Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 23 maja 2025 00:03
  • Data zakończenia: 23 maja 2025 00:25

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Dokonano pomiaru kąta pionowego w dwóch ustawieniach lunety, uzyskując rezultaty: OI= 101g80c70cc, OII= 298g17c00cc. Jaki jest kąt zenitalny?

A. 101g81c85cc
B. 199g98c85cc
C. 298g18c15cc
D. 196g36c30cc
Jeżeli wybrałeś błędną odpowiedź, to pewnie było to wynikiem nieporozumienia w kwestii obliczania kątów zenitalnych. Kąt zenitalny jest powiązany z pomiarami kątów pionowych, które przeprowadza się w dwóch różnych ustawieniach lunety. Kluczowe tutaj jest, żeby zrozumieć, że przy dodawaniu kątów pionowych do obliczenia kąta zenitalnego, zawsze trzeba od sumy odjąć 200g. Wiele osób może tu popełnić błąd nie stosując tej zasady, co prowadzi do zawyżenia wyników. Czasami zdarza się, że złe odpowiedzi wynikają też z błędnego rozumienia konwencji pomiarowej, gdzie zapomina się uwzględnić konieczność konwersji jednostek kątowych. Na przykład, gdy dodasz kąty bez odpowiedniej konwersji do systemu pełnych stopni, minut i sekund, to możesz dostać fałszywe wyniki, które mogą być obecne wśród odpowiedzi. Ważne, żeby pamiętać, że kąt zenitalny musi mieścić się w konkretnym zakresie, co jest typowe dla pomiarów geodezyjnych. Przy obliczeniach z użyciem kątów pionowych, istotne jest przestrzeganie standardów pomiarowych, takich jak te ustalone przez Międzynarodową Federację Geodetów (FIG) i inne organizacje branżowe, które podkreślają znaczenie precyzyjnych i dokładnych wyników w tej dziedzinie.

Pytanie 2

Przeprowadzając pomiar kąta w dwóch pozycjach lunety, możliwe jest zredukowanie błędu

A. pionu optycznego
B. libelli okrągłej
C. kolimacji
D. urządzenia odczytowego
Odpowiedź "kolimacji" jest poprawna, ponieważ kolimacja odnosi się do procesu ustawiania instrumentów pomiarowych w taki sposób, aby ich osie były zgodne z osią referencyjną. W kontekście pomiarów kątowych, wykonywanie pomiaru w dwóch położeniach lunety pozwala na eliminację błędów związanych z niewłaściwą kolimacją lunety. Przykładowo, jeśli luneta jest źle skalibrowana, można to uwidocznić i skorygować, wykonując pomiar w dwóch różnych położeniach, co zapewnia lepszą dokładność i powtarzalność wyników. W praktyce, takie działania są zgodne z najlepszymi praktykami stosowanymi w geodezji i inżynierii, gdzie precyzyjne pomiary są kluczowe dla uzyskania wiarygodnych danych. Ponadto, standardy takie jak normy ISO dla instrumentów pomiarowych kładą duży nacisk na kalibrację i kolimację jako podstawowe elementy zapewnienia jakości pomiarów.

Pytanie 3

Przybliżone wartości azymutu dla punktu węzłowego W to: 54,2333g, 54,2331g, 54,2329g. Jakia jest najbardziej prawdopodobna wartość azymutu punktu węzłowego W, zakładając, że w każdym z ciągów poligonowych wykonano tę samą liczbę pomiarów kątów, a punkt węzłowy jest ostatnim punktem w każdym z trzech ciągów?

A. 108,4664g
B. 54,2329g
C. 54,2331g
D. 162,6993g
Tak, odpowiedź 54,2331g jest tą, której szukaliśmy! To jest wartość, która najlepiej pasuje do średnich wyników pomiarów azymutu punktu węzłowego W. Jak wiadomo, przy obliczaniu azymutu w geodezji, ważne jest, by mieć na uwadze błędy pomiarowe. Chodzi o to, żeby uzyskać jak najdokładniejszy wynik. Mamy tutaj trzy różne pomiary: 54,2333g, 54,2331g i 54,2329g. Z tych pomiarów środkowa wartość, czyli 54,2331g, jest najbardziej prawdopodobna, bo jest najbliżej średniej arytmetycznej. W geodezji staramy się tak robić, bo to pomaga zredukować wpływ przypadkowych błędów. Tego typu podejście znajduje zastosowanie w różnych dziedzinach, jak np. inżynieria lądowa czy kartografia, gdzie precyzyjne ustalenie kierunków jest mega istotne w projektowaniu i realizacji prac geodezyjnych.

Pytanie 4

Która z map przedstawia rozmieszczenie infrastruktury terenu?

A. Zasadnicza
B. Ewidencyjna
C. Topograficzna
D. Sozologiczna
Wybór pozostałych opcji, takich jak mapa sozologiczna, ewidencyjna czy topograficzna, wskazuje na pewne nieporozumienia dotyczące funkcji tych map. Mapa sozologiczna koncentruje się na ochronie środowiska i zasobów naturalnych, ilustrując zagrożone obszary, co nie ma bezpośredniego związku z usytuowaniem sieci uzbrojenia terenu. Z kolei mapa ewidencyjna skupia się na rejestrze gruntów i budynków, dostarczając danych o właścicielach i statusie prawnym nieruchomości, co również nie obejmuje aspektów infrastrukturalnych. Mapa topograficzna natomiast przedstawia rzeźbę terenu oraz różne obiekty geograficzne, ale nie jest specjalnie ukierunkowana na infrastrukturę techniczną. Te błędne wybory mogą wynikać z mylnego zrozumienia specyfiki każdego rodzaju mapy. W praktyce, brak znajomości zasadniczej mapy może prowadzić do problemów w planowaniu przestrzennym, takich jak konflikty w infrastrukturze, co podkreśla znaczenie właściwego doboru mapy w procesie projektowania i zarządzania przestrzenią.

Pytanie 5

Długość boku kwadratowej działki a = 100,00 m została zmierzona z średnim błędem ma = ±5 cm. Jaką wartość ma średni błąd mp w obliczeniu pola P tej działki?

A. mp = ±20 m2
B. mp = ±1 m2
C. mp = ±5 m2
D. mp = ±10 m2
Niepoprawne odpowiedzi są rezultatem błędnych interpretacji zależności między błędami pomiarowymi a obliczanym polem. Wartości błędów przedstawione w odpowiedziach, takie jak mp = ±20 m2, mp = ±5 m2 czy mp = ±1 m2, nie są zgodne z zasadami propagacji błędów. Na przykład, mp = ±20 m2 sugeruje, że błąd pomiarowy jest większy niż rzeczywisty wpływ błędu długości boku na pole, co jest sprzeczne z logiką obliczeń. Taki błąd myślowy może wynikać z nieprawidłowego zastosowania wzoru na błąd średni lub nieuwzględnienia, że pole jest funkcją kwadratową. Odpowiedź mp = ±5 m2 z kolei nie uwzględnia całkowitego wpływu błędu pomiarowego na pole, co ogranicza dokładność obliczeń. Wydaje się, że w tym przypadku nie zrozumiano, że należy pomnożyć długość boku przez 2, aby uwzględnić wpływ błędu w obliczeniach. Z kolei mp = ±1 m2 jest zdecydowanie zaniżonym wynikiem, który również ignoruje zasadnicze zasady propagacji błędów. W praktyce, przy obliczeniach inżynieryjnych, niedoszacowanie błędów może prowadzić do poważnych konsekwencji, stąd tak istotne jest stosowanie odpowiednich wzorów i metod w celu uzyskania precyzyjnych wyników. Warto również pamiętać o standardach metrologicznych, które kładą nacisk na odpowiednie traktowanie błędów pomiarowych w każdym etapie pracy. Wysoka dokładność obliczeń jest kluczowa w wielu dziedzinach, w tym w budownictwie, geodezji i inżynierii, gdzie błędy mogą wpływać na bezpieczeństwo i efektywność realizowanych projektów.

Pytanie 6

Na precyzję pomiarów niwelacyjnych nie wpływa

A. wyważenie łat niwelacyjnych
B. kolejność dokonywanych pomiarów
C. odległość między niwelatorem a łatami
D. poziomowanie libelli niwelacyjnej
Spoziomowanie libelli niwelacyjnej jest kluczowym procesem, który ma istotny wpływ na dokładność pomiarów. Jeżeli niwelator nie jest prawidłowo poziomowany, rezultaty mogą być zafałszowane, co doprowadzi do błędów w ocenie różnic wysokości. Jest to często spotykany błąd, gdzie operatorzy niwelatora mogą nie zauważać niewielkich odchyleń, co w dłuższej perspektywie prowadzi do sumowania się błędów pomiarowych. Spionizowanie łat niwelacyjnych również odgrywa kluczową rolę, ponieważ jeśli łatka nie jest ustawiona w idealnej pozycji pionowej, wyniki mogą być błędne. Często obserwowanym problemem jest ignorowanie wpływu odległości pomiędzy niwelatorem a łatami; zbyt duże odległości mogą wprowadzać dodatkowe błędy pomiarowe z powodu krzywizny ziemi oraz efektu atmosferycznego. W związku z tym, wszystkie te aspekty są ze sobą powiązane i ich prawidłowe wykonanie jest niezbędne do uzyskania dokładnych i wiarygodnych pomiarów. W praktyce inżynieryjnej zaniedbanie któregoś z tych czynników prowadzi do poważnych konsekwencji w postaci błędnych danych, co może wpłynąć na całe projekty budowlane i inżynieryjne. Dlatego tak ważne jest, aby przy wykonywaniu niwelacji stosować się do uznawanych standardów i procedur, aby zminimalizować błędy i zapewnić wysoką jakość pomiarów.

Pytanie 7

Wykonanie mapy zasadniczej dla obszarów z istotnym obecnym lub prognozowanym zainwestowaniem powinno odbywać się w skali

A. 1:500
B. 1:2000
C. 1:1000
D. 1:5000
Odpowiedź 1:2000 jest prawidłowa, ponieważ opracowanie mapy zasadniczej dla terenów o znacznym obecnym lub przewidywanym zainwestowaniu wymaga szczegółowego przedstawienia lokalizacji, granic i charakterystyki terenu. Skala 1:2000 pozwala na dokładne przedstawienie elementów urbanistycznych, takich jak ulice, budynki oraz infrastruktura techniczna. W praktyce, mapy w tej skali stosowane są do projektowania i planowania przestrzennego, co jest kluczowe w kontekście uchwał planistycznych i decyzji administracyjnych. W standardach branżowych, takich jak normy dotyczące geodezji i kartografii, podkreśla się znaczenie precyzyjnych odwzorowań w przypadkach intensywnej zabudowy. Przykładem zastosowania może być przygotowanie dokumentacji do wydania pozwolenia na budowę, gdzie konieczne jest uwzględnienie wszystkich detali infrastrukturalnych i istniejących obiektów, co jest możliwe tylko w takiej skali.

Pytanie 8

Punkty kontrolne, które są używane w trakcie analizy przemieszczeń obiektów budowlanych, powinny być rozmieszczane

A. jak najdalej od analizowanego obiektu
B. jak najbliżej punktów odniesienia dotyczących badanego obiektu
C. bezpośrednio na analizowanym obiekcie
D. w bezpośredniej bliskości analizowanego obiektu
Umieszczanie punktów kontrolnych bezpośrednio na badanym obiekcie budowlanym jest kluczowym aspektem precyzyjnych pomiarów przemieszczeń. Tylko w ten sposób można uzyskać dokładne i wiarygodne wyniki, ponieważ punkty te są bezpośrednio związane z deformacjami obiektu. Przykładem zastosowania tej metody jest monitoring mostów, gdzie punkty kontrolne są instalowane na elementach konstrukcyjnych, co pozwala na bieżące śledzenie ich stanu oraz identyfikację ewentualnych zagrożeń. Stanowisko pomiarowe powinno być zgodne z odpowiednimi normami, takimi jak PN-EN 1992-1-1, które określają wymagania dotyczące projektowania i wykonania konstrukcji. Dzięki umiejscowieniu punktów kontrolnych na obiekcie, możliwe jest również zastosowanie nowoczesnych technologii, takich jak skanowanie laserowe, które pozwala na uzyskanie danych o przemieszczeniach w skali nano. To podejście zwiększa nie tylko dokładność pomiarów, ale także umożliwia przeprowadzanie analizy trendów, co jest niezbędne w zarządzaniu cyklem życia budynków i infrastruktury.

Pytanie 9

Osoba, która nie przekaże dokumentacji opracowanej w trakcie prac geodezyjnych lub kartograficznych do państwowego zasobu geodezyjnego oraz kartograficznego, może być ukarana

A. ograniczeniem wolności
B. pozbawieniem wolności
C. odebraniem uprawnień zawodowych
D. grzywną
Odpowiedź, że osoba, która nie przekaże materiałów powstałych w wyniku prac geodezyjnych lub kartograficznych do państwowego zasobu geodezyjnego i kartograficznego, może zostać ukarana grzywną, jest poprawna. Zgodnie z ustawą o geodezji i kartografii, każdy geodeta ma obowiązek dostarczenia wyników swoich prac do odpowiednich instytucji. Niezastosowanie się do tego obowiązku jest traktowane jako wykroczenie, które podlega karze grzywny. Przykładowo, jeśli geodeta wykonuje pomiary terenu i nie złoży dokumentacji w zasobie geodezyjnym, naraża się na konsekwencje prawne. Taka regulacja ma na celu zapewnienie, że dane geodezyjne będą dostępne dla innych użytkowników, co jest kluczowe dla planowania przestrzennego, ochrony środowiska oraz prowadzenia inwestycji budowlanych. Zgodność z tym obowiązkiem jest istotnym elementem dobrych praktyk w branży geodezyjnej oraz przyczynia się do transparentności i jakości danych w publicznym obiegu.

Pytanie 10

Jaką odległość mają punkty hektometrowe na osi trasy?

A. 200 m
B. 100 m
C. 50 m
D. 150 m
Punkty hektometrowe to standardowe punkty pomiarowe na trasie, które są oddalone od siebie o 100 m. Jest to istotne w kontekście nawigacji, planowania tras oraz w zarządzaniu ruchem drogowym. Umożliwia to precyzyjne określenie lokalizacji pojazdu lub obiektu na danej trasie. W praktyce, punkty te są wykorzystywane w różnych systemach transportowych, w tym w kolejnictwie, gdzie oznaczają konkretne odległości między stacjami. Przy ustalaniu rozkładów jazdy oraz w przypadku monitorowania postępu transportu, dokładne określenie odległości jest kluczowe. Standardy takie jak normy ISO w zakresie transportu i logistyki oraz dobre praktyki związane z oznaczaniem tras uwzględniają właśnie odległości określane w hektometrach, co ułatwia komunikację i zarządzanie procesami logistycznymi.

Pytanie 11

Na mapie zasadniczej sieci oznaczane są kolorem brązowym?

A. gazowe
B. ciepłownicze
C. elektroenergetyczne
D. kanalizacyjne
Brązowy kolor na mapach zasadniczych jest standardowym oznaczeniem dla sieci kanalizacyjnych. Oznacza to, że wszelkie elementy związane z systemami odprowadzania ścieków oraz ich infrastrukturą są reprezentowane tą barwą. W praktyce, oznaczenie to jest istotne dla planowania przestrzennego oraz realizacji projektów budowlanych, ponieważ umożliwia inżynierom i projektantom łatwe zidentyfikowanie istniejących sieci kanalizacyjnych, co jest kluczowe przy wykopach i innych pracach ziemnych. Ponadto, zgodnie z normą PN-ISO 19115, stosowanie kolorów na mapach powinno być spójne i odzwierciedlać powszechnie przyjęte praktyki, co pozwala uniknąć nieporozumień w interpretacji danych przestrzennych. Zrozumienie systemów kanalizacyjnych jest niezbędne w kontekście zarządzania wodami oraz ochrony środowiska, co podkreśla ich znaczenie w infrastrukturze miejskiej.

Pytanie 12

Wyznacz wysokość punktu HP, mając dane:
- wysokość stanowiska pomiarowego Hst = 200,66 m,
- wysokość instrumentu i = 1,55 m,
- pomiar kreski środkowej na łacie s = 1150.

A. HP = 200,26 m
B. HP = 197,96 m
C. HP = 203,36 m
D. HP = 201,06 m
Aby obliczyć wysokość punktu HP, należy zastosować wzór: HP = Hst - i + s, gdzie Hst to wysokość stanowiska pomiarowego, i to wysokość instrumentu, a s to odczyt kreski środkowej na łacie. W naszym przypadku mamy: Hst = 200,66 m, i = 1,55 m oraz s = 1150 mm (czyli 1,150 m). Podstawiając wartości do wzoru, otrzymujemy: HP = 200,66 m - 1,55 m + 1,150 m = 201,06 m. Ta metoda jest fundamentalna w geodezji, szczególnie w pomiarach wysokościowych, gdzie precyzyjne ustalenie wysokości punktu odniesienia jest kluczowe dla dokładności dalszych pomiarów. W praktyce, szczególnie w inżynierii lądowej i budowlanej, umiejętność poprawnego stosowania takich obliczeń jest niezbędna, aby zapewnić zgodność z zasadami i standardami branżowymi. Zrozumienie podstawowych zasad obliczeń wysokości jest również przydatne w kontekście projektowania i analizy terenu, gdzie precyzyjne dane wysokościowe są wykorzystywane do oceny ukształtowania terenu oraz planowania infrastruktur takich jak drogi czy mosty.

Pytanie 13

Jaki rodzaj mapy stosuje się do przedstawienia ukształtowania terenu miasta?

A. Mapa topograficzna
B. Mapa hydrogeologiczna
C. Mapa katastralna
D. Mapa klimatyczna
Mapa topograficzna jest nieocenionym narzędziem w geodezji i urbanistyce, ponieważ szczegółowo przedstawia ukształtowanie terenu. Dzięki niej można zobaczyć, jak kształtują się różnice wysokości w terenie, co jest kluczowe przy planowaniu infrastruktury miejskiej, budowy dróg czy projektowaniu nowych osiedli. Takie mapy wykorzystują poziomice do pokazania wysokości nad poziomem morza, co pozwala na wizualne zrozumienie krajobrazu. Poziomice są izoliniami, które łączą punkty o tej samej wysokości, co pozwala na łatwe zinterpretowanie nachyleń i różnic wysokości. W praktyce, podczas projektowania systemów odwadniających czy planowania zieleni miejskiej, zrozumienie topografii terenu jest kluczowe. Mapa topograficzna dostarcza także informacji o naturalnych i sztucznych obiektach, co jest nieocenione podczas planowania przestrzennego. Z mojego doświadczenia, korzystanie z map topograficznych pozwala uniknąć wielu problemów, które mogą pojawić się w trakcie realizacji projektów budowlanych.

Pytanie 14

Jak powinny zostać zapisane na szkicu tyczenia wyniki pomiarów kontrolnych?

A. Kolorem czerwonym, kursywą
B. Kolorem czarnym, w nawiasie
C. Kolorem czarnym, kursywą
D. Kolorem czerwonym, w nawiasie
Wpisywanie wyników pomiarów kontrolnych kolorem czerwonym, w nawiasie lub kursywą, może wydawać się atrakcyjną alternatywą, jednakże takie podejście wprowadza zamieszanie i niezgodność z ustalonymi standardami. Kolor czerwony często stosowany jest w dokumentacji technicznej do oznaczania błędów, problemów lub uwag, co może prowadzić do mylnego odczytu informacji. Użycie kursywy również nie jest zalecane, ponieważ może utrudniać czytelność, zwłaszcza w kontekście precyzyjnych danych pomiarowych, gdzie każdy szczegół ma znaczenie. W dokumentacji technicznej kluczowe jest, aby wszystkie informacje były jasne i zrozumiałe dla innych użytkowników, dlatego zaleca się stosowanie jednolitych i uznawanych konwencji. W praktyce, brak stosowania odpowiednich kolorów i formatowania może prowadzić do błędnych interpretacji wyników, co w geodezji ma poważne konsekwencje, takie jak błędne przyjęcia w procesach projektowych. Warto zwrócić uwagę na standardy ISO oraz lokalne regulacje prawne dotyczące dokumentacji geodezyjnej, które podkreślają znaczenie przejrzystości i spójności w prezentacji danych.

Pytanie 15

Jakiego przyrządu powinno się użyć do dokładnego naniesienia ramki sekcyjnej oraz siatki kwadratów w procesie tworzenia mapy analogowej?

A. Współrzędnika
B. Koordynatografu
C. Nanośnika prostokątnego
D. Nanośnika biegunowego
Wybierając nanośnik biegunowy, współrzędnik lub nanośnik prostokątny, można wprowadzić do procesu opracowywania map błędne założenia dotyczące precyzji i dokładności. Nanośnik biegunowy, mimo iż potrafi wspierać pomiar na powierzchni, nie jest narzędziem zoptymalizowanym do tworzenia ramki sekcyjnej czy siatki na mapie. Jego zastosowanie jest bardziej związane z określaniem kierunków, a nie precyzyjnym nanoszeniem detali. W przypadku współrzędnika, jego konstrukcja może wprowadzać ograniczenia w dokładności pomiaru, co jest kluczowe w kontekście opracowywania map. Z kolei nanośnik prostokątny, choć bywa używany do wyznaczania obszarów, nie oferuje tego samego poziomu wsparcia w precyzyjnym nanoszeniu siatek, co koordynatograf. Często błędem jest mylenie funkcji tych narzędzi, co może prowadzić do poważnych nieścisłości w opracowywanych mapach. Profesjonalne podejście do kartografii wymaga zrozumienia, że każdy instrument ma swoje specyficzne zastosowania, a ich niewłaściwe użycie może skutkować obniżeniem standardów jakościowych, co jest nieakceptowalne w branży, gdzie precyzja jest kluczowa.

Pytanie 16

Wskazanie lokalizacji pikiet w terenie oznacza zdefiniowanie miejsca, w którym podczas dokonywania pomiaru

A. powinien znajdować się obserwator
B. powinien być pomiarowy
C. powinno być ustawione lustro lub łata
D. powinno znajdować się stanowisko instrumentu
Wybór odpowiedzi, które nie odnosi się do ustawienia lustra lub łaty, wskazuje na nieporozumienie dotyczące podstawowych zasad pomiarów geodezyjnych. Odpowiedzi sugerujące, że obserwator czy pomiarowy powinien stać w danym miejscu, są błędne, ponieważ nie uwzględniają roli narzędzi pomiarowych w procesie zbierania danych. Obserwator nie jest odpowiedzialny za bezpośrednie pomiary, lecz pełni rolę nadzorczą, weryfikując poprawność ustawienia sprzętu. Ponadto, wskazanie, że stanowisko instrumentu powinno znajdować się w konkretnym miejscu, jest mylące, ponieważ kluczowe jest, aby instrument był skierowany na lustro bądźłatę, a nie tylko znajdował się w określonym punkcie. Zrozumienie, że lustro/łata to elementy, które odpowiadają za właściwe odczyty, jest fundamentalne dla prawidłowego przeprowadzania pomiarów. Właściwe ustawienie instrumentu jest ważne, lecz to interakcja między instrumentem a lustrem/łatą decyduje o dokładności pomiarów. Mylenie roli poszczególnych elementów może prowadzić do poważnych błędów w obliczeniach i interpretacji wyników, co jest nieakceptowalne w praktyce geodezyjnej. Zgodne z normami pomiarowymi, kluczowe jest, aby każdy z elementów procesu pomiarowego był właściwie zrozumiany i stosowany, aby zapewnić wiarygodność i dokładność uzyskiwanych danych.

Pytanie 17

Jakie oznaczenie literowe powinno znaleźć się na szkicu inwentaryzacji powykonawczej budynku, który ma być przekształcony w bibliotekę?

A. b
B. e
C. k
D. f
Oznaczenia literowe w inwentaryzacji są ważne, bo pomagają w klasyfikacji i organizacji pomieszczeń w budynkach. Odpowiedzi jak 'f', 'b' czy 'e' pokazują różne pomieszczenia, ale w kontekście biblioteki mogą być mylące. Oznaczenie 'f' może się kojarzyć z funkcjami, które w ogóle nie są związane z przestrzeniami publicznymi, takimi jak jakieś nagrody czy pomieszczenia techniczne. No i 'b' jest często używane w kontekście budynków publicznych, ale nie mówi nic konkretnego o funkcji biblioteki. A 'e' odnosi się do przestrzeni edukacyjnych, które też nie zawsze są w bibliotece. Warto pamiętać, żeby przy inwentaryzacji kierować się standardami branżowymi i wytycznymi do oznaczania pomieszczeń, bo złe klasyfikacje mogą potem powodować problemy w zarządzaniu budynkiem i jego rozwoju. Właściwe oznaczenia naprawdę wpływają na efektywność działania budynku.

Pytanie 18

Pomiar kątów za pomocą tachimetru elektronicznego w dwóch pozycjach lunety nie usuwa błędu

A. inklinacji
B. indeksu
C. kolimacji
D. centrowania
Pomimo różnych podejść do pomiaru kątów, błędy związane z inklinacją, kolimacją i indeksem są często mylone z błędem centrowania. Inklinacja odnosi się do nachylenia instrumentu względem płaszczyzny poziomej, co może prowadzić do niewłaściwych pomiarów, jeśli nie zostanie skorygowane. Błąd kolimacji z kolei dotyczy różnicy między kierunkiem, w którym wskazuje luneta, a rzeczywistym kierunkiem obiektu. W przypadku pomiarów kątów, kolimacja musi być regularnie sprawdzana, aby zapewnić dokładność wyników. Błąd indeksu, związany z różnicą w odczytach kątów przy różnych położeniach lunety, również nie jest bezpośrednio związany z centrowaniem, ale z właściwościami samego instrumentu. Często wynika z tolerancji produkcyjnych i może być skorygowany poprzez kalibrację. Typowe błędy myślowe prowadzące do zamiany tych pojęć pojawiają się, gdy pomiar kątów traktowany jest jako jednoznaczny proces, bez uwzględnienia, że każde z tych pojęć odnosi się do różnych aspektów precyzji pomiaru. Zrozumienie różnic między tymi błędami jest kluczowe dla skutecznej geodezyjnej praktyki, gdyż każdy z nich wymaga zastosowania innego podejścia do eliminacji błędów pomiarowych.

Pytanie 19

Oznaczenie punktu na profilu poprzecznym trasy L 14,5 wskazuje, że jego odległość od osi trasy po lewej stronie wynosi

A. 1,450 m
B. 0,145 m
C. 145,000 m
D. 14,500 m
Odpowiedź 14,500 m jest właściwa, ponieważ w kontekście profilu poprzecznego trasy, oznaczenie L 14,5 wskazuje na odległość od osi trasy w metrach. System oznaczeń stosowany w inżynierii lądowej i transportowej, w tym w projektowaniu dróg i kolei, przyjmuje, że wartości po 'L' są podawane w metrach, a ich liczba jest interpretowana jako odległość od linii centralnej. Przykładowo, jeżeli mamy trasę kolejową, oznaczenie L 14,5 może odnosić się do konkretnego punktu, który znajduje się 14,5 metra na lewo od osi centralnej torów. Tego rodzaju dane są kluczowe przy planowaniu infrastruktury, gdyż pozwalana na precyzyjne rozmieszczenie elementów takich jak perony, przejazdy, czy urządzenia sygnalizacyjne. Zrozumienie tego systemu oznaczeń jest niezbędne dla inżynierów, architektów i osób zajmujących się projektowaniem infrastruktury transportowej, aby zapewnić efektywne i bezpieczne użytkowanie dróg i tras kolejowych.

Pytanie 20

Jaka jest odległość od początku drogi do punktu, który na tej trasie ma oznaczenie 0/3+57,00 m?

A. 3057,00 m
B. 3557,00 m
C. 357,00 m
D. 557,00 m
Odpowiedź 357,00 m jest poprawna, ponieważ oznaczenie 0/3+57,00 m wskazuje na dokładne miejsce na trasie. W tym systemie oznaczeń, pierwsza część (0) zazwyczaj odnosi się do kilometrażu, a druga część (3+57,00) do metrażu w obrębie tego kilometra. Zatem '3+57,00' oznacza, że punkt znajduje się 3 km i 57 m od punktu odniesienia. Przekształcając to na metry, mamy 3000 m + 57 m, co daje 3057 m. Jednakże, jeżeli punkt 0/3+57,00 m jest odniesiony do '0', oznacza to, że odległość od początku trasy wynosi 357,00 m. Użycie takiego systemu oznaczeń jest powszechne w geodezji, budownictwie i planowaniu infrastruktury, co umożliwia precyzyjne określenie lokalizacji punktów na trasie. Przykładowo, w projektach drogowych lub kolejowych, takie oznaczenia są kluczowe dla właściwego zarządzania i kontroli budowy.

Pytanie 21

Ile punktów o wysokościach odpowiadających cechom warstwic, które je przecinają, należy ustalić przeprowadzając interpolację warstwic o cięciu warstwicowym wynoszącym 0,25 m pomiędzy sąsiednimi pikietami o wysokościach 213,20 m i 214,49 m?

A. 2 punkty
B. 5 punktów
C. 3 punkty
D. 4 punkty
Twoja odpowiedź jest na pewno ok! Przy interpolacji warstwic, kiedy mamy cięcie 0,25 m i od wysokości 213,20 m do 214,49 m, trzeba najpierw obliczyć różnicę wysokości. Wychodzi 1,29 m. Jak podzielisz to przez 0,25 m, dostaniesz prawie 5,16. To znaczy, że powinieneś wyznaczyć pięć punktów na wysokościach: 213,25 m, 213,50 m, 213,75 m, 214,00 m i 214,25 m. Ten sposób interpolacji to standard w geodezji i inżynierii lądowej, bo precyzyjne wysokości są mega ważne, zwłaszcza przy budowach czy tworzeniu map. Dzięki takiemu podejściu masz lepsze dane terenowe, co z kolei wpływa na jakość projektów i efektywność pomiarów.

Pytanie 22

Jakiej z wymienionych zasad nie wolno zastosować podczas sporządzania szkicu terenu przy pomiarze sytuacyjnym metodą ortogonalną?

A. Wpisania miar bieżących zdejmowanych punktów prostopadle do linii pomiarowej
B. Wpisania rzędnych punktów zdejmowanych równolegle do prostokątnej linii domiaru
C. Podania domiarów biegunowych (α, d) punktów, które są zdejmowane
D. Podania miary bieżącej (0,00) przy początkowym punkcie linii pomiarowej
Pomoc w zrozumieniu błędnych odpowiedzi wymaga zwrócenia uwagi na istotne różnice w metodach pomiarowych. Podanie miary bieżącej (0,00) przy punkcie początkowym linii pomiarowej jest stosowane w kontekście przygotowania do pomiarów i rozpoczęcia procesów triangulacji. Umożliwia to ścisłe określenie punktu odniesienia, co jest kluczowe w systemach geodezyjnych opartych na metodzie ortogonalnej, gdzie dokładność zaczyna się od precyzyjnego zdefiniowania punktu bazowego. Wpisanie rzędnych zdejmowanych punktów równolegle do linii domiaru prostokątnego również odgrywa istotną rolę w precyzyjnym ustalaniu lokalizacji. Równoległe wpisywanie rzędnych pozwala na zachowanie proporcji i relacji między punktami w terenie, co jest zgodne z zasadami zachowania prostokątności. Z kolei wpisanie miar bieżących zdejmowanych punktów prostopadle do linii pomiarowej jest standardową praktyką, która wspiera precyzyjność pomiarów w terenie. Takie podejście sprzyja zminimalizowaniu błędów pomiarowych, a ich zastosowanie jest zgodne z ogólnie przyjętymi standardami w geodezji. Kluczowym błędem myślowym jest zrozumienie, że każda z tych zasad ma swoje miejsce w kontekście różnych metod, a nie każda z nich jest uniwersalna dla danej metody. Dlatego ważne jest, aby dobrze znać specyfikę metody ortogonalnej i jej zasady, aby efektywnie i precyzyjnie wykonywać pomiary w terenie.

Pytanie 23

Na czym umieszcza się współrzędne X oraz Y punktów osnowy realizacyjnej?

A. mapie zasadniczej
B. mapie ewidencyjnej
C. szkicu dokumentacyjnym
D. szkicu inwentaryzacyjnym
Szkic dokumentacyjny to naprawdę przydatne narzędzie, które pomaga w wizualizacji i zapisywaniu współrzędnych punktów osnowy realizacyjnej. Te współrzędne X i Y są mega ważne, bo pozwalają określić, gdzie dokładnie znajdują się punkty w przestrzeni, co jest super istotne w geodezji i inżynierii. Jak masz taki szkic, to łatwiej analizować i interpretować te wszystkie geodezyjne dane. Przykładowo, przy inwentaryzacji gruntów, precyzyjne odzwierciedlenie punktów osnowy pozwala dokładnie ustalić granice działek. No i co ważne, według standardów geodezyjnych, dokumentacja musi być zrozumiała i przejrzysta, żeby każdy mógł to ogarnąć. Dlatego tak ważne jest, aby współrzędne były poprawnie naniesione na szkic, bo to wpływa na cały proces geodezyjny i zgodność z normami prawnymi i technicznymi.

Pytanie 24

Na podstawie zamieszczonych w tabeli wyników pomiarów punktów kontrolowanych, oblicz przemieszczenie pionowe punktu nr 3.

Nr punktuPomiar pierwotny
Hp [m]
Pomiar wtórny
Hw [m]
1521,2578521,2480
2521,2521521,2410
3521,2610521,2554
4521,2586521,2533
5521,2567521,2458
6521,2505521,2412

A. +56 mm
B. +5,6 mm
C. -56 mm
D. -5,6 mm
Odpowiedź -5,6 mm jest rzeczywiście trafna, bo dokładnie pokazuje, że punkt nr 3 przesunął się w dół o 5,6 mm. To dość istotne w geodezji i inżynierii, bo takie pomiary mówią nam, czy konstrukcje są stabilne i czy coś się zmienia w terenie. Żeby obliczyć to przemieszczenie, porównujemy pomiary z początku i po zmianach. W tym wypadku, pierwotna wartość punktu nr 3 została zmniejszona o 5,6 mm. To przydaje się w praktyce, na przykład przy analizie osiadań budynków, bo musimy wiedzieć, czy się nie zapadają. W branży używa się różnych metod, jak tachimetria czy GNSS, żeby mieć pewność co do dokładności danych o przemieszczeniach. Przepisy, takie jak Eurokod 7, wymagają regularnego sprawdzania tych wartości, by zapewnić bezpieczeństwo naszych budowli.

Pytanie 25

Jakie informacje nie są umieszczane na szkicu polowym podczas pomiaru szczegółów terenowych z zastosowaniem metody ortogonalnej?

A. Wysokości punktów terenu
B. Domiary prostokątne
C. Szczegóły terenowe sytuacyjne
D. Numery obiektów budowlanych
Poprawną odpowiedzią jest stwierdzenie, że na szkicu polowym z pomiaru szczegółów terenowych metodą ortogonalną nie zamieszcza się wysokości punktów terenu. Szkic polowy służy do przedstawienia szczegółów sytuacyjnych, takich jak numery budynków czy tereny użytkowe, które są kluczowe dla analizy zagospodarowania przestrzennego. W przypadku pomiaru ortogonalnego skupiamy się na odwzorowaniu kształtów i układów w pionie i poziomie, co ułatwia późniejsze prace geodezyjne i kartograficzne. Wysokości punktów terenu, które są istotne w kontekście modelowania terenu, są zazwyczaj rejestrowane osobno, w ramach pomiarów wysokościowych, a następnie łączone z danymi sytuacyjnymi w procesie tworzenia map. Takie podejście jest zgodne z normami geodezyjnymi, które promują precyzję i efektywność w zbieraniu danych.

Pytanie 26

Maksymalna różnica dwukrotnego pomiaru ΔH na jednym stanowisku, przeprowadzonego metodą niwelacji geometrycznej, powinna wynosić nie więcej niż

A. +/- 4 mm
B. +/- 2 mm
C. +/- 3 mm
D. +/- 5 mm
Wybór odpowiedzi inne niż +/- 4 mm może prowadzić do nieporozumień dotyczących precyzji pomiarów w niwelacji geometrycznej. Odpowiedzi takie jak +/- 2 mm, +/- 3 mm oraz +/- 5 mm ustawiają zbyt rygorystyczne lub zbyt liberalne wymagania co do dokładności pomiarów. Zbyt wysoka dokładność, jak w przypadku +/- 2 mm, może nie być realistyczna w warunkach polowych, gdzie czynniki takie jak warunki atmosferyczne, nierówności terenu czy niewłaściwe ustawienie sprzętu mogą wprowadzać znaczne zmiany w wynikach. Z kolei zbyt duży zakres błędu, jak +/- 5 mm, nie zapewnia wystarczającej precyzji, co jest kluczowe w kontekście inżynieryjnym, gdzie różnice w wysokościach mogą prowadzić do poważnych problemów konstrukcyjnych. Ponadto, brak zrozumienia standardów branżowych dotyczących tolerancji błędu może prowadzić do opóźnień w projektach oraz zwiększenia kosztów związanych z korektą błędów. W praktyce, zgodnie z wytycznymi organizacji takich jak FIG czy ISO, akceptowalny błąd pomiaru w niwelacji geometrycznej powinien wynosić maksymalnie +/- 4 mm, co pozwala na zrównoważenie precyzji i wykonalności pomiarów w rzeczywistych warunkach.

Pytanie 27

Kto odpowiada za ustanowienie i prowadzenie krajowej geodezyjnej ewidencji sieci uzbrojenia terenu?

A. wojewoda
B. główny geodeta kraju
C. geodeta uprawniony
D. starosta
Główny geodeta kraju jest organem odpowiedzialnym za zakładanie i prowadzenie Krajowej geodezyjnej ewidencji sieci uzbrojenia terenu, co wynika z regulacji zawartych w Ustawie z dnia 17 maja 1989 r. - Prawo geodezyjne i kartograficzne. Jego zadaniem jest nadzór nad działalnością geodezyjną w kraju, w tym zapewnienie odpowiedniej jakości danych geodezyjnych oraz ich zgodności z obowiązującymi normami i standardami. W praktyce, główny geodeta kraju koordynuje prace związane z ewidencją infrastruktury, co jest kluczowe dla planowania przestrzennego oraz zarządzania zasobami naturalnymi. Działania te mają na celu utrzymanie aktualnej bazy danych, która jest podstawą podejmowania decyzji administracyjnych oraz inwestycyjnych. Umożliwia to również efektywne zarządzanie sieciami uzbrojenia terenu, co jest istotne w kontekście rozwoju infrastruktury i ochrony środowiska.

Pytanie 28

Na mapie w skali 1:2000 zmierzono odcinek o długości 145,4 mm. Jakiemu odcinkowi w rzeczywistości odpowiada ta długość?

A. 145,40 m
B. 29,08 m
C. 290,80 m
D. 14,54 m
Błędne odpowiedzi wynikają z nieprawidłowego zrozumienia przeliczenia skali mapy. Często spotykanym błędem jest mylenie jednostek miary lub nieprawidłowe mnożenie przez współczynnik skali. Na przykład odpowiedź 145,40 m sugeruje, że użytkownik pomnożył długość odcinka na mapie przez 1, co jest całkowicie błędne. Ponadto, gdy ktoś odpowiada 29,08 m, może to sugerować, że podzielił długość odcinka przez 10, co również nie ma sensu w kontekście skali. Odpowiedź 14,54 m może wynikać ze zrozumienia, że najpierw przeliczono jednostki na centymetry, a następnie podzielono przez 100, co jest nieprawidłowym podejściem. Typowe błędy myślowe w takich przypadkach wynikają z nieznajomości zasad przeliczania jednostek czy też błędnego założenia o proporcjach. Aby uniknąć tych pułapek, ważne jest, aby zawsze pamiętać o zasadzie, że w przypadku skali, wartości są mnożone, a nie dzielone. Zrozumienie tych zasad jest kluczowe nie tylko w kontekście nauki o geodezji, ale również w wielu innych dziedzinach, jak architektura czy inżynieria lądowa.

Pytanie 29

Jakie informacje nie są umieszczane na szkicu polowym podczas pomiaru szczegółów terenowych przy użyciu metody ortogonalnej?

A. Sytuacyjne szczegóły terenowe
B. Wysokości punktów terenu
C. Domiary prostokątne
D. Numery obiektów budowlanych
Wysokości punktów terenu nie są zamieszczane na szkicu polowym z pomiaru szczegółów terenowych metodą ortogonalną, ponieważ ten rodzaj szkicu koncentruje się głównie na przedstawieniu szczegółów sytuacyjnych oraz relacji przestrzennych między obiektami. W praktyce, szkic polowy ma na celu odwzorowanie układu budynków, dróg oraz innych istotnych elementów terenu, co pozwala na ich identyfikację i późniejsze odtworzenie w dokumentacji technicznej. Przykładem zastosowania szkicu ortogonalnego może być sporządzanie planów zagospodarowania przestrzennego, gdzie kluczowe jest przedstawienie układu funkcjonalnego terenu, a nie jego wysokości. Dodatkowo, w standardach geodezyjnych, takich jak Zasady Techniki Geodezyjnej (PTG), wskazuje się, że szkice polowe powinny być zwięzłe i zawierać tylko najistotniejsze informacje, co wyklucza konieczność umieszczania danych o wysokościach."

Pytanie 30

Jakie prace geodezyjno-kartograficzne nie wymagają zgłoszenia ani przekazania dokumentacji do Zasobu Geodezyjnego i Kartograficznego?

A. Odniesione do pomiarów sytuacyjno-wysokościowych
B. Powiązane z inwentaryzacją powykonawczą budynków
C. Realizowane w celu określenia objętości mas ziemnych
D. Dotyczące aktualizacji mapy w celach projektowych
Odpowiedź o pracach geodezyjno-kartograficznych, które mają na celu ustalenie objętości mas ziemnych, jest absolutnie trafna. Takie działania zazwyczaj nie wymagają żadnych formalności, jak zgłoszenia czy przekazywania dokumentacji do Zasobu Geodezyjnego i Kartograficznego. W praktyce te prace często są częścią różnych procesów budowlanych, na przykład przy ocenie, ile ziemi musimy wykopać albo nasypać. Myślę, że ustalanie objętości tych mas to naprawdę istotne zadanie, które można robić na podstawie prostych pomiarów w terenie i obliczeń matematycznych. Przy większych projektach budowlanych korzysta się też z nowoczesnych technologii, jak skanowanie 3D czy fotogrametria, co znacznie poprawia dokładność wyników. Dodatkowo, wszystkie te prace są zgodne z aktualnymi normami branżowymi, co zapewnia ich jakość i zgodność z przepisami. Co więcej, ustalanie objętości mas ziemnych jest ważne nie tylko w budownictwie, ale też w gospodarce przestrzennej oraz w ochronie środowiska, gdzie zarządzanie odpadami ziemnymi jest bardzo istotne.

Pytanie 31

Jaką wartość ma średni błąd pomiaru graficznego odcinka o długości 10 cm, gdy błąd względny pomiaru wynosi 1:1000?

A. ±1,00 mm
B. ±10,00 mm
C. ±0,01 mm
D. ±0,10 mm
Średni błąd pomiaru można obliczyć, mnożąc długość mierzony odcinka przez błąd względny. W tym przypadku, długość odcinka wynosi 10 cm, a błąd względny wynosi 1:1000. Oznacza to, że na każdy 1000 mm długości mierzonych, błąd wynosi 1 mm. Dlatego, aby obliczyć średni błąd, wykonujemy następujące działanie: 10 cm (czyli 100 mm) * (1 mm / 1000 mm) = 0,10 mm. Takie obliczenia są istotne w kontekście precyzyjnych pomiarów, zwłaszcza w inżynierii i metrologii, gdzie dokładność i minimalizacja błędów pomiarowych są kluczowe. Przykładem zastosowania tej wiedzy jest projektowanie elementów mechanicznych, gdzie tolerancje muszą być ściśle określone, aby zapewnić ich poprawne funkcjonowanie. Stosowanie właściwych standardów, takich jak ISO 2768, które definiują tolerancje ogólne dla wymiarów, jest niezbędne dla uzyskania wysokiej jakości wyrobów.

Pytanie 32

Wysokość osi celowej to 213,100 m. Na jakim pomiarze powinna być umieszczona łatę, aby osiągnięta wysokość punktu wyniosła 212,800?

A. 0300 mm
B. 3000 mm
C. 0030 mm
D. 1300 mm
Aby obliczyć, na jakim odczycie należy ustawić łatę, aby wysokość realizowanego punktu wyniosła 212,800 m, musimy skorzystać z pojęcia różnicy wysokości. Wysokość osi celowej wynosi 213,100 m, a zatem różnica między wysokością osi celowej a wysokością punktu wynosi 213,100 m - 212,800 m = 0,300 m, co jest równoważne 300 mm. Oznacza to, że aby uzyskać żądaną wysokość, musimy ustawić łatę na odczycie 300 mm. W praktyce, przy pomiarach geodezyjnych, stosuje się ten typ obliczeń w celu precyzyjnego ustalenia poziomu obiektów budowlanych lub innych punktów odniesienia. Tego rodzaju obliczenia są kluczowe w geodezji i budownictwie, gdzie precyzyjne pomiary wysokościowe są niezbędne do zapewnienia stabilności i poprawności konstrukcji budowlanych.

Pytanie 33

Która z podanych czynności nie dotyczy aktualizacji mapy zasadniczej?

A. Wprowadzenie jedynie wybranych danych
B. Dodanie nowych elementów treści mapy
C. Korekta zmian w nazewnictwie
D. Usunięcie sytuacji, która już nie istnieje w terenie
Wszystkie pozostałe odpowiedzi sugerują działania, które są integralną częścią aktualizacji mapy zasadniczej. Naniesienie nowych elementów treści mapy jest kluczowym zadaniem, które zapewnia, że mapa odzwierciedla aktualny stan infrastruktury i zagospodarowania przestrzennego. W praktyce oznacza to, że nowe budynki, drogi czy inne obiekty muszą być wprowadzane do zasobów mapowych, aby mogły być wykorzystywane w planowaniu przestrzennym i decyzjach administracyjnych. Zmiany w nazewnictwie to kolejny istotny aspekt, ponieważ aktualizacja nazw ulic czy obiektów jest niezbędna dla poprawnego funkcjonowania systemów informacyjnych oraz dla użytkowników, którzy korzystają z tych danych w codziennym życiu. Usunięcie sytuacji nieistniejącej już w terenie, takie jak zlikwidowane budynki czy drogi, również jest ważne, ponieważ w przeciwnym razie użytkownicy mogą być wprowadzani w błąd przez nieaktualne informacje. Prowadzi to do typowego błędu myślowego, w którym użytkownicy mogą zakładać, że aktualizacja mapy nie wymaga pełnej weryfikacji danych, a jedynie fragmentarycznego podejścia. Taka strategia może skutkować powstawaniem nieścisłości oraz nieaktualności, co podważa wiarygodność mapy jako źródła informacji. Zastosowanie standardowych procedur aktualizacji, zgodnych z normami branżowymi, jest kluczowe dla zachowania rzetelności i użyteczności mapy zasadniczej.

Pytanie 34

W której bazie danych państwowego zasobu geodezyjnego i kartograficznego można znaleźć informacje o podziemnych przewodach elektroenergetycznych?

A. BDSOG
B. EGiB
C. GESUT
D. BDOT500
BDOT500 to baza, która zajmuje się ewidencją gruntów i budynków, ale niestety nie ma tam szczegółowych danych o podziemnych instalacjach, takich jak przewody elektryczne. Potem mamy BDSOG, która dotyczy sieci uzbrojenia terenu, ale raczej skupia się na wodociągach i kanalizacji, więc też nie to. EGiB, czyli Ewidencja Gruntów i Budynków, znowu nie nadaje się do szukania info o podziemnych sieciach, bo dotyczy głównie nieruchomości. Czasem można się pogubić w tych bazach, bo każda ma swoje konkretne cele i zastosowania. Wydaje mi się, że warto zrozumieć różnice między nimi, żeby łatwiej zbierać potrzebne info w inwestycjach budowlanych. Przed wyborem bazy, dobrze jest rzucić okiem na jej zawartość i cel, żeby nie wpaść w jakąś pułapkę i uniknąć kłopotów później.

Pytanie 35

W niwelacji trygonometrycznej przewyższeniem określamy różnicę wysokości między

A. punktem celowania a stanowiskiem instrumentu
B. punktem celowania a horyzontem instrumentu
C. reperami a punktem celowania
D. sąsiednimi reperami
W przypadku niwelacji trygonometrycznej nie każdy pomiar różnicy wysokości pomiędzy różnymi punktami jest traktowany jako przewyższenie. Odpowiedzi, które wskazują na różnice pomiędzy reperami a punktem celowania, pomiędzy punktem celowania a stanowiskiem instrumentu czy sąsiednimi reperami, wprowadzają w błąd, ponieważ nie oddają istoty tego, co oznacza przewyższenie. Repery są punktami o znanej wysokości, które służą jako odniesienie w pomiarach. Chociaż ważne jest określenie różnicy wysokości pomiędzy nimi, to w kontekście przewyższenia istotny jest pomiar w odniesieniu do poziomu horyzontu instrumentu. Często popełnianym błędem jest mylenie różnych punktów odniesienia, co prowadzi do nieprawidłowej interpretacji wyników pomiarów. W geodezji kluczowe jest ścisłe przestrzeganie definicji oraz terminologii, aby unikać nieporozumień, które mogą skutkować poważnymi konsekwencjami w realizowanych projektach. Zrozumienie różnicy między różnicą wysokości a przewyższeniem jest fundamentalne dla każdego geodety oraz inżyniera, który zajmuje się pomiarami terenu oraz projektowaniem, dlatego tak istotne jest przyswojenie właściwych koncepcji i pojęć. Dobre praktyki w branży zalecają ciągłe szkolenie i aktualizację wiedzy w tym zakresie.

Pytanie 36

Z jaką precyzją podaje się wysokości elementów naziemnych uzbrojenia terenu na mapach zasadniczych?

A. 0,05 m
B. 0,01 m
C. 0,1 m
D. 0,5 m
Wiele osób może mieć trudności z zrozumieniem, dlaczego dokładność 0,05 m, 0,5 m czy 0,1 m jest niewystarczająca w kontekście wysokości elementów uzbrojenia terenu. Wysokości podawane z dokładnością do 0,05 m nie uwzględniają wszystkich drobnych, ale krytycznych różnic, które mogą wystąpić w terenie. W inżynierii i geodezji, zwłaszcza w przypadku projektów budowlanych, nawet małe odchylenia mogą prowadzić do znacznych problemów, jak chociażby nieodpowiednie odprowadzenie wód opadowych lub niewłaściwe osadzenie obiektów. Podobnie, dokładność 0,5 m jest zbyt ogólna, aby spełnić wymagania dzisiejszej inżynierii lądowej, gdzie standardy precyzji są znacznie wyższe w związku z rozwojem technologii pomiarowych. Nie można również zapominać, że podanie wysokości z dokładnością do 0,1 m, chociaż zbliża się do wymagań, nadal nie zapewnia wymaganego poziomu precyzji, który jest konieczny w kontekście regulacji prawnych i norm branżowych. Ważne jest, aby rozumieć, że niedoszacowanie wymaganej dokładności może prowadzić do kosztownych błędów w projektowaniu oraz realizacji inwestycji, co podkreśla rolę dbałości o szczegóły w geodezji i inżynierii.

Pytanie 37

Szkic polowy inwentaryzacji po zakończeniu budowy przyłącza kanalizacyjnego do obiektu powinien uwzględniać

A. rysunek instalacji wewnętrznej w budynku.
B. materiał, z którego wykonano przewód.
C. kąt nachylenia przewodu.
D. średnicę przewodu.
Wybierając inne odpowiedzi, można wpaść w pułapkę i myśleć, że wie się, co jest naprawdę ważne w inwentaryzacji powykonawczej przyłącza kanalizacyjnego. Nachylenie przewodu, mimo że ważne, wcale nie jest kluczową sprawą na szkicu, bo bardziej chodzi o jego rozmieszczenie w terenie i efektywne odprowadzanie ścieków. Z kolei nazwa materiału, z którego zrobiony jest przewód, jest ważna przy ocenie jakości instalacji, ale nie ma wpływu na funkcjonalność czy przepustowość całego układu, więc w kontekście inwentaryzacji jest to raczej mało efektywna informacja. Co do szkicu instalacji wewnątrz budynku – mimo że daje przydatne info o rozkładzie systemu, to w etapie inwentaryzacji zewnętrznego przyłącza nie jest to potrzebne. Z doświadczenia wiem, że wybierając złe odpowiedzi, można mieć mylne pojęcie o tym, jak działa instalacja kanalizacyjna, co w przyszłości może prowadzić do błędnych wniosków podczas projektowania czy audytów. Trzeba zrozumieć, że każda wartość w dokumentacji ma swoje miejsce, ale nie wszystkie są kluczowe do polowego szkicu, co jest niezbędne, żeby utrzymać dobre standardy w branży budowlanej.

Pytanie 38

Pierwszy rysunek mapy zasadniczej wykonuje się w kolorze

A. brązowym
B. niebieskim
C. żółtym
D. czarnym
Wykreślanie pierworysu mapy zasadniczej kolorem czarnym jest zgodne z ustalonymi standardami kartograficznymi. Kolor czarny jest używany do przedstawiania elementów trwałych, takich jak granice działek, budynki oraz drogi. Użycie czerni w tym kontekście zapewnia klarowność i czytelność mapy, co jest kluczowe dla jej użytkowników. Przykładem zastosowania tej zasady może być przygotowanie mapy do celów planowania przestrzennego, gdzie precyzyjne oznaczenie granic działek jest niezbędne do podejmowania decyzji inwestycyjnych. W praktyce oznacza to, że podczas tworzenia mapy zasadniczej należy stosować się do wytycznych zawartych w normach PN-EN ISO 19115 dotyczących metadanych i PN-EN ISO 19117 dotyczących wizualizacji geografii. Zastosowanie odpowiednich kolorów oraz symboli ma kluczowe znaczenie w kontekście komunikacji przestrzennej oraz interpretacji danych geograficznych przez różne grupy odbiorców.

Pytanie 39

Określ wartość poziomu odniesienia profilu podłużnego, jeśli maksymalna wysokość zaznaczonego na tym profilu punktu wynosi 225,85 m, a minimalna 185,20 m?

A. 225,00 m
B. 230,00 m
C. 180,00 m
D. 200,00 m
Wartość poziomu porównawczego profilu podłużnego oblicza się na podstawie różnicy pomiędzy najwyższą a najniższą wysokością punktów. W tym przypadku najwyższa wysokość wynosi 225,85 m, a najniższa 185,20 m. Aby określić poziom porównawczy, należy wziąć pod uwagę dolne granice terenu, które są istotne w kontekście inżynierii lądowej i budowlanej. Poziom porównawczy powinien znajdować się poniżej najwyższej wartości, ale bliżej dolnej wartości, aby uwzględnić zmiany w terenie i ułatwić dalsze prace projektowe. Odpowiedzią 180,00 m ustalamy wartość, która zapewnia nie tylko wygodę w operacjach inżynieryjnych, ale również odpowiada praktycznym wymaganiom budowlanym, takim jak odwodnienie i wznoszenie konstrukcji. W ogólnej praktyce, ustalanie odpowiedniego poziomu porównawczego jest kluczowe dla zapewnienia bezpieczeństwa i efektywności projektów budowlanych, co podkreślają standardy związane z projektowaniem infrastruktury. Przykładem zastosowania tej wiedzy może być projektowanie dróg, gdzie poziom porównawczy musi uwzględniać różnice w wysokościach, aby zapobiec problemom z odprowadzaniem wód opadowych oraz zapewnić stabilność konstrukcji.

Pytanie 40

Na podstawie tabeli określ dopuszczalną długość domiaru prostokątnego do budynku przy pomiarze sytuacyjnym metodą ortogonalną.

Grupa
szczegółów terenowych
Dopuszczalna
długość rzędnej
Dopuszczalny błąd pomiaru
długości rzędnej i odciętej
I25 m0,05 m
II50 m0,05 m
III70 m0,10 m

A. 0,05 m
B. 50 m
C. 0,10 m
D. 25 m
Wybór odpowiedzi innych niż 25 m prowadzi do niepełnego zrozumienia zasad pomiarów sytuacyjnych oraz wymagań dotyczących długości domiarów prostokątnych. Odpowiedzi 0,10 m, 0,05 m oraz 50 m mogą wydawać się logiczne, jednak każda z nich jest nieadekwatna w kontekście określenia dopuszczalnej długości rzędnej dla grupy I. Odpowiedź 0,10 m i 0,05 m są zbyt małe w porównaniu do przyjętych norm, co może prowadzić do poważnych błędów pomiarowych, a także ogranicza możliwość uzyskania pełnych i prawidłowych danych geodezyjnych. Zbyt krótki domiar może nie uwzględniać wszystkich istotnych szczegółów terenowych, co skutkuje niedokładnościami w dalszej obróbce danych. Z kolei 50 m, jako długość przekraczająca maksymalne wartości wskazane w tabeli, może skutkować przeszacowaniem i naruszeniem standardów wymaganych w branży geodezyjnej. Typowym błędem myślowym jest zatem nieprzestrzeganie tabeli oraz ignorowanie jej zapisów, co prowadzi do wybierania długości, które nie są zgodne z ustalonymi normami. W geodezji niezwykle istotne jest, aby nie tylko znać zasady, ale także umieć je stosować w praktyce, co zapewnia jakość i dokładność wykonywanych pomiarów.