Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 27 maja 2025 21:43
  • Data zakończenia: 27 maja 2025 22:42

Egzamin niezdany

Wynik: 17/40 punktów (42,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Gdy różnice współrzędnych między początkiem a końcem boku AB wynoszą ΔxAB = 0, ΔyAB > 0, to jaki jest azymut AzAB boku AB?

A. 300g
B. 400g
C. 100g
D. 200g
W przypadku błędnych odpowiedzi należy zwrócić uwagę na istotne aspekty związane z obliczaniem azymutów. Odpowiedzi takie jak 200g, 300g czy 400g nie uwzględniają faktu, że różnice współrzędnych wskazują na bezpośredni ruch w górę wzdłuż osi y, bez zmiany wartości na osi x. Typowym błędem myślowym jest założenie, że niezerowa wartość na osi y automatycznie implikuje, że azymut boku AB musi być większy niż 100g. Oczywiście, w rzeczywistości, azymut jest mierzony od kierunku północnego, a w przypadku, gdy różnica w osi x wynosi 0, cały kierunek wektora ruchu wskazuje na północny wschód. Ważne jest, aby pamiętać, że azymut nie może przekraczać wartości 400g, co byłoby błędnym założeniem w kontekście tego pytania. Zrozumienie zasadniczych koncepcji geometrii analitycznej oraz ich zastosowania w systemach współrzędnych jest kluczowe dla poprawnego obliczania azymutów. Poprawne metody obliczeniowe oraz umiejętność interpretacji wyników są niezbędne w geodezji i inżynierii, gdzie precyzyjne pomiary mają fundamentalne znaczenie dla sukcesu projektów budowlanych oraz infrastruktur.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Jakim symbolem literowym powinno się oznaczyć na mapie zasadniczej obiekt szkolny?

A. e
B. s
C. k
D. m
Wybór symbolu literowego 'k', 's' lub 'm' do oznaczenia budynku szkoły na mapie zasadniczej nie jest zgodny z powszechnie przyjętymi konwencjami kartograficznymi. Symbol 'k' najczęściej odnosi się do obiektów kultury, takich jak muzea czy centra sztuki, co prowadzi do dezorientacji w kontekście lokalizacji szkoły. Oznaczanie budynków użyteczności publicznej w sposób niezgodny z ustalonymi standardami może wprowadzać w błąd osoby korzystające z mapy, które mogą założyć, że obiekt kultury jest również miejscem edukacji, co jest błędne. Symbol 's' jest z kolei często używany dla obiektów sportowych, co również nie ma zastosowania w przypadku budynku szkoły. Zastosowanie symbolu 'm' może odnosić się do obiektów medycznych, co stwarza dodatkowe zamieszanie w interpretacji mapy. Wybór niewłaściwych symboli może wynikać z braku znajomości standardów kartograficznych, co jest istotne w profesjonalnym podejściu do tworzenia map. Użytkownicy map powinni być świadomi konsekwencji wynikających z błędnych oznaczeń, ponieważ mogą one utrudniać nie tylko nawigację, ale również planowanie przestrzenne oraz działania związane z zarządzaniem lokalnymi społecznościami. Właściwe oznaczanie obiektów na mapach nie tylko wpływa na ich użyteczność, ale również odzwierciedla dbałość o dokładność informacji przestrzennych.

Pytanie 5

Jaką wartość ma kąt, o który trzeba obrócić alidadę przy precyzyjnym poziomowaniu teodolitu, po ustawieniu libelli równolegle do osi dwóch śrub regulacyjnych oraz ustawieniu pęcherzyka w pozycji centralnej?

A. 200°
B. 180°
C. 360°
D. 90°
Obroty o 180°, 360° lub 200° są błędne, ponieważ nie są one zgodne z zasadami dokładnego poziomowania teodolitu. Obrót o 180° oznaczałby, że alidade byłaby ustawiona w przeciwnym kierunku, co nie pozwoliłoby na właściwe sprawdzenie poziomowania w kierunkach prostopadłych. Taki kąt nie przynosi dodatkowych informacji o poziomie, a jedynie przesuwa punkt odniesienia na linię, co jest niepraktyczne w kontekście precyzyjnych pomiarów. Obrót o 360° oznaczałby, że alidade powróciłaby do pierwotnej pozycji, co również jest nieefektywne, gdyż nie wprowadza żadnych nowych danych dotyczących poziomowania. Natomiast wybór 200° jest nieadekwatny, gdyż nie ma uzasadnienia geodezyjnego dla takiego kąta w kontekście wykonywania pomiarów z wykorzystaniem teodolitu. W geodezji, każdy kąt obrotu i jego zastosowanie powinny być dobrze przemyślane i oparte na standardach, które gwarantują dokładność i niezawodność pomiarów. Użytkownicy teodolitu muszą być świadomi, że niepoprawne podejście do poziomowania prowadzi do błędnych wyników, które mogą skutkować poważnymi konsekwencjami w projektach budowlanych i inżynieryjnych.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Jeśli bok kwadratu zmierzonego w terenie ma długość 10 m, to na mapie w skali 1:1000 jego pole powierzchni wyniesie

A. 0,1 cm2
B. 10,0 cm2
C. 1,0 cm2
D. 100,0 cm2
Odpowiedź 1,0 cm2 jest poprawna, ponieważ aby obliczyć pole powierzchni kwadratu na mapie w skali 1:1000, najpierw należy obliczyć jego rzeczywistą powierzchnię. Bok kwadratu ma długość 10 m, więc jego pole powierzchni wynosi 10 m x 10 m = 100 m2. Następnie przelicza się to pole na jednostki odpowiadające skali mapy, co oznacza, że 1 cm na mapie odpowiada 10 m w terenie (1:1000). Zatem 100 m2 w rzeczywistości przekłada się na jednostki mapowe, co daje 100 m2 = 10000 cm2. W skali 1:1000, powierzchnia mapowa wynosi 10000 cm2 / (1000^2) = 1,0 cm2. To pokazuje, jak ważne jest rozumienie przeliczeń skali w kontekście geodezji oraz kartografii, gdzie precyzja jest kluczowa. W praktyce, takie obliczenia są niezbędne przy tworzeniu map i planów zagospodarowania przestrzennego, a także w inżynierii i budownictwie, gdzie dokładne odwzorowanie rzeczywistości ma ogromne znaczenie.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Jaką wartość ma poprawka kątowa do jednego kąta w zamkniętym ciągu poligonowym, jeśli ciąg zawiera 5 kątów, a odchylenie kątowe wynosi fα = +30cc?

A. Vkt = -5cc
B. Vkt = +5cc
C. Vkt = +6cc
D. Vkt = -6cc
Wartości Vkt = +5cc i Vkt = +6cc są niepoprawne, ponieważ nie uwzględniają istotnego aspektu pomiarów kątowych w ciągach poligonowych zamkniętych. Głównym błędem w tych odpowiedziach jest zignorowanie faktu, że w ciągu poligonowym zamkniętym, suma kątów powinna równać się 360 stopni, a każde odchylenie od tej wartości musi być skorygowane. Odchyłka kątowa fα = +30cc wskazuje na nadwyżkę kątów, co sugeruje, że z powodu błędów pomiarowych suma kątów przekracza 360 stopni. W takim przypadku poprawki kątowe powinny być ujemne, aby zmniejszyć sumę kątów do wymaganej wartości. Dlatego przy obliczaniu poprawki kątowej, powinniśmy dzielić całkowitą odchyłkę przez liczbę kątów, co daje Vkt = fα / n, gdzie n wynosi 5. Obliczenie pokazuje, że Vkt powinno wynosić -6cc. Stąd wartości dodatnie, takie jak +5cc czy +6cc, są nie tylko błędne, ale również mogą prowadzić do poważnych konsekwencji w praktyce inżynieryjnej, gdzie precyzyjne pomiary są kluczowe dla sukcesu projektów. Kolejnym błędem jest zapominanie o kontekście, w jakim operujemy; błędy kątowe w geodezji mają swoje źródło w fizycznych ograniczeniach narzędzi pomiarowych, co podkreśla znaczenie dokładnych pomiarów i odpowiedniej ich korekcji.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

W teodolicie oś rotacji instrumentu jest oznaczona

A. cc
B. hh
C. ll
D. vv
Wybór odpowiedzi hh, cc lub ll wskazuje na pewne nieporozumienia dotyczące budowy i funkcji teodolitu. Oś obrotu teodolitu, oznaczona jako 'vv', jest kluczowym elementem, który decyduje o precyzji pomiarów kątowych. Oś ta pozwala na obrót instrumentu, a jakiekolwiek błędne oznaczenia mogą prowadzić do zamieszania i niepoprawnych pomiarów. Oznaczenie 'hh' często mylone jest z osiami mechanicznymi, które nie są bezpośrednio powiązane z funkcjonowaniem teodolitu. Natomiast 'cc' może sugerować inne elementy konstrukcyjne, jak poziomice czy inne mechanizmy, które są mniej istotne w kontekście osi obrotu. Odpowiedź 'll' wskazuje na nieistotne lub błędne aspekty działania teodolitu, co może prowadzić do pomyłek w praktycznych zastosowaniach instrumentu. Zrozumienie, jak prawidłowo identyfikować i oznaczać osie obrotu w teodolicie, jest kluczowe dla zachowania dokładności pomiarów. Niezrozumienie tego aspektu może prowadzić do poważnych błędów podczas wykonywania prac geodezyjnych, w tym błędów w wyznaczaniu granic działek, co ma istotne konsekwencje prawne i finansowe. Dlatego tak ważne jest, aby geodeci i inżynierowie byli dobrze zaznajomieni z podstawowymi oznaczeniami i funkcjami teodolitu.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Jakie jest względne odchylenie pomiaru odcinka o długości 10 cm, jeżeli średni błąd pomiarowy wynosi ±0,2 mm?

A. 1:50
B. 1:100
C. 1:500
D. 1:200
Podczas analizy błędów względnych, istotne jest zrozumienie, że nie każdy błąd jest bezpośrednio proporcjonalny do wielkości mierzonych. W przypadku błędnych odpowiedzi, które sugerują inne proporcje, istnieje pewne niezrozumienie podstaw metrologii i obliczeń. Na przykład, jeśli ktoś wybrał proporcję 1:100, może to wynikać z koncentracji na błędzie bezwzględnym bez odniesienia go do wartości rzeczywistej. W rzeczywistości, przy długości 10 cm, błąd ±0,2 mm jest stosunkowo niewielki, co prowadzi do niższego współczynnika błędu względnego, niż sugeruje ta odpowiedź. Odpowiedzi 1:200 i 1:50 również nie uwzględniają poprawnych przeliczeń, ponieważ błąd bezwzględny jest zbyt mały w porównaniu do wartości mierzonych, co wskazuje na zbyt dużą tolerancję na błędy. Warto również zauważyć, że w kontekście nauk przyrodniczych i inżynieryjnych, stosowanie błędów względnych jest kluczowe do oceny jakości danych. Często, pomijając obliczenia błędów względnych, można wprowadzić nieporozumienia dotyczące precyzji i niezawodności pomiarów. Dlatego tak ważne jest, aby przy obliczeniach błędów zawsze odnosić je do wartości rzeczywistej, aby uzyskać miarodajne wyniki.

Pytanie 22

Wyniki pomiarów należy skorygować przed ich użyciem w obliczeniach, uwzględniając poprawki związane z błędami

A. systematyczne.
B. średnie.
C. grube.
D. pozorne.
Odpowiedzi "pozorne", "średnie" i "grube" są niepoprawne, ponieważ nie odnoszą się do właściwego rodzaju błędów w kontekście analizowania wyników pomiarów. Błędy pozorne to często błędy wynikające z subiektywnej interpretacji danych, a nie z rzeczywistych odchyleń w pomiarach. Takie błędy mogą prowadzić do mylnych konkluzji, ale nie są one stałe ani systematyczne, co czyni je mniej istotnymi w kontekście usprawnień w metodyce pomiarowej. Z kolei błędy średnie, choć mogą wskazywać na statystyczne odchylenia wyników, nie odnoszą się do korygowania wyników pomiarów, a raczej do obliczeń statystycznych, które mogą pomóc w interpretacji danych, lecz nie eliminują systematycznych odchyleń. Błędy grube, występujące sporadycznie, są wynikiem niefortunnych okoliczności, takich jak awaria sprzętu lub pomyłka w odczycie, które można wykryć i wyeliminować, ale nie są to systematyczne błędy. Zrozumienie różnicy między tymi kategoriami błędów jest kluczowe dla skutecznej analizy danych i uzyskiwania wiarygodnych wyników, a ignorowanie tego podziału może prowadzić do poważnych błędów w interpretacji rezultatów pomiarów. Merytoryczne podstawy tych koncepcji są fundamentalne w naukach ścisłych i inżynierii, gdzie dokładność pomiarów jest kluczowa dla sukcesu badań i aplikacji technologicznych.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Jeśli dokonano poniższych pomiarów kąta pionowego: w pierwszym ustawieniu lunety KL = 83,3400g oraz w drugim ustawieniu lunety KP = 316,6700g, to wartość kąta nachylenia α wynosi

A. 83,3350g
B. 83,3400g
C. 16,6650g
D. 16,6700g
Analizując błędne odpowiedzi, warto zauważyć, że w kontekście obliczania kąta nachylenia α podstawową zasadą jest prawidłowe zrozumienie, czym jest różnica pomiędzy dwoma odczytami lunety. Wybór wartości 83,3350g sugeruje jedynie nieznaczne obniżenie jednego z odczytów, co nie ma logicznego uzasadnienia w kontekście geodezyjnym. Odczyt 83,3400g odnosi się do położenia I lunety, natomiast w położeniu II mamy wartość 316,6700g. Błędne podejście polega na zignorowaniu właściwej metody obliczania różnicy, co prowadzi do mylnego wniosku. Odpowiedź 16,6700g także wydaje się być bliska prawdy, lecz nie uwzględnia różnicy między wyjściowymi odczytami. Istotnym błędem jest także to, że nie wszyscy uwzględniają, iż kąty nachylenia w geodezji są wyrażane jako różnice między odczytami w odniesieniu do poziomu. Z kolei wartość 83,3400g jest jedynie powtórzeniem odczytu z położenia I, co w żaden sposób nie odnosi się do obliczenia kąta nachylenia. W geodezji, dla poprawności pomiarów i analiz, kluczowe jest stosowanie właściwych formuł i zrozumienie kontekstu, w jakim są używane, dlatego tak ważne jest przyswajanie wiedzy na temat standardów i dobrych praktyk w tej dziedzinie.

Pytanie 25

W jakim zakresie znajduje się wartość azymutu boku AB, gdy różnice współrzędnych między punktem początkowym a końcowym boku AB wynoszą ΔXAB < 0 oraz ΔYAB < 0?

A. 100÷200g
B. 300÷400g
C. 200÷300g
D. 0÷100g
Wartość azymutu boku AB wyznacza kierunek, w którym leży ten bok w układzie współrzędnych. Różnice współrzędnych ΔXAB < 0 oraz ΔYAB < 0 oznaczają, że zarówno współrzędna X, jak i Y punktu końcowego boku AB są mniejsze niż współrzędne punktu początkowego. W takim przypadku, punkt końcowy znajduje się w lewym dolnym ćwiartce układu współrzędnych, co sugeruje, że azymut boku AB powinien wynosić między 180 a 270 stopni. Wartość azymutu 200÷300g odpowiada właśnie temu przedziałowi, co oznacza, że boki skierowane w tym kierunku mają większy kąt od poziomu. Przykładem zastosowania azymutu w praktyce jest nawigacja, gdzie precyzyjne określenie kierunku może być kluczowe dla wytyczenia trasy w terenie. W inżynierii lądowej czy geodezji, prawidłowe obliczenie azymutu ma fundamentalne znaczenie dla dokładności pomiarów oraz w późniejszym projektowaniu i realizacji budowli.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Jakie jest wartość azymutu odcinka AB, jeśli współrzędne punktów A i B to: YA = 100,00; XA = 100,00; YB = 150,00; XB = 50,00?

A. 315°
B. 225°
C. 135°
D. 45°
W przypadku błędnych odpowiedzi często pojawiają się mylne interpretacje dotyczące kierunków, które mogą prowadzić do nieprawidłowych obliczeń azymutu. Na przykład, wartości 45°, 315° i 225° mogą być wynikiem błędnych obliczeń lub niepoprawnej interpretacji kierunków. Azymut 45° oznaczałby kierunek północno-wschodni, co nie odpowiada rzeczywistemu położeniu punktu B w stosunku do punktu A, ponieważ punkt B leży na południowym zachodzie względem punktu A. Z kolei azymut 225° wskazuje kierunek południowo-zachodni, co również jest niezgodne z danymi współrzędnymi, gdzie B jest w rzeczywistości wyżej w osi Y, ale dalej w osi X. Azymut 315° z kolei sugeruje kierunek północno-zachodni, co jest błędne, gdyż nie uwzględnia faktu, że z punktu A do punktu B należy poruszać się w dół i w lewo. Kluczowym błędem myślowym jest niepoprawne rozumienie różnicy między azymutem a kierunkiem, co może prowadzić do pomyłek w obliczeniach. Ważne jest, aby przed przystąpieniem do obliczeń dokładnie zrozumieć, jak współrzędne wpływają na wyznaczane kierunki oraz aby stosować poprawne metody obliczania, które uwzględniają zarówno wartości X, jak i Y. W geodezji i kartografii, gdzie precyzja i poprawność kierunków są kluczowe, takie błędy mogą prowadzić do poważnych konsekwencji w analizach przestrzennych.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Fragment łączący dwa sąsiadujące punkty sytuacyjne tego samego obiektu określa się mianem

A. podpórką
B. odciętą
C. rzędną
D. czołówką
Czołówka to termin używany w geodezji i kartografii, który odnosi się do odcinka łączącego dwa sąsiednie punkty sytuacyjne tego samego obiektu. Punkty te są zazwyczaj zlokalizowane w przestrzeni i mogą być reprezentowane w różnych systemach odniesienia. Czołówka jest kluczowym elementem podczas pomiarów geodezyjnych, ponieważ pozwala na określenie kształtu i wymiarów obiektu, a także na analizę jego lokalizacji w kontekście innych struktur. Na przykład, w przypadku budowy drogi, czołówki mogą być używane do określenia, czy droga będzie przebiegać zgodnie z zaplanowanym projektem, a także do oceny, jak zmiany w terenie mogą wpłynąć na stabilność konstrukcji. W praktyce, czołówki są często używane w połączeniu z odpowiednimi narzędziami pomiarowymi, takimi jak tachymetry czy GPS, aby uzyskać dokładne dane przestrzenne, które są niezbędne do dalszej analizy i projektowania. Zgodnie z normami geodezyjnymi, prawidłowe użycie terminologii i zrozumienie relacji pomiędzy punktami sytuacyjnymi jest niezbędne dla zapewnienia wysokiej jakości wyników pomiarowych.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Aby ustanowić osnowę pomiarową, należy przeprowadzić terenowy wywiad na podstawie mapy

A. zasadniczą
B. topograficzną
C. klasyfikacyjną
D. przeglądową
Wybór mapy topograficznej jako podstawy do założenia osnowy pomiarowej jest nieodpowiedni, ponieważ mapa topograficzna, mimo że przedstawia ukształtowanie terenu w szerszym kontekście, nie zawiera wystarczająco szczegółowych informacji o granicach działek czy infrastrukturze niezbędnych do precyzyjnego zakupu osnowy. Może to prowadzić do błędów w lokalizacji punktów pomiarowych oraz do nieścisłości w dalszych pracach geodezyjnych. Z kolei mapa przeglądowa, z założenia służąca do ogólnej orientacji przestrzennej, również nie dostarcza wystarczających szczegółów, co może skutkować niepoprawnym określeniem granic działek oraz nieodpowiednią lokalizacją punktów osnowy. Zastosowanie mapy klasyfikacyjnej, która skupia się na podziale terenu na różne klasy użytkowania, nie ma praktycznego zastosowania w kontekście zakładania osnowy pomiarowej. Dobrą praktyką jest korzystanie z mapy zasadniczej, która dostarcza precyzyjnych informacji nie tylko o ukształtowaniu terenu, ale także o wszelkich istotnych elementach, które mogą mieć wpływ na pomiary geodezyjne. Wybór niewłaściwej mapy może prowadzić do poważnych problemów w dalszych etapach projektu, w tym do błędów w pomiarach oraz w szacunkach dotyczących obszarów i wymagań dotyczących budowy.

Pytanie 36

Długość odcinka na mapie w skali 1:2 000 wynosi 3 cm. Jaka jest rzeczywista długość tego odcinka w terenie?

A. 600 m
B. 6 m
C. 0,6 m
D. 60 m
Odpowiedź 60 m to dobry strzał! Tutaj skala 1:2000 mówi, że 1 cm na mapie to 2000 cm w rzeczywistości. Jak chcesz obliczyć rzeczywistą długość odcinka, to bierzemy długość na mapie, czyli 3 cm, i mnożymy przez tę wartość skali. Czyli 3 cm razy 2000 cm daje nam 6000 cm. Potem przeliczamy na metry, dzieląc przez 100, co daje 60 m. Takie obliczenia są całkiem standardowe w kartografii i geodezji, co jest ważne, bo precyzyjne pomiary mogą mieć duże znaczenie przy różnych projektach, jak budowy czy tworzenie map turystycznych. Zresztą, bez dokładnych danych ciężko podjąć dobre decyzje.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Na podstawie zamieszczonych w tabeli wyników pomiarów punktów kontrolowanych, oblicz przemieszczenie pionowe punktu nr 3.

Nr punktuPomiar pierwotny
Hp [m]
Pomiar wtórny
Hw [m]
1521,2578521,2480
2521,2521521,2410
3521,2610521,2554
4521,2586521,2533
5521,2567521,2458
6521,2505521,2412

A. -56 mm
B. +56 mm
C. -5,6 mm
D. +5,6 mm
Jeśli wybrałeś błędną odpowiedź, to może wynikać z niejasności, jak oblicza się przemieszczenie. Przemieszczenie pionowe punktu nr 3 nie może być dodatnie, bo to by znaczyło, że punkt się unosi, a my wiemy, że jest inaczej. Gdy mówimy o obniżeniu o -5,6 mm, to znaczy, że punkt jest niżej niż był. Często w analizach pomiarowych ludzie mylą znaki przy przemieszczeniach, co prowadzi do nieporozumień. Możliwe, że pomyliłeś przemieszczenie w górę z dodatnią wielkością, a to przez to mogą pojawić się błędne wnioski o stanie budowli. Niektórzy mogą też koncentrować się na wartościach bezwzględnych, nie zauważając kierunku przemieszczenia, co w inżynierii jest kluczowe. Zawsze warto mieć na oku zasady, które mówią, że ujemne wartości to obniżenie. W bardziej skomplikowanych analizach ważne jest używanie odpowiednich metod i narzędzi, żeby zrozumieć ruchy gruntów i ich wpływ na budowle.

Pytanie 39

Jaki typ błędu mógł wystąpić podczas pomiaru długości w kierunku powrotnym, jeśli osoba dokonująca pomiaru niepoprawnie określiła liczbę pełnych odłożeń taśmy, ponieważ zgubiła jedną szpilkę?

A. Przypadkowy
B. Systematyczny
C. Gruby
D. Losowy
Odpowiedź "gruby" jest prawidłowa, ponieważ odnosi się do błędu, który wynika z nieprawidłowego określenia liczby pełnych odłożeń taśmy pomiarowej. W sytuacji, gdy pomiar wykonuje osoba, która zgubiła szpilkę, może to prowadzić do pomyłek w odczycie długości, co skutkuje błędem grubościowym. Taki błąd systematycznie wpływa na wyniki pomiaru, ponieważ nieprawidłowe zarejestrowanie jednego z odłożeń może powodować stałe zaniżenie lub zawyżenie uzyskane wyniki. Przykładowo, w branży budowlanej, dokładność pomiarów jest kluczowa do zapewnienia precyzyjnego wymiarowania materiałów, co ma bezpośredni wpływ na jakość konstrukcji. Dobre praktyki w zakresie pomiarów zalecają stosowanie kalibracji narzędzi oraz regularne sprawdzanie ich stanu technicznego, co pozwala na minimalizację występowania błędów grubościowych.

Pytanie 40

W związku z wymaganiami precyzyjności pomiaru, szczegóły terenowe klasyfikowane są w trzy

A. klasy
B. rodzaje
C. kategorie
D. grupy
Wybór kategorii, rodzajów lub klas jako odpowiedzi na pytanie o podział szczegółów terenowych na grupy może prowadzić do nieporozumień, ponieważ terminy te nie oddają dokładnie charakterystyki, która jest istotna w kontekście analizy danych terenowych. Kategoria to zbyt ogólny termin, który nie precyzuje żadnych szczególnych aspektów pomiaru. Rodzaje mogą sugerować różnice w komponentach, ale niekoniecznie w parametrach pomiarowych, co może prowadzić do błędnych wniosków o porównywaniu różnych metod. Klasy odnoszą się do hierarchii lub porządkowania, co w kontekście pomiarów terenowych również nie oddaje specyfiki ich klasyfikacji, która opiera się na praktycznych zastosowaniach oraz wymaganiach dokładnościowych. Typowe błędy myślowe, które mogą prowadzić do tych niepoprawnych odpowiedzi, to brak zrozumienia, że kluczową rolę w analizie danych odgrywa kontekst ich zastosowania. W praktyce, dobrą praktyką jest stosowanie terminologii zgodnej z branżowymi standardami, co nie tylko ułatwia komunikację, ale także zapewnia zgodność z wymogami jakości oraz precyzji, które są kluczowe w geodezji i pokrewnych dziedzinach.