pojemność jednego cylindra, a n to liczba cylindrów. W tym przypadku mamy: V = 173,4 cm3 * 3 = 520,2 cm3. Zrozumienie pojemności skokowej jest kluczowe w projektowaniu silników, ponieważ wpływa na moc, moment obrotowy oraz efektywność paliwową. Wyższa pojemność skokowa zazwyczaj oznacza większą moc, ale również może wpłynąć na zużycie paliwa. Projektanci silników często dążą do optymalizacji pojemności skokowej w celu osiągnięcia najlepszej równowagi między wydajnością a emisjami. Przykładowo, w silnikach sportowych często stosuje się cylindry o większej pojemności, aby zwiększyć moc przy zachowaniu odpowiednich standardów emisji spalin.

Pytanie 37

Jaką częścią łączy się wał korbowy z tłokiem?

A. korbowodu
B. zaworu
C. sworznia
D. popychacza
Wiesz, odpowiedź, którą zaznaczyłeś, to korbowód. To naprawdę ważny element w silnikach spalinowych i innych mechanizmach. Jego zadaniem jest przekształcanie ruchu posuwistego tłoka na ruch obrotowy wału korbowego. Bez korbowodu wszystko by się rozjechało. Ciekawostka: korbowody są zwykle wykonane z materiałów takich jak stal czy aluminium wzmocnione kompozytami, bo muszą wytrzymać naprawdę duże obciążenia. Mówiąc o silnikach samochodowych, to jego działanie jest kluczowe dla wydajności całego silnika. W projektowaniu korbowodów zwraca się też uwagę na to, żeby były jak najlżejsze, ale nadal wystarczająco mocne. To ma ogromne znaczenie zwłaszcza w sportach motorowych.

Pytanie 38

W przypadku, gdy pomimo kręcenia wałem korbowym za pomocą rozrusznika silnik nie uruchamia się, nie wymaga sprawdzenia

A. ustawienie rozrządu silnika
B. druga sonda lambda
C. ciśnienie sprężania
D. pompa paliwa
Druga sonda lambda jest odpowiedzialna za pomiar stężenia tlenu w spalinach, co wpływa na optymalizację pracy silnika w warunkach pracy na pełnym obciążeniu lub w trybie wydechowym. Jeśli silnik nie uruchamia się pomimo obracania wału korbowego, sugeruje to problem z dostarczeniem paliwa, z ustawieniem rozrządu lub ciśnieniem sprężania, a nie z sondą lambda. Ważne jest, aby zrozumieć, że sonda lambda kontroluje emisję spalin oraz efektywność spalania, ale nie jest krytycznym elementem potrzebnym do samego uruchomienia silnika. W praktyce, przed sprawdzeniem sondy lambda, należy upewnić się, że system paliwowy funkcjonuje poprawnie, rozrząd jest odpowiednio ustawiony, a ciśnienie sprężania znajduje się w zalecanych granicach. W związku z tym, w sytuacji, gdy silnik nie uruchamia się, w pierwszej kolejności należy skupić się na diagnostyce pozostałych komponentów silnika, co jest zgodne z podejściem diagnostycznym opartym na normach branżowych.

Pytanie 39

Suwmiarka, która służy do pomiaru zębów kół w pompach olejowych, nosi nazwę suwmiarka

A. noniuszowa
B. uniwersalna
C. modułowa
D. elektroniczna
Suwmiarka modułowa jest narzędziem pomiarowym, które jest idealnie przystosowane do precyzyjnego pomiaru zębów kół pompy olejowej. Jej konstrukcja umożliwia pomiar w różnych miejscach z dużą dokładnością, co jest kluczowe w przypadku komponentów silnikowych i hydraulicznych. Suwmiarki modułowe charakteryzują się wymiennymi końcówkami pomiarowymi, co pozwala na dostosowanie narzędzia do specyficznych wymagań pomiarowych. Dzięki temu można dokładnie zmierzyć zarówno wysokość zębów, jak i ich szerokość. W praktyce, przy pomiarach kół zębatych, ważne jest, aby uzyskane wyniki były zgodne z normami PN-EN ISO, które określają wymogi dotyczące precyzji pomiarów w inżynierii mechanicznej. Suwmiarka modułowa jest również często stosowana w warsztatach mechanicznych oraz w przemyśle, gdzie kontrola jakości komponentów jest niezbędna do zapewnienia ich prawidłowego funkcjonowania.

Pytanie 40

Jakie jest zadanie gaźnika w pojeździe?

A. regulowanie strumienia wtrysku
B. dozowanie paliwa i powietrza
C. podgrzewanie powietrza
D. pompowanie paliwa
Gaźnik odgrywa kluczową rolę w silniku spalinowym, odpowiadając za dozowanie paliwa i powietrza do mieszanki paliwowej, która jest następnie dostarczana do cylindrów silnika. Właściwe proporcje tego połączenia są istotne dla efektywności spalania, co ma bezpośredni wpływ na osiągi silnika oraz emisję spalin. W praktyce, gaźniki są projektowane w taki sposób, aby zapewnić optymalne mieszanie paliwa i powietrza w różnych warunkach pracy silnika, takich jak różne prędkości obrotowe czy obciążenia. Przykładem zastosowania dobrych praktyk w konstrukcji gaźników jest zastosowanie dławików, które regulują przepływ powietrza, co pozwala na precyzyjne dostosowanie mieszanki do aktualnych potrzeb silnika. Wiedza na temat działania gaźnika ma kluczowe znaczenie dla mechaników i inżynierów zajmujących się diagnostyką i naprawą układów zasilania w silnikach spalinowych.