Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 7 maja 2025 12:41
  • Data zakończenia: 7 maja 2025 13:03

Egzamin zdany!

Wynik: 34/40 punktów (85,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Komputer K1 jest połączony z interfejsem G0 rutera, a komputer K2 z interfejsem G1 tego samego urządzenia. Na podstawie danych przedstawionych w tabeli, określ właściwy adres bramy dla komputera K2.

InterfejsAdres IPMaska
G0172.16.0.1255.255.0.0
G1192.168.0.1255.255.255.0

A. 192.168.0.2
B. 172.16.0.1
C. 172.16.0.2
D. 192.168.0.1
Poprawnym adresem bramy dla komputera K2 jest adres przypisany do interfejsu sieciowego G1 rutera czyli 192.168.0.1. Wynika to z faktu że komputer K2 jest podłączony do tego interfejsu co oznacza że w ramach swojej podsieci komunikuje się z ruterem właśnie za pośrednictwem tego adresu IP. W sieciach komputerowych brama domyślna to adres urządzenia sieciowego zazwyczaj rutera który umożliwia komunikację z innymi sieciami. Praktyczne znaczenie jest takie że każda komunikacja spoza lokalnej podsieci wymaga przejścia przez ten punkt. Ważne jest aby adres bramy należał do tej samej podsieci co urządzenia które będzie obsługiwać co w tym przypadku potwierdzają odpowiednie wpisy IP i maski. W praktyce poprawne ustawienie bramy domyślnej jest kluczowe w celu zapewnienia poprawnej komunikacji w sieci lokalnej oraz poza nią. Zrozumienie zasady działania bramy domyślnej pomaga w konfiguracji i diagnozowaniu problemów sieciowych oraz jest zgodne z najlepszymi praktykami w zarządzaniu sieciami komputerowymi.

Pytanie 2

Który standard złącza DVI pozwala na przesyłanie wyłącznie sygnałów analogowych?

Ilustracja do pytania
A. Rys. B
B. Rys. C
C. Rys. D
D. Rys. A
Złącze DVI-A jest dedykowane wyłącznie do przesyłania sygnałów analogowych mimo że standard DVI obsługuje różne typy sygnałów. DVI-A używa sygnałów podobnych do VGA co czyni je kompatybilnym z monitorami analogowymi. Ze względu na swoją konstrukcję DVI-A jest wykorzystywane do podłączania starszych urządzeń które nie obsługują sygnałów cyfrowych. Z technicznego punktu widzenia piny złącza DVI-A są zorganizowane w taki sposób aby przesyłać jedynie sygnały analogowe co wyklucza możliwość transmisji cyfrowej. W praktyce złącza DVI-A można znaleźć w sytuacjach gdy istnieje potrzeba podłączenia urządzeń z wyjściem VGA do nowoczesnych kart graficznych które posiadają tylko złącza DVI. W kontekście standardów DVI-A nie jest już powszechnie stosowane w nowych urządzeniach ale nadal znajduje zastosowanie w starszym sprzęcie. Zrozumienie różnicy między DVI-A a innymi standardami DVI jak DVI-D czy DVI-I jest kluczowe przy doborze odpowiednich kabli i adapterów w środowiskach mieszanych gdzie używane są zarówno monitory analogowe jak i cyfrowe.

Pytanie 3

Wykonując polecenie ipconfig /flushdns, można przeprowadzić konserwację urządzenia sieciowego, która polega na

A. wyczyszczeniu pamięci podręcznej systemu nazw domenowych
B. odnowieniu dzierżawy adresu IP
C. zwolnieniu dzierżawy przydzielonej przez DHCP
D. aktualizacji konfiguracji nazw interfejsów sieciowych
Polecenie 'ipconfig /flushdns' jest używane do czyszczenia bufora systemu nazw domenowych (DNS) w systemie operacyjnym Windows. DNS pełni kluczową rolę w sieciach komputerowych, umożliwiając przekształcanie nazw domen (np. www.example.com) na odpowiadające im adresy IP. W momencie, gdy system operacyjny odwiedza daną stronę internetową, zapisuje te informacje w buforze DNS, aby przyspieszyć przyszłe połączenia. Czasami jednak bufor ten może zawierać nieaktualne lub niepoprawne wpisy, co może prowadzić do problemów z łącznością, jak np. wyświetlanie błędnych stron. Wykonanie polecenia 'ipconfig /flushdns' pozwala na usunięcie tych wpisów, co zmusza system do ponownego pobrania aktualnych danych DNS, co jest zgodne z najlepszymi praktykami zarządzania siecią. Dzięki temu, użytkownicy mogą uniknąć problemów z dostępem do stron i usług, które mogły ulec zmianie. Przykładem może być sytuacja, w której serwer zmienił adres IP, a użytkownik wciąż próbuje łączyć się z nieaktualnym adresem, co skutkuje brakiem dostępu do usługi. Rekomenduje się regularne użycie tego polecenia w przypadku wystąpienia problemów z dostępem do sieci.

Pytanie 4

Na załączonym rysunku przedstawiono

Ilustracja do pytania
A. złączak konektorów
B. lokalizator kabli
C. ściągacz do izolacji
D. nóż do terminacji
Lokalizator przewodów to naprawdę fajne narzędzie, które pomaga nam znaleźć i śledzić przewody w różnych instalacjach elektrycznych i telekomunikacyjnych. W zasadzie to urządzenie składa się z nadajnika, co emituje sygnał elektryczny, i odbiornika, który ten sygnał łapie wzdłuż trasy przewodu. Dzięki temu możemy szybko znaleźć przewody, które są schowane w ścianach czy pod ziemią – to naprawdę przydatne, zwłaszcza gdy przychodzi czas na naprawy czy modernizacje. Warto też dodać, że lokalizatory są nie tylko dla instalacji elektrycznych, ale i sieciowych, co jest mega ważne w różnych biurach czy fabrykach. No i nie możemy zapominać o tym, że według standardów branżowych, musimy być dokładni i bezpieczni, pracując z tymi instalacjami. Dobre praktyki mówią, że trzeba regularnie kalibrować taki sprzęt, żeby działał jak należy. Jak widzisz, znajomość obsługi lokalizatora przewodów jest niezbędna dla techników, co zajmują się elektryką, telekomunikacją czy IT. To naprawdę zwiększa efektywność i pozwala zaoszczędzić czas przy rozwiązywaniu problemów.

Pytanie 5

Aby zapobiegać i eliminować szkodliwe oprogramowanie, takie jak exploity, robaki oraz trojany, konieczne jest zainstalowanie oprogramowania

A. antyspyware.
B. antymalware.
C. adblok.
D. antyspam.
Odpowiedź 'antymalware' jest naprawdę trafna. To oprogramowanie ma za zadanie wykrywać, blokować i usuwać różne rodzaje szkodliwego oprogramowania, takie jak exploity, robaki czy trojany. Działa na zasadzie skanowania systemów w poszukiwaniu znanych zagrożeń i wykorzystuje różne techniki, żeby znaleźć nowe, które jeszcze nikomu się nie trafiły. Myślę, że dobrym przykładem użycia antymalware jest regularne przeszukiwanie komputera, żeby upewnić się, że jest on bezpieczny. Ważne jest, żeby każda firma miała coś takiego zainstalowanego i aktualizowanego, bo to pomaga chronić dane przed najnowszymi zagrożeniami. Oprócz samego antymalware, warto też mieć dodatkowe zabezpieczenia, takie jak zapory ogniowe czy systemy wykrywania intruzów, co jeszcze bardziej zwiększa naszą ochranę przed atakami.

Pytanie 6

Złącze IrDA służy do bezprzewodowej komunikacji i jest

A. złączem umożliwiającym przesył danych na odległość 100m
B. złączem radiowym
C. rozszerzeniem technologii BlueTooth
D. złączem szeregowym
Złącza radiowe, jak Wi-Fi czy Zigbee, bardzo różnią się od IrDA, bo to ostatnie używa podczerwieni do komunikacji. Te złącza radiowe mogą działać na znacznie większych odległościach niż te standardowe 1-2 metry, dlatego są wykorzystywane w różnych zastosowaniach, od domowych sieci internetowych po smart home. Kolejna kiepska koncepcja to mówienie o przesyłaniu danych na 100 m – z jednej strony, standardy radiowe mogą to umożliwiać, ale IrDA nie ma takich możliwości zasięgowych. No i pomylenie IrDA z Bluetooth to dość powszechny błąd, bo Bluetooth ma większy zasięg i działa całkiem inaczej niż IrDA, która jest raczej do punktu do punktu, a Bluetooth potrafi łączyć więcej urządzeń naraz. Warto też pamiętać, że IrDA to złącze szeregowe, więc dane lecą w kolejności. Można w łatwy sposób się pomylić, myląc te technologie, co prowadzi do błędnych wniosków o ich funkcjonalności i zastosowaniu.

Pytanie 7

Jakie pasmo częstotliwości definiuje klasa okablowania D?

A. 500 MHz
B. 250 MHz
C. 10 MHz
D. 100 MHz
Wybór innych pasm częstotliwości, takich jak 500 MHz, 10 MHz czy 250 MHz, jest niepoprawny, ponieważ nie odpowiadają one wymaganiom standardu klasa D. Pasmo 500 MHz jest charakterystyczne dla wyższej klasy okablowania, takiej jak klasa F, używanej w aplikacjach, które wymagają dużej przepustowości, co wykracza poza możliwości okablowania klasy D. Z kolei 250 MHz i 10 MHz również nie są adekwatne, ponieważ 250 MHz odnosi się do klasy E, która obsługuje bardziej zaawansowane technologie, a 10 MHz jest zbyt niską częstotliwością, która nie spełnia standardów dla współczesnych sieci. Często mylenie klas okablowania i ich odpowiadających częstotliwości wynika z braku zrozumienia różnic między poszczególnymi standardami oraz ich zastosowaniem w praktyce. Aby poprawnie dobierać okablowanie do specyfiki projektu, ważne jest, aby mieć na uwadze wymagania dotyczące przepustowości, odległości oraz rodzaju przesyłanych danych. Właściwy dobór klas okablowania pozwala na optymalne wykorzystanie infrastruktury oraz zapewnia stabilność i wydajność sieci.

Pytanie 8

Jaką liczbę komputerów można zaadresować w sieci z maską 255.255.255.224?

A. 27 komputerów
B. 30 komputerów
C. 32 komputery
D. 25 komputerów
Odpowiedź 30 komputerów jest prawidłowa, ponieważ maska podsieci 255.255.255.224 oznacza, że mamy do czynienia z maską o długości 27 bitów (22 bity do identyfikacji podsieci i 5 bitów do identyfikacji hostów). Aby obliczyć liczbę dostępnych adresów IP dla hostów w takiej podsieci, stosujemy wzór 2^n - 2, gdzie n to liczba bitów przeznaczonych na hosty. W naszym przypadku mamy 5 bitów, co daje 2^5 = 32. Jednakże musimy odjąć 2 adresy: jeden dla adresu sieci (wszystkie bity hostów ustawione na 0) i jeden dla adresu rozgłoszeniowego (wszystkie bity hostów ustawione na 1). Dlatego 32 - 2 = 30. Taka konfiguracja jest powszechnie stosowana w małych sieciach lokalnych, gdzie zarządzanie adresami jest kluczowe. Umożliwia to efektywne wykorzystanie przestrzeni adresowej i jest zgodne z zasadami projektowania sieci, gdzie każda podsieć powinna mieć odpowiednią liczbę adresów dla urządzeń. Przykład zastosowania tej maski to sieci biurowe, gdzie liczba urządzeń jest ograniczona, a efektywność w zarządzaniu adresami jest istotna.

Pytanie 9

Jakie polecenie powinien zastosować użytkownik systemu Linux, aby wydobyć zawartość archiwum o nazwie dane.tar?

A. tar –xvf dane.tar
B. gunzip –r dane.tar
C. tar –cvf dane.tar
D. gzip –r dane.tar
Polecenie 'tar –xvf dane.tar' jest prawidłowe, ponieważ 'tar' jest standardowym narzędziem w systemach Unix/Linux służącym do archiwizacji i dearchiwizacji plików. Opcje użyte w tym poleceniu mają następujące znaczenie: 'x' oznacza 'ekstrakcję', 'v' to 'verbose', co powoduje, że proces ekstrakcji jest wyświetlany na ekranie (informacje o rozpakowywanych plikach), a 'f' wskazuje, że następny argument to nazwa pliku archiwum, w tym przypadku 'dane.tar'. Użycie polecenia 'tar' w takiej formie jest zgodne z dobrymi praktykami, gdyż pozwala na skuteczne wydobycie plików oraz umożliwia użytkownikowi śledzenie postępu operacji. Na przykład, jeśli archiwum zawiera wiele plików, użytkownik może łatwo zobaczyć, które z nich są aktualnie rozpakowywane, co jest szczególnie przydatne w sytuacji, gdy archiwum jest duże lub gdy nawigacja po plikach zajmuje dużo czasu. Dodatkowo, 'tar' obsługuje wiele formatów kompresji, co czyni go elastycznym narzędziem do zarządzania danymi w systemach Linux.

Pytanie 10

Administrator systemu Windows zauważył znaczne spowolnienie działania komputera spowodowane niską ilością dostępnej pamięci RAM. W celu zidentyfikowania programu, który zużywa jej najwięcej, powinien skorzystać z narzędzia

A. rem
B. tasklist
C. schtsk
D. top
Odpowiedź "tasklist" jest poprawna, ponieważ jest to narzędzie dostępne w systemie Windows, które pozwala administratorom na przeglądanie listy aktywnych procesów oraz ich zużycia pamięci. Używając polecenia "tasklist" w wierszu poleceń, administrator może uzyskać szczegółowe informacje o każdym uruchomionym procesie, w tym jego identyfikatorze (PID), zużyciu pamięci oraz statusie. Przykładowo, aby wyświetlić listę procesów, wystarczy wpisać "tasklist" w wierszu poleceń. W przypadku gdy administrator zauważy, że któryś z procesów zużywa nadmierną ilość pamięci, może podjąć odpowiednie kroki, takie jak zakończenie procesu poprzez polecenie "taskkill". To narzędzie jest zgodne z najlepszymi praktykami zarządzania systemami operacyjnymi, umożliwiając efektywne monitorowanie i optymalizację wykorzystania zasobów systemowych.

Pytanie 11

Aby osiągnąć wysoką jakość połączeń głosowych VoIP kosztem innych przesyłanych informacji, konieczne jest włączenie i skonfigurowanie na routerze usługi

A. DMZ
B. NAT
C. SSL
D. QoS
QoS, czyli Quality of Service, to kluczowy mechanizm stosowany w zarządzaniu ruchem sieciowym, który ma na celu priorytetyzację pakietów danych w celu zapewnienia wysokiej jakości połączeń głosowych VoIP. Dzięki QoS możliwe jest nadanie wyższego priorytetu dla pakietów głosowych, co minimalizuje opóźnienia, zniekształcenia i utraty pakietów, które mogą negatywnie wpływać na jakość rozmowy. Przykładem zastosowania QoS jest konfiguracja routera, który może przydzielać określoną przepustowość dla połączeń VoIP, ograniczając jednocześnie zasoby dla mniej krytycznych aplikacji, takich jak pobieranie plików czy streamowanie wideo. W praktyce oznacza to, że podczas rozmowy telefonicznej VoIP, nawet jeśli w sieci występują skoki obciążenia, jakość połączenia pozostaje na wysokim poziomie. Warto również zaznaczyć, że stosowanie QoS jest zgodne z najlepszymi praktykami sieciowymi, które zalecają zarządzanie zasobami w taki sposób, aby utrzymać stabilność i jakość kluczowych usług, zwłaszcza w środowiskach, gdzie przesył danych jest intensywny.

Pytanie 12

Możliwość odzyskania listy kontaktów z telefonu komórkowego działającego na systemie Android występuje, gdy użytkownik wcześniej przeprowadził synchronizację danych urządzenia z Google Drive przy użyciu

A. konta Yahoo
B. konta Google
C. konta Microsoft
D. dowolnego konta pocztowego z portalu Onet
Odpowiedź "konta Google" to strzał w dziesiątkę. Synchronizacja danych na Androidzie rzeczywiście najlepiej działa przez konto Google. Dzięki temu możesz bez problemu przesyłać swoje kontakty, kalendarze czy zdjęcia do chmury, co sprawia, że wszystko jest bezpieczne i dostępne nawet na innych urządzeniach. Na przykład, kiedy zmienisz telefon, logując się na swoje konto Google, wszystkie kontakty wracają na miejsce jak za dotknięciem magicznej różdżki. Dobrze też wiedzieć, że korzystanie z konta Google to nie tylko wygoda, ale i duże bezpieczeństwo, bo Google ma naprawdę niezłe zabezpieczenia. Dodatkowo, synchronizacja z kontem Google ułatwia korzystanie z różnych aplikacji, jak na przykład Google Contacts, co sprawia, że zarządzanie kontaktami staje się o wiele prostsze. Tak więc, żeby skutecznie odzyskać wszystkie kontakty, koniecznie trzeba mieć konto Google i wcześniej to ustawić na swoim urządzeniu.

Pytanie 13

W złączu zasilania SATA uszkodzeniu uległ żółty kabel. Jakie to ma konsekwencje dla napięcia, które nie jest przesyłane?

A. 3,3V
B. 12V
C. 8,5V
D. 5V
Odpowiedź 12V jest poprawna, ponieważ wtyczka zasilania SATA używa standardowego rozkładu przewodów, w którym przewód żółty odpowiada za przesyłanie napięcia 12V. Wtyczki SATA są zaprojektowane tak, aby dostarczać różne napięcia potrzebne do zasilania podzespołów komputerowych, takich jak dyski twarde czy SSD. Oprócz przewodu żółtego, znajdują się również przewody czerwone, które przesyłają 5V, oraz przewody pomarańczowe, które przesyłają 3,3V. Utrata zasilania 12V może prowadzić do awarii zasilania komponentów, które są zależne od tego napięcia, co może skutkować brakiem działania dysków lub ich uszkodzeniem. Przykładowo, niektóre dyski twarde do działania wymagają zarówno 12V, jak i 5V. Zrozumienie, które napięcie odpowiada któremu przewodowi, jest kluczowe w diagnostyce problemów z zasilaniem w komputerze oraz przy naprawach. Znajomość standardów zasilania oraz ich zastosowania w praktyce jest niezbędna w pracy z elektroniką komputerową.

Pytanie 14

Aby określić rozmiar wolnej oraz zajętej pamięci RAM w systemie Linux, można skorzystać z polecenia

A. dmidecode -t baseboard
B. lspci | grep -i raid
C. cat /proc/meminfo
D. tail -n 10 /var/log/messages
Polecenie 'cat /proc/meminfo' jest jedną z podstawowych metod monitorowania pamięci w systemie Linux. Plik '/proc/meminfo' zawiera szczegółowe informacje na temat wykorzystania pamięci, w tym ilość wolnej pamięci, pamięci zajętej, pamięci wymiany (swap) oraz buforów i pamięci podręcznej. Używanie tego polecenia jest zgodne z dobrymi praktykami administracyjnymi, ponieważ pozwala na szybkie uzyskanie informacji o stanie pamięci, co jest kluczowe dla diagnozowania problemów z wydajnością systemu. Na przykład, jeśli podczas monitorowania zauważysz, że wykorzystanie pamięci operacyjnej zbliża się do 100%, może to wskazywać na konieczność optymalizacji aplikacji działających na serwerze, zwiększenia pamięci RAM lub przeprowadzenia analizy procesów consuming memory. Rekomenduje się również regularne sprawdzanie tych danych w celu utrzymania stabilności systemu oraz planowania przyszłych zasobów. W kontekście standardów branżowych, monitorowanie pamięci powinno być częścią rutynowych audytów systemu operacyjnego.

Pytanie 15

Jakie polecenie należy wykorzystać, aby w terminalu pokazać przedstawione informacje o systemie Linux?

Ilustracja do pytania
A. uname -a
B. factor 22
C. uptime
D. hostname
Polecenie 'uname -a' w systemie Linux służy do wyświetlenia szczegółowych informacji o systemie operacyjnym. Jest to bardzo przydatne w kontekście administracji systemem, ponieważ daje pełny obraz wersji jądra, nazwy hosta, architektury i innych kluczowych informacji. Na przykład, po wykonaniu 'uname -a', użytkownik otrzymuje dane takie jak wersja jądra, która jest istotna przy instalacji sterowników czy rozwiązywaniu problemów związanych z kompatybilnością oprogramowania. Zrozumienie znaczenia i struktury informacji zwracanych przez 'uname -a' jest kluczowe dla administratora systemu. Warto wiedzieć, że 'uname' można użyć z różnymi opcjami, np. 'uname -r' wyświetli tylko wersję jądra. Wiedza o jądrach i ich wersjach jest niezbędna do zarządzania systemem i zapewnienia jego bezpieczeństwa oraz sprawności działania. Jest to standardowe narzędzie w środowisku Unix/Linux, szeroko wykorzystywane w praktyce zawodowej.

Pytanie 16

Na ilustracji pokazano wtyczkę taśmy kabel)

Ilustracja do pytania
A. SATA
B. SCSI
C. SAS
D. ATA
ATA znane jako Advanced Technology Attachment to standard interfejsu komunikacyjnego stosowany w komputerach osobistych do podłączania dysków twardych i napędów optycznych. Charakteryzuje się 40-stykowym złączem typu taśma co widać na załączonym obrazku. Interfejs ATA jest najczęściej kojarzony z jego wersją Parallel ATA (PATA) która była szeroko stosowana w komputerach stacjonarnych i laptopach w latach 90. i wczesnych 2000. Pomimo że PATA zostało zastąpione przez nowsze interfejsy jak SATA nadal jest istotnym elementem historii technologii komputerowej. Dobrym przykładem aplikacji interfejsu ATA jest wykorzystanie go w starszych systemach gdzie wymagana jest wymiana lub modernizacja dysków twardych bez konieczności przejścia na nowsze standardy. W praktyce interfejs ATA jest łatwy w obsłudze i instalacji co czyni go odpowiednim dla mniej zaawansowanych użytkowników. Zgodność z wcześniejszymi wersjami oraz szerokie wsparcie programowe to jedne z jego zalet. Standard ATA jest zgodny z systemami operacyjnymi takimi jak Windows Linux i MacOS co jest ważnym aspektem przy wyborze komponentów komputerowych. ATA pozwala na osiągnięcie transferu danych do 133 MB/s co było wystarczające w czasach jego świetności. Choć obecnie rzadziej używany jest ważnym elementem edukacyjnym w zrozumieniu rozwoju technologii połączeń dyskowych.

Pytanie 17

Zaprezentowany schemat ilustruje funkcjonowanie

Ilustracja do pytania
A. drukarki laserowej
B. plotera grawerującego
C. drukarek 3D
D. skanera płaskiego
Skaner płaski to urządzenie, które służy do digitalizacji obrazów poprzez przekształcenie ich na dane cyfrowe. Schemat przedstawiony na obrazku ilustruje typowy proces skanowania płaskiego. Główne elementy to źródło światła, zazwyczaj lampa fluorescencyjna, która oświetla dokument umieszczony na szklanej płycie roboczej. Następnie odbite światło przemieszcza się przez system luster i soczewek, skupiając się na matrycy CCD (Charge-Coupled Device). CCD przekształca światło na sygnały elektryczne, które są przetwarzane przez przetwornik analogowo-cyfrowy (ADC) na cyfrowy obraz. Skanery płaskie są szeroko stosowane w biurach i domach, gdzie umożliwiają łatwe przekształcanie dokumentów i obrazów na formę cyfrową. Standardy branżowe, takie jak rozdzielczość optyczna czy głębia kolorów, określają jakość skanera. Praktyczne zastosowania skanerów obejmują archiwizowanie dokumentów, digitalizację materiałów graficznych i przenoszenie treści do programów do edycji obrazów. Dzięki możliwości uzyskania wysokiej jakości cyfrowych kopii, skanery płaskie pozostają niezastąpionym narzędziem w wielu dziedzinach.

Pytanie 18

Adres IP urządzenia, zapisany jako sekwencja 172.16.0.1, jest przedstawiony w systemie

A. szesnastkowym
B. dwójkowym
C. dziesiętnym
D. ósemkowym
Adres IP 172.16.0.1 jest zapisany w systemie dziesiętnym, co oznacza, że każda liczba w tej sekwencji jest wyrażona w standardowym formacie dziesiętnym. Adresy IP w wersji 4 (IPv4) składają się z czterech oktetów, z których każdy jest reprezentowany jako liczba całkowita w zakresie od 0 do 255. System dziesiętny jest najczęściej używany do prezentacji adresów IP, co ułatwia ich odczyt i zapamiętanie przez użytkowników. Przykładem zastosowania adresów IP jest konfiguracja urządzeń w sieci lokalnej czy przydzielanie adresów IP przez serwery DHCP. W praktyce, standardy takie jak RFC 791 określają zasady dotyczące struktury adresów IP, w tym ich przedstawianie. Użycie systemu dziesiętnego w adresach IP jest zgodne z najlepszymi praktykami w dziedzinie inżynierii sieciowej, zapewniając przejrzystość i ułatwiając diagnostykę problemów sieciowych.

Pytanie 19

Protokół kontrolny z rodziny TCP/IP, który odpowiada między innymi za identyfikację usterek w urządzeniach sieciowych, to

A. SMTP
B. FDDI
C. IMAP
D. ICMP
ICMP, czyli Internet Control Message Protocol, jest kluczowym protokołem w rodzinie TCP/IP, którego główną rolą jest przesyłanie komunikatów kontrolnych i diagnostycznych w sieciach komputerowych. Protokół ten jest szeroko stosowany do wykrywania awarii urządzeń sieciowych oraz monitorowania stanu połączeń. Dzięki komunikatom ICMP, takim jak Echo Request i Echo Reply, które są używane w poleceniu 'ping', administratorzy sieci mogą sprawdzać dostępność hostów w sieci oraz mierzyć opóźnienia. ICMP jest również używany do informowania o błędach w transmisji danych, co pozwala na szybsze wykrywanie i eliminowanie problemów. Przykładowo, jeśli pakiet danych nie może dotrzeć do celu z powodu awarii, ICMP może przesłać komunikat o błędzie, informując nadawcę o problemie. W praktyce stosowanie ICMP jest niezbędne dla efektywnego zarządzania siecią i zapewnienia jej niezawodności, zgodnie z najlepszymi praktykami w zakresie zarządzania infrastrukturą IT.

Pytanie 20

Jaką częstotliwość odświeżania należy ustawić, aby obraz na monitorze był odświeżany 85 razy na sekundę?

A. 850 Hz
B. 85 kHz
C. 0,085 kHz
D. 8,5 Hz
Częstotliwość odświeżania monitora określa, ile razy na sekundę obraz na ekranie jest aktualizowany. W przypadku potrzebnego odświeżania na poziomie 85 razy na sekundę, co odpowiada 85 Hz, właściwa jednostka to kilohercy (kHz), w której 1 kHz to 1000 Hz. Dlatego 85 Hz przelicza się na 0,085 kHz. Takie ustawienie jest istotne w kontekście zapewnienia płynności obrazu, co jest szczególnie ważne w zastosowaniach multimedialnych i graficznych, takich jak gry komputerowe czy edycja wideo. Standardy branżowe, takie jak VESA (Video Electronics Standards Association), rekomendują, aby częstotliwość odświeżania odpowiadała wymaganiom wizualnym użytkowników oraz możliwościom sprzętu. Prawidłowe ustawienie częstotliwości odświeżania pozwala na uniknięcie efektu migotania ekranu, co ma kluczowe znaczenie dla komfortu oglądania i zdrowia wzroku użytkowników. W praktyce, w przypadku wyższych częstotliwości odświeżania, monitor jest w stanie wyświetlić więcej klatek na sekundę, co przekłada się na lepsze wrażenia wizualne.

Pytanie 21

Na schemacie przedstawiono podstawowe informacje dotyczące ustawień karty sieciowej. Do jakiej klasy należy adres IP przypisany do tej karty?

Ilustracja do pytania
A. Klasa D
B. Klasa A
C. Klasa C
D. Klasa B
Adres IP 192.168.56.1 należy do klasy C co wynika z jego pierwszego oktetu który mieści się w zakresie od 192 do 223 Adresy klasy C są szeroko stosowane w małych sieciach lokalnych ze względu na możliwość posiadania do 254 hostów w jednej podsieci co jest idealne dla wielu przedsiębiorstw i organizacji o umiarkowanej wielkości Klasa C jest częścią standardowego modelu klasowego IP opracowanego w celu uproszczenia rozdzielania adresów IP Przez wyznaczenie większej liczby adresów sieciowych z mniejszą liczbą hostów Klasa C odpowiada na potrzeby mniejszych sieci co jest korzystne dla firm które nie potrzebują dużego zakresu adresów IP Dodatkowo adresy z puli 192.168.x.x są częścią zarezerwowanej przestrzeni adresowej dla sieci prywatnych co oznacza że nie są routowane w Internecie Zgodność z tym standardem zapewnia stosowanie odpowiednich praktyk zarządzania adresacją IP oraz bezpieczeństwa sieciowego dzięki czemu sieci prywatne mogą być bezpiecznie używane bez ryzyka kolizji z publicznymi adresami IP

Pytanie 22

Jaki zapis w systemie binarnym odpowiada liczbie 111 w systemie dziesiętnym?

A. 11111111
B. 1101111
C. 1110111
D. 11111110
Zapis w systemie binarnym, który odpowiada liczbie 111 w systemie dziesiętnym, to 1101111. Aby to zrozumieć, musimy przejść przez proces konwersji liczby dziesiętnej na system binarny. Liczba 111 w systemie dziesiętnym jest konwertowana na system binarny poprzez dzielenie liczby przez 2 i zapisanie reszt z tych dzielen. Proces ten wygląda następująco: 111 dzielimy przez 2, co daje 55 z resztą 1; następnie 55 dzielimy przez 2, co daje 27 z resztą 1; dalej 27 dzielimy przez 2, co daje 13 z resztą 1; 13 dzielimy przez 2, co daje 6 z resztą 1; 6 dzielimy przez 2, co daje 3 z resztą 0; 3 dzielimy przez 2, co daje 1 z resztą 1; w końcu 1 dzielimy przez 2, co daje 0 z resztą 1. Zbierając reszty od ostatniego dzielenia do pierwszego, otrzymujemy 1101111. To podejście jest zgodne z dobrymi praktykami w informatyce, gdzie znajomość konwersji między systemami liczbowymi jest fundamentalna, zwłaszcza w kontekście programowania i inżynierii komputerowej.

Pytanie 23

Problemy z laptopem, objawiające się zmienionymi barwami lub brakiem określonego koloru na ekranie, mogą być spowodowane uszkodzeniem

A. taśmy matrycy
B. interfejsu HDMI
C. portu D-SUB
D. pamięci RAM
Taśma matrycy jest kluczowym elementem łączącym ekran laptopa z jego płytą główną. Uszkodzenie taśmy matrycy może prowadzić do problemów z wyświetlaniem obrazu, takich jak zmienione kolory czy całkowity brak koloru. W przypadku uszkodzenia taśmy, sygnały video mogą nie być prawidłowo przesyłane z karty graficznej do matrycy, co skutkuje zniekształceniem obrazu. Przykładem zastosowania tej wiedzy może być diagnozowanie problemów w laptopach podczas serwisowania; technicy najpierw sprawdzają połączenia taśmy matrycy, zanim przejdą do bardziej skomplikowanych testów związanych z innymi komponentami. Dobre praktyki wskazują, że przy wymianie lub naprawie taśmy matrycy warto zwrócić uwagę na jakość używanych komponentów, ponieważ taśmy niskiej jakości mogą szybko ulegać awariom, co wpływa na długowieczność sprzętu.

Pytanie 24

Jaką wartość w systemie szesnastkowym ma liczba 1101 0100 0111?

A. C47
B. C27
C. D43
D. D47
Odpowiedź D47 jest poprawna, ponieważ liczba binarna 1101 0100 0111 w systemie szesnastkowym to 0xD47. Aby to zrozumieć, należy podzielić liczbę binarną na grupy po cztery bity, zaczynając od prawej strony. W naszym przypadku mamy grupy: 1101, 0100, 0111. Teraz przekształcamy każdą z tych grup na system szesnastkowy: 1101 to D, 0100 to 4, a 0111 to 7. Łącząc te wartości, otrzymujemy D47. W praktyce, znajomość konwersji między systemami liczbowymi jest kluczowa w informatyce, zwłaszcza w programowaniu i inżynierii komputerowej, gdzie często używamy systemu szesnastkowego do reprezentacji wartości binarnych w bardziej zrozumiały sposób. Na przykład, adresy pamięci w systemach komputerowych często wyrażane są w formacie szesnastkowym, co upraszcza ich odczyt i zapamiętywanie. Warto także zauważyć, że w standardach informatycznych, takich jak IEEE 754, konwersje te są powszechnie stosowane przy reprezentacji wartości zmiennoprzecinkowych.

Pytanie 25

W celu zapewnienia jakości usługi QoS, w przełącznikach warstwy dostępu stosowany jest mechanizm

A. umożliwiający równoczesne wykorzystanie kilku portów jako jednego połączenia logicznego
B. decydujący o liczbie urządzeń, które mogą łączyć się z danym przełącznikiem
C. nadający priorytet wybranym rodzajom danych
D. zapobiegający tworzeniu pętli w sieci
Odpowiedź dotycząca nadawania priorytetu określonym rodzajom danych jest prawidłowa, ponieważ mechanizm QoS (Quality of Service) w przełącznikach warstwy dostępu ma na celu zapewnienie odpowiedniego poziomu jakości usług w sieciach komputerowych. QoS pozwala na kontrolowanie przepływu ruchu i przydzielanie zasobów sieciowych w taki sposób, aby ważniejsze dane, takie jak strumienie audio czy video, mogły być przesyłane z wyższym priorytetem. Na przykład w środowisku biurowym, gdzie wiele urządzeń korzysta z sieci, QoS umożliwia rozróżnienie pomiędzy danymi wideo konferencji a zwykłym ruchem pocztowym, co minimalizuje opóźnienia i zapewnia płynność transmisji. W standardach takich jak IEEE 802.1Q oraz 802.1p definiowane są metody oznaczania ruchu, co ułatwia implementację QoS. Dzięki tym praktykom organizacje mogą lepiej zarządzać swoimi zasobami sieciowymi, co przekłada się na wyższą jakość usług oraz zadowolenie użytkowników.

Pytanie 26

Ile adresów IP można wykorzystać do adresowania komputerów w sieci o adresie 192.168.100.0 oraz masce 255.255.255.0?

A. 253
B. 256
C. 255
D. 254
Adres 192.168.100.0 z maską 255.255.255.0 wskazuje na sieć klasy C, w której dostępna przestrzeń adresowa wynosi 256 adresów (od 192.168.100.0 do 192.168.100.255). Jednakże, dwa adresy są zarezerwowane: jeden to adres sieci (192.168.100.0), a drugi to adres rozgłoszeniowy (192.168.100.255). To oznacza, że w tej sieci możemy efektywnie wykorzystać 254 adresy IP do przydzielenia urządzeniom. W praktyce oznacza to, że administratorzy sieci mogą skonfigurować do 254 komputerów, drukarek, serwerów i innych urządzeń w tej konkretnej podsieci bez obaw o konfl ikty adresowe. Zrozumienie tego mechanizmu jest kluczowe dla prawidłowego zarządzania sieciami lokalnymi oraz projektowania ich struktury zgodnie z najlepszymi praktykami, co jest szczególnie istotne w kontekście bezpieczeństwa sieci i zarządzania zasobami.

Pytanie 27

Jakie są nazwy licencji, które umożliwiają korzystanie z programu w pełnym zakresie, ale ograniczają liczbę uruchomień do określonej, niewielkiej ilości od momentu instalacji?

A. Adware
B. Box
C. Trialware
D. Donationware
Trialware to rodzaj licencji, która pozwala użytkownikom na korzystanie z oprogramowania przez określony czas lub do momentu osiągnięcia limitu uruchomień. Głównym celem trialware jest umożliwienie potencjalnym klientom przetestowania funkcji i możliwości programu przed podjęciem decyzji o zakupie. Zazwyczaj oferuje on pełną funkcjonalność, aby użytkownik mógł ocenić wartość oprogramowania. Przykładowo, wiele programów do edycji grafiki oraz aplikacji biurowych dostępnych jest w wersjach trialowych, które po upływie określonego czasu lub po wykorzystaniu limitu uruchomień przestają działać. W branży oprogramowania przyjęto standard, że trialware powinno być jasno oznaczone, aby użytkownik wiedział, że korzysta z wersji testowej, co jest zgodne z dobrą praktyką transparentności wobec klientów. Dobrze zaprojektowany trialware nie tylko przyciąga nowych użytkowników, ale również buduje zaufanie w marce, co może prowadzić do wyższej konwersji na płatne subskrypcje lub licencje.

Pytanie 28

Na urządzeniu zasilanym prądem stałym znajduje się wskazane oznaczenie. Co można z niego wywnioskować o pobieranej mocy urządzenia, która wynosi około

Ilustracja do pytania
A. 11 W
B. 18,75 W
C. 2,5 W
D. 7,5 W
Odpowiedź 18,75 W jest prawidłowa, ponieważ moc w urządzeniach zasilanych prądem stałym oblicza się, mnożąc napięcie przez natężenie prądu. W tym przypadku mamy do czynienia z napięciem 7,5 V i natężeniem 2,5 A. Wzór na moc to P=U×I, gdzie P to moc, U to napięcie, a I to natężenie. Podstawiając dane: P=7,5 V × 2,5 A=18,75 W. To pokazuje, że urządzenie rzeczywiście pobiera moc 18,75 W, co jest zgodne z poprawną odpowiedzią. Takie obliczenia są kluczowe w branży elektronicznej i elektrycznej, gdzie precyzyjne określenie parametrów zasilania jest niezbędne do prawidłowego doboru komponentów oraz zapewnienia bezpieczeństwa i efektywności energetycznej. W praktyce oznacza to, że przy projektowaniu czy analizie obwodów należy zawsze uwzględniać zarówno napięcie, jak i natężenie, aby uniknąć przeciążeń czy uszkodzeń sprzętu. Znajomość tych podstaw jest wymagana przy projektowaniu systemów zasilania w urządzeniach elektronicznych i elektrycznych oraz przy doborze odpowiednich zabezpieczeń.

Pytanie 29

Gdy komputer się uruchamia, na ekranie wyświetla się komunikat "CMOS checksum error press F1 to continue press DEL to setup". Naciśnięcie klawisza DEL spowoduje

A. usunięcie pliku konfiguracyjnego.
B. przejście do ustawień systemu Windows.
C. wyczyszczenie zawartości pamięci CMOS.
D. wejście do BIOS-u komputera.
Wciśnięcie klawisza DEL podczas pojawienia się komunikatu 'CMOS checksum error' pozwala na wejście do BIOS-u (Basic Input/Output System) komputera. BIOS jest oprogramowaniem niskiego poziomu, które zarządza sprzętem komputera i umożliwia konfigurację podstawowych ustawień systemowych. Gdy występuje błąd związany z checksumą CMOS, oznacza to, że dane przechowywane w pamięci CMOS są uszkodzone lub niepoprawne. Wchodząc do BIOS-u, użytkownik ma możliwość zresetowania ustawień lub dokonania niezbędnych zmian, co może być kluczowe dla prawidłowego funkcjonowania systemu. Przykładem może być konieczność ustawienia daty i godziny, które mogły zostać zresetowane. Rekomendacje branżowe sugerują, aby regularnie sprawdzać ustawienia BIOS-u, zwłaszcza po wystąpieniu błędów, aby zapewnić stabilność i bezpieczeństwo systemu operacyjnego.

Pytanie 30

Zgodnie z normą PN-EN 50174, okablowanie poziome w systemie okablowania strukturalnego to segment okablowania pomiędzy

A. punktem rozdzielczym a gniazdem użytkownika
B. serwerem a szkieletem sieci
C. gniazdkiem użytkownika a terminalem końcowym
D. punktami rozdzielczymi w głównych pionach budynku
Zgodnie z normą PN-EN 50174, okablowanie poziome w systemie okablowania strukturalnego odnosi się do połączeń pomiędzy punktem rozdzielczym a gniazdem użytkownika. Jest to kluczowa część infrastruktury sieciowej, ponieważ to właśnie przez tę część okablowania sygnał trafia do końcowych urządzeń użytkowników, takich jak komputery, telefony czy inne urządzenia sieciowe. W praktyce oznacza to, że projektując system okablowania, inżynierowie muszą dokładnie zaplanować trasę kabli oraz ich rodzaj, aby zapewnić optymalne parametry transmisji danych, minimalizując jednocześnie zakłócenia. Okablowanie poziome powinno spełniać określone normy dotyczące długości kabli, ich jakości oraz ochrony przed zakłóceniami elektromagnetycznymi. Warto również pamiętać o standardach instalacji, takich jak ISO/IEC 11801, które korespondują z PN-EN 50174, co pozwala na uzyskanie wysokiej jakości i niezawodności systemów sieciowych.

Pytanie 31

Fragment konfiguracji pliku httpd.conf dla serwera Apache wygląda następująco Listen 8012 Server Name localhost:8012 Aby zweryfikować prawidłowe działanie witryny WWW na serwerze, należy wpisać w przeglądarkę

A. http://localhost
B. http://localhost:8080
C. http://localhost:8012
D. http://localhost:apache
Wybór odpowiedzi http://localhost:8012 jest poprawny, ponieważ port 8012 został skonfigurowany w pliku httpd.conf serwera Apache za pomocą dyrektywy Listen. Oznacza to, że serwer nasłuchuje na tym porcie dla przychodzących połączeń. Wprowadzenie tego adresu URL w przeglądarce umożliwia nawiązanie połączenia z serwerem działającym lokalnie, co jest kluczowe w przypadku testowania aplikacji webowych. Użycie lokalnego adresu IP (localhost) oraz przypisanie odpowiedniego portu jest standardową praktyką w rozwoju oprogramowania, pozwalającą na szybkie uruchomienie i testowanie aplikacji bez potrzeby dostępu do zewnętrznych zasobów. Dodatkowo, w przypadku zmiany portu w przyszłości, należy pamiętać o aktualizacji ustawień w aplikacji klienckiej, aby zapewnić prawidłowe działanie. Zrozumienie tej koncepcji jest istotne dla każdego, kto pracuje z serwerami WWW, zwłaszcza w kontekście konfiguracji i zarządzania serwerami Apache.

Pytanie 32

W systemie Windows odpowiednikiem macierzy RAID 1 jest wolumin o nazwie

A. dublowany
B. połączony
C. prosty
D. rozproszony
Wolumin dublowany w systemie Windows jest bezpośrednim odpowiednikiem macierzy RAID 1, która zapewnia identyczne kopie danych na co najmniej dwóch dyskach. RAID 1 działa na zasadzie mirroringu, co oznacza, że każde zapisane dane są automatycznie duplikowane na drugim dysku. Dzięki temu, w przypadku awarii jednego z dysków, system operacyjny może kontynuować działanie przy użyciu drugiego, co zapewnia wysoką dostępność i ochronę danych. Taki mechanizm jest niezwykle przydatny w środowiskach, gdzie ciągłość działania i bezpieczeństwo danych są kluczowe, na przykład w serwerach baz danych czy systemach transakcyjnych. Warto również podkreślić, że woluminy dublowane są łatwe do zarządzania i konfiguracji w systemie Windows, co czyni je dostępnym rozwiązaniem dla wielu użytkowników oraz administratorów. Standardowe praktyki zalecają stosowanie dublowania danych, szczególnie w zastosowaniach krytycznych, aby minimalizować ryzyko utraty danych, co znajduje odzwierciedlenie w regułach zarządzania danymi i tworzenia kopii zapasowych.

Pytanie 33

Jakie polecenie diagnostyczne powinno się użyć, aby uzyskać informacje na temat tego, czy miejsce docelowe odpowiada oraz po jakim czasie nastąpiła odpowiedź?

A. ipcconfig
B. route
C. ping
D. nbtstat
Odpowiedzią, która prawidłowo odpowiada na pytanie o diagnostykę połączeń sieciowych, jest polecenie 'ping'. Jest to narzędzie, które służy do testowania dostępności hostów w sieci poprzez wysyłanie pakietów ICMP Echo Request i oczekiwanie na ICMP Echo Reply. Dzięki temu administratorzy sieci mogą ocenić, czy dane miejsce docelowe jest osiągalne, oraz zmierzyć czas, jaki zajmuje przesłanie pakietów i otrzymanie odpowiedzi, co jest istotnym wskaźnikiem opóźnienia w transmisji (latency). Przykładowo, wykonując polecenie 'ping www.example.com', uzyskujemy informacje o czasie odpowiedzi i ewentualnych utraconych pakietach, co pozwala na wstępną ocenę jakości połączenia. Jest to standardowa praktyka w diagnostyce sieci, stosowana przez specjalistów IT do szybkiej identyfikacji problemów z połączeniem i monitorowania stanu sieci. Warto także dodać, że narzędzie 'ping' jest dostępne w praktycznie wszystkich systemach operacyjnych, co czyni je uniwersalnym i niezbędnym narzędziem w codziennej pracy administratorów sieci.

Pytanie 34

Interfejs UDMA to typ interfejsu

A. równoległy, używany m.in. do połączenia kina domowego z komputerem
B. równoległy, który został zastąpiony przez interfejs SATA
C. szeregowy, który służy do transferu danych między pamięcią RAM a dyskami twardymi
D. szeregowy, stosowany do łączenia urządzeń wejściowych
Wybór odpowiedzi, która opisuje interfejs UDMA jako szeregowy, używany do podłączania urządzeń wejścia, jest błędny z kilku powodów. Interfejs UDMA jest technologią równoległą, co oznacza, że wykorzystuje wiele linii danych do jednoczesnej transmisji informacji, co znacznie zwiększa przepustowość w porównaniu do interfejsów szeregowych, które przesyłają dane bit po bicie. Stąd pierwsza niepoprawna koncepcja związana z tą odpowiedzią to mylenie typów interfejsów. Ponadto, UDMA nie jest używany do podłączania urządzeń wejścia, lecz raczej do komunikacji z pamięcią masową, jak dyski twarde. W odniesieniu do drugiej nieprawidłowej odpowiedzi, UDMA nie został całkowicie zastąpiony przez SATA, lecz raczej ewoluował wraz z postępem technologii. Mimo że SATA jest obecnie preferowanym standardem transferu danych do dysków twardych ze względu na swoje zalety, wciąż istnieje wiele sprzętu, który wykorzystuje UDMA. Niezrozumienie tych aspektów może prowadzić do błędnych wniosków przy projektowaniu lub modernizacji systemów komputerowych, dlatego ważne jest, aby dokładnie zrozumieć różnice między tymi technologiami oraz ich odpowiednie zastosowania. Ostatecznie, wybór odpowiedniego interfejsu powinien być oparty na aktualnych potrzebach wydajnościowych i kompatybilności z istniejącym sprzętem.

Pytanie 35

Złącze umieszczone na płycie głównej, które umożliwia podłączanie kart rozszerzeń o różnych ilościach pinów, w zależności od wersji, nazywane jest

A. AGP
B. PCI
C. ISA
D. PCI Express
Wybór innych złączy, takich jak PCI, ISA czy AGP, wskazuje na niepełne zrozumienie ewolucji interfejsów rozszerzeń w komputerach. Standard PCI (Peripheral Component Interconnect) był powszechnie wykorzystywany przed pojawieniem się PCI Express. Oferował on równoległy transfer danych, co ograniczało jego przepustowość. Choć był szeroko stosowany, szybko stał się niewystarczający w obliczu rosnących wymagań dotyczących prędkości przesyłania danych w nowoczesnych aplikacjach. Z kolei ISA (Industry Standard Architecture) jest jeszcze starszym standardem, który dominował w latach 80. i 90. XX wieku, ale jego ograniczenia w zakresie przepustowości i możliwości były zbyt duże, aby sprostać współczesnym wymaganiom. AGP (Accelerated Graphics Port) był złączem zaprojektowanym specjalnie dla kart graficznych, ale również zostało zastąpione przez PCI Express, które oferuje znacznie lepsze osiągi dzięki architekturze szeregowej. Wybierając te starsze złącza, można trafić na istotne ograniczenia w wydajności oraz problemy z kompatybilnością z nowoczesnymi komponentami. Dlatego, aby zbudować nowoczesny system komputerowy, warto korzystać z PCIe, co zapewnia dużą elastyczność i możliwość rozwoju.

Pytanie 36

Element, który jest na stałe zainstalowany u abonenta i zawiera zakończenie poziomego okablowania strukturalnego, to

A. gniazdo teleinformatyczne
B. punkt konsolidacyjny
C. gniazdo energetyczne
D. punkt rozdzielczy
Gniazdo teleinformatyczne to element instalacji strukturalnej, który pełni kluczową rolę w dostarczaniu sygnałów telekomunikacyjnych i danych do urządzeń końcowych. Jest to punkt, w którym kończy się okablowanie strukturalne poziome, umożliwiając podłączenie komputerów, telefonów oraz innych urządzeń do sieci lokalnej. W kontekście standardów, gniazda teleinformatyczne są zgodne z normami ISO/IEC 11801, które definiują wymagania dotyczące instalacji okablowania w budynkach. Przykładem zastosowania gniazd teleinformatycznych może być biuro, gdzie każde stanowisko pracy jest wyposażone w gniazdo umożliwiające szybkie połączenie z siecią internetową. Warto zauważyć, że gniazda te mogą obsługiwać różne typy sygnałów, w tym Ethernet, co czyni je niezwykle uniwersalnymi. Ponadto, stosowanie gniazd teleinformatycznych ułatwia zarządzanie siecią oraz zwiększa elastyczność w organizacji przestrzeni biurowej, co jest istotne w dynamicznych środowiskach pracy.

Pytanie 37

Jaką wartość dziesiętną ma liczba FF w systemie szesnastkowym?

A. 254
B. 248
C. 250
D. 255
Podczas próby przeliczenia liczby FF na system dziesiętny, niektóre odpowiedzi mogą wynikać z nieporozumienia w zasadach konwersji między systemami liczbowymi. Na przykład, liczby takie jak 248, 250, czy 254 mogą wydawać się sensowne, jednak ich wartość nie odpowiada prawidłowej konwersji liczby FF. Typowym błędem jest pomijanie odpowiednich wag cyfr w systemie szesnastkowym, co prowadzi do mylnego przeliczenia. Każda cyfra w systemie szesnastkowym ma inną wagę, co jest kluczowe dla prawidłowego przeliczenia. Zrozumienie, że F to 15, a następnie poprawne zastosowanie wzoru przeliczeniowego, jest istotne. Często osoby mylą się, traktując cyfry szesnastkowe jako bezpośrednie liczby dziesiętne, co jest błędne, ponieważ każda cyfra szesnastkowa ma swoją specyfikę i wagę. Niezrozumienie tego może prowadzić do poważnych błędów w programowaniu oraz w obliczeniach w informatyce. W praktyce wiele osób napotyka trudności w konwersji między systemami liczbowymi, co podkreśla znaczenie solidnej wiedzy na ten temat, aby uniknąć pułapek myślowych oraz błędnych interpretacji liczb.

Pytanie 38

Ile podsieci tworzą komputery z adresami: 192.168.5.12/25, 192.168.5.50/25, 192.168.5.200/25, 192.158.5.250/25?

A. 3
B. 4
C. 1
D. 2
Pojęcie podsieci w kontekście adresacji IP może być mylone, co prowadzi do niepoprawnych wniosków dotyczących liczby podsieci, w których pracują podane komputery. Wybierając odpowiedź sugerującą, że wszystkie komputery znajdują się w jednej lub dwóch podsieciach, można popełnić błąd w ocenie maski podsieci. Maski podsieci definiują zakres adresów, które mogą być używane w danej sieci. W przypadku adresów 192.168.5.12/25, 192.168.5.50/25 i 192.168.5.200/25 wszystkie te adresy dzielą tę samą maskę podsieci, co oznacza, że mogą współdzielić tę samą sieć i komunikować się ze sobą bez potrzeby routera. Z drugiej strony, adres 192.158.5.250/25 nie może być zakwalifikowany do tej samej grupy, ponieważ jego prefiks różni się od pozostałych. Przykładem błędnego rozumowania może być mylenie adresów w innej klasie z adresami w tej samej klasie, co prowadzi do nieuwzględnienia, że różne prefiksy delimitują różne sieci. Aby uzyskać dokładny obraz struktury podsieci w sieci komputerowej, konieczne jest zrozumienie znaczenia prefiksów i zastosowanie odpowiednich narzędzi do analizy sieci, takich jak kalkulatory podsieci, które pomagają wizualizować i zrozumieć jak adresacja IP i maski podsieci wpływają na dostępność i komunikację urządzeń w sieci.

Pytanie 39

Czytnik w napędzie optycznym, który jest zanieczyszczony, należy wyczyścić

A. spirytusem
B. izopropanolem
C. benzyną ekstrakcyjną
D. rozpuszczalnikiem ftalowym
Izopropanol jest doskonałym środkiem czyszczącym do usuwania zanieczyszczeń z czytników w napędach optycznych, ponieważ ma doskonałe właściwości rozpuszczające i szybko odparowuje, co minimalizuje ryzyko pozostawienia resztek na powierzchni optycznej. Dzięki temu zmniejsza się ryzyko uszkodzenia elementów optycznych, takich jak soczewki, które są wrażliwe na skrajne substancje chemiczne. Izopropanol jest również bezpieczniejszy w użyciu niż wiele innych rozpuszczalników, ponieważ nie jest toksyczny w takich stężeniach, które są stosowane do czyszczenia. Dobrą praktyką jest stosowanie izopropanolu o stężeniu co najmniej 70%, co zapewnia skuteczne usunięcie zanieczyszczeń, jak kurz czy odciski palców. Warto również pamiętać, aby nie stosować nadmiaru środka czyszczącego, co mogłoby prowadzić do zalania elementów elektronicznych. Użycie izopropanolu, jako zgodne z obowiązującymi standardami czyszczenia sprzętu elektronicznego, jest rekomendowane przez producentów sprzętu oraz specjalistów w tej dziedzinie, co czyni go najlepszym wyborem do czyszczenia czytników w napędach optycznych.

Pytanie 40

Jaką rolę pełni serwer plików w sieciach komputerowych LAN?

A. zarządzanie danymi na komputerach lokalnych
B. realizowanie obliczeń na komputerach lokalnych
C. udzielanie wspólnego dostępu do tych samych zasobów
D. kontrolowanie działania przełączników i ruterów
Serwer plików w sieciach komputerowych LAN pełni kluczową rolę w umożliwieniu wspólnego użytkowania zasobów, takich jak pliki, foldery i aplikacje. Dzięki serwerom plików, użytkownicy mogą łatwo uzyskiwać dostęp do danych przechowywanych centralnie na serwerze, co znacząco ułatwia współpracę w zespołach oraz zarządzanie danymi. Przykładem może być firma, w której pracownicy korzystają z serwera plików do przechowywania dokumentów projektowych w jednym miejscu, co eliminuje problem wersjonowania i umożliwia jednoczesną pracę wielu osób nad tym samym plikiem. Standardy takie jak SMB (Server Message Block) czy NFS (Network File System) są powszechnie stosowane do udostępniania plików w sieciach lokalnych, co zapewnia interoperacyjność pomiędzy różnymi systemami operacyjnymi. Zastosowanie serwera plików wspiera również polityki backupu i bezpieczeństwa, gdyż centralizacja danych ułatwia ich zabezpieczanie oraz monitorowanie dostępu, co jest zgodne z najlepszymi praktykami w zakresie zarządzania danymi.